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Abstract—Reinforcement learning (RL) is mechanized to learn
from experience. It solves the problem in sequential decisions by
optimizing reward-punishment through experimentation of the
distinct actions in an environment. Unlike supervised learning
models, RL lacks static input-output mappings and the objective
of minimization of a vector error. However, to find out an optimal
strategy, it is crucial to learn both continuous feedback from
training data and the offline rules of the experiences with no
explicit dependence on online samples. In this paper, we present
a study of a multi-agent RL framework which involves a Critic in
semi-offline mode criticizing over an online Actor-Critic network,
namely, Critic-over-Actor-Critic (CoAC) model, in finding optimal
treatment plan of ICU patients as well as optimal strategy in a
combative battle game. For further validation, we also examine
the model in the adversarial assignment.

Index Terms—Actor-critic, healthcare trajectory, adversarial
teaming, multi-agent RL, optimal treatment recommendation.

I. INTRODUCTION

Reinforcement Learning (RL) is a model where an agent
learns through optimizing its behavior while interacting with
the environment. Agent receives rewards or punishment as
feedback for a taken action, and thus, the model quantifies
the action. A policy in the network learns through these steps
and decides an action at certain states. The value function
approximates the next return. The main goal of the agent in
the learning is to find an optimal policy which can maximize
the total reward until the terminal state. Among two major
paradigms of RL, single agent problems are mostly used. Single
agent RL model behaves the same way without REINFORCE
as in a group [1].

However, in a practical scenario, REINFORCE [2] takes
place whether it is competitive or cooperative while other
multiple agents present in an interactive environment. More
than one agent creates a dynamic grid where agents will be
learning at the same time on the same or different objective
[2]. A Multi-Agent Reinforcement Learning (MARL) model
potentially leads to more realistic and complex non-stationary
scenarios.

Deep Reinforcement Learning (DRL), including both learn-
ing styles, i.e., Single and Multi-Agent, has lately made exciting
advancement in diverse domains. With Atari games [2], Go
[3], continuous control tasks [4], it has shown human-like
performance. The work in [5] solved a multi-agent challenge
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with a cooperative model. In terms of policy, MARL showed
a different point of view by changing other agents policy
to learn a new task [6]. MARL is also consistent with
discrete and continuous actions of the agents [7]. In the mixed
environment, like competitive-cooperative, MARL achieved
delicate admission. In adversarial learning, too, multi-agent
model has committed established work [8].

Despite numerous accomplishments, MARL suffers from
distinct setbacks. In MARL, all agents apparently learn inter-
collectively with no external guidance [9]. In addition, each
agent learns, and its policy optimizes as training progresses.
But at the simulation, it faces non-stationary environment
challenges, which creates a learning instability [10]. MARL
also lacks an explore-exploit duo action together at a time
for greater rewards, i.e., an overall observer for the network’s
policy [11]. Traditional RL also prevents the straightforward
usage of exploration of new actions because of its greedy
character [12].

Our approach extends prior works in a number of ways. The
main idea is to learn a centralized actor with two critic units
where one critic, semi-offline in nature, has no rewards on its
way, and another one criticizes actor’s performance through
value error. We name this new approach Critic-over-Actor-
Critic (CoAC). The perception behind our idea comes from the
fact that, in many real-world environments, agents may have
to interact with both online and offline environments with or
without any prior experience. Also, the major concern of our
study is to find a way to make better use of RL models in health-
care where the circumstance demands to learn the collective
rules along with experiences. Investigating optimal treatment
trajectory in the clinical environment involves modeling patient-
level temporal healthcare processes in state-action space and
learning a generic way to understand clinical knowledge. The
current practice of standard multi-agent reinforcement learning
hardly takes these dynamics into account. Our CoAC approach
is able to dynamically select which critic network to attend at
a time during the simulation.

