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a b s t r a c t

Compared to traditional subtractive manufacturing processes, powder bed fusion (PBF) shows promise for 
making complex metal parts with design freedom, short development time, and environmental sustain
ability. However, there is a consensus within the additive manufacturing (AM) community that the random 
geometrical defects (e.g., porosity, lack-of-fusion) produced in PBF processes pose a great challenge to 
fabricating load-bearing parts, particularly under dynamic loading conditions. Therefore, it is imperative to 
quantify defect sizes and distributions to predict the critical, life-limiting defect size that significantly re
duces fatigue life. This paper presents a comprehensive analysis of the defects induced by selective laser 
melting to quantify their sizes and statistical distributions. Then four cumulative distribution functions (i.e., 
Weibull, Gamma, Gumbel, and Lognormal CDFs) are leveraged and compared to predict the maximum 
defect size based on the principle of statistics of extremes. Both the peak over threshold (POT) approach and 
the block maxima (BM) approach are used for these predictions. The results show that the BM approach- 
based predictions for all CDFs to be much larger than the measured maxima while the POT approach-based 
predictions have less deviation. The Weibull and Gamma CDFs were best correlated to the data, measured 
by Pearson’s R correlation coefficient, while the Gumbel and Lognormal CDFs were also well correlated.

© 2022 CIRP. 

Introduction

The quality of a printed part by powder bed fusion (PBF) process 
can be characterized by the geometrical defects [1], microstructures 
[2], and residual stress [3]. There is a consensus within the additive 
manufacturing (AM) community that among the concerned quality 
factors the random geometrical defects (e.g., porosity, lack-of-fusion) 
pose the greatest challenge to fabricating load-bearing parts, parti
cularly fatigue performance in dynamic loading conditions. Techni
cally, a defect renders a part defective. Some geometrical 
inhomogeneities are tolerable due to their relatively small size due 
to their relatively small size and low volume fraction. Thus, as Snow 
et al. note [4] the term ‘flaw’ is more appropriate as a general label 
for pores and cracks. Since this paper focuses on critical flaws, the 
term ‘defect’ will be used. The geometrical defects can be mainly 
measured optically or with X-ray computed tomography (CT) [5], 
and both approaches have been applied to studies of PBF parts (e.g., 

[6]). Excluding surface roughness, the main geometrical defects are 
porosity (e.g., gas pores) and lack-of-fusion (LOF, e.g., un-melted 
particles). Porosity is often caused by insufficient energy input, while 
the LOF defects result from excess energy input. It is desirable to 
control these defects by optimizing process parameters, as has been 
studied extensively (e.g., [7]). Finding a suitable method of pre
dicting the geometrical defects of geometrical defects for certifying 
the AM parts is of great interest [1,8–12].

The effect of the geometrical defects on the fatigue performance 
of PBF parts is a prominent area of research [1,3,10,13–15]. The fa
tigue characteristics of AM materials must be understood and con
trolled to meet design requirements. For example, the high surface 
roughness from unmelted particles on the part surface lowers the 
fatigue life and fatigue strength in bending [15]. Tension-compres
sion fatigue testing has shown that the geometrical defects are just 
as harmful as surface roughness [16]. It has been shown that post- 
processing surface finishing (e.g., [17], [18]) and hot isostatic 
pressing (HIP) [1] can increase the fatigue strength of L-PBF parts by 
eliminating or reducing the size of internal defects and relieving 
residual stresses.

Fatigue data of PBF specimens are distinctly unpredictable, i.e., 
scattering, due to the random geometrical defects. The scattering can 
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be organized into three different observed cases: identical prints 
giving different fatigue lives [19,20], different lives for as-built vs. 
post-processed samples [21–23], and different lives for different 
materials made under the same process conditions [24]. Identical 
printings using same process parameters may generate different life- 
limiting defects due to uncertainties in the melting and solidification 
process. Post-processing can relieve residual stresses, modify surface 
roughness, and mitigate internal defects of as-printed materials, 
therefore, improve fatigue performance. Furthermore, different 
materials will have different properties even under same processing 
conditions, which causes different lives.

