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Abstract—Reinforcement learning (RL) is mechanized to learn
from experience. It solves the problem in sequential decisions by
optimizing reward-punishment through experimentation of the
distinct actions in an environment. Unlike supervised learning
models, RL lacks static input-output mappings and the objective
of minimization of a vector error. However, to find out an optimal
strategy, it is crucial to learn both continuous feedback from
training data and the offline rules of the experiences with no
explicit dependence on online samples. In this paper, we present
a study of a multi-agent RL framework which involves a Critic in
semi-offline mode criticizing over an online Actor-Critic network,
namely, Critic-over-Actor-Critic (CoAC) model, in finding optimal
treatment plan of ICU patients as well as optimal strategy in a
combative battle game. For further validation, we also examine
the model in the adversarial assignment.

Index Terms—Actor-critic, healthcare trajectory, adversarial
teaming, multi-agent RL, optimal treatment recommendation.

I. INTRODUCTION

Reinforcement Learning (RL) is a model where an agent

learns through optimizing its behavior while interacting with

the environment. Agent receives rewards or punishment as

feedback for a taken action, and thus, the model quantifies

the action. A policy in the network learns through these steps

and decides an action at certain states. The value function

approximates the next return. The main goal of the agent in

the learning is to find an optimal policy which can maximize

the total reward until the terminal state. Among two major

paradigms of RL, single agent problems are mostly used. Single

agent RL model behaves the same way without REINFORCE

as in a group [1].

However, in a practical scenario, REINFORCE [2] takes

place whether it is competitive or cooperative while other

multiple agents present in an interactive environment. More

than one agent creates a dynamic grid where agents will be

learning at the same time on the same or different objective

[2]. A Multi-Agent Reinforcement Learning (MARL) model

potentially leads to more realistic and complex non-stationary

scenarios.

Deep Reinforcement Learning (DRL), including both learn-

ing styles, i.e., Single and Multi-Agent, has lately made exciting

advancement in diverse domains. With Atari games [2], Go

[3], continuous control tasks [4], it has shown human-like

performance. The work in [5] solved a multi-agent challenge

with a cooperative model. In terms of policy, MARL showed

a different point of view by changing other agents policy

to learn a new task [6]. MARL is also consistent with

discrete and continuous actions of the agents [7]. In the mixed

environment, like competitive-cooperative, MARL achieved

delicate admission. In adversarial learning, too, multi-agent

model has committed established work [8].
Despite numerous accomplishments, MARL suffers from

distinct setbacks. In MARL, all agents apparently learn inter-

collectively with no external guidance [9]. In addition, each

agent learns, and its policy optimizes as training progresses.

But at the simulation, it faces non-stationary environment

challenges, which creates a learning instability [10]. MARL

also lacks an explore-exploit duo action together at a time

for greater rewards, i.e., an overall observer for the network’s

policy [11]. Traditional RL also prevents the straightforward

usage of exploration of new actions because of its greedy

character [12].
Our approach extends prior works in a number of ways. The

main idea is to learn a centralized actor with two critic units

where one critic, semi-offline in nature, has no rewards on its

way, and another one criticizes actor’s performance through

value error. We name this new approach Critic-over-Actor-
Critic (CoAC). The perception behind our idea comes from the

fact that, in many real-world environments, agents may have

to interact with both online and offline environments with or

without any prior experience. Also, the major concern of our

study is to find a way to make better use of RL models in health-

care where the circumstance demands to learn the collective

rules along with experiences. Investigating optimal treatment

trajectory in the clinical environment involves modeling patient-

level temporal healthcare processes in state-action space and

learning a generic way to understand clinical knowledge. The

current practice of standard multi-agent reinforcement learning

hardly takes these dynamics into account. Our CoAC approach

is able to dynamically select which critic network to attend at

a time during the simulation.
Our proposed CoAC approach offers:

• Actor-Critic couple where a supplemental critic explores

action set and can guide the actor in semi-offline mode;

• a composite policy of agents’ interaction in online-semi

offline environment;
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• presence of an adversarial entity in the environment;

• an environment occupied with cooperative and competitive

agents;

and they are applicable and beneficial to a multi-agent scenario

in finding episode-wise optimal strategies. We have validated

our proposed model on two different simulated environments

and tasks and compared it with prior works.

