SoK: Analysis of Software Supply Chain Security by Establishing
Secure Design Properties

Chinenye Okafor*
Purdue University
West Lafayette, IN, USA
okafor1@purdue.edu

Santiago Torres-Arias
Purdue University
West Lafayette, IN, USA
santiagotorres@purdue.edu

Abstract

This paper systematizes knowledge about secure software supply
chain patterns. It identifies four stages of a software supply chain
attack and proposes three security properties crucial for a secured
supply chain: transparency, validity, and separation. The paper de-
scribes current security approaches and maps them to the proposed
security properties, including research ideas and case studies of
supply chains in practice. It discusses the strengths and weaknesses
of current approaches relative to known attacks and details the
various security frameworks put out to ensure the security of the
software supply chain. Finally, the paper highlights potential gaps
in actor and operation-centered supply chain security techniques.

CCS Concepts

« Software and its engineering — Design patterns; » Security and
privacy — Software security engineering; « General and reference
— Surveys and overviews.

Keywords

Software Supply Chain Attacks, Security Properties, Collaborative
Software Engineering, Software Reuse

ACM Reference Format:

Chinenye Okafor, Taylor R. Schorlemmer, Santiago Torres-Arias, and James
C. Davis. 2022. SoK: Analysis of Software Supply Chain Security by Establish-
ing Secure Design Properties. In Proceedings of the 2022 ACM Workshop on
Software Supply Chain Offensive Research and Ecosystem Defenses (SCORED
’22), November 11, 2022, Los Angeles, CA, USA. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3560835.3564556

1 Introduction

Industrial, government, and academic computing systems rely on a
supply chain of open- and closed-source software components [60].
An actor controlling any step in this chain may, accidentally or

“Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SCORED °22, November 11, 2022, Los Angeles, CA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9885-5/22/11.

https://doi.org/10.1145/3560835.3564556

Taylor R. Schorlemmer*
Purdue University
West Lafayette, IN, USA
tschorle@purdue.edu

James C. Davis
Purdue University
West Lafayette, IN, USA
davisjam@purdue.edu

maliciously, sabotage downstream software [59, 63]. Problems in
software supply chains have caused site- and Internet-wide dis-
ruptions at an estimated cost of billions of dollars [12, 57]. These
problems include service outages [15, 20] and cybersecurity exploits
that endanger human lives [25] and national security [24]. Software
supply chain exploits may be attributed to requirements mismatch
— many software supply chains were originally designed for shar-
ing, not cybersecurity [60]. In light of the emerging requirement
for security, how should supply chains be designed?

Researchers have begun by structuring knowledge of how cur-
rent software supply chains can be attacked. For example, tax-
onomies of attacks yield attack trees that help us understand how
attackers compromise supply chains. Ecosystem analysis has also
helped understand how the structure of software dependencies
can make us more or less vulnerable when selecting external de-
pendencies [19, 80, 81]. Data-science based efforts in the industry
and academia have attempted to identify signals or indicators of
compromise [79].

Other researchers have examined design changes to improve the
security of software supply chains. Using these insights, efforts have
focused in developing systems and mechanisms to mitigate these
attack vectors. Efforts like in-toto and Sigstore attempt to provide
a layer of security to the current operations in the software supply
chain. These generally aim to protect against a class of attacks in
the software supply chain. For example, Solarwind’s Trebuchet
project [24] aims to prevent compiled backdoors by means of an in-
toto coordinated reproducible builds-based pipeline. This has lead
to the development of “meta-frameworks” or “best practices models”
that describe a combination of mechanisms and configurations that
can be used to provide a strong security posture against software
supply chain attacks. Examples of these approaches are the Cloud
Native Computing Foundations Technical Advisory Group on Se-
curity’s (CNCF TAG-Security) reference architecture for secure
software pipelines [31], as well as the Secure Software Factory [32].

Given the emerging nature of this discipline and the amount of
disjoint efforts, various groups from academia, industry and open
source have proposed multiple reference architectures and design
patterns to secure their software supply chain. However, as yet
there is no a systematized framework that helps system integrators
and designers to understand and match how these mechanisms
and different architectures are designed and applied in popular
software pipelines. This is in part due to the disconnect between


https://orcid.org/0000-0002-4853-6870
https://orcid.org/0000-0003-2181-5527
https://orcid.org/0000-0002-9283-3557
https://orcid.org/0000-0003-2495-686X
https://doi.org/10.1145/3560835.3564556
https://doi.org/10.1145/3560835.3564556

SCORED ’22, November 11, 2022, Los Angeles, CA, USA

these different communities, but as well as a lack of structured
framework to map both research aims: to catalogue threats and to
apply a combination of systems to mitigate them.

The purpose of this paper is to summarize knowledge regarding
design patterns for security in software supply chains. We system-
atically review current design patterns for secure supply chains,
and develop a framework to compare their security postures. In
doing so, we provide the first comprehensive study of current best
practices proposed by industry, academia and government. First, we
describe software supply chains (§2). Next, we provide a four stage
attack pattern for software supply chain attacks (§3.1). Then, we
present three properties (transparency, validity, and separation) for
securing software supply chains (§3.2). Afterwards, we document
how current security practices fulfill our security principles (§4) and
provide several case studies (§5). Finally, we identify opportunities
to further improve the security of software supply chains (§6).

In summary, our contributions are:

(1) An attack pattern for software supply chain attacks (§3.1).

(2) Principles for a secure software supply chain (§3.2).

(3) A collection and analysis of current security practices (§4
and §5).

2 Background

In general, a supply chain is a set of entities which interact to
produce some product for an end consumer [67]. Each link in a
supply chain contributes to the final product by providing a sub-
product to reliant links. As a result, a network of dependencies
forms between the links in a supply chain - terminating with the
link representing the end consumer. Therefore, a supply chain is
characterized by the connections and attributes of the entities used
to create and ultimately consume a final product.

In computing, software supply chains are a collection of
systems, devices, and people which produce a final software
product [18]. Figure 1 depicts a typical software supply chain with
a focus on an individual link. Each link in the software supply chain
comprises the artifacts, operations, and actors needed to develop
and deliver software products [21, 52]. Actors manipulate artifacts
and operations within the supply chain to produce an output. Arti-
facts include the product team’s code, development infrastructure,
and software dependencies. Operations include productive steps
such as fetching dependencies or compiling software, protective
steps such as linting or security scans, and publishing steps such
as deployment or distribution.

The structure of supply chains necessitates an interdependence
between artifacts and operations within and between links. Actors
manage the connections which form between components and be-
tween links in the chain. Responsibility for operations and artifacts
is distributed among actors across different geographies, teams,
companies, and legal jurisdictions. Modern software engineering
is an international collaborative effort [34, 64]. A single link in
the supply chain does not necessarily correspond to one group or
organization. A single organization may be responsible for several
links within a supply chain.

Okafor and Schorlemmer, et al.