Our proposed CoAC approach offers:

o Actor-Critic couple where a supplemental critic explores

action set and can guide the actor in semi-offline mode;
¢ a composite policy of agents’ interaction in online-semi
offline environment;
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o presence of an adversarial entity in the environment;
¢ an environment occupied with cooperative and competitive
agents;
and they are applicable and beneficial to a multi-agent scenario
in finding episode-wise optimal strategies. We have validated
our proposed model on two different simulated environments
and tasks and compared it with prior works.

II. RECENT WORKS
A. Multi-Agent and Actor-Critic Models

Multi-Agent Reinforcement Learning (MARL) is an exten-
sively studied model. It covers a big spectrum of distinctive
problems, ranging from cooperative task [7], self-organizing
swarm robots [13] to high dimensional continuous state-
space model [14]. MARL promises to operate in dynamic
environment [6], in loosely coordinated cooperative settings
[7], in group rewards [5], also in learning other agents’ policies
[15].

The heart of our proposed model is an Actor-Critic model.
Actor-Critic (AC) method is one of the well-practiced tech-
niques in RL [16]. In general, reinforcement learning algorithms
either optimize on learning a value function [12], like value
iteration and TD-learning [16], or learning a policy directly [16].
AC methods learn both simultaneously - the actor being the
policy and the critic being the value function. Recent practices
of Actor-Critic framework comprise of centralized learning [6],
attention in centralized [10], mixed reward [7].

In sequential decision making, among Deep RL models,
Actor-Critic comes as a distinct instrument. [17] presented a
model which learns from limited experiences domain using
a value-based decisive mechanism. [4] used AC itself as an
optimizer to a recurrent model in synthesizing a multi-label
sequence. Actor-Critic has also been utilized adversarial unit.
[8] implemented Actor and Critic in an adversarial manner to
a learning module. Current focus of RL has deeply become
autonomous driving. An Actor-Critic model [18] exhibited how
it can be feasible in making decision for short time periods. In
our case, the multi-agent comes with an incentive to manifest
an optimal plan for multi-disease problems from two points of
view.

B. RL in Clinical Environments

As of targeting to find an optimal strategy in a multi-agent
setup, our primary objective is to bring a simulated ICU
environment based on MIMIC III [19] to the RL agents to
figure out the optimal treatments of multi-disease patients.
With the impression of usage of RL models in healthcare,
model-based and model-free algorithms have been applied in
diverse clinical problems. [20], [21] proposed simple Q-learning
models to find out cancer treatment therapy. Despite the fact
of missing the temporal information in state space, [22] has
successfully shown the advantage of Actor-Critic model and
how the temporal difference loss of the model can help get a
better Al treatment plan.

Single agent reinforcement learning models are also capable
in finding the optimal plan. Work in [23] showed a single
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Fig. 1: Left: the proposed model where the new critic explores
the new action set. Right: existing Actor-Critic model.

agent could plan for the treatment of sepsis patients in a
model-based DQN network. With different rewards and clinical
goals, [24] studied a Deep-RL model for sepsis patients. With
the continuous state-action plan, [25] brought a Q learning
based RL model exploring the nature of the treatment of
sepsis ICU patients. One of the prominent works of off-
policy learning in clinical environment adopted the Actor-Critic
method to determine continuous medical decisions [26]. Multi-
agent models are also adherent to clinical conditions. [27]
proposed a context-ware policy gradient based multi-agent
model which learns through joint reward actions. With the
sub-speciality domain information, several agents interacting in
a single environment can find precise treatment for oncology
patients [28] and have drawn much attention lately. Typically in
clinical problems, existing RL methods handle just one disease
environment with the online rule. The proposed architecture
plans to find the clinical rule as well as RL strategies for
optimal treatment in multi-disease space.

III. METHODOLOGY

Our proposed network is comparatively more flexible than
the prior approaches of MARL. Our algorithm is able to train
policies in ICU and simulated environments with group rewards
and greedy rewards. Agent can adopt different action spaces.
Duo critics attend the actor individually. Thus, our approach
achieves scalability in terms of the number of agents and can
adapt to different types of environments with ease.