II. RECENT WORKS

A. Multi-Agent and Actor-Critic Models

Multi-Agent Reinforcement Learning (MARL) is an exten-

sively studied model. It covers a big spectrum of distinctive

problems, ranging from cooperative task [7], self-organizing

swarm robots [13] to high dimensional continuous state-

space model [14]. MARL promises to operate in dynamic

environment [6], in loosely coordinated cooperative settings

[7], in group rewards [5], also in learning other agents’ policies

[15].

The heart of our proposed model is an Actor-Critic model.

Actor-Critic (AC) method is one of the well-practiced tech-

niques in RL [16]. In general, reinforcement learning algorithms

either optimize on learning a value function [12], like value

iteration and TD-learning [16], or learning a policy directly [16].

AC methods learn both simultaneously - the actor being the

policy and the critic being the value function. Recent practices

of Actor-Critic framework comprise of centralized learning [6],

attention in centralized [10], mixed reward [7].

In sequential decision making, among Deep RL models,

Actor-Critic comes as a distinct instrument. [17] presented a

model which learns from limited experiences domain using

a value-based decisive mechanism. [4] used AC itself as an

optimizer to a recurrent model in synthesizing a multi-label

sequence. Actor-Critic has also been utilized adversarial unit.

[8] implemented Actor and Critic in an adversarial manner to

a learning module. Current focus of RL has deeply become

autonomous driving. An Actor-Critic model [18] exhibited how

it can be feasible in making decision for short time periods. In

our case, the multi-agent comes with an incentive to manifest

an optimal plan for multi-disease problems from two points of

view.

B. RL in Clinical Environments

As of targeting to find an optimal strategy in a multi-agent

setup, our primary objective is to bring a simulated ICU

environment based on MIMIC III [19] to the RL agents to

figure out the optimal treatments of multi-disease patients.

With the impression of usage of RL models in healthcare,

model-based and model-free algorithms have been applied in

diverse clinical problems. [20], [21] proposed simple Q-learning

models to find out cancer treatment therapy. Despite the fact

of missing the temporal information in state space, [22] has

successfully shown the advantage of Actor-Critic model and

how the temporal difference loss of the model can help get a

better AI treatment plan.

Single agent reinforcement learning models are also capable

in finding the optimal plan. Work in [23] showed a single

Critic Critic

Actor

Exploratory
action

Value 
error

Environment
Update
policy

Update policy

Reward
Critic

Actor

Value 
error

Update policy

Reward

Combined 
action

State info

Update
greedy policyGreedy

action

Explore 
new action

Update
policy

Proposed Conventional

Fig. 1: Left: the proposed model where the new critic explores

the new action set. Right: existing Actor-Critic model.

agent could plan for the treatment of sepsis patients in a

model-based DQN network. With different rewards and clinical

goals, [24] studied a Deep-RL model for sepsis patients. With

the continuous state-action plan, [25] brought a Q learning

based RL model exploring the nature of the treatment of

sepsis ICU patients. One of the prominent works of off-

policy learning in clinical environment adopted the Actor-Critic

method to determine continuous medical decisions [26]. Multi-

agent models are also adherent to clinical conditions. [27]

proposed a context-ware policy gradient based multi-agent

model which learns through joint reward actions. With the

sub-speciality domain information, several agents interacting in

a single environment can find precise treatment for oncology

patients [28] and have drawn much attention lately. Typically in

clinical problems, existing RL methods handle just one disease

environment with the online rule. The proposed architecture

plans to find the clinical rule as well as RL strategies for

optimal treatment in multi-disease space.

III. METHODOLOGY

Our proposed network is comparatively more flexible than

the prior approaches of MARL. Our algorithm is able to train

policies in ICU and simulated environments with group rewards

and greedy rewards. Agent can adopt different action spaces.