3 Supply Chain Attacks and Security Properties
3.1 Supply Chain Attacks

The software supply chain is an increasingly popular attack vector
[43]. It is comprised of several connected links which share artifacts
and conduct operations. Actors manage links and components.
The difference between software supply chain attacks and other
software attacks, however, is not clearly defined in literature. Ladisa
et al. [43] and Ohm et al. [57] characterize supply chain attacks
as the injection of malicious code into the supply chain to target
downstream links. ENISA [18] defines a supply chain attack as
a combination of at least two attacks — one attack on a supplier
and a subsequent attack on intended targets. Other works such
as Zimmermann et al. [81] and Zahan et al. [79] identify methods
other than strict code injection for supply chain attacks. Distilling
the concept of software supply chain attacks from multiple
sources, we arrive at a characteristic four stage attack pattern
shown in Figure 2:

(1) Compromise: First, an attacker finds and compromises an
existing weakness within a supply chain.

(2) Alteration: Second, an attacker leverages the initial com-
promise to alter the software supply chain.

(3) Propagation: Third, the change introduced by the attacker
propagates to downstream components and links.

(4) Exploitation: Finally, the attacker exploits the alterations
in a downstream link.

To illustrate this definition, consider the SOLARBURST compro-
mise [11, 49]. In this supply chain attack, an attacker altered existing
software from SolarWinds by injecting malicious code during the
build process. This attack can be mapped to the four-stage attack
from Figure 2 as follows: (1) The existing weakness compromised
was the build infrastructure. (2) The alteration was malicious code
injected by the compiler, permitting a user to bypass authentica-
tion in a SolarWinds product component. (3) The propagation was
via SolarWinds’s compromised product — its users include many
companies and US government agencies like the IRS and NASA. (4)
The exploitation was to leverage broken authentication mechanism
to take control of affected machines. Such incidents are becoming
common; software supply chain compromises have increased by a
cumulative 650% in the last three years [66, 68, 69].

In contrast to this pattern, traditional attacks, such as those de-
scribed by Lockheed Martin’s Cyber Kill Chain [46], simply exploit
an existing vulnerability (step 4). Attacks on software are not neces-
sarily supply chain attacks just because the software exists within
the context of a supply chain. For this reason, an attack on software
via the weakness of a dependency is not a supply chain attack unless
it follows the attack pattern; the attacker must both introduce the
upstream change and subsequently exploit it downstream.

For another perspective on this attack pattern, consider the dis-
tinction between vulnerable and malicious dependencies as drawn
by the European Union Agency for Cybersecurity (ENISA) [18]
and Ohm et al. [57]. Vulnerable links in the supply chain contain
unintended weaknesses that may be exploited further downstream.
These exploits are not supply chain attacks. On the other hand,
malicious links in the supply chain were intentionally designed to



SoK: Analysis of Software Supply Chain Security by Establishing Secure Design Properties

SCORED ’22, November 11, 2022, Los Angeles, CA, USA

r A
4 )

Actors

- @

—

L Upstream

L Operations )

L

<>

Single Link

JT~—__

¥

hDownstreamJ

Artifacts

v

Figure 1: A software supply chain with focus on a single link. Actors manage components and connections within and between
links. Therefore, actors manage security. Security depends on upstream and downstream transparency, link validity via
component integrity and actor authentication, and logical separation between components and links.

Compromis: Alteration Propagation Exploitation

Q@ A K

Figure 2: Four stage software supply chain attack pattern.
Attackers begin with an initial compromise before making
some malicious alteration to the supply chain. This change
then propagates down the supply chain where attackers ex-
ploit the introduced weakness(es).

weaken the rest of the chain. Introducing and subsequently exploit-
ing such weaknesses constitutes a supply chain attack.

Existing literature categorizes and documents known supply
chain attacks [18, 43, 57, 81]. It is outside of the scope of this paper
to enumerate individual attack types. Typically, this line of work
differentiates between how attackers compromise and alter the
supply chain.

3.2 Security Properties for Software Supply
Chains

Components of a supply chain must be secured to mitigate the pres-
ence of vulnerabilities and the risk of attack. Supply chains become
secure when attackers are unable to compromise components, alter
the supply chain, or propagate malicious changes. In the litera-
ture on software supply chain security, we have identified
three orthogonal and recurring security properties:

(1) Transparency: Although actors only control portions of a
supply chain, increased knowledge of the entire chain allows
all parties to mitigate risk or employ specific countermea-
sures against an attack [13, 22, 23, 43, 48]. Transparency

represents the availability of that knowledge to actors in the
supply chain. Transparency applies to the entities connecting
and comprising links in the chain.

(2) Validity: Software supply chains should remain correct.
Changes to actors, operations, or artifacts in a single link
can compromise downstream entities. Validity comprises
integrity of operations, integrity of artifacts, and authentica-
tion of actors. Each link in the supply chain contains a series
of operations and artifacts which interact with other links
in the chain. Secure supply chains require that these com-
ponents remain unchanged by malicious parties [13, 23, 48].
Therefore, only authorized actors should make changes to
link connections and components. Such changes must also
receive permission to occur [23, 72, 79].

(3) Separation: Secure supply chains embody a compartmen-
talized nature. Connections are an integral part of supply
chains, but should only exist when necessary. These connec-
tions should be minimized to reduce attack surface area. Ad-
ditionally, logically separate operations, artifacts, and actors
should remain separate in practice to minimize unintended
connections. By implementing measures such as mirroring,
version locking, containers etc. individual components can
decrease reliance on security of others [43, 48, 79].

3.3 Analysis of Security Properties

The security properties discussed in §3.2 are only meaningful if,
when applied ideally, they eliminate the risk of attack. For this to
be the case, properties must be comprehensive.

To analyze these properties, we consider a hypothetical attack
following the pattern discussed in §3.1 and apply transparency,
validity, and separation. Since defenders can typically only address



SCORED ’22, November 11, 2022, Los Angeles, CA, USA

the first there stages of attack, we show how applying these prop-
erties prevents an attack from reaching the final stage: exploitation.
Lastly, we note the difference between ideal conceptualizations and
real-world embodiments of these security properties.

First, transparency primarily protects against the first stage of
attack. Transparency, in its ideal state, enables perfect vision of all
actors, operations, and artifacts across the supply chain. Such trans-
parency would allow managers of a supply chain to identify link
weaknesses before they are compromised. By securing weaknesses
through patches, fixes, or other methods, managers block attempts
at compromise. By identifying weaknesses first, managers prevent
attackers from completing the first stage.

Second, validity primarily protects against the next stage of
attack: alteration. By maintaining perfect integrity of operations,
integrity of artifacts, and authentication of actors, no unauthorized
changes can be made to the supply chain. As a result, attackers
have no ability to maliciously alter the supply chain.

Finally, separation primarily protects against the third stage of
attack: propagation. If a supply chain system can perfectly com-
partmentalize and moderate interactions between entities, then
malicious changes cannot propagate downstream. In this case, con-
nections between artifacts, operations, and actors are managed in
such a way that malicious changes cannot affect other supply chain
components. With ideal separation, only valid changes (e.g., system
updates and patches) can traverse the supply chain.