Quantifying the determinantal effect of geometrical defects on 
fatigue limit and its scattering is contingent on the termination of 
the defect sizes and distributions. The literature uses the estimation 
method proposed by Murakami to predict the maximum effective 
size areamax of irregularly shaped defects [15], where the areamax

parameter is defined as the square root of the defect area normal to 
the direction of maximum tensile loading. This method is based on 
the Gumbel cumulative distribution function (CDF). On the other 
hand, there are three alternative CDFs, i.e., Weibull, Gamma, and 
Lognormal CDFs. However, which CDF may give the most accurate 
prediction of the maximum effective size has yet to be investigated. 
This question leads to the following objectives of this study: 

• Assess the state-of-the-art predictive methods of geometrical 
defects in metal AM

• Conduct a comprehensive characterization of a wide range of 
geometrical defects produced in laser-based PBF (L-PBF)

• Benchmark the performance of the Weibull, Gamma, and 
Lognormal CDFs vs. the Gumbel CDF by comparing with the 
predicted maximum effective defect sizes vs. the measured data

State-of-the-art analysis

Geometrical defects formation mechanisms

PBF-induced geometrical defects can be grouped based on their 
mechanisms of formation. As summarized by Snow et al. [4] these 
defects are gas porosities, melt pool instabilities, and regions with a 
lack of fusion (LOF). (1) Gas pores are identified as near spherical 
voids within a printed part, and typically are the smallest in size of 
all three defect groups. These are introduced into the solidified metal 
either by the release of trapped gas inside the virgin (i.e., unmelted) 
powder stock or by gas bubbles enveloped by the melt pool. (2) Melt 
pool instabilities result in voids and pores due to the vaporization 
loss. At higher energy inputs, more molten metal from the melt pool 
can evaporate. This occurs when high energy densities are applied 
when using high laser powers and slow scanning speeds or when 
deceleration of the laser exposes the area of the powder bed incident 
to the energy source for more time. (3) LOF can occur systematically 
and stochastically, generally resulting in large, irregular voids, often 
identified by partially melted powder inside voids. Laser power and 
scanning speed parameters must be optimized to ensure subsequent 
scanning passes completely fuse both and with any previously so
lidified material below. Even with optimized parameters, random 
LOF defects may still occur due to the highly volatile PBF process. 
The unmelted powder can contaminate the melt pool as a spatter or 
powder is blown by inert shielding gas and cause incomplete fusion.

Geometrical defect morphology characterization

Morphology (morph- from the Greek μορφή, or form) is a key part 
of characterizing defect size and shape in PBF. As discussed in the 
preceding section, based on the shape and size of a defect the for
mation mechanism responsible for its creation can be identified. 
Thus, by characterizing defect geometry and location within a 

component, manufacturers can determine the root causes of any 
defect formation and tune their process parameters accordingly.

Morphology studies of internal defects originally required de
structive methods (e.g., mechanical cutting) to investigate samples. 
By taking slices or sections of a sample, a 2D inspection area of the 
interior geometry can be observed by optical methods (e.g., [16]). 
While this method is simple and easy for most investigators to 
perform, the nature of the destructive method of inspection does not 
leave the part intact for additional testing. This is not altogether 
unfavorable if simultaneous studies can be performed on the same 
sliced sample, e.g., microstructure formation and hardness. Yet, it 
still restricts morphology analysis to 2D descriptions of defect size 
and shape.

X-ray computed tomography (CT) is a popular non-destructive 
method of detecting internal cracks and porosity and measuring 
defect sizes [9,25–31]. While being expensive and time-consuming, 
CT can resolve the entire population of internal defects in each 
sample region and accurately portray not only 2D but also the 3D 
shape of defects with additional image processing. This allows direct 
3D quantification of defects (e.g., population, volume fraction, 
sphericity, spatial orientation). Of course, the limiting size of defects 
that can be detected depends on the maximum resolution available, 
which can be on the order of tens of microns [32].

Juan et al. [33] presented a hybrid destructive and non-destruc
tive investigative method for characterizing metal inclusions, first 
using scanning ultrasonic microscopy to detect the location of large 
internal defects and then dissecting the specimen to better observe 
the defects with scanning electron microscopy. While this does help 
to reduce the risk of missing or overlooking critical defects in a part, 
it lacks the advantage of 3D defect characterization.

3D representations of defects can be used to quantify the reg
ularity or irregularity of defect shape. The measure of sphericity is 
the ratio of sphere surface area to defect surface area for a sphere 
with equal volume to the defect. Sphericity close to one will result in 
near-spherical defects while low sphericity values denote irregular 
defects.

Equivalent diameter is a measure of 3D defect size, defined as the 
diameter of a sphere of equal volume [33]. This may not be suitable 
for elongated, irregular pores (e.g., LOF) since such defects may 
misrepresent how detrimental long, crack-like defects with rela
tively small areas can be to the fatigue performance of PBF compo
nents [34].