Duo critics attend the actor individually. Thus, our approach

achieves scalability in terms of the number of agents and can

adapt to different types of environments with ease.
Figure 1 visualizes our proposed Critic-over-Actor-Critic

(CoAC) architecture against the conventional Actor-Critic

model. The core learning part includes an Actor-Critic network.

The Actor makes a decision of a greedy action based on

the value error from the generic Critic. The Critic on the

far left has exploratory nature to find an action. This Critic

behaves the same way as a critic from an Actor-Critic. We have

modeled the value error to the corresponding actions through

an exploratory model parameter. Therefore, the Actor and the

top Critic together decide a combined action to take to perform

in the environment.

A. MDP Formulation
The environment also provides an evaluation of the action

called the immediate reward r. The agents and states are

modeled using MDP [16], and the formulation follows:
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• S: a continuous state space to describe the user state.

The state of a user at timestamp t can be represented as

st ∈ S (t ∈ T and t > 0).
• a: represents discrete and continuous actions space. The

action a ∈ A of the agent is to recommend the selected

item. In training, action at at timestamp t, at+1 ∈ Ax+1

where x is the agents’ observation space.

• P : S × A states transition probability.

• R: S × A → R is the reward function where (s, a)

denotes the immediate reward r by taking action a at

state s.

• γ: discount factor in the learning.

B. Value Error, Action and Rewards

The job of the generic critic with the environment is to

observe states and rewards and to build a value function, V π(s)
that accounts for both immediate and future rewards received

under the deterministic policy π. This value function [7] is

defined as:

V π(s) =
∑
s∈S

Pr(s|s0, a)R(s) + γV π(s0), (1)

where R(s) is the expected value of r, γ ∈ [0, 1] is a factor

that discounts the value of the next state, and Pr(s|s0, a) is

the probability of transitioning to state s after taking action

a = π(s) [10]. We adopt Temporal Difference (TD) [7], a

common approach to updating the state-value estimates V (s),
by an amount proportional to the TD error [7]. This is defined

as:

δ = r + γV (s)− V (s0). (2)

For deterministic policy and valued actions, a model parameter

composes the action as a weighted sum of the actions given

by the actor’s policy and the semi-offline critic’s exploratory

policy’s [11] action:

a = baG + (1− b)aE , (3)

where aE is the critic’s exploratory action and, aG is the actor’s

greedy action, as given by policies πE and πG, respectively. b
is a model parameter values between [0, 1].

C. Policy Update, Other Parameters and Learning

The semi-offline critic optimizes its policy by targeting the

variance between the current and terminal state through the

probability of using the exploratory actions. The network starts

with a random action and then converges to the action which

has more exploratory rewards:

πE(aE |s) = Γπrand(aEs |T ae). (4)

Here, aEs and T ae are exploratory actions in the current and

terminal states, respectively. πrand initially starts with an

indiscriminate value and gradually converges into exploratory

policy. Γ is the number of agents in the current state s.

From the generic critic side, the actor receives a direction

through its own policy and a guided error estimation:

η =
1

2
[π(s)− πG(s)]2. (5)

Algorithm 1: Critic-over-Actor-Critic (CoAC).

Input:
V (s): critic value function
πG(s): actor policy
σ: exploration factor
α: actor steps; β: critics step size
γ ∈ [0, 1]: discount factor
λ: decay factor
Output: optimal trajectory of the agent

1 repeat for each episode
2 e ← 0, reset agents path
3 s ← initial state
4 repeat for each step of the episodes
5 aG ← by the actor using policy πG

6 aE ← aE +N(0, σ) exploratory action by the critic
using policy πE

7 a = baG + (1− b)aE , combined action
8 update e ← γ λ e+ V (s)
9 take action a, observe reward r and next state be s′

10 δ ← r + γ V (s′)− V (s)
11 s ← s′
12 critic policy π updates
13 till s is the terminal state
14 end episode

Actor’s policy is basically a greedy policy [10]. But, it learns

the joint policy πA, from both the critics. Therefore, we have:

πA =

{
c
ag , if ag ∈ A is a greedy action

1− c+ c
ag , otherwise.

