
An Algorithm for Generating Explainable Corrections to Student
Code

Yana Malysheva
yana.m@wustl.edu

Washington Univesity in St. Louis

St. Louis, Missouri, USA

Caitlin Kelleher
ckelleher@wustl.edu

Washington Univesity in St. Louis

St. Louis, Missouri, USA

ABSTRACT

Students in introductory computer science courses often need

individualized help when they get stuck solving programming

problems. But providing such help can be time-consuming and

thought-intensive, and therefore difficult to scale as Computer Sci-

ence classes grow larger in size. Automatically generated fixes

with explanations have the potential to integrate into a variety

of mechanisms for providing help to students who are stuck on a

programming problem. In this paper, we present a data-driven algo-

rithm for generating explainable fixes to student code. We evaluate

a Python implementation of the algorithm by comparing its output

at different stages of the algorithm to state-of-the-art systems with

similar goals. Our algorithm outperforms existing systems that can

analyze and fix beginner-written Python code. Further, fixes it gen-

erates conform very well to corrections written by human experts

for an existing benchmark of code correction quality.

ACM Reference Format:

Yana Malysheva and Caitlin Kelleher. 2022. An Algorithm for Generating

Explainable Corrections to Student Code. In Koli Calling ’22: 22nd Koli

Calling International Conference on Computing Education Research (Koli 2022),

November 17ś20, 2022, Koli, Finland. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3564721.3564731

1 INTRODUCTION

Solving programming problems is an integral part of many intro-

ductory Computer Science (CS) courses. But beginner students

often make errors in their code which they are unable to resolve

without help. These impasses can actually become effective learn-

ing moments, if students can get timely help in resolving and un-

derstanding the issue[22, 24, 25]. But as computer science classes

continue to grow in scale[28], it can be difficult to provide timely

help and feedback in a scalable manner to all the students that need

it.

Ideally, any assistance provided to the student would acknowl-

edge and incorporate the student’s original intended approach, and

focus on resolving individual errors in the code. But trying to un-

derstand and debug an unfamiliar approach to a problem can be

time-consuming and thought-intensive, even for experts. This is

especially true when the code in question is esoteric, and tries to

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Koli 2022, November 17ś20, 2022, Koli, Finland

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9616-5/22/11.
https://doi.org/10.1145/3564721.3564731

solve the problem in unexpected ways, as is often the case with

beginner-written code.

To help address situations like these, we propose a data-driven

algorithmwhich generates fixes to student code, alongside run-time

illustrations of how each fix changes the way that the code behaves.

The algorithm works in three stages: it first compares a student’s

incorrect solution to other students’ correct solutions; it then finds a

subset of the differences that, when applied to the incorrect solution,

will make it perform correctly; finally, it groups these changes into

independent fixes, and explains each fix by finding instances where

running the code with the fix produces an expected runtime state,

but without the fix does not.

The output of this algorithm could be used for several types of

systems targeting different audiences. For example, the full set of

fixes and explanations can be shown to a human assistant, who

could be a teacher, peer, or near-peer. The assistant would use this

information to quickly understand what is wrong with the student

code, and use the their human judgement to decide how to filter

and present that information to the student. Alternatively, the fixes

and run-time explanations could be processed to generate student-

facing hints that directly provide the student with some idea of

where specifically their program may be going wrong.

We evaluated a Python implementation of the algorithm using

a combination of comparisons to existing state-of-the-art systems

with similar goals, and direct measurement of the effectiveness of

parts of the algorithm. We found that our algorithm outperforms

these state-of-the-art systems when the input data consists of code

written by novices solving Python programming problems. We

also found that our algorithm performs nearly as well as human

tutors on an existing benchmark used for evaluating the quality of

generated code corrections.

2 RELATED WORK AND BACKGROUND

Our work builds on data-driven analysis of student code in edu-

cational settings and leverages prior work in finding edit scripts

between two abstract syntax trees (ASTs).

2.1 Data-driven analysis of student code

Researchers have created a variety of systems that analyze student

code using comparisons to other student solutions to the same or

similar problems. We discuss these systems first by their intended

applications and then by the underlying methods used for code

analysis.

2.1.1 Applications of code analysis. One of the main goals of au-

tomatically analyzing student-written code is to find a set of cor-

rections for student code which is currently producing incorrect

output.



Koli 2022, November 17ś20, 2022, Koli, Finland Yana Malysheva and Caitlin Kelleher

Existing systems use code analysis to support student program-

mers in a variety of ways including 1) generating next-step hints, 2)

assisting instructors by summarizing student solutions and stream-

lining feedback, 3) crowd-sourcing fix explanations.

Next-step hints. Many of the code-correction systems[7, 9ś11, 18,

21, 26] seek to generate hints for the next step a student should take

in order to progress towards solving a programming problem. These

systems first generate a set of corrections for the erroneous student

code, then filter and process these corrections to generate student-

facing hints. These hints direct students’ attention to a problem

in their code, usually without giving away exactly what should

be changed to make the code correct. Some systems[12] augment

these generated hints with expert-created textual explanations of

why a specific change is necessary.

Assisting Instructors. The growing size of computing courses has

created a challenge for instructors to provide good feedback to

students in a manageable amount of time. Systems that support in-

structors begin by clustering student solutions. OverCode[6] seeks

to cluster correct solutions to help a lecturer in a large classmaintain

an accurate understanding of the types of solutions that students

are writing in their class. MistakeBrowser and FixPropagator clus-

ter incorrect student solutions that require similar corrections, and

then enable instructors to propagate teacher-generated corrections

and feedback to multiple students’ solutions [10]. Both are powered

by the Refazer algorithm [10].

Crowd-Sourcing Explanations. Afinal system tries to crowd-source

human-readable explanations to commonly encountered fixes for

syntax errors [9]. HelpMeOut shows clusters of related errors to

experts and asks them to explain the required fixes [9].

Like many of these systems, our algorithm generates a set of fixes

for incorrect student code that attempts to respect the approach in

the existing code. This core algorithm could be used to improve a

variety of systems that leverage code analysis. Further, we generate

explanations that show how the suggested changes contribute to

progress towards a correct solution. To the best of our knowledge,

no other systems explicitly attempts to explain the effect of the

fixes it generates.

2.1.2 Methods of code analysis. Existing systems focus on analyz-

ing several aspects of the student code, often in combination: (1)

the sequence of tokens in the code itself; (2) the AST of the code;

(3) traces of how a particular student changes their code over time;

and (4) outcomes of running the code with predetermined input.

Token-based code analysis. Several systems attempt to fix syntax

errors in student code. Syntax errors, by definition, make it impos-

sible to analyze the code by parsing or running it. Thus, systems

that attempt to fix syntax errors must rely on analyzing the linear

sequence of tokens in the code.

Some of these systems use Recurrent Neural Networks in order

to attempt to learn valid sequences of tokens [1, 20], or directly

learn corrections from pairs of correct and incorrect sequences[8].