Figure 1 visualizes our proposed Critic-over-Actor-Critic
(CoAC) architecture against the conventional Actor-Critic
model. The core learning part includes an Actor-Critic network.
The Actor makes a decision of a greedy action based on
the value error from the generic Critic. The Critic on the
far left has exploratory nature to find an action. This Critic
behaves the same way as a critic from an Actor-Critic. We have
modeled the value error to the corresponding actions through
an exploratory model parameter. Therefore, the Actor and the
top Critic together decide a combined action to take to perform
in the environment.

A. MDP Formulation

The environment also provides an evaluation of the action
called the immediate reward r. The agents and states are
modeled using MDP [16], and the formulation follows:
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e S: a continuous state space to describe the user state.
The state of a user at timestamp ¢ can be represented as
st €S (teTandt > 0).

o a: represents discrete and continuous actions space. The
action a € A of the agent is to recommend the selected
item. In training, action a; at timestamp ¢, a;11 € Ayq1
where x is the agents’ observation space.

o P: S x A states transition probability.

e R: S x A — R is the reward function where (s, a)
denotes the immediate reward r by taking action a at
state s.

o 7y discount factor in the learning.

B. Value Error, Action and Rewards

The job of the generic critic with the environment is to
observe states and rewards and to build a value function, V'™ (s)
that accounts for both immediate and future rewards received
under the deterministic policy 7. This value function [7] is
defined as:

V7(s) =Y Pr(s|so,a)R(s) + 7V (s0),
ses

H

where R(s) is the expected value of r, v € [0,1] is a factor
that discounts the value of the next state, and Pr(s|sg,a) is
the probability of transitioning to state s after taking action
a = 7(s) [10]. We adopt Temporal Difference (TD) [7], a
common approach to updating the state-value estimates V' (s),
by an amount proportional to the TD error [7]. This is defined
as:

0 =r—+~4V(s) = V(so). )

For deterministic policy and valued actions, a model parameter
composes the action as a weighted sum of the actions given
by the actor’s policy and the semi-offline critic’s exploratory
policy’s [11] action:

a=ba®+ (1 —b)a”, 3)

where o is the critic’s exploratory action and, a“ is the actor’s
greedy action, as given by policies 7% and 7€, respectively. b
is a model parameter values between [0, 1].

C. Policy Update, Other Parameters and Learning

The semi-offline critic optimizes its policy by targeting the
variance between the current and terminal state through the
probability of using the exploratory actions. The network starts
with a random action and then converges to the action which
has more exploratory rewards:

7 (aP|s) = D" d(aP|T¢).

“

Here, a¥ and T%¢ are exploratory actions in the current and
terminal states, respectively. 77%"? initially starts with an
indiscriminate value and gradually converges into exploratory
policy. I' is the number of agents in the current state s.
From the generic critic side, the actor receives a direction
through its own policy and a guided error estimation:

n=s )

GORESIO)
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Algorithm 1: Critic-over-Actor-Critic (CoAC).

Input:
V' (s): critic value function
7 (s): actor policy
o exploration factor
«: actor steps; [3: critics step size
~ € [0,1]: discount factor
A: decay factor
Output: optimal trajectory of the agent
repeat for each episode
e < 0, reset agents path
§ < initial state
repeat for each step of the episodes
a% < by the actor using policy ¢
a? < a¥ + N(0,0) exploratory action by the critic
using policy 7
7 a=0ba%+ (1 —b)a”, combined action
8 update e <~y A e+ V(s)
9  take action a, observe reward r and next state be s’

[ N7 B VSR S

0w S r+yV(s)—V(s)
1n s« s

12 critic policy 7 updates

13 till s is the terminal state

14 end episode

Actor’s policy is basically a greedy policy [10]. But, it learns
the joint policy 74, from both the critics. Therefore, we have:

<
ad’

C
1—C+a77

The parameter c here is arbitrarily small and tends to optimize
into greedy policy. We assume that 7 is computed by a model
function approximator with the parameter vector w, and after
each state transition, those parameters are updated according
to a rule [9]:

A if a9 € A is a greedy action
™

(6)

otherwise.