(6)

The parameter c here is arbitrarily small and tends to optimize

into greedy policy. We assume that πG is computed by a model

function approximator with the parameter vector w, and after

each state transition, those parameters are updated according

to a rule [9]:

ws+1 = ws + ws ∗ η + kΔwRL + (1− k)ΔwSL,

wSL = βΔE(s),
(7)

where ΔwRL and ΔwSL are the individual updates based

on RL and critic random action, respectively. k is a trade-

off of two actions which apparently interpolates between two

policies of learning. The actor updates its equation to make

the reinforcement-based adjustment to the parameters of its

policy πA, which is computed as [9]:

ΔwRL = αδ(aE − aG)ΔwπA(s), (8)

where α and β are step-size-parameter and is updated by the

proposed CoAC algorithm detailed in Algorithm 1.

IV. EXPERIMENT

Our experiments are outlined in two environments. The first

one is an ICU environment built up as the miniature version

from the MIMIC III ICU dataset [19]. The second environment

is a simulation in functionality where we have picked a 2-team

battle game from PettingZoo library [29].
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A. MIMIC III ICU Environment
The first environment is a multi-disease state space, namely,

Sepsis, Kidney and Heart disease critical patients and their

physiological conditions. We have imputed the missing informa-

tion as per their way [30]. Our ICU environment is custom-built

(with two more clusters of patients) using a sepsis environment

[31]. Details of this environment are elaborated as follows:
State: A patient’s state is composed of features [24],

including respiration rate, heart rate, arterial pH, positive end-

expiratory pressure, oxygen saturation, inspired oxygen fraction,

arterial oxygen partial pressure, plateau pressure, average

airway pressure, mean non-invasive blood pressure, SP02, Fe.

Each state consists of 14 normalized features from the Sepsis,

Kidney, and Heart patients list of MIMIC III. We extract about

1200 admissions from adult patients for the state-action space.
Action: The actions are normalized into two treatment

mediums: Vasopressor (VI) and IV fluids (IV). Each set has 12

individual treatments. Actions are continuous between 0 and

1, indicating possible vasopressor and IV fluid interventions

across 5 dosage quantiles [24]. The actor network and the critic

in Figure 1 have ReLU activation function and in the output

layer, it is a Softmax function. The critic on the top uses the

ReLU activation function, but has no activation function in the

output layer [7].
Target: The end goal is to leverage this clinical information

to find a treatment action for each time step based on the

information given that any patient at a particular time step

should survive until the terminal state. The agents will keep

trying with actions until they reach the terminal state.
Reward: The reward function rt+1 is defined as rt+1 =

rvital(t+1) + rventoff(t+1) + rventon(t+1) in which rvital(t+1)

evaluates the effect of the actions on the states of the patients.

rventoff(t+1) estimates the performance of ventilation being

stopped at time t + 1. Also, rewards are based on patients

survivability and the equal-balanced doses of VI and IV over

the time period. For each disease, we have set a threshold

to measure the severity of the patients’ conditions and the

agents of the corresponding reward take that into account. In

addition, rewards segregated the experiments into two parts:

(1) group rewards; (2) greedy rewards. First, when using group

rewards, agents in the same group help each other to reach

the terminal state T using the factor rgroups, which tends to

check the maximum rewards for the entire team as a single

unit in the MDP. Second, regarding greedy rewards, it is the

default setup of MDP to crave for the highest rewards as an

individual agent.
Agents: For each disease, there are separate agents: Sepsis

agent, Kidney agent, and Heart agent. They are defined

separately with their own rewards but with the same action set.