Other systems, such as HelpMeOut[9] and BlueFix[26], directly

compare the sequence of tokens that caused an error with similar

sequences that also caused the same error, but were subsequently

corrected by the author. They then show the most similar corrected

examples directly to the student trying to resolve the syntax error.

The student may then be able to use this example to gain a better

understanding of why their own error is occurring.

AST analysis. While systems that focus on syntax errors must

rely on the tokens in the code, systems that try to address semantic

correctness - whether the code does what it should be doing -

often use the Abstract Syntax Tree of the code as the primary data

structure in analyzing the code.

Many existing systems [7, 10, 11, 13, 18, 21, 27] compare the AST

of incorrect student code to solutions written by other students, in

order to find code edits that might help fix the bugs when applied

to the incorrect student code.

Analysis of student traces. Several systems for analyzing student

code[13, 16] are based on the Hint Factory technique[23]. These

systems look for changes that other, successful students have made

to their code when they were in a similar code state to a student

who may need help.

Refazer[10] also analyzes traces of how students changed their

code to arrive at a correct solution. It only looks at the very last fix

the student made before submitting correct code, but it is able to

generalize that fix and attempt to apply it to many other students’

solutions.

By contrast, CodeQ [11] is able to find and extract edits that

students made throughout their code-writing process, as long as

those edits seemed to make things better and not worse. Similar to

Refazer, this system is able to apply these edits to other students’

incorrect code. But it is also able to search for a sequence of appli-

cable edits which may fix several independent bugs in the student

code.

HelpMeOut[9] and BlueFix[26] also find pairs of states where

the student had an error and then fixed it, but they focus on syntax

errors and runtime errors instead of semantic bugs in the code.

Execution-based analysis. Many code-correction systems [10, 11,

21] run candidate corrected versions of student code against a set

of unit tests for the problem the code was trying to solve. By doing

so, they are able to evaluate novel solutions that were not present

in the original dataset, but may be closer to the student’s original

intent than any of the solutions seen directly in the data.

Additionally, some systems go beyond looking at the final out-

put of running a unit test, and analyze sequences of intermediate

runtime states as the program is executed.

HelpMeOut[9] finds examples of runtime error fixes using a

similar strategy to the way it finds fixes to syntax errors: It finds

instances where a student’s code encountered a runtime error on a

particular line of code during execution, but the next version of the

same solution got further in the execution without encountering

the error. It considers the changes between the two versions to be

an effective fix - or at least partial fix - for the runtime error.

Overcode[6] captures the sequences of values that each vari-

able takes on during execution, and clusters code with identical

sequences of values. These clusters capture different strategies that

students used to arrive at correct solutions.

Similarly, the Hint Factory-based system in the BOTS game[16]

groups together code that results in the same sequence of actions

in the game. It uses these action sequences as the solution space in



An Algorithm for Generating Explainable Corrections to Student Code Koli 2022, November 17ś20, 2022, Koli, Finland

which it attempts to find the best next step for the student.

Our system utilizes a combination of AST-based and runtime

comparisons between student code and some correct solution to

the same problem. Similar to existing systems such as ITAP[21], it

uses AST comparisons to existing student solutions and unit test

output to find a potentially novel correct solution that is close to the

student’s incorrect code. But in contrast to other systems, it relies

on a fine-grained runtime analysis of the code to both evaluate the

fixes and find explanations for the effect of a fix. In particular, to our

knowledge, this is the first system that tracks the runtime state of

the code at a finer grained level than line-by-line. We find that this

finer-grained tracking is necessary for analyzing beginner code,

where problem solutions can often be 1-2 lines long and contain

few or no variables.

2.2 Edit scripts between Abstract Syntax Trees

An important sub-problem in our approach to generating code

corrections is finding an edit script between two ASTs representing

two different programs. An edit script is a sequence of node-level

edits which, when applied to the first tree, changes it to exactly

match the second tree. In the context of generating corrections

for student code, the edit script describes a way of changing the

student’s incorrect code to exactly match a given correct solution.

Existing algorithms seek to find an edit script with a minimal

length or cost, in order to capture the largest amount of similarities

between the two trees. These algorithms differ in the types of

operations that are allowed in the edit script. In particular, some

algorithms allow for "move" operations, which move a subtree of

the AST to a different location in one edit, while others only allow

for deleting, inserting, and renaming nodes.

Allowing for move operations creates edit scripts that more

precisely capture similarities between two programs. For example,

moving a line of code out of a loop could be represented as a single

move operation. But if move operations were not allowed, this

change would need to be represented by deleting all the AST nodes

associated with that line of code, and recreating them elsewhere.

However, finding the shortest edit script is an NP-hard problem

when move operations are allowed [2]. So algorithms that allow

moves use heuristics to approximate the optimal edit script. On the

other hand, if move operations are not allowed, polynomial-time

algorithms exist for finding an optimal edit script.

Regardless of the set of allowed operations, edit script algorithms

consist of two steps: (1) finding a mapping between the nodes of

the two ASTs, and (2) using the mapping to derive an edit script.

The edit script is always completely determined by the mapping,

and can be generated in polynomial-time from a valid mapping.

So the problem of finding a minimal edit script can essentially be

reduced to finding a suitable maximal valid mapping between the

two trees.

2.2.1 Without move operations. APTED [14, 15] is a state-of-the-

art general-purpose algorithm for finding a minimum-cost tree edit

script which uses only insert, delete, and rename operations. The

algorithm allows for assigning different costs to different operations,

and has a worst-case runtime complexity of 𝑂 (𝑛3).

Notably, this algorithm allows for inserting and deleting nodes

anywhere on the tree, not just leaf nodes. If a non-leaf node is

deleted, then its parent node inherits all of the children of the

deleted node. Conversely, a node can be inserted between some

existing node and a subset of its children, taking over as parent

to those children nodes. For example, in the context of an AST,

inserting an if statement around some block of code could be

represented using non-leaf insertions into the AST.

Because of this, and because it generates an optimal mapping and

edit script, the mapping generated by the algorithm is the largest

possible mapping which preserves ancestor relationships between

nodes.

Since the set of edits allowed in APTED does not include move

operations, it does not always allow us to precisely capture the sim-

ilarities between two programs, as discussed above. However, the

guarantee of optimality, together with the property of preserving

ancestor relationships, make APTED a useful starting point for our

algorithm.

2.2.2 With move operations. Since the problem of finding an op-

timal edit script is NP-hard when move operations are allowed,

algorithms that choose to use move operations tend to use domain-

specific heuristics based on assumptions about the underlying data

in the trees being compared.

Chawathe et al. [3] first described an edit script algorithm which

allowed for move, insert, delete, and rename operations. In contrast

to algorithms like APTED, the insert and delete operations are only

allowed to operate on leaf nodes. Before a non-leaf node can be

deleted, all of its child nodes need to be deleted or moved.

This algorithm was developed for the application of describing

the set of changes between two sequential versions of hierarchically

structured data, such as two versions of an HTML page. In order

to find a mapping between the two trees, it uses a set of heuris-

tics which are based on the assumption that the two trees being

compared are different versions of the same structured text-based

document.