By preventing at least one of the three stages leading to exploita-
tion, a supply chain attack cannot occur. While this hypothetical
considers an ideal case, practical application is not so easy. Real
techniques typically do not fully realize security properties, but
they provide partial coverage (e.g., attestations do not necessar-
ily provide complete transparency). Real techniques also do not
always implement security properties independently. In practice,
techniques might require cohesion between multiple security prop-
erties. For example, a technique might require transparency to
identify threats propagating through the supply chain before ap-
plying separation methods. Conversely, achieving close-to-ideal
transparency may only be possible if the supply chain is sufficiently
separated from other entities.

Since techniques do not perfectly embody security properties,
defending in depth is critical [40]. Theoretically, a single technique
could prevent all attacks if it provided a perfect implementation of
transparency, validity, or separation. In practice, techniques have
flaws. For this reason, using multiple techniques mapped to each
of the security properties provides a more effective defense against
attack.

4 Mapping Proposals to Security Properties

In this section, we map proposals to secure the software supply
chain against the security properties presented in §3.2.

4.1 Promoting Transparency

A lot of work has been done on creating transparency in the soft-
ware supply chain. To mitigate the security risks associated, it is
crucial to have information about the various software components
and dependency as well as their hierarchical relationship in the sup-
ply chain [2, 50]. A primary tool for transparency is the Software
Bill of Materials (SBOM) [6]. A SBOM is an inventory of all the

Okafor and Schorlemmer, et al.

components that that make up a software product. SBOM promotes
transparency by tracking component metadata, enabling mapping
to other sources of information, and tying the metadata to soft-
ware as it moves down the supply chain and is deployed [70]. As
security vulnerabilities are discovered in these components, appli-
cations that depend on them can be quickly and reliably tracked
and updated to newer, hardened versions.

An SBOM provides a foundation for additional capabilities that
enhance software supply chain security, e.g., Component Analysis.
Component Analysis is a function within an overall Cyber Supply
Chain Risk Management (C-SCRM) framework as it helps to under-
stand and manage risks that these components may present to the
missions they support. As the software supply chain extends due to
the increasing system complexities, it is increasingly important to
understand, evaluate, and manage the risk that various components
in the supply chain may present in addition to its function. For
example, the criticality of artifacts and processes could be used to
determine data dependency between components. Building on a set
of multidisciplinary publications, standards, and guidelines [14, 36—
39, 41, 62], Paulsen et al. [58] proposed a Criticality Analysis Process
Model that prioritizes programs, systems, and components based
on their importance to the goals of an organization and the impact
that their inadequate operation or loss may present to those goals.

Some techniques provide SBOM-similar information to users. For
example, Sigstore’s [51] transparency log gives users the ability to
view information about artifacts and operations used to create them;
npm-audit [55] gives users a way to visualise dependencies; and
git commit signing [27] provides authorship information. Several
other tools automate information collection and assurance across
the supply chain.

The collection of this information founds trust within the sup-
ply chain. By understanding how artifacts, operations, and actors
interact, members of the supply chain can trace dependencies back
to a trusted root source. This enables the flow of trust between
entities in the supply chain. The promotion of validity ensures that
the interactions between supply chain elements are certifiable —
increasing trust.

4.2 Promoting Validity

Establishing trust entails providing security at every step, which
incrementally evolves, each built on the preceding to provide in-
cremental confidence. While end-users know what components
make up their software, can they trust what the component says it
is? Furthermore, believe the integrity of the executable received is
intact? High reliance on open and closed source packages has de-
creased the confidence that systems only do what they are intended
for. Manual code review helps to identify vulnerabilities, but since
some software are distributed as prebuilt binaries, it is less effective
to manually review the individual source code for malicious flaws.

Lamb et al. [44] and Goswami et al. [30] looked at the problem
of establishing trust in build artifacts by comparing build outputs
from multiple independent builders [42, 47]. This way, the user can
verify that the received binaries are identical to other builds. The
reproducible build approach is a countermeasure solution to attacks
that could compromise the executables at build time, where changes
are essentially invisible to its original authors and users alike. Code
signing and verification is an integral part of ensuring that software



SoK: Analysis of Software Supply Chain Security by Establishing Secure Design Properties

is from an original publisher. It ensures that the final published
software is intact and contains no tampering from unauthorized
parties. Sigstore [51] improves the integrity of the software supply
chain by combining various technologies to provide an automated
approach for developers to digitally sign artifacts and for users to
verify the artifacts in Sigstore’s transparency log - a public, tamper-
proof ledger of signatures. This mapping of artifacts to verifiable
identities establishes trust that they are tamper-free. Gitsign im-
plements keyless Sigstore to sign git commits with a valid OpenID
Connect identity which overcomes the challenges associated with
using GPG keys in signing git commits and consequently improving
the overall trust in open-source projects. Many point solutions have
been implemented [3, 7, 27, 75] to ensure that individual supply
chain actions are not altered. Torres-Arias et al. [73] implemented
a holistic approach that enforces the integrity of a software supply
chain by gathering cryptographically verifiable information about
the chain itself and verify that each step action of a supply chain
is not tampered with. This approach ensures end-to-end verifica-
tion and confirms that tampering does not occur in between steps
in the software supply chain between the development and the
publication of the software.

Account takeover attacks place the account owner and anything
the account has access to at risk. Multi-factor Authentication is
highly recommended for actors in the supply chain. Although all
downstream systems that depend on the affected code are impacted,
no solution provides the security posture of actors (e.g. maintainer,
developer) in a supply chain to enable software consumers to make
risk-based security decisions. Will it have more cons than pros?
Several C-SCRM practices for systems and organizations have been
recommended to mitigate attacks due to credential compromise.
Building on existing FIPS 200 standards [56], Boyens et al. [13]
added that information system access should be limited to only the
necessary type and duration and monitored for cybersecurity sup-
ply chain impact. They also expanded the Awareness and Training
control of FIPS 200 to include providing C-SCRM awareness and
training to individuals at all levels within the enterprise as well as
suppliers, developers, system integrators, external system service
providers, and other information technology (IT)- or operational
technology (OT)-related service providers to ensure that the per-
sonnel who interact with an enterprise’s supply chains receive the
training as appropriate.

4.3 Promoting Separation

Several techniques currently exist for promoting separation be-
tween components in a supply chain. We distinguish between those
techniques that apply to internal components and those that apply
to external links. Internal-focused techniques ensure compartmen-
talization between artifacts, operations, and actors of a single link.
External-focused techniques mitigate the risk associated with rely-
ing on other links in the supply chain.

First, container and virtual machine (VM) based methods sepa-
rate internal operations, artifacts, and actors [23, 48, 65]. Successful
build systems are highly automated [31]. In these systems, auto-
mated workers can behave as actors by managing operations and ar-
tifacts. In these cases, best practice is the creation of ephemeral and
task-specific workers [31]. This prevents any unnecessary crossover
between logically different operations and actors - reducing the risk

SCORED ’22, November 11, 2022, Los Angeles, CA, USA

associated with internal connections. Additionally, the creation of
compartmentalized containers and VM instances reduces the risk
associated with connected artifacts. As an example, BreakApp [74]
assists in spawning compartmentalized modules to complete tasks
during development. By systematically creating separated build sys-
tems, attackers cannot effectively propagate vulnerabilities through-
out the supply chain.