Wey1 = Wy + we ¥ 0+ kAW + (1 — k)Aw’E,

WSt = BAE(s), @

where Aw’ and AwS are the individual updates based
on RL and critic random action, respectively. %k is a trade-
off of two actions which apparently interpolates between two
policies of learning. The actor updates its equation to make
the reinforcement-based adjustment to the parameters of its
policy 74, which is computed as [9]:

AwB = ad(a” — o) Awr?(s),

®

where « and 3 are step-size-parameter and is updated by the
proposed CoAC algorithm detailed in Algorithm 1.

IV. EXPERIMENT

Our experiments are outlined in two environments. The first
one is an ICU environment built up as the miniature version
from the MIMIC III ICU dataset [19]. The second environment
is a simulation in functionality where we have picked a 2-team
battle game from PettingZoo library [29].
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A. MIMIC Il ICU Environment

The first environment is a multi-disease state space, namely,
Sepsis, Kidney and Heart disease critical patients and their
physiological conditions. We have imputed the missing informa-
tion as per their way [30]. Our ICU environment is custom-built
(with two more clusters of patients) using a sepsis environment
[31]. Details of this environment are elaborated as follows:

State: A patient’s state is composed of features [24],
including respiration rate, heart rate, arterial pH, positive end-
expiratory pressure, oxygen saturation, inspired oxygen fraction,
arterial oxygen partial pressure, plateau pressure, average
airway pressure, mean non-invasive blood pressure, SP02, Fe.
Each state consists of 14 normalized features from the Sepsis,
Kidney, and Heart patients list of MIMIC III. We extract about
1200 admissions from adult patients for the state-action space.

Action: The actions are normalized into two treatment
mediums: Vasopressor (VI) and IV fluids (IV). Each set has 12
individual treatments. Actions are continuous between 0 and
1, indicating possible vasopressor and IV fluid interventions
across 5 dosage quantiles [24]. The actor network and the critic
in Figure 1 have ReLU activation function and in the output
layer, it is a Softmax function. The critic on the top uses the
ReLU activation function, but has no activation function in the
output layer [7].

Target: The end goal is to leverage this clinical information
to find a treatment action for each time step based on the
information given that any patient at a particular time step
should survive until the terminal state. The agents will keep
trying with actions until they reach the terminal state.

Reward: The reward function r;4; is defined as 7441 =
Tvital(t+1) + Tventof f(t+1) + Tventon(t+1) in which Tvital(t+1)
evaluates the effect of the actions on the states of the patients.
Tventof f(t4+1) €stimates the performance of ventilation being
stopped at time ¢ + 1. Also, rewards are based on patients
survivability and the equal-balanced doses of VI and IV over
the time period. For each disease, we have set a threshold
to measure the severity of the patients’ conditions and the
agents of the corresponding reward take that into account. In
addition, rewards segregated the experiments into two parts:
(1) group rewards; (2) greedy rewards. First, when using group
rewards, agents in the same group help each other to reach
the terminal state 7" using the factor 7g,0ups, Which tends to
check the maximum rewards for the entire team as a single
unit in the MDP. Second, regarding greedy rewards, it is the
default setup of MDP to crave for the highest rewards as an
individual agent.

Agents: For each disease, there are separate agents: Sepsis
agent, Kidney agent, and Heart agent. They are defined
separately with their own rewards but with the same action set.
Since the rewards, discount factor v, and continuous action
values are different, they behave distinctively in the grid. At the
terminal state 7', three agents will have three separate action
recommendations for each group of patients.