Given the mapping, the edit script is then generated using a

five-phase algorithm: Update, Align, Insert, Move and Delete. This

algorithm does not make any assumptions about the structure of the

mapping, and so can be used with any mapping between two trees

to generate a valid edit script. For this reason, subsequent work

re-uses the edit script generation stage described by Chawathe et al.,

and focuses on alternative heuristics for generating the mapping.

In particular, GumTree[5] is an algorithm which builds on the set

of edits and edit script generation algorithm described by Chawathe

et al. GumTree is a state-of-the-art algorithm for finding the dif-

ference between two versions of the same code, for example two

consecutive commits in a version control repository. Its mapping

heuristics start by greedily finding and matching the biggest possi-

ble identical sub-trees. It then tries to match up as many additional

nodes as possible around these large matching chunks. The MT-

DIFF set of optimizations [4] can then be applied to repair and

augment this mapping in order to find a smaller set of edits, but

fundamentally, the algorithm relies on anchoring the mapping in

large chunks of identical code.



Koli 2022, November 17ś20, 2022, Koli, Finland Yana Malysheva and Caitlin Kelleher

Most existing algorithms that use move operations are opti-

mized for the use case of highlighting differences in two sequential

versions of the same data, whether the trees being compared repre-

sent ASTs or structured text. But our use case is different: the fix

generation algorithm must find similarities between two different

solutions written by different people, both of whom may be begin-

ners who write code that is esoteric in different ways. This means

that the heuristics in existing algorithms are often not applicable

in our case.

3 IMPLEMENTATION

Our algorithm for generating a set of explainable fixes for an incor-

rect solution to a programming problem can be divided into three

stages, as illustrated in Figure 1:

(1) Compare the incorrect solution to all available correct solu-

tions to the same problem, and calculate the edit script

from the incorrect solution to each correct version.

(2) Simplify each edit script by finding and removing edits

that don’t affect the correctness of the final code

(3) Generate the sequence of explainable fixes: Choose the

best (shortest) edit script, and group the node-level edits into

a sequence of fixes with runtime explanations of what is

fixed by each one.

3.1 Calculating the edit script

Given the incorrect solution to a programming problem, for each

available correct solution to that same problem, we calculate the

edit script that would change the AST of the incorrect solution to

exactly match the AST of the target correct solution.

The resulting edit script uses the set of edit operations first

described in Chawathe et al. [3], namely:

• Insert: Insert a node as a child to some existing node in the

AST.

• Delete: Delete a leaf node in the AST.

• Move: Move a subtree rooted at some node to a different

location in the AST.

• Rename (sometimes also called update): Change the value

of a particular node, for example change a + binary operator

to a -.

These operations closely resemble the types of actions a person

might take when editing code or structured data: inserting and

deleting parts of the program, moving code around, and changing

individual values or tokens in the code.

As described in the background subsection on edit scripts, the

problem of finding an edit script that uses these operations can be

reduced to the problem of finding a mapping between the two ASTs

(step 1a in Figure 1). We can then use the algorithm described by

Chawathe et al. to derive the edit script directly from the mapping

(step 1b in Figure 1).

In order to find a mapping which will result in a concise edit

script, our algorithm starts with the mapping generated by the

APTED algorithm. Even though the APTED mapping is optimized

for a different set of edit operations, it is a good first step because

it finds the maximum possible mapping which preserves ancestor

relationship between nodes: for any two nodes, A and B, in the

original tree that are mapped to nodes A’ and B’ in the target tree,

A is an ancestor of B if and only if A’ is an ancestor of B’.

This property means that the mapping will be able to capture

similarities in the structure of the two programs. However, it also

means that it may not be able to match similar or identical code

that is in a different location in the two versions of the code. For

example, if the two versions both define two identical variables,

but do so in different order, the APTED algorithm would only be

able to map one of the variable definitions. The second variable

definition would remain unmapped between the two versions of

the code, as if the two lines were completely different from each

other.

In order to capture these types of similarities, we simply repeat

the process on the remaining unmapped nodes: we delete all of the

already-mapped nodes from each AST, connecting the children of

the deleted node to its parent. We then run the APTED mapping

algorithm on the two resulting trees. We repeat this step until

it stops producing any new mappings. This strategy allows for

mappings between similar sub-trees even when they are located

in different places in the original tree. The edit script defined by

such a mapping can then use a single move operation to place the

sub-tree in the correct position.

The current implementation augments this general algorithm

with three heuristic optimizations. The first two of these optimiza-

tions change the cost of the "rename" operation when calculating

the optimal APTED mapping for different pairs of trees. The third

optimization is a post-processing step which removes some of the

mappings that would have resulted in an esoteric edit script.

3.1.1 Optimization 1: Adjusting the base cost of renaming. We apply

a different cost to the renaming operation for the initial APTED

mapping and the subsequent mappings of the remaining unmapped

nodes.

For the initial mapping, we ensure that the cost of renaming

(changing the value of) an individual node is less than the cost of

deleting that node and creating a new node in the same place with

the new value. In doing this, we encourage the mapping of nodes

with different values, but similar subtree structures.

For subsequent passes, we raise the cost of renaming a node so

that deleting and inserting would have the same cost. Since much

of the structure of the original code is missing in these subsequent

iterations, this discourages the algorithm from mapping unrelated

nodes to each other simply because they are in roughly the same

place in the remaining unmapped trees.

3.1.2 Optimization 2: Trying to match variable assignments that

have similar overall results. Consider the following two equivalent

pieces of code:

(1) x = -b+math.sqrt(b**2-4*a*c)

y = 2*a

z = x/y

(2) z = (-b+math.sqrt(b**2-4*a*c))/(2*a)

The variable z represents the same value in both of these cases.

But a naive AST mapping algorithm is likely to map the line calcu-

lating x in the first version to the line calculating z in the second

version, because the ASTs of the two lines are very similar.



An Algorithm for Generating Explainable Corrections to Student Code Koli 2022, November 17ś20, 2022, Koli, Finland

Figure 1: An overview of the fix generation algorithm. Stage 1: Generate a mapping from the incorrect student solution to each

available correct solution (1a). From each mapping, derive an edit script which would transform the incorrect solution to the

correct one (1b). Stage 2: Simplify each edit script by removing sets of edits that don’t affect correctness (2a). Applying each

simplified edit script results in a novel correct solution (2b). Stage 3: Select the shortest simplified edit script (3a). Group the

edits into fixes (3b). Analyze whether applying each fix results in better performance on each unit test (3c). In the example in

the figure, applying Fix 2 directly to the student code results in better overall performance than Fix 1. Therefore, the algorithm

would apply Fix 2 first, and then re-evaluate the effect of Fix 1 on the new resulting code.

To try to avoid this issue, in the first pass which creates the initial

APTED mapping, we penalize mapping nodes that are:

(1) child nodes of the right-hand side of an assignment operator

(2) are at different depths in the tree, relative to the ancestor

assignment operator.