Second, actors adopt systems which provide separation from ex-
ternal supply chain links. For example, version locking and mirror-
ing techniques add a layer of security to external sources [21, 31, 48].
Version locking ensures that a link includes a particular version of
an upstream component. The use of a constant dependency version
ensures that malicious changes upstream do not automatically prop-
agate to downstream links. A weakness to version locking is the
reliance on actors to accurately set and manage version numbers.
The failure to update versions may prevent updates that remove
vulnerabilities. In the same manner, prematurely updating to a com-
promised version defeats the purpose of version locking. Mirroring
acts in a similar manner to version locking. Organizations create
private package feeds to mitigate the risk of pulling dependencies
from public sources [48, 76]. This gives organizations more con-
trol over the import of packages into their software projects. Once
again, this relies on including the correct packages in private feeds.

5 Mapping Embodiments to Security Properties

In this section, we use case studies to demonstrate how each secu-
rity property from §3.2 can be embodied in practice. We specifically
consider efforts to secure supply chains through (1) package reposi-
tories, (2) development environments, (3) end-to-end solutions, and
(4) security frameworks.

5.1 Package Repositories

Package and dependency managers such as npm for JavaScript,
PyPI for Python, or RubyGems for Ruby have encouraged code
reuse between packages. Consequentially package managers have
become a vital part of software supply chains. Attackers have begun
exploiting the weak links in these ecosystems to distribute malware.
Several techniques have been put in place to detect and mitigate
package manager ecosystem attacks. We examine Npm as a case
study to discuss the techniques that have been adopted to improve
the security properties defined in §3.2.

Npm is the package manager for the popular Node.js JavaScript
platform. Since Node.js is widely used for back-end software, Npm
is widely used in security-sensitive contexts.

Transparency: To use Npm as a package manager, a software
engineer must declare the packages on which they depend in a
file called package.json. The command npm install command can
then installs these packages. The package.json file is a “primitive
SBOM?” since it contains almost all the required fields of one (as
recommended by the NTIA [70]). SBOM’s in general, provide an
example of the Transparency property in practice.

As one application of this primitive SBOM, Npm offers a tool
called npm-audit [55] to audit package security and stability. Npm-
audit assesses the dependency description of a project against the
default registry for possible security vulnerabilities and calculates
the impact and appropriate remediation if any are found. The audit
process entails scanning the package.json and package-lock.json



SCORED ’22, November 11, 2022, Los Angeles, CA, USA

file to build the dependency tree, then comparing the packages
from the dependency tree to a database of known vulnerabilities. If
any vulnerabilities are found, an alert with the impact and appro-
priate remediation will be shown. Although security audits help
you protect package users by enabling you to find and fix known
vulnerabilities in dependencies that could cause data loss, service
outages, and unauthorized access to sensitive information, recent
researchers have started doubting the reliability of this tool [45, 78].

Validity: Npm has recorded several incidents on the registry
where npm accounts are hijacked by malicious actors and the use
of the access to infiltrate packages the compromised accounts have
access to. Following the unprecedented series of account takeovers
resulting from the compromise of developer accounts without 2FA
enabled [5, 16], npm has introduced even more security enhance-
ments. An extra layer of security of verifying all npm account login,
and enrolling maintainers of top packages into a mandatory 2FA
have been added to help prevent common accounts takeover attacks,
such as credential stuffing [71], which utilize a user’s compromised
and reused password.

Separation: Npm provides scopes to safeguard a diverse set
of package names by restricting the package’s namespace to an
organization or user [54]. This means that one does not have to
worry about someone taking a package name ahead of time and
only the user is allowed to publish packages under that scope on
the public registry, which hardens the process against compromise
as an attacker would have to compromise that npmjs.org registry
account to take over the package. Scopes can be associated with a
given registry which ensures that all requests for packages under
the scope will be routed to the given registry. For instance, at login
the myorg scope can be linked to http://registry.myorg.com with the
command npm login:

$ npm login --scope=@myorg
--registry=http:// registry .myorg.com

This command will ensure that any request bound to the myorg
scope is sent to the http://registry.myorg.com registry. Scopes mit-
igate the dependency confusion risks where an Internal package
name is claimed by an attacker on the public registry.

The use of npm proxy [53] is a common practice for improved
npm security. The internal registry can be configured to take prece-
dence over the public registry to help protect against installing the
wrong or malicious package from public registries. For example, an
attacker might publish a malicious package to the public repository
with the same name as a package hosted on a private registry but
with a higher semantic version. In the case where a custom setting
for an internal registry is omitted, the package manager would
default to the public registry and download the latest (malicious)
packages from there. Configuring the proxy to never allow an up-
stream request to the public registries protects against fetching
arbitrary packages in place of the legitimate package.

5.2 Development Environments

Collaborative development environments like GitHub and Bitbucket
host millions of open- and closed-source projects. The meritocratic
premise of open-source software [60], which allows contributions
from anyone, is an opportunity for the introduction of vulnerabili-
ties through “hypocrite commits” [77]. Hence, such platforms have

Okafor and Schorlemmer, et al.

taken steps to promote the security of the projects they host. We
align these steps with our proposed security properties in a case
study of GitHub.

Transparency: In a package context such as Npm, the package
manager can mandate the use of a package.json file. This file can
be leveraged for further analysis. In contrast, in the source code
context, the supply chain for a given project is harder to discover.
GitHub [4] identified unpatched software as the major threat to
supply chain security and has provided capabilities of Software
Composition Analysis (SCA) to determine dependencies in use, dis-
cover vulnerabilities in the dependencies, and effect patches. These
capabilities are provided by dependency graph, dependabot alerts,
and dependabot security updates feature and are recommended to
organizations to help secure their repositories against supply chain
threats [29].

The dependency graph is a summary of manifests and lock files
that shows the dependencies and dependents of your repository.
When a pull request containing changes to dependencies that target
the default branch is created, GitHub uses the dependency graph to
add dependency reviews to the pull request. These indicate whether
the dependencies contain vulnerabilities and, if so, the version of
the dependency in which the vulnerability was fixed. Dependabot
alerts rely on the dependency graph and GitHub advisory database
to alert developers when a repository is affected by a newly dis-
covered vulnerability. This enables organizations and open-source
projects to stay up to date on security vulnerabilities, and infor-
mation. Dependabot security updates make it easier to mitigate
this vulnerability within repositories by automatically raising pull
requests to update a software dependency to the minimum version
that resolves a known vulnerability. These dependabot features
provide automation to the hard work of dependency management
and patching. However, the extent to which the dependency up-
date bot reduces update suspicion and notification fatigue remain
questionable [10, 33].

To eliminate the security risk posed by the late detection of
vulnerabilities, GitHub [1] developed a feature — static analysis,
powered by CodeQL, that runs queries against codebases to identify
potential security vulnerabilities.

Validity: To secure build systems against build process attacks,
Github Actions (CI/CD tool for GitHub) is designed to ensure pre-
cise and repeatable build steps and that each build starts in a new
environment to reduce the likelihood of attackers persisting in a
build environment [28]. GitHub builds on top of the git version
control system, which has a feature to enable developers to validate
that commits are coming from an identified, trusted source while
using other people’s work. Specifically, git supports signing and
verifying commits and tags using GPG [27].