For 2D observations of defects, the maximum effective size 
areamax parameter adopted in Murakami’s work [35,36] is a pop

ular choice for representing defect size [8,9,26,28,31,37], partly be
cause it is used to predict the fatigue limit of PBF components. This 
gives a 1D (length) measurement to represent the 2D (area) size of 
the defect. In some cases, defects are grouped closely together, 
making it difficult to assume the individual defects to be in
dependent of or unaffected by the group. There are also times when 
defects are close enough to the part surface that the area between 
the defect and the surface does not offer much structural integrity. In 
these situations, an effective defect size [1] can be taken to estimate 
the total area affected by the sub-surface or interacting defects by 
drawing around the outer borders of the affected region to com
pletely envelop all defects and/or the sub-surface defect area and the 
area immediately separating it from the free surface. Naturally, this 
requires the use of image analysis software, which is often included 
in optical measurement systems.

These methods are not intended to precisely measure actual 
defect size but rather estimate an effective crack length with ap
proximately the same impact. This was explained by Murakami and 
Endo through their investigation by comparing artificial defect holes 
with specific diameters to non-propagating cracks in steel speci
mens [38]. The level of precision of the measured area depends on 
how closely drawn the enveloping contour is to the actual 
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boundaries of the defect. As mentioned by Oberreiter et al., higher 
precision can be more favorable for accurately depicting the actual 
defect area, which comes at the price of more complicated and te
dious creation of the contours in image analysis software [31].

Possibly more accurate measurement of defect size is the max
imum Feret or Feret caliper (FC) diameter [39]. The FC diameter 
measures the distance between two points across from each other 
on the boundary of interest, and was used by Nicoletto et al. [40] in 
measuring the size of metallographically observed casting defects. 
The distribution of defect sizes was used in comparison to the 
areamax parameter in Murakami’s work to predict the maximum 

defect size, resulting in much larger predictions, yet well correlated, 
nonetheless. The predicted critical defect sizes using the FC diameter 
description also yielded closer approximations of fatigue strength of 
cast AlSi7Mg.

The FC diameter is also advantageous over area measurements 
because it carries physical significance whereas area measurements 
are more abstract in concept. To illustrate this point, consider an 
irregular pore inscribed inside a circle of radius r (see Fig. 1). The 
longest dimension of the pore should be approximately equal to the 
circle diameter r2 . In most cases, the inscribed pore will not cover all 
the area of the circle circumscribing it. Even for a perfectly circular 
pore, its area would be r2, which would result in a 1D defect size of 
about r1.772 using the area parameter method.

Extreme of statistics-based prediction method for defect size

The aim of the statistical theory of extreme values, in appli
cation to porosity, is to analyze observed pores in a printed sample 
and to forecast further extremes [41] (e.g., a maximum pore size). 
Extremes are rare events that are not often observed. The lower 
and upper bounds can be estimated probabilistically by extra
polating from the available data. This relies on certain functions, 
namely the probability density function (PDF) and the cumulative 
distribution function (CDF). The PDF describes the relative fre
quency of a continuous distribution of values and is analogous to a 
histogram of discrete data. The CDF describes the cumulative 
frequency of a continuous distribution of values. By definition, the 
CDF is the integral of the PDF. Fig. 2 gives an example plot of the 
well-known normal distribution, which has a PDF shaped like 
a bell.

In application to predicting the extreme defect sizes, the values 
at the left and right tails of a PDF are of interest. These regions 
correspond to the extreme minima and maxima of distribution, re
spectively. While a CDF can output the probability for a given range 
of values, the inverse of the CDF can be used to solve for the values, 
given a probability. In this way, a prediction can be made about 
extreme values corresponding to a set probability.

Table 1 lists different CDFs used in the literature to predict 
extreme sizes of defects in metals. Generalized distributions, like 
the Generalized Extreme Value (GEV) and Generalized Pareto (GP), 
are good starting points for modeling defect data but simulta
neously more tedious to apply since they represent the most 
general case with no simplifying assumptions. Anderson et al. [37]
compared the precision of estimates of the maximum inclusion 
size in a steel bar made using GEV and GP distributions of inclusion 
data as well as simplified forms of the two distributions. Their 
results showed higher precision with the GP estimate in compar
ison to the GEV estimate and further showed an increase in pre
cision for the simplified distributions. The simplification of the 
GEV and GP distributions was setting the shape parameter to zero. 
This changed the GEV distribution to a Gumbel distribution (Eq. 
(1)) and the GP distribution to an Exponential distribution (Εq. 
(2)). Overall, the Exponential distribution gave the narrowest 
confidence intervals.