We apply this penalty by giving a mapping between such nodes

a "renaming" cost, even if the two nodes are actually identical and

do not need to be renamed

In the above example, the initial pass of the APTED mapping

would avoidmapping the two copies of -b + math.sqrt( b**2-4*a*c

) to each other, because this would incur a high renaming cost. It

may, however, map the two partial subtrees representing z = __/__

to each other, thus creating a correct top-level mapping between

the two variable assignments. Subsequent passes would not have

to deal with this penalty, and would create the correct mappings

between the two copies of -b+math.sqrt(b**2-4*a*c). The edit

script derived from the overall mapping would then move that

calculation into the correct place.

3.1.3 Optimization 3: Removing unnecessary mappings of certain

leaf nodes. Because the APTED algorithm is optimizing for a dif-

ferent set of operations, it can sometimes map pairs of nodes that

have all three of the following properties:

(1) leaf nodes in the original trees

(2) have parents that are not directly mapped to each other

(3) have different values from each other

This means that the resulting edit script would need to include

both a move operation and a rename operation for this node. But

this does not create a shorter or simpler edit script than simply

deleting the old node and inserting a new leaf node with the new

value. Moreover, these nodes are usually not actually semantically

related to each other, but instead are located in roughly similar

places in some iteration of the APTED mappings. Thus, we remove

any such mappings in a post-processing step.

3.2 Simplifying edit script

The result of the previous step of the algorithm is a concise edit

script which changes the incorrect program to exactly match some

other correct solution to the same problem. But our goal is to find

changes that bring the code into any correct state at all, not neces-

sarily into a state that is an exact copy of someone else’s correct

code. Therefore, some of the edits may be unnecessary to achieve

correctness.

In this stage of the algorithm, we try to find and remove unnec-

essary edits that do not affect the correctness of the final version

of the code (step 2a in Figure 1). In the current implementation, we

measure correctness by checking whether the program passes a

set of unit tests. However, in principle, any measure of correctness

could be used, as it is independent of the simplification logic.

The simplification stage of the algorithm has two independent

steps: a general algorithm for finding sets of edits that can be re-

moved, and a special case for undoing any variable renaming that

happens as part of the original edit script. The variable renaming

step happens first, because the general simplification algorithm is

more computation-intensive. Undoing some of the edits with the

simpler variable renaming logic may save processing time in the

general step.

3.2.1 Undoing variable renames. Since the original incorrect code

and the correct version are usually written by different people

at different times, the two versions of the code are likely to use



Koli 2022, November 17ś20, 2022, Koli, Finland Yana Malysheva and Caitlin Kelleher

different variable names. But edits that change the variable names

are not going to affect correctness of the code. To undo these edits,

we first use the mapping between the two ASTs to find variable

initializations that have been mapped to each other, but initialize

differently-named variables in the two programs. For each such

pair of variable names, we find and remove any edits in the edit

script which rename the variable. Additionally, we find all edits

that insert the new variable name (e.g. uses of the variable which

weren’t present in the original code), and change them to use the

original variable name.

3.2.2 Removing other sets of edits. The more general simplification

step repeatedly tries to remove subsets of edits from the edit script,

and then runs a correctness check on the program that results from

applying the rest of the edits to the original code. If the resulting

code is still correct, then that subset of edits was not necessary.

There are two non-trivial problems that must be solved when

using this general strategy:

(1) Choosing the candidate subsets of edits to remove

(2) Choosing the order in which to remove them

3.2.3 Choosing subsets of edits. In many cases, it is possible to

remove a subset of edits without affecting the correctness of the

code, even though removing just one of those edits would in fact

break the program. For example, the Python expressions x**2 and

math.pow(x,2) are equivalent, and edits that change one to the

other are unnecessary. But this change would be represented by

several edits in the edit script. Undoing or removing just one of

those edits may result in an in-between expression that is incorrect,

e.g. math.pow(x). Thus, it is important to identify sets of edits that

together, create an "undoable" change.

Our heuristic is to select sets of edits that are connected by

dependency relationships within the edit script. We say that edit

A is dependent on edit B if the edit script would be invalid when

B is removed from the edit script, but A remains. For example, an

edit deleting a non-leaf node in the original AST depends on all of

the edits that delete or move the children of that node, because any

edit script which deletes that non-leaf node without first deleting

or moving all child nodes is an invalid edit script.

This heuristic captures edits that, together, modify the same

section of the AST and change that section to match the target AST.

If the change to that particular section is unnecessary, then that

group of edits can be undone. However, this is still a heuristic, and

doesn’t always capture all "undoable" groups of changes.

In particular, it can sometimes create groups that are too large.

For example, it always groups all edits that insert or delete an entire

sub-tree into one set. But the inserted code could still be a mix

of necessary and unnecessary changes. In that case, the heuristic

would not be able to remove this group of edits, and all of the

changes - both necessary and unnecessary - would remain inserted.

Conversely, there are some groups of changes that are connected

semantically, but are not connected in the AST. Renaming variables

is one such group of changes, which is why we handle that as a

special case, as described in the previous section.

3.2.4 Choosing removal order. Asmentioned above, some groups of

changes are dependent on each other semantically, but are entirely

disconnected in the AST. In some cases, these groups of changes

can still be removed one at a time, but only in the right order. For

example, an edit script may call for inserting two separate lines of

code, one of which initializes a variable and the other updates it.

However, this variable does not actually affect the output of the

final code. These edits would be grouped into two separate subsets

of edits, one for initializing the variable and one for updating it.

Both of these subsets of edits are unnecessary. The simplification

step should remove both of them, but it will attempt to remove

them one at a time. If we remove the variable update first but leave

in the initialization, the code will still be correct. But if we try to

remove the variable initialization first, and leave in the update, the

code will fail. Thus, the order in which we remove the groups of

edits is important.

Instead of trying to analyze the code semantically, and account

for all possible semantic dependencies, we chose a removal strategy

which effectively tries all removal orders.

At each iteration, we attempt to remove each identified group

of edits from the edit script. If any of the groups were success-

fully removed, we start a new iteration of removals, to see if any

of the previously-necessary group of edits can now be removed

because we’ve removed some semantic dependency. We continue

this iteration until no more groups of edits can be removed.

This heuristic allows us to remove many different groups of

semantically dependent edits, but it does not work when the groups

have mutual or circular dependencies. In particular, this heuristic

is not able to undo variable renaming, since all uses of the same

variable name depend on each other, and there is no order in which

we could undo the individual renamings one at a time while keeping

the code correct.

3.3 Generating explainable fixes

After the previous two stages of the algorithm, we have some num-

ber of candidate edit scripts, each of which changes the incorrect

code to a version of the code which passes correctness checks. Each

of these candidate edit scripts resulted from comparing the original

incorrect code to some existing correct solution, but after the sim-

plification step, each edit script may produce a never-before-seen

correct solution that is closer to the original incorrect code (2b in

Figure 1).