Separation: Platforms such as GitHub allow software devel-
opers to create arbitrarily many independent repositories (within
reason). Links between these repositories (e.g., by adding a depen-
dency or a git sub-module) are at the developer’s discretion. This
decision improves the separation between links in the supply chain.
However, we note that the common practice of vendoring — copy-
pasting a dependency verbatim into another codebase — degrades
separation.



SoK: Analysis of Software Supply Chain Security by Establishing Secure Design Properties

5.3 End-to-end Solutions

Some researchers have focused on developing fully-fledged systems
to mitigate supply chain attacks. Solutions such as in-toto [73] and
Sigstore [51] are excellent examples and have been integrated across
vendors to secure software supply chains [9]. We examine in-toto as
a case study for the implementation of security properties proposed
in §3.2.

In-toto ensures the security of the software supply chain by gath-
ering cryptographically verifiable evidence — called link metadata
— about entities in the chain. Link metadata is a signed statement
each actor in the supply chain emits to describe relevant operations,
artifacts, and connections. For example, this statement may include
information such as files used, files produced, building processes, or
even environment variables. Link metadata is collected throughout
the supply chain and is delivered alongside the final product. Veri-
fiers can compare link metadata with a layout (created by an actor
who dictates policy for the supply chain) describing the intended
steps in the supply chain.

Transparency: By disaggregating the supply chain into small,
individual claims from each actor, in-toto provides strong trans-
parency guarantees for artifacts (they are tracked as materials and
products) and operations (they are described in a layout file). How-
ever, it does not provide transparency for actors in the supply chain.
Although actors will create signed statements, in-toto does not
have a method to tie their keys to identities (even pseudonyms).
While this is not exclusive to the “holistic” approach of the system,
it may be possible to extend the design to include known identifiers
using approaches such as verifiable credentials [17] or distributed
identity providers [61].

Validity: Regarding validity, in-toto provides guarantees for
artifact integrity (by means of hashing each artifact) and operation
integrity (by means of a layout policy), yet it does not provide actor
authentication. Even though the signing keys prevent a malicious
takeover of operations carried out by an actor, it does not protect
against other attack vectors (e.g., account take over). It is possible
that author validity guarantees may be achieved by combining ex-
isting mechanisms (e.g., 2FA) into the signing flow for link metadata.
Likewise, actors provide additional proof they are a well-known,
reputable actor in the chain through techniques like DiD and VC
described above.

Separation: Lastly, in-toto provides strong Separation guaran-
tees for operations and actors, but not for artifacts. This is because
artifact separation is typically achieved by underlying mechanisms
(e.g., a container runtime may sandbox a build process). Given this,
it may be possible to provide stronger security guarantees by adopt-
ing hardened runtimes within solutions like in-toto. One example
of this is SLSA’s extension to in-toto links [26], that can help com-
municate information if the build is hermetic, or if all the artifacts
used in the build were required by the build.

5.4 Security Frameworks

Researchers and industry have proposed multiple end-to-end secu-
rity frameworks to simplify the process of securing a supply chain.
These frameworks recommend practices, tooling options and design
considerations to ensure the integrity of artifacts in the software

SCORED ’22, November 11, 2022, Los Angeles, CA, USA

supply chain. We consider three frameworks — Microsoft’s Sup-
ply Chain Integrity Model (SCIM), Google’s Supply-chain Levels
for Software Artifacts (SLSA) and The Cloud Native Computing
Foundation’s (CNCF) Software Supply Chain Best Practices.

First, SCIM [8] specifies how the artifact verification process
should function across a supply chain. The framework provides a
standard for the artifact data model and exchange format (SCIM-
Evidence), the policy used in evaluating these artifacts (SCIM-
Policy), and the service that stores both the evidence and the policy
(SCIM-Store). This enables the smooth flow of evidence (e.g., bills
of materials, build information, etc.) between links in the supply
chain.

Second, SLSA [26] provides four levels of assurance (i.e., SLSA
1-4) to describe the security posture of a supply chain, similar to the
capability maturity model (CMM) for software development [35].
The framework starts with basic security at SLSA 1 and adds re-
quirements at each level until the final level, SLSA 4. Each level
specifically documents source, build, provenance, and common
requirements.

Finally, the CNCF [31] framework provides a five-stage method-
ology for securing supply chains. These stages include securing the
source code, materials, build pipelines, artifacts, and deployments
of a supply chain.

In Table 1, we compare how the three frameworks cover our
security properties. SCIM provides substantially less coverage than
SLSA 4 and CNCF. Although SLSA 4 and CNCF cover our security
properties better, they may be difficult to implement!.

Table 1: Comparison of how SCIM [8], SLSA [26], and
CNCF [31] promote security properties.

] Frameworks | SCIM [ SLSA 4 | CNCF |
Artifacts v v v
Transparency Operations N N v
Actors v v
Artifacts v v v
Validity Operations vV v v
Actors v v
Artifacts v v
Separation  Operations v v
Actors v

Transparency: SCIM improves the supply chain’s transparency
by providing principle for conveying evidence about the artifact.
For example, information about the sub-components of an artifact,
how the artifact was created, and defects identified in the artifact.
SLSA promotes transparency by demanding provenance attestation
files at the lowest compliance level. These files contain build meta-
data which inform users about the artifacts they use. The CNCF
framework proposes several practices to increase transparency in
the supply chain, such as SBOMs and dependency analysis.

Validity: SCIM improves the validity of the supply chain by
providing principles for conveying the evidence of an artifact that
allows it to be verified. For example, providing the principles for

ISLSA 4 lists 20 requirements; the CNCF proposes nearly 60 requirements.



SCORED ’22, November 11, 2022, Los Angeles, CA, USA

Okafor and Schorlemmer, et al.

Table 2: Proposed and practical techniques, related to security properties (columns) and aspects of the definition of a supply
chain (sub-columns). Note the emphasis on artifacts and the under-emphasis on operations and actors. We believe this gap
represents an opportunity for security research. We suggest that vetting operations may require applied cryptography and
improved hardware root-of-trust. Meanwhile, addressing security flaws related to actors will require accounting for human
and organizational factors, a longstanding challenge in cybersecurity.

Transparency

Techniques
Artifacts ‘ Operations ‘ Actors

Validity

Artifacts ‘ Operations ‘ Actors

Separation
Artifacts | Operations ‘ Actors

SBOM 7

npm-audit [55]

Code scanning [1]

SENENEN

Dependabot features [29]

GitHub Actions [28] v

Git Commit Signing [27] v

Scope [54]

NENENENENEN

Multi-Factor Authentication

In-toto [73] v v

<
\
&
&

Containerization

Version Locking

Sigstore [51] v v v

v v

Mirroring and Proxies [53] v

v v v

conveying the cryptographic hash of a software allows the soft-
ware to be verified by the consumer. SLSA 2 to 4 generates validity
requirements for implementers. At these levels, SLSA demands
version control, provenance integrity, auditability, and a two-party
review of all changes to the artifact. Such specifications ensure that
artifacts and operations within the supply chain are tamper-free.
The CNCF framework recommends a combination of cryptographic
attestation and verification at each stage of the supply chain (verifi-
cation by reproducibility, Multi-factor authentication, and signature
validation at every step, amongst others) to ensure integrity.