Since the rewards, discount factor γ, and continuous action

values are different, they behave distinctively in the grid. At the

terminal state T , three agents will have three separate action

recommendations for each group of patients.
Episode Simulation and Testing Simulation: The grid is

defined as such to detect episode transitions. The transaction

between states takes place based on the binary condition of

Fig. 2: 2-team battle game with no adversarial agents using

our model. Red has to tag blue agents, and blue has to do the

opposite. Cooperative is nature. This environment brings more

survivability and more agents presented until the end.

Fig. 3: In this battle, the green agents try to tag both red and

blue agents. In that too, our RL agents could eliminate the

green agents while tagging opponents through decent reward

and survival rate.

VI or IV [25]. The testing grid has the same features and

architecture as the episode simulation. However, it may have

expired or dispatched from hospital info. This model was used

in the environment to decide the reward values at the end of

each episode [25].

Adversarial Environment: For further validation of the

proposed study, we experimented on an adversarial environment

setting, too. With the ICU grid, we have doubled the size of

the no-transaction states in the simulation and let the agents

decide within the same action lists.

B. PettingZoo Environment

Our proposed model has performed on PettingZoo [29]

environment, too. PettingZoo is a Python-based library of many

diverse multi-agent reinforcement learning environments. For

the sake of the experiments, we have adopted its Adversarial
Pursuit environment from the MPE library and then modified

it as per our need. Our changes took place and converted the

grid as shown in Figure 2.

Action: It is a discrete action tagging game. One team has to

tag the opponent team agents. Agents can move high-handedly

in the grid. Once one team tags all agents of the opponent

team, the game is over.

Reward: Predator’s reward is: 1 reward for tagging a prey;

-0.2 reward for tagging anywhere. Prey’s reward is: -1 reward

for being tagged.

Observation space: The observation space is a 10×10 map

for pursuers and a 9×9 map for the pursued.

Adversarial Agent: In the adversarial nature simulation, we

have introduced an adversarial agent (green agents as shown

in Figure 3) in the environment whose action is to tag both

teams.
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Fig. 4: Comparison of changes of SOFA score among Physician,

RL and Our model in the ICU Environment. Over the progress

of time, all manage to reduce the score. The proposed model

could reach recovery (SOFA < 3) before Physicians and RL

agents could.

V. RESULTS AND DISCUSSION

To examine the instrumental suitability of the proposed

model, we quantified (1) rewards, (2) survival rate, (3) number

of agents at the terminal state, (4) SOFA Score against baseline

multi-agent RL models and physician.

A. ICU Environment

The goal of the agents in the ICU environment is to maximize

survivability while keeping a balance of equal doses between

IV and VI [25] (IV and VI balance the blood pressure of a

patient and prevent organ failure [24]). Among three stages

of sepsis progression (Progression is determined by SOFA

Score that assesses the severity of sepsis [24]), our proposed

framework balanced the applied doses of IV and VI through

low, mid, and high SOFA score levels.

Episodic change of SOFA: In the episodic change of

SOFA score in Figure 4, CoAC has achieved consistently

better performance than the physician guidance and other RL

agents. Before reaching the terminal state, RL agents gained

minimal discharge (i.e., SOFA<3) SOFA score. In the interim,

agents suffer through the trade-off between exploration and

exploitation although with the presence of semi-offline critic.

However, greedy actions from the actor network eventually

credit on the SOFA points. Early hours experience slow

progress of patients clinical condition in terms of SOFA for

slow policy gradient [9].

Rewards, Survival Rate, and Agents: Overall advantages

of the proposed model over baseline RL algorithms contemplate

in total rewards, survival rate, and how many agents can reach

the terminal state, as shown in Table I. Sepsis-Kidney-Heart

ICU environment has been tested against Multi-Agent DQN

[12] and Multi-Agent Soft Actor-Critic model (SAC) [11]. With

our model, we have examined the environment with two reward

setup.