Out of this set of candidate solutions, we choose the one with

the shortest edit script (3a in Figure 1). A short edit script should

result in code that is close to the original incorrect code, but fixes

all the issues that made the original code incorrect.

To organize the edit script into explainable fixes, we reuse the

edit grouping logic from the previous step. The resulting groups

represent self-contained modifications to subsections of the code

(3b in Figure 1). We call each of these groups a fix, and analyze the

runtime effect of each fix: how the fix changes what happens when

the program runs.

The precise effect of each fix can depend on the order in which

the fixes are applied, so we also attempt to find an optimal fix order

where for each fix, we can find a runtime illustration of how the fix

improves the program.

To analyze the runtime effect of a particular fix being applied

to a particular intermediate state of the code, we compare three

versions of the code: before the fix is applied, after the fix is applied,



An Algorithm for Generating Explainable Corrections to Student Code Koli 2022, November 17ś20, 2022, Koli, Finland

and after all fixes are applied. In this last case, the code is known to

be correct, so we use this version as the canonical version of what

should happen during the execution of the program.

We compile each version of the code into bytecode, retaining the

connection between each bytecode instruction and the node in the

AST that produced that instruction. Using these connections, and

the AST mappings between the different versions of the code, we

can also create mappings between the different bytecode versions.

We run each of the three versions using each available unit test

(or other way of specifying input to the program, if applicable)

and record the sequence of executed bytecode instructions and the

output value of each one. We compare these runtime sequences to

find where each of the intermediate versions (before and after the

fix) deviates from the canonical version.

To find this deviation point, we first find the longest common

subsequence(LCS) of the two execution sequences. For the purpose

of this LCS, two bytecode instructions in the execution sequence

are considered the same if and only if they originated from AST

nodes that were mapped to each other in the mapping between the

two versions of the code. This way, the LCS captures the longest

possible matching slices of execution, even in cases where the

overall execution sequence is drastically different, such as when a

small code change affects the number of iterations through a loop.

We define the deviation point as the last instruction in the LCS

where the output value of the bytecode instruction was the same

in both versions. This means that after the deviation point, the

two programs are no longer calculating the same thing. There may

also be differences before the deviation point, but they are likely to

represent variations that do not affect the final outcome, since we

know that the values converge again after that.

Once we find the point where each intermediate version starts

deviating from the canonical version, we can compare them to see

which version of the code got further before deviating from the

expected execution sequence. Specifically, we can categorize the

runtime effect of applying the fix into one of four types of effect

(3c in Figure 1). We say that applying the fix makes the code:

• The same if for each available unit test, the versions with

and without the fix deviate from the canonical code in the

same exact place.

• Better if for each available unit test, the version without the

fix deviates from the canonical code before or at the same

time as the version with the fix does (but strictly before for

at least one unit test).

• Worse if for each available unit test, the version without the

fix deviates from the canonical code after or at the same

time as the version with the fix does (but strictly after for

at least one unit test).

• Mixed if the version without the fix deviates before the

version with the fix for some unit tests, and after for others.

The order of applying the fixes can change the outcome of apply-

ing any given fix. For example, adding in code that uses a variable

before we add code that initializes that variable would make the

program crash, even if that variable use is a necessary part of the

final solution.

We try to find an order of the fixes where each fix demonstrates

the best possible runtime effect. To achieve a reasonable (partial)

order, we repeatedly greedily apply all fixes that would, in the

current context, have the best possible runtime effect. If, in the

current code state, any of the fixes make the code better, we apply

that set of fixes. If not, we look for fixes with mixed effect, then

fixes with the same effect, and finally resort to applying fixes that

make the resulting code perform worse. Then we recalculate the

new intermediate state that results from applying these fixes, and

re-run the runtime analysis to calculate the effect of the remaining

fixes on this new intermediate state. We continue until there are

no more fixes to apply.

This gives us a series of fixes such that, for each fix, we can

show an illustration of how the fix changes what happens when

the code runs. Moreover, for most fixes, this illustration shows an

improvement resulting from the fix: for some unit test, and for

some moment in time in the execution of the three versions of the

code, the version with the fix produces a value that is correct, while

the version without the fix produces a value which deviates from

the expected canonical value.

4 EVALUATION

Because there is no direct comparison for our algorithm, we elected

to evaluate the output of each stage of the algorithm separately.

For the first and third stage, we compare the results to existing

state-of-the-art algorithms that have similar goals to the respective

stage of our algorithm. For the simplification stage, we analyze

how effectively the edit scripts are simplified by calculating the

reduction in edit script length.

As input for evaluating the first two stages, we used a publicly-

available set of data of novices solving Python programming prob-

lems [17]. This dataset was originally published as part of the

CSEDM 2019 Data Challenge, and consists of traces of student

attempts to solve a set of python programming problems. We used

90% of the data as training data (to find correct student solutions

to these problems) and 10% of the data as the test input (to find

incorrect solutions to find fixes for). For the third stage, we use

a benchmark for correction quality which is based on a similar

but distinct dataset [19]. This dataset also consists of novice pro-

grammers’ attempts to solve a similar set of Python programming

problems, but it was generated specifically for the QualityScore

benchmark for hint generators[19].

4.1 Calculating edit script

We compared the edit scripts generated by our algorithm to the

output of GumTree [5], a state-of-the art algorithm for comparing

ASTs, augmented by MTDIFF[4], a set of post-processing optimiza-

tions that "repair" mappings between two ASTs.

To test our algorithm and GumTree+MTDIFF, we used pairs of

novice-created programs that attempt to solve the same problem.

The first program in the pair is always an incorrect solution, and the

second program is a correct solution written by a different student.

In finding solutions, we want to stay as close as possible to the

student’s original code. Thus, shorter edit scripts that make fewer

changes are preferable. Our algorithm generated edit scripts that

were strictly shorter than those of GumTree+MTDIFF in 68% of the

cases; the same length in 26.6% of the cases; and strictly longer in

5.6% of the cases.



Koli 2022, November 17ś20, 2022, Koli, Finland Yana Malysheva and Caitlin Kelleher

Since both GumTree and, to an extent, our algorithm optimize

for short edit scripts, we can conclude that our algorithm tends to

perform better on this type of input data. This makes sense, since

GumTree and MTDIFF are optimized with the assumption that we

are comparing two sequential versions of the same code. This is

reflected in some of GumTree’s underlying heuristics. But in our use

case, the two programs being compared are most often written by

different people independently of each other, and therefore benefit

from a different approach to AST matching.

4.2 Simplifying edit script

To analyze the effectiveness of the simplification step, we compared

the length of the edit scripts with and without simplification. As

in the previous step, we target shorter edit scripts to minimize

the changes to repair broken student code while respecting their

approach.

We first ran the simplification process for each possible pair of

incorrect student scripts from the test data and correct solutions

to the same problem from the training data. Out of 1768 such AST

comparisons, the simplification step was able to find a shorter

edit script in 1162 cases (65.7%). In those cases, the length of the

simplified edit script was, on average, 70% of the original length.