Separation: The SCIM framework does not provide specific
methods to increase separation in the supply chain. SLSA 3 requires
isolated builds in ephemeral environments (dedicated resources
for that particular build) and SLSA 4 requires a hermetic build pro-
cess. These requirements provide strong protection against cross-
build contamination attacks [26]. Also, the CNCF framework rec-
ommends several practices that embody separation, including main-
taining controlled source code, build, and artifact environments.
Controlled environments are created by adopting policies such
as branch protection rules, ephemeral build workers, ephemeral
certificates, pipeline orchestration, minimal network connectivity,
build worker segregation, and artifact access rules.

6 Discussion

In §4 and §5 we related current proposals and embodiments to the
security properties from §3.2. We believe this demonstrates the
usefulness of the properties we have proposed. As a last question,
we consider whether these approaches are comprehensive with
respect to software supply chains. Recall the definition of a software
supply chain given in §2: a collection of systems, devices, and people
which produce a final software product Figure 1.

We mapped each technique described in §4 and §5 to the cor-
responding security properties and the relevant aspect(s) of the
software supply chain. Table 2 presents our results. We observe that

most of the studied approaches are focused on artifacts. Further
research is needed to assess the generalizability of this claim be-
yond the cases we examined. If true, we acknowledge that artifacts
are the appropriate primary focus for security — when deployed,
software systems consist of interacting software artifacts, and cy-
bersecurity vulnerabilities consist of exploiting these interactions.
However, we suggest that there are many opportunities to improve
the handling of operations and actors in secure software supply
chains.

7 Conclusion

In this paper, we proposed desired properties of a secure software
supply chain and systematized current design patterns and practices.
We analyzed security frameworks and several real-world techniques
and mapped these techniques according to the corresponding prin-
ciples they promote. Our analysis showed how current practices
embody the proposed security properties and apply to components
of the software supply chain. We intend for this systematization to
serve as a reference and guide for those seeking to build frameworks
and improve the security of software supply chains.

Acknowledgments

We acknowledge support from Cisco as well as NSF award #2229740.
We thank the reviewers and our shepherd, Asra Alj, for their thought-
ful critiques.



SoK: Analysis of Software Supply Chain Security by Establishing Secure Design Properties

References

[1] About code scanning. https://docs.github.com/en/code-security/code-
scanning/automatically-scanning-your-code-for-vulnerabilities-and-
errors/about-code-scanning.

[2] Cyclonedx is sbom: Software bill of materials. https://cyclonedx.org.

[3] Reproducible builds. https://reproducible-builds.org/.

[4] Secure at every step: What is software supply chain security and why does
it matter? https://github.blog/2020-09-02- secure-your-software-supply-chain-
and-protect-against- supply-chain- threats-github-blog/.

[5] Security issue: compromised npm packages of ua-parser-js (0.7.29, 0.8.0, 1.0.0) -
questions about deprecated npm package ua-parser-js - issue #536 - faisalman/ua-
parser-js. https://github.com/faisalman/ua-parser-js/issues/536.

[6] Software Bill of Materials. https://www.cisa.gov/sbom.

[7] The Update Framework (TUF). https://theupdateframework.github.io/.

[8] SCIM: Supply chain integrity model. https://github.com/microsoft/scim, 2022.
Accessed: 2022-09-14.

[9] In-toto ongoing integrations, Retrieved July 30. https://in-toto.io/integrations/.

[10] Enable dependabot by milgradesec - pull request #4317 - caddyserver/caddy,
Retrieved July 31. https://github.com/caddyserver/caddy/pull/4317.

[11] Catalin Cimpanu . Microsoft, fireeye confirm solarwinds supply chain at-
tack. https://www.zdnet.com/article/microsoft-fireeye-confirm-solarwinds-
supply-chain-attack/.

[12] A. Cherepanov. Analysis of TeleBots’ cunning backdoor. https://www.
welivesecurity.com/2017/07/04/analysis- of-telebots- cunning-backdoor.

[13] J. Boyens, A. Smith, N. Bartol, K. Winkler, A. Holbrook, and M. Fallon. Cyberse-

[15]

[16

[17]

[18]

[19]

[20]

[21

[22

[23]

[24]

[25

[26]

[27

[28]

curity Supply Chain Risk Management Practices for Systems and Organizations.
Technical Report NIST Special Publication (SP) 800-161 Rev. 1, National Institute
of Standards and Technology, May 2022.

J. M. Boyens, C. Paulsen, R. Moorthy, and N. Bartol. Supply chain risk man-
agement practices for federal information systems and organizations. https:
//nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-161.pdf.

Chris Williams. How one developer just broke node, babel and thousands of
projects in 11 lines of javascript. https://www.theregister.com/2016/03/23/npm_
left_pad_chaos/.

CISA. Malware discovered in popular NPM package, ua-parser-js.
https://www.cisa.gov/uscert/ncas/current-activity/2021/10/22/malware-
discovered-popular-npm-package-ua-parser-js.

W. W. W. Consortium et al. Verifiable credentials data model 1.0: Expressing
verifiable information on the web. https://www. w3. org/TR/vc-data-model/?#
core-data-model, 2019.

E. U. A. f. Cybersecurity. ENISA threat landscape for supply chain attacks.
Technical report, Publications Office, LU, July 2021.

A. Decan, T. Mens, and E. Constantinou. On the impact of security vulnerabilities
in the npm package dependency network. In International Conference on Mining
Software Repositories (MSR), 2018.

A. Dellavecchia. How a Rogue Developer Ruined Millions of Software (happened
this weekend), Jan. 2022.

R.J. Ellison, J. B. Goodenough, C. B. Weinstock, and C. Woody. Evaluating and
mitigating software supply chain security risks. 2010.

R. J. Ellison, J. B. Goodenough, C. B. Weinstock, and C. Woody. Evaluating and
Mitigating Software Supply Chain Security Risks. Technical report, CARNEGIE-
MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEERING INST, May 2010.
Section: Technical Reports.

M. Ensor and D. Stevens. Shifting left on security - Securing software supply
chains. Technical report, Google Cloud, Feb. 2021.

FireEye. Highly evasive attacker leverages solarwinds supply chain
to compromise multiple global victims with sunburst backdoor.  https:
//www fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-
solarwinds-supply-chain-compromises-with- sunburst-backdoor.html.

Forbes.  Supply chains are in the crosshairs of cyberattacks.  https:
//www.forbes.com/sites/forbestechcouncil/2022/04/27/supply-chains-are-
in-the-cyberattack- crosshairs/?sh=24e002951808.

T. L. Foundation. SLSA: Supply-chain levels for software artifacts. https://slsa.dev,
2022. Accessed: 2022-04-30.

Git SCM. Signing your work. https://git-scm.com/book/en/v2/Git-Tools- Signing-
Your-Work.