Episode Simulation and Testing Simulation: The grid is
defined as such to detect episode transitions. The transaction
between states takes place based on the binary condition of
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Fig. 2: 2-team battle game with no adversarial agents using
our model. Red has to tag blue agents, and blue has to do the
opposite. Cooperative is nature. This environment brings more
survivability and more agents presented until the end.
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Fig. 3: In this battle, the green agents try to tag both red and
blue agents. In that too, our RL agents could eliminate the
green agents while tagging opponents through decent reward
and survival rate.

VI or IV [25]. The testing grid has the same features and
architecture as the episode simulation. However, it may have
expired or dispatched from hospital info. This model was used
in the environment to decide the reward values at the end of
each episode [25].

Adversarial Environment: For further validation of the
proposed study, we experimented on an adversarial environment
setting, too. With the ICU grid, we have doubled the size of
the no-transaction states in the simulation and let the agents
decide within the same action lists.

B. PettingZoo Environment

Our proposed model has performed on PettingZoo [29]
environment, too. PettingZoo is a Python-based library of many
diverse multi-agent reinforcement learning environments. For
the sake of the experiments, we have adopted its Adversarial
Pursuit environment from the MPE library and then modified
it as per our need. Our changes took place and converted the
grid as shown in Figure 2.

Action: It is a discrete action tagging game. One team has to
tag the opponent team agents. Agents can move high-handedly
in the grid. Once one team tags all agents of the opponent
team, the game is over.

Reward: Predator’s reward is: 1 reward for tagging a prey;
-0.2 reward for tagging anywhere. Prey’s reward is: -1 reward
for being tagged.

Observation space: The observation space is a 10x 10 map
for pursuers and a 9x9 map for the pursued.

Adversarial Agent: In the adversarial nature simulation, we
have introduced an adversarial agent (green agents as shown
in Figure 3) in the environment whose action is to tag both
teams.
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Fig. 4: Comparison of changes of SOFA score among Physician,

RL and Our model in the ICU Environment. Over the progress

of time, all manage to reduce the score. The proposed model

could reach recovery (SOFA < 3) before Physicians and RL

agents could.

V. RESULTS AND DISCUSSION

To examine the instrumental suitability of the proposed
model, we quantified (1) rewards, (2) survival rate, (3) number
of agents at the terminal state, (4) SOFA Score against baseline
multi-agent RL models and physician.

A. ICU Environment

The goal of the agents in the ICU environment is to maximize
survivability while keeping a balance of equal doses between
IV and VI [25] (IV and VI balance the blood pressure of a
patient and prevent organ failure [24]). Among three stages
of sepsis progression (Progression is determined by SOFA
Score that assesses the severity of sepsis [24]), our proposed
framework balanced the applied doses of IV and VI through
low, mid, and high SOFA score levels.

Episodic change of SOFA: In the episodic change of
SOFA score in Figure 4, CoAC has achieved consistently
better performance than the physician guidance and other RL
agents. Before reaching the terminal state, RL agents gained
minimal discharge (i.e., SOFA<3) SOFA score. In the interim,
agents suffer through the trade-off between exploration and
exploitation although with the presence of semi-offline critic.
However, greedy actions from the actor network eventually
credit on the SOFA points. Early hours experience slow
progress of patients clinical condition in terms of SOFA for
slow policy gradient [9].

Rewards, Survival Rate, and Agents: Overall advantages
of the proposed model over baseline RL algorithms contemplate
in total rewards, survival rate, and how many agents can reach
the terminal state, as shown in Table I. Sepsis-Kidney-Heart
ICU environment has been tested against Multi-Agent DQN
[12] and Multi-Agent Soft Actor-Critic model (SAC) [11]. With
our model, we have examined the environment with two reward
setup.