However, we note that only the pairs of incorrect-correct solu-

tions with the shortest edit script length would be selected for use.

Thus, we are also interested in determining the effect of simplifica-

tion on the final chosen edit script for a given incorrect solution.

Specifically, if we were to choose the shortest available edit script

as input for the fix generation stage of the algorithm, how would

the results differ with and without the simplification step? Out of

113 incorrect student solutions in the test data, the simplification

step resulted in a shorter final edit script in 75 of the cases (66.3%).

In those cases, the length of the simplified edit script was, on av-

erage, 57% of the original length. Moreover, the cases where the

simplification step did not result in a shorter edit script tended to

come from code where the edit script was already short: 6.05 edits

on average, compared to 14.5 edits for those programs where some

simplification was possible.

This shows that the simplification step can be effective in finding

and removing unnecessary edits.

4.3 Generating fixes

Finally, we evaluated the educational quality of fixes generated by

our algorithm using the QualityScore benchmark [19]. QualityScore

was designed to evaluate the quality of generated next-step hints by

comparing them to a set of gold standard hints created by a group

of human experts. The hints being evaluated need to be expressed

as the AST of the student code, with a minimal correction applied

to it.

Since our algorithm seeks to generate explainable fixes rather

than next-step hints, we had to make two adjustments to the final

output in order to conform to the expectations of QualityScore:

(1) Because QualityScore only considers next-step hints, we only

select those fixes that our algorithm would choose to apply

directly to the original incorrect student code - namely, the

fixes that show the best runtime improvement when applied

Table 1: mean overall QualityScore

Our algorithm ITAP Human Tutors

Gold Standard 0.789 0.706 0.842

All expert-generated hints 0.897 0.745 0.928

Table 2: mean per-problem QualityScore (evaluated against

gold standard hints)

Our algorithm ITAP Human Tutors

firstAndLast 0.714 0.857 0.865

isPunctuation 0.750 0.846 0.875

kthDigit 0.786 0.5 0.868

oneToN 0.75 0.5 0.752

helloWorld 1.0 1.0 0.832

Table 3: mean per-problem QualityScore (evaluated against

all expert-generated hints)

Our algorithm ITAP Human Tutors

firstAndLast 0.714 0.857 0.921

isPunctuation 0.788 0.923 0.937

kthDigit 1.0 0.5 0.949

oneToN 0.95 0.6 0.959

helloWorld 1.0 1.0 0.832

to the original code. We omit those fixes that only showed

improvement when applied at a later stage.

(2) QualityScore requires "minimal" hints. It only considers hints

valid or partially valid if they exactly match or are a subset

of the edits in a "gold standard" hint. On the other hand, if

a correction makes the same changes as a "gold standard"

hint but also makes some additional changes, it is considered

completely invalid. This minimal hint constraint is not well

aligned to our problem space, since the goal of our algorithm

is to generate complete and explainable fixes, rather than

next-step hints. Therefore, we post-processed each fix to ex-

tract a "minimal" subset of edits from the fix. ITAP[21], the

algorithm that scored highest in the original QualityScore

evaluation, also needed to process their generated correc-

tions to find minimal hints. ITAP’s strategy was to take just

the top-level token edit to the original code. We modeled

our approach for selecting minimal corrections on ITAP’s

approach.

We chose to compare performance on the "partial match" metric

in QualityScore, which counts some hints as a valid match even

if they only make a subset of the edits that the gold standard hint

makes. Using the "partial match" metric allows us to de-emphasize

the importance of choosing the correct "minimal" subset of edits

in a fix. If we had used the "full match" metric, which requires the

proposed hint to match the gold standard exactly, we would see

many false negatives where the post-processing step for selecting

a "minimal" set of edits chose too few of the edits present in the fix



An Algorithm for Generating Explainable Corrections to Student Code Koli 2022, November 17ś20, 2022, Koli, Finland

that the algorithm originally generated. With the "partial match"

metric, as long as both the fix generated by our algorithm and the

gold standard hint written by human experts are pointing toward

the same bug or needed correction, the fix is likely to register as a

match for that gold standard hint.

Table 1 shows the results of evaluating our algorithm against

two versions of the QualityScore benchmark: (1) comparison to

"gold standard" hints, which are hints that at least two experts

agreed on; and (2) comparison to all hints that at least one expert

thought were valid. Each score represents the average fraction of

hints per student solution which matched a human-generated hint

in the comparison dataset. So the scores can range from 0 (no valid

hints generated) to 1 (all generated hints were considered valid). As

Table 1 shows, our algorithm outperformed ITAP in both versions

of the benchmark, although hints generated by human tutors still

did better overall.

The QualityScore dataset consists of several incorrect student

solutions for each of five different programming problems. Table 2

and Table 3 show the per-problem breakdown of the results. We can

see that ITAP did outperform our algorithm on two of the problems,

though the significance of this difference is hard to determine due

to the small size of the dataset. For example, for the firstAndLast

problem, there were only 7 student solutions, and ITAP algorithm

scored better than our algorithm on exactly one of them.

From Table 3, we can also observe that on three out of the five

problems, our algorithm got a perfect or nearly-perfect score when

compared to all expert-generated hints. This means that for those

problems, all fixes generated by our algorithm matched hints that

at least one human expert thought was valid.

4.4 Analyzing Non-gold-standard-matching
Corrections

It was difficult to systematically analyze the instances where our

algorithm’s output did not match any gold-standard and expert-

generated hints, and understand why those particular corrections

were considered invalid, because the data format used in Quali-

tyScore is not very human readable. Each hint or correction is en-

coded as a custom JSON representation of the AST of the corrected

code, with some embedded metadata, and there does not seem to

be a way to convert it back to a valid Python AST representation.

Nevertheless, we have investigated the situations in which our

algorithm did not generate any gold-standard corrections. We orga-

nize this discussion based on how the corrections fell short of the

gold standard. Specifically, we consider the following groups:

• Corrections that did not match any gold-standard hints, but

did match expert-generated hints.

• Corrections that were conceptually similar to an expert-

generated hint, but were not matches due to the match poli-

cies used.

• Corrections that did not match any gold-standard or expert-

generated hints.

4.4.1 Matching Only Non-gold-standard hints. Our algorithm gen-

erated seven corrections that were considered invalid when com-

pared to the "gold standard" dataset, but valid when compared to

all hints generated by all experts. This means that each of these

corrections matched some expert-generated hint, but that expert-

generated hint did not make it into the "gold standard", which has

a higher standard of two out of three experts agreeing that the hint

is valid.

We spot-checked two of these corrections to try to understand

why they did not meet the higher bar, since the corrections seemed

to suggest sensible edits.

One of these instances dealt with a case where the student did

not have any code written at all, but requested a hint. Our algorithm

generated two suggestions: start writing a necessary import line

(import string), and start writing the function definition. These

matched the two expert-generated hints in the QualityScore dataset,

but one of these hints was not marked as a "gold standard" hint.