DQN and SAC total reward collection for all the agents

are the same overall. In the group reward, Critic-Actor-Critic

TABLE I: Our Model vs. Baseline Models. CoAC is compared

to other multi-agent models with two discrete learning methods

where the proposed model demonstrated high competence

PettingZoo
Metric MA-DQN MA-SAC Greedy-Ours Group-Ours

Rewards 0.5903 0.5874 0.6837 0.6928
Survival Rate 0.7244 0.6317 0.6745 0.6601

% of Agents at T 0.8864 0.8251 0.8819 0.8720

Sepsis-Kidney-Heart
Metric MA-DQN MA-SAC Greedy-Ours Group-Ours

Rewards 0.7383 0.7751 0.7992 0.8014
Survival Rate 0.8041 0.8625 0.8227 0.8608

% of Agents at T 0.8035 0.8270 0.8596 0.8629

TABLE II: Adversary: Our Model vs Baseline Models. With

adversarial property in hand, CoAC holds the performance in

both environments.

Adversarial-Sepsis-Kidney-Heart
Metric MA-DQN MA-SAC Greedy-Ours Group-Ours

Rewards 0.5351 0.5373 0.6528 0.6845
Survival Rate 0.7891 0.7255 0.7818 0.7730

% of Agents at T 0.7017 0.6250 0.7933 0.7453

Adversarial-PettingZoo
Metric MA-DQN MA-SAC Greedy-Ours Group-Ours

Rewards 0.5125 0.5208 0.6533 0.6187

Survival Rate 0.6593 0.6817 0.6152 0.6046

% of Agents at T 0.7377 0.7689 0.7943 0.7315

gains the maximum reward among all four simulations. Agents

interaction with each other with the nature of exploration

from the extra critic might have added the privilege here [9].

However, in case of survival rate, DQN surpasses others. The

simplest nature of Q learning overtook the benefit of exploration

nature of the critic [13]. Now, agents reached the terminal state

seem to be a major favor from the semi-offline Critic. The new

Critic exploration nature arranges a way to move most of the

agents until they get to the terminal state [9]. Our model could

arrive at the end state with 86% of agents in group rewards

and 85% with greedy rewards approach.

Adversary: For the adversarial demonstration and validation

in Table II, the simulation-grid size for the agents has been

doubled with more no-transition states and less survival stages.

The investigation flows the same path. However, the adversarial

nature decreases the performance of the matrices in a slight

margin compared to the traditional model-based RL networks.

Even with the adversary, the model carried on the same

trend. Compared to other multi-agent models, agents in the

proposed network could achieve more than 10% of rewards.

In survivability, Critic-over-Actor-Critic took the lead with

a greedy approach at par with DQN. However, at the end,

greedy, like the previous test, reached with the highest number

of agents.

B. PettingZoo Environment

The game environment of our experiments also attained

remarks with the proposed model. In this evaluation, our

model is compared to the same baseline models. With predator-

prey (red and blue agents in Figure 2), DQN and SAC
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have significant (around 15%) less performance in terms of

rewards than our framework. In survival rate, because of the

straightforward MDP formulation [12], DQN again achieves

the best score here. Both group and greedy reward of our model

performed equally strong in the survivability scale. PettingZoo,

too, has more agents landed at the terminal state through our

CoAC model.
Adversary: For the adversary in PettingZoo, we have the

green agents tagging both red and blue agents in Figure 3.

Green agents follow the game rule only. With the presence

of adversarial agent, the proposed model could hold the same

effects. In rewards, the agents in the model profess the same as

without the adversary. With survival rate, our Critic-over-Actor-

Critic is nearly at par with SAC model in Table II. Greedy

reached the terminal state with the highest number of agents.

Group rewards model compensated its team members with

co-operation [12].

VI. CONCLUSIONS

The crucial setback of an Actor-Critic model is the lack of

freedom to have a non-supervisory action which can support

the Actor network to decide on an behavior with no feedback.

The semi-offline critic in this proposed model strengthened

the Actor-Critic network, saved the actor from over-doing

and normalized the final action with a curious look into

the environment. Our Critic-over-Actor-Critic model showed

meaningful advantages in finding optimal strategy in both

cooperative and combative reinforce domains.
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