DQN and SAC total reward collection for all the agents
are the same overall. In the group reward, Critic-Actor-Critic
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TABLE I: Our Model vs. Baseline Models. CoAC is compared
to other multi-agent models with two discrete learning methods

where the proposed model demonstrated high competence

PettingZoo

Metric MA-DQN | MA-SAC | Greedy-Ours | Group-Ours
Rewards 0.5903 0.5874 0.6837 0.6928
Survival Rate 0.7244 0.6317 0.6745 0.6601
% of Agents at T 0.8864 0.8251 0.8819 0.8720

Sepsis-Kidney-Heart

Metric MA-DQN | MA-SAC | Greedy-Ours | Group-Ours
Rewards 0.7383 0.7751 0.7992 0.8014
Survival Rate 0.8041 0.8625 0.8227 0.8608
% of Agents at T 0.8035 0.8270 0.8596 0.8629

TABLE II: Adversary: Our Model vs Baseline Models. With
adversarial property in hand, CoAC holds the performance in

both environments.

Adversarial-Sepsis-Kidney-Heart

Metric MA-DQN | MA-SAC | Greedy-Ours | Group-Ours
Rewards 0.5351 0.5373 0.6528 0.6845
Survival Rate 0.7891 0.7255 0.7818 0.7730
% of Agents at T 0.7017 0.6250 0.7933 0.7453

Adversarial-PettingZoo

Metric MA-DQN | MA-SAC | Greedy-Ours | Group-Ours
Rewards 0.5125 0.5208 0.6533 0.6187
Survival Rate 0.6593 0.6817 0.6152 0.6046
% of Agents at T 0.7377 0.7689 0.7943 0.7315

gains the maximum reward among all four simulations. Agents
interaction with each other with the nature of exploration
from the extra critic might have added the privilege here [9].
However, in case of survival rate, DQN surpasses others. The
simplest nature of Q learning overtook the benefit of exploration
nature of the critic [13]. Now, agents reached the terminal state
seem to be a major favor from the semi-offline Critic. The new
Critic exploration nature arranges a way to move most of the
agents until they get to the terminal state [9]. Our model could
arrive at the end state with 86% of agents in group rewards
and 85% with greedy rewards approach.

Adversary: For the adversarial demonstration and validation
in Table II, the simulation-grid size for the agents has been
doubled with more no-transition states and less survival stages.
The investigation flows the same path. However, the adversarial
nature decreases the performance of the matrices in a slight
margin compared to the traditional model-based RL networks.
Even with the adversary, the model carried on the same
trend. Compared to other multi-agent models, agents in the
proposed network could achieve more than 10% of rewards.
In survivability, Critic-over-Actor-Critic took the lead with
a greedy approach at par with DQN. However, at the end,
greedy, like the previous test, reached with the highest number
of agents.

B. PettingZoo Environment

The game environment of our experiments also attained
remarks with the proposed model. In this evaluation, our
model is compared to the same baseline models. With predator-
prey (red and blue agents in Figure 2), DQN and SAC
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have significant (around 15%) less performance in terms of
rewards than our framework. In survival rate, because of the
straightforward MDP formulation [12], DQN again achieves
the best score here. Both group and greedy reward of our model
performed equally strong in the survivability scale. PettingZoo,
too, has more agents landed at the terminal state through our
CoAC model.

Adversary: For the adversary in PettingZoo, we have the
green agents tagging both red and blue agents in Figure 3.
Green agents follow the game rule only. With the presence
of adversarial agent, the proposed model could hold the same
effects. In rewards, the agents in the model profess the same as
without the adversary. With survival rate, our Critic-over-Actor-
Critic is nearly at par with SAC model in Table II. Greedy
reached the terminal state with the highest number of agents.
Group rewards model compensated its team members with
co-operation [12].

VI. CONCLUSIONS

The crucial setback of an Actor-Critic model is the lack of
freedom to have a non-supervisory action which can support
the Actor network to decide on an behavior with no feedback.
The semi-offline critic in this proposed model strengthened
the Actor-Critic network, saved the actor from over-doing
and normalized the final action with a curious look into
the environment. Our Critic-over-Actor-Critic model showed
meaningful advantages in finding optimal strategy in both
cooperative and combative reinforce domains.
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