The other instance was in a program attempting to find the kth

digit of a number. The student wrote a mathematical expression for

doing so, but made two mistakes: using % (modulo) instead of //

(integer division), and dividing by k instead of k-1. Our algorithm

suggested corrections for both of these mistakes, and again, both

corrections matched expert-generated hints, but one of them - the

k-1 correction - was not considered to be part of the gold stan-

dard. Interestingly, other identical corrections to off-by-one errors

elsewhere in the dataset are included in the "gold standard" set of

hints.

Without being able to thoroughly examine the entire set of

expert-generated hints, it is difficult to hypothesize why these par-

ticular hints were excluded from the gold standard. Nevertheless,

they seem to represent sensible corrections to the student code.

Therefore, we consider the more permissive standard - hints that

were considered valid by at least one expert - to be a better com-

parison point for determining whether the corrections generated

by our algorithm are valid and sensible.

4.4.2 Conceptually matching corrections. We examined each of the

corrections generated by our algorithm for the first two problems

(firstAndLast and isPunctuation) that were judged to not match

any expert-generated hints. We manually compared these correc-

tions to the corresponding hints in the QualityScore dataset, and

found that four of these corrections did have a conceptually match-

ing hint. However, they were not recognized as a valid match by

QualityScore.

Out of these four corrections, three were single-node edits which

just updated the value of one node in the AST. For example, in one

problem, the student tried to use the keyword string as a variable

name, but this confused the Python interpreter. Our algorithm

generated one correction changing string to character for each

incorrect use of this variable. The corresponding expert-generated

hints in these three instances seemed to update those same nodes,

but also make additional changes. So conceptually, the minimal

edits generated by our algorithm were partial matches to the expert-

generated hints. But in the QualityScore algorithm, a partial match

is only possible if it includes a matching insertion operation. So

these three single-node edits were not considered valid partial

matches.

The fourth instance involved a case where the student both

made errors in calculating the intended return value, and forgot to

return it. Our algorithm generated a fix which inserted a return line,

added necessary code, and moved the valid part of the student’s



Koli 2022, November 17ś20, 2022, Koli, Finland Yana Malysheva and Caitlin Kelleher

code to the new return line. The "minimal" subset of edits for this

fix was to insert a return statement on a new line. However, the

corresponding hint or hints in the QualityScore dataset seem to add

the return statement directly to the line with the student’s incorrect

calculation. In fact, QualityScore’s heuristic for deriving edit scripts

from corrected ASTs does not seem to account for move operations

at all.

4.4.3 Corrections with no matches. Three of the corrections gen-

erated by our algorithm for firstAndLast and isPunctuation did

not correspond to any expert-generated hints in the QualityScore

dataset.

One of these corrections addressed a bug where the student tried

to access the last letter in a string using the expression s[n], where

n was the length of the string. Our algorithm changed the token n

to the literal -1, which produced a correct Python expression for

accessing the last element, s[-1]. However, this expression doesn’t

quite match the student’s original intent, since it does not utilize

the length n which the student explicitly calculated earlier in the

code. So in this case, it makes sense that this correction was not

present in the QualityScore dataset.

The second correction addressed a bug where instead of concate-

nating two strings with a +, the student created a tuple by putting a

, between them. The set of expert-generated hints for that problem

did not seem to include any hint which actually concatenated two

strings. Instead, there was one hint which deleted the second string

and the comma entirely. It is not clear whether the expert tutors

generating these hints thought it would be incorrect to directly

replace the , with a +, or simply did not consider this option.

The final correction inserted a return False statement into a

function which was supposed to return a Boolean. Our algorithm’s

correction inserted it into an else clause of a student-created if

statement. The set of expert-generated hints did contain a hint

which added return False, but this hint added the line after the

user-created if statement as a fall-through option. Both corrections

produce code that returns False at the right time, assuming other

mistakes are corrected in the code first. Again, it is unclear whether

the experts creating these hints explicitly considered only one of

these options to be pedagogically sound, or did not evaluate any

other possible locations for inserting return False.

These results show that the fixes generated by our algorithm

represent the types of fixes that humans consider valid at least

comparably well to the state of the art. For more complex types of

problems, the algorithm seems to perform significantly better than

the state-of-the art, and closely matches the types of fixes that are

generated by human experts. This is very promising in the context

of generating interpretable, explainable hints.

Unlike ITAP, our algorithm achieves this while remaining quite

general, without relying on domain-specific heuristics such as com-

mon esoteric beginner coding patterns. This may make it more

robust and generalizeable.

5 LIMITATIONS AND FUTUREWORK

A major limitation of this paper is that we did not directly evaluate

the quality and effectiveness of the runtime explanations to gen-

erated fixes, though the same runtime logic did contribute to the

fixes evaluated using the QualityScore metric.

It would be difficult or impossible to evaluate the effectiveness

of these explanations separately from any interface which presents

them to a user, because the raw explanation data is not very human-

readable, even for experts: it consists of two versions of a program,

together with the entire memory state of a specific moment during

the execution of each one, including all intermediate values of

expressions (not just the ones stored in variables).

Therefore, we plan on evaluating the explanations, together with

an interface that presents them to users, in the future. Nevertheless,

the feature of finding these important moments during the execu-

tion of the code is an integral part of the algorithm, as it is used to

make sequencing decisions for the generated fixes.

6 CONCLUSION

We presented a novel algorithm for generating fixes for incorrect

student code, and explanations to these fixes which illustrate how

the effect of running the code changes after each fix. We evalu-

ated a Python implementation of the algorithm and showed that

it generates concise fixes, and outperforms state-of-the-art algo-

rithms with similar goals. We believe that this algorithm can be an

important resource in being able to provide individualized help to

beginner students who get stuck when trying to solve programming

problems.

ACKNOWLEDGMENTS

This material is partially based upon work supported by the Na-

tional Science Foundation under Grant No. iis-2128128

REFERENCES
[1] Sahil Bhatia and Rishabh Singh. 2016. Automated Correction for Syntax Errors in

Programming Assignments using Recurrent Neural Networks. arXiv:1603.06129
[cs] (March 2016). http://arxiv.org/abs/1603.06129 arXiv: 1603.06129.

[2] Philip Bille. 2005. A survey on tree edit distance and related problems. Theoretical
Computer Science 337, 1-3 (June 2005), 217ś239. https://doi.org/10.1016/j.tcs.
2004.12.030

[3] Sudarshan S Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jennifer
Widom. 1996. Change detection in hierarchically structured information. In Acm
Sigmod Record, Vol. 25. ACM, 493ś504.

[4] Georg Dotzler andMichael Philippsen. 2016. Move-optimized source code tree dif-
ferencing. In 2016 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE). 660ś671.