GitHub. Best practices for securing your build system.
//docs.github.com/en/code-security/supply-chain-security/end- to-end-
supply-chain/securing-builds.

GitHub. Secure your supply chain, Retrieved July 30. https://github.com/features/
security/software-supply-chain.

P. Goswami, S. Gupta, Z. Li, N. Meng, and D. Yao. Investigating the reproducibility
of NPM packages. In 2020 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pages 677-681. IEEE.

S. T. A. Group. Software Supply Chain Best Practices. Technical report, Cloud
Native Computing Foundation, May 2021.

https:

(32]

(33]

(34]

(35]

&
2

(37

[38

[39

N
=

o
=

[58

[59]

[60

SCORED ’22, November 11, 2022, Los Angeles, CA, USA

S. T. A. Group. The Secure Software Factory: A reference architecture to securing
the software supply chain. Technical report, Cloud Native Computing Foundation,
June 2022.

R.He, H. He, Y. Zhang, and M. Zhou. Automating dependency updates in practice:
An exploratory study on GitHub dependabot. 2022. https://arxiv.org/abs/2206.
07230.

J. D. Herbsleb. Global software engineering: The future of socio-technical co-
ordination. In Future of Software Engineering (FOSE’07), pages 188-198. IEEE,
2007.

W. Humphrey. Characterizing the software process: a maturity framework. IEEE
Software, 5(2):73-79, Mar. 1988. Conference Name: IEEE Software.
International Organization for Standardization and the International Electrotech-
nical Commission. ISO - ISO/IEC 27001 — information security management.
https://www.iso.org/isoiec-27001-information-security.html.

International Organization for Standardization and the International Electrotech-
nical Commission. ISO/IEC 20243-1:2018 - mitigating maliciously tainted
and counterfeit products. https://www.iso.org/cms/render/live/en/sites/isoorg/
contents/data/standard/07/43/74399.html.

International Organization for Standardization and the International Electrotech-
nical Commission. ISO/IEC 27002:2013- code of practice for information security
controls. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/
standard/05/45/54533.html.

International Organization for Standardization and the International Electrotech-
nical Commission. ISO/IEC 27036-4:2016 - information security for supplier rela-
tionships. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/
standard/05/96/59689.html.

Joint Task Force Interagency Working Group. Security and Privacy Controls for
Information Systems and Organizations. Technical report, National Institute of
Standards and Technology, Sept. 2020. Edition: Revision 5.

Joint Task Force Transformation Initiative. Security and privacy controls for
federal information systems and organizations. https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-53r4.pdf.

J. C. Knight and N. G. Leveson. An experimental evaluation of the assumption
of independence in multiversion programming. IEEE Transactions on Software
Engineering, SE-12(1):96-109.

P. Ladisa, H. Plate, M. Martinez, and O. Barais. Taxonomy of Attacks on Open-
Source Software Supply Chains, 2022.

C. Lamb and S. Zacchiroli. Reproducible Builds: Increasing the Integrity of
Software Supply Chains. IEEE Software, 39(2):62-70, Mar. 2022.

C.Liu, S. Chen, L. Fan, B. Chen, Y. Liu, and X. Peng. Demystifying the vulnerability
propagation and its evolution via dependency trees in the NPM ecosystem. In
Proceedings of the 44th International Conference on Software Engineering, pages
672-684. ACM, 2022.

L. Martin. Cyber Kill Chain®, June 2022.

W. M. McKeeman. Differential Testing for Software. 10(1):8, 1998.

Microsoft. 3 ways to mitigate risk when using private package feeds. Technical
report, Microsoft, Mar. 2021.

Microsoft Security Response Center. Customer guidance on recent nation-state
cyber attacks. https://msrc-blog.microsoft.com/2020/12/13/customer-guidance-
on-recent-nation-state-cyber-attacks/.

National Telecommunications and Information Administration. NTIA Software
Component Transparency. https://www.ntia.doc.gov/SoftwareTransparency.
Z. Newman, J. S. Meyers, and S. Torres-Arias. Sigstore: software signing for
everybody. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, 2021.

C. Nissen, J. E. Gronager, R. S. Metzger, and H. Rishikof. Deliver uncompromised:
A strategy for supply chain security and resilience in response to the changing
character of war. Technical report, MITRE CORP MCLEAN VA, 2018.

NPM. Proxy. https://www.npmjs.com/package/proxy.

NPM. Scope. https://docs.npmjs.com/cli/v8/using-npm/scope.

npm Docs. npm-audit. https://docs.npmjs.com/cli/v8/commands/npm-audit/.
N. L of Standards and Technology. Minimum Security Requirements for Federal
Information and Information Systems. Technical Report Federal Information
Processing Standard (FIPS) 200, U.S. Department of Commerce, Mar. 2006.

M. Ohm, H. Plate, A. Sykosch, and M. Meier. Backstabber’s knife collection: A
review of open source software supply chain attacks. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment, pages 23-43.
Springer, 2020.

C. Paulsen, J. Boyens, N. Bartol, and K. Winkler. Criticality Analysis Process
Model: Prioritizing Systems and Components. Technical Report NIST Internal or
Interagency Report (NISTIR) 8179, National Institute of Standards and Technology,
Apr. 2018.

G. A. A. Prana, A. Sharma, L. K. Shar, D. Foo, A. E. Santosa, A. Sharma, and D. Lo.
Out of sight, out of mind? how vulnerable dependencies affect open-source
projects. Empirical Software Engineering, 26(4):1-34, 2021.