[5] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Mar-
tin Monperrus. 2014. Fine-grained and accurate source code differencing. In
ACM/IEEE International Conference on Automated Software Engineering, ASE ’14,
Vasteras, Sweden - September 15 - 19, 2014. 313ś324. https://doi.org/10.1145/
2642937.2642982

[6] Elena L. Glassman, Jeremy Scott, Rishabh Singh, Philip J. Guo, and Robert C.Miller.
2015. OverCode: Visualizing Variation in Student Solutions to Programming
Problems at Scale. ACM Transactions on Computer-Human Interaction 22, 2 (April
2015), 1ś35. https://doi.org/10.1145/2699751

[7] Sebastian Gross, Bassam Mokbel, Benjamin Paaßen, Barbara Hammer, and Niels
Pinkwart. 2014. Example-based feedback provision using structured solution
spaces. International Journal of Learning Technology 10 9, 3 (2014), 248ś280.
Publisher: Inderscience Publishers Ltd.

[8] Rahul Gupta, Aditya Kanade, and Shirish Shevade. 2018. Deep Reinforcement
Learning for Programming Language Correction. arXiv:1801.10467 [cs] (Jan. 2018).
http://arxiv.org/abs/1801.10467 arXiv: 1801.10467.

[9] Björn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R. Klemmer. 2010.
What would other programmers do: suggesting solutions to error messages. In



An Algorithm for Generating Explainable Corrections to Student Code Koli 2022, November 17ś20, 2022, Koli, Finland

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
1019ś1028.

[10] Andrew Head, Elena Glassman, Gustavo Soares, Ryo Suzuki, Lucas Figueredo,
Loris D’Antoni, and Björn Hartmann. 2017. Writing Reusable Code Feedback
at Scale with Mixed-Initiative Program Synthesis. In Proceedings of the Fourth
(2017) ACM Conference on Learning @ Scale - L@S ’17. ACM Press, Cambridge,
Massachusetts, USA, 89ś98. https://doi.org/10.1145/3051457.3051467

[11] Timotej Lazar, Aleksander Sadikov, and Ivan Bratko. 2017. Rewrite Rules for
Debugging Student Programs in Programming Tutors. IEEE Transactions on
Learning Technologies 11, 4 (2017), 429ś440.

[12] Samiha Marwan, Nicholas Lytle, Joseph Jay Williams, and Thomas Price. 2019.
The Impact of Adding Textual Explanations to Next-step Hints in a Novice Pro-
gramming Environment. In Proceedings of the 2019 ACM Conference on Innovation
and Technology in Computer Science Education. ACM, Aberdeen Scotland Uk,
520ś526. https://doi.org/10.1145/3304221.3319759

[13] Benjamin Paaßen, Barbara Hammer, Thomas William Price, Tiffany Barnes, Se-
bastian Gross, and Niels Pinkwart. 2018. The Continuous Hint Factory - Providing
Hints in Vast and Sparsely Populated Edit Distance Spaces. arXiv:1708.06564 [cs]
(June 2018). http://arxiv.org/abs/1708.06564 arXiv: 1708.06564.

[14] Mateusz Pawlik and Nikolaus Augsten. 2015. Efficient computation of the tree
edit distance. ACM Transactions on Database Systems (TODS) 40, 1 (2015), 3.

[15] Mateusz Pawlik and Nikolaus Augsten. 2016. Tree edit distance: Robust and
memory-efficient. Information Systems 56 (2016), 157ś173.

[16] Barry Peddycord III, Andrew Hicks, and Tiffany Barnes. 2014. Generating hints
for programming problems using intermediate output. In Educational DataMining
2014. Citeseer.

[17] Thomas Price. 2021. thomaswp/CSEDM2019-Data-Challenge. https://
github.com/thomaswp/CSEDM2019-Data-Challenge original-date: 2018-12-
30T21:05:59Z.

[18] Thomas Price, Rui Zhi, and Tiffany Barnes. 2017. Evaluation of a Data-Driven
Feedback Algorithm for Open-Ended Programming. International Educational
Data Mining Society (2017).

[19] ThomasW. Price, Yihuan Dong, Rui Zhi, Benjamin Paaßen, Nicholas Lytle, Veron-
ica Cateté, and Tiffany Barnes. 2019. A Comparison of the Quality of Data-driven
Programming Hint Generation Algorithms. International Journal of Artificial
Intelligence in Education 29, 3 (2019), 368ś395. Publisher: Springer.

[20] Yewen Pu, Karthik Narasimhan, Armando Solar-Lezama, and Regina Barzilay.
2016. sk_p: a neural program corrector for MOOCs. In Companion Proceedings
of the 2016 ACM SIGPLAN International Conference on Systems, Programming,
Languages and Applications: Software for Humanity. 39ś40.

[21] Kelly Rivers and Kenneth R. Koedinger. 2017. Data-Driven Hint Generation in
Vast Solution Spaces: a Self-Improving Python Programming Tutor. International
Journal of Artificial Intelligence in Education 27, 1 (March 2017), 37ś64. https:
//doi.org/10.1007/s40593-015-0070-z

[22] Caroline P. Rosé, Dumisizwe Bhembe, Stephanie Siler, Ramesh Srivastava, and
Kurt VanLehn. 2003. The role of why questions in effective human tutoring. In
Proceedings of the 11th International Conference on AI in Education. 55ś62.

[23] John Stamper, Tiffany Barnes, Lorrie Lehmann, and Marvin Croy. 2008. The
hint factory: Automatic generation of contextualized help for existing computer
aided instruction. In Proceedings of the 9th International Conference on Intelligent
Tutoring Systems Young Researchers Track. 71ś78.

[24] Kurt VanLehn, Stephanie Siler, Charles Murray, and William B Baggett. 1998.
What Makes a Tutorial Event Effective? (1998), 6. 39.

[25] Kurt VanLehn, Stephanie Siler, Charles Murray, Takashi Yamauchi, andWilliam B.
Baggett. 2003. Why do only some events cause learning during human tutoring?
Cognition and Instruction 21, 3 (2003), 209ś249. 475.

[26] Christopher Watson, Frederick WB Li, and Jamie L. Godwin. 2012. Bluefix: Using
crowd-sourced feedback to support programming students in error diagnosis and
repair. In International Conference on Web-Based Learning. Springer, 228ś239.

[27] Kurtis Zimmerman and Chandan R. Rupakheti. 2015. An automated framework
for recommending program elements to novices (n). In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 283ś
288.

[28] Stuart Zweben and Betsy Bizot. 2018. 2017 CRA Taulbee survey. Computing
Research News 30, 5 (2018), 1ś47.


	Abstract
	1 Introduction
	2 Related Work and Background
	2.1 Data-driven analysis of student code
	2.2 Edit scripts between Abstract Syntax Trees

	3 Implementation
	3.1 Calculating the edit script
	3.2 Simplifying edit script
	3.3 Generating explainable fixes

	4 Evaluation
	4.1 Calculating edit script
	4.2 Simplifying edit script
	4.3 Generating fixes
	4.4 Analyzing Non-gold-standard-matching Corrections

	5 Limitations and Future Work
	6 Conclusion
	Acknowledgments
	References