E. Raymond. The cathedral and the bazaar. Knowledge, Technology & Policy,
12(3):23-49, 1999.


https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/about-code-scanning
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/about-code-scanning
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/about-code-scanning
https://cyclonedx.org
https://reproducible-builds.org/
https://github.blog/2020-09-02-secure-your-software-supply-chain-and-protect-against-supply-chain-threats-github-blog/
https://github.blog/2020-09-02-secure-your-software-supply-chain-and-protect-against-supply-chain-threats-github-blog/
https://github.com/faisalman/ua-parser-js/issues/536
https://www.cisa.gov/sbom
https://theupdateframework.github.io/
https://github.com/microsoft/scim
https://in-toto.io/integrations/
https://github.com/caddyserver/caddy/pull/4317
https://www.zdnet.com/article/microsoft-fireeye-confirm-solarwinds-supply-chain-attack/
https://www.zdnet.com/article/microsoft-fireeye-confirm-solarwinds-supply-chain-attack/
https://www.welivesecurity.com/2017/07/04/analysis-of-telebots-cunning-backdoor
https://www.welivesecurity.com/2017/07/04/analysis-of-telebots-cunning-backdoor
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-161.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-161.pdf
https://www.theregister.com/2016/03/23/npm_left_pad_chaos/
https://www.theregister.com/2016/03/23/npm_left_pad_chaos/
https://www.cisa.gov/uscert/ncas/current-activity/2021/10/22/malware-discovered-popular-npm-package-ua-parser-js
https://www.cisa.gov/uscert/ncas/current-activity/2021/10/22/malware-discovered-popular-npm-package-ua-parser-js
https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html
https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html
https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html
https://www.forbes.com/sites/forbestechcouncil/2022/04/27/supply-chains-are-in-the-cyberattack-crosshairs/?sh=24e002951808
https://www.forbes.com/sites/forbestechcouncil/2022/04/27/supply-chains-are-in-the-cyberattack-crosshairs/?sh=24e002951808
https://www.forbes.com/sites/forbestechcouncil/2022/04/27/supply-chains-are-in-the-cyberattack-crosshairs/?sh=24e002951808
https://slsa.dev
https://git-scm.com/book/en/v2/Git-Tools-Signing-Your-Work
https://git-scm.com/book/en/v2/Git-Tools-Signing-Your-Work
https://docs.github.com/en/code-security/supply-chain-security/end-to-end-supply-chain/securing-builds
https://docs.github.com/en/code-security/supply-chain-security/end-to-end-supply-chain/securing-builds
https://docs.github.com/en/code-security/supply-chain-security/end-to-end-supply-chain/securing-builds
https://github.com/features/security/software-supply-chain
https://github.com/features/security/software-supply-chain
https://arxiv.org/abs/2206.07230
https://arxiv.org/abs/2206.07230
https://www.iso.org/isoiec-27001-information-security.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/43/74399.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/43/74399.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/45/54533.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/45/54533.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/96/59689.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/96/59689.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
https://msrc-blog.microsoft.com/2020/12/13/customer-guidance-on-recent-nation-state-cyber-attacks/
https://msrc-blog.microsoft.com/2020/12/13/customer-guidance-on-recent-nation-state-cyber-attacks/
https://www.ntia.doc.gov/SoftwareTransparency
https://www.npmjs.com/package/proxy
https://docs.npmjs.com/cli/v8/using-npm/scope
https://docs.npmjs.com/cli/v8/commands/npm-audit/

SCORED ’22, November 11, 2022, Los Angeles, CA, USA

[61]

[62]

[63]

[64]

[65

[66]

[67

[68]

[70]

[71]

[72]

T. J. Ronda, P. A. Roberge, D. Barinov, M. Varley, D. A. Stark, G. H. Wolfond,
A. Likic, and M. J. Page. Systems and methods for distributed identity verification,
Mar. 19 2019. US Patent 10,237,259.

R. Ross, M. McEvilley, and J. C. Oren. Systems security engineering: considera-
tions for a multidisciplinary approach in the engineering of trustworthy secure
systems, volume 1.

A. Sejfia and M. Schifer. Practical automated detection of malicious npm packages.
In 2022 International Conference on Software Engineering (ICSE). IEEE, 2022.

D. Smite, C. Wohlin, T. Gorschek, and R. Feldt. Empirical evidence in global soft-
ware engineering: a systematic review. Empirical software engineering, 15(1):91—
118, 2010.

Solarwinds. Setting the New Standard in Secure Software Development The
SolarWinds Next-Generation Build System. Technical report, solarwinds, Dec.
2021.

Sonatype. State of the software supply chain, 2021. https://www.sonatype.com/
resources/state- of-the-software-supply-chain-2021.

H. Stadtler and C. Kilger, editors. Supply Chain Management and Advanced
Planning. Springer Berlin Heidelberg, Berlin, Heidelberg, 4th edition, 2008.
Symantec Corporation. Internet threat security report, 2018. https://www.
symantec.com/content/dam/symantec/docs/reports/istr-23-2018-en.pdf.
Symantec Corporation. Internet threat security report, 2019. https://www.
symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf.

N. Telecommunications and I. Administration. The Minimum Elements For a
Software Bill of Materials (SBOM), July 2021. https://www.ntia.doc.gov/report/
2021/minimum-elements- software-bill-materials- sbom.

K. Thomas, ]J. Pullman, K. Yeo, A. Raghunathan, P. G. Kelley, L. Invernizzi,
B. Benko, T. Pietraszek, S. Patel, D. Boneh, and E. Bursztein. Protecting accounts
from credential stuffing with password breach alerting. page 18.

S. Torres-Arias, H. Afzali, T. K. Kuppusamy, R. Curtmola, and J. Cappos. in-toto:
Providing farm-to-table guarantees for bits and bytes. In 28th USENIX Security

[73

(74

[76
[77

[78

[79

[80

]
]
]

]

Okafor and Schorlemmer, et al.

Symposium (USENIX Security 19), pages 1393-1410, Santa Clara, CA, Aug. 2019.
USENIX Association.

S. Torres-Arias, H. Afzali, T. K. Kuppusamy, R. Curtmola, and J. Cappos. in-toto:
Providing farm-to-table guarantees for bits and bytes. Proc. of the 28th USENIX
Security Symposium, Aug. 2019.

N. Vasilakis, B. Karel, N. Roessler, N. Dautenhahn, A. DeHon, and J. M. Smith.
BreakApp: Automated, Flexible Application Compartmentalization. In Proceed-
ings 2018 Network and Distributed System Security Symposium, San Diego, CA,
2018. Internet Society.

D.-L. Vu, F. Massacci, I. Pashchenko, H. Plate, and A. Sabetta. LastPyMile: identi-
fying the discrepancy between sources and packages. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 780-792, Athens Greece, Aug.
2021. ACM.

T. Winters, T. Manshreck, and H. Wright. Software engineering at google: Lessons
learned from programming over time. O’Reilly Media, 2020.

Q. Wu and K. Lu. On the feasibility of stealthily introducing vulnerabilities in
open-source software via hypocrite commits. In Proc. Oakland, 2021.

E. Wyss, L. De Carli, and D. Davidson. What the fork?: finding hidden code
clones in npm. In Proceedings of the 44th International Conference on Software
Engineering, pages 2415-2426. ACM, 2022.

N. Zahan, T. Zimmermann, P. Godefroid, B. Murphy, C. Maddila, and L. Williams.
What are Weak Links in the npm Supply Chain?, 2022.

A. Zerouali, T. Mens, A. Decan, and C. De Roover. On the impact of security vul-
nerabilities in the npm and rubygems dependency networks. Empirical Software
Engineering, 27(5):1-45, 2022.

M. Zimmermann, C.-A. Staicu, and M. Pradel. Small World with High Risks: A
Study of Security Threats in the npm Ecosystem. In USENIX Security Symposium,
2019.


https://www.sonatype.com/resources/state-of-the-software-supply-chain-2021
https://www.sonatype.com/resources/state-of-the-software-supply-chain-2021
https://www.symantec.com/content/dam/symantec/docs/reports/istr-23-2018-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-23-2018-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-materials-sbom
https://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-materials-sbom

	Abstract
	1 Introduction
	2 Background
	3 Supply Chain Attacks and Security Properties
	3.1 Supply Chain Attacks
	3.2 Security Properties for Software Supply Chains
	3.3 Analysis of Security Properties

	4 Mapping Proposals to Security Properties
	4.1 Promoting Transparency
	4.2 Promoting Validity
	4.3 Promoting Separation

	5 Mapping Embodiments to Security Properties
	5.1 Package Repositories
	5.2 Development Environments
	5.3 End-to-end Solutions
	5.4 Security Frameworks

	6 Discussion
	7 Conclusion
	References