= µ( )F x( ) exp exp x

(1) 

=F x e( ) 1 x (2) 

While the same inclusion data (measuring areamax larger than a 
threshold of 5 µm) was used for all the predictions, the GEV and 
Gumbel distributions used only the maximum inclusion sizes mea
sured from each inspection area (called the block maxima (BM) 
approach [32]) while the GP and Exponential distributions used all 
inclusion sizes above the threshold (called peak over threshold (POT) 
approach [32]). Murakami followed the block maxima approach in 
his earlier publications on metallic inclusions in steel (e.g., [16]). By 

Fig. 1. Schematic of Feret caliper (FC) diameter. 

Fig. 2. Schematic of the normal distribution (PDF and CDF ). 

Table 1 
Representative cumulative distribution functions (CDFs) for defect analysis. 

Distribution (s) Application Reference

GEV, GP Predicting maximum inclusion size in steel [37]
Lognormal, Gumbel Predicting maximum inclusion size in steel [33]
Gumbel Predict maximum defect size in SLM-ed Ti6Al4V [28]
GEV Predicting maximum inclusion size in steel [8]
Gumbel Size distribution of pores in L-PBF-ed SS-316L [30]
GEV Evaluation of probability of occurrence of fracture-initiating defects [31]
GP, Gumbel Estimate maximum defect from CT data [32]
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observing a set area of steel from different sample slices, only the 
maximum inclusion from each observed area would be recorded. In 
this way, only a distribution of the maximum inclusions relative to 
the set inspection area would be modeled, as detailed by Gumbel 
regarding the statistics of extremes [41].

Juan et al. [33] showed the distribution of metallic inclusion size 
(equivalent diameter) to follow a lognormal distribution. However, a 
definition of inclusion size was not explicitly given. It is inferred 
from the study that the longest dimension of an observed inclusion 
cross section was taken as the defect size.

By analyzing the literature, several essential questions in prob
abilistic modeling remain to be investigated, i.e., how much data 
needs to be measured to yield a reliable prediction, which CDF best 
describes the defect size, and which approach (BM or POT) is ap
propriate for use [32,42].

Sample fabrication, preparation, and characterization of 
geometrical defects

SLM of SS-316L block and sample preparation

An AconityMiNi SLM printer was used to print a rectangular SS- 
316L block 14 × 68 × 78.08 mm3 in a flowing argon environment. The 
block was printed with a 90-degree cross-hatching scanning strategy 
(see Fig. 3). The top face (68 × 78.08 mm2) lay parallel to the sub
strate, with the vertical dimension of 14 mm oriented in the build-up 
direction. The process parameters (see Table 2) were selected in
tentionally to produce a wide range of geometrical defects 
throughout the block.

To expose the printed geometrical defects, wire-EDM was used 
to section the sample for measurement. Fourteen slices were taken 
from the sample block to quantify the size of the defects and their 
distribution through optical metrology. The sample slices were 
designed with a dog bone geometry to be used in future fatigue 
testing.

Wire-EDM is a thermal process where high discharging energy 
was applied between a thin wire (e.g., brass with 0.25 mm diameter 
in this experiment) and the metal block and erodes the material 
along a prescribed path. The thermal nature of wire-EDM introduced 
a heat-affected zone (HAZ) at the workpiece surface. The EDMed 
surfaces of each sample were prepared using a two-stage grinding 

followed by polishing after wire-EDM. This removed the HAZ from 
the samples so only the as-SLMed microstructure and related me
chanical properties would be subjected to measurement. Polishing 
also gave a smooth surface for inspecting pores with optical mi
croscopy. First, 220 grit sandpaper was used to remove the HAZ, then 
1000 grit sandpaper was used to remove the grinding marks from 
the previous step and polish the surfaces to an average Sa 1.5 µm. 
During the grinding and polishing processes, cold tap water was 
used to eliminate frictional heat to avoid the potential of altering the 
as-printed microstructure and flush away loose particles. Fig. 4
shows the exposed geometric defects (i.e., pores and LOFs) on the 
sliced sample.

Characterization of geometrical defects

Each sample was inspected using a Keyence VR 3100 optical 
microscope. 3D surface topography of the right and left faces was 
also measured to quantify the surface roughness of the polished 
samples. The surface roughness of a 1 × 1 mm2 area free of pores was 
inspected on the right and left faces of each sample. The number of 
defects and their sizes inside a 5 × 5 mm2 measurement area of each 
sliced sample surface were counted and measured using the Feret 
caliper (FC) method (see Fig. 5).

The FC diameter pore size was quantified by inscribing each pore 
within the smallest circle possible and using the resulting diameter 

Fig. 3. SLM scanning strategy and printed SS-316L block. 

Table 2 
SLM process parameters. 

Parameter Value Units

Laser Power 250 W
Laser Diameter 0.050 mm
Scan Speed 800 mm/s
Layer Thickness 0.050 mm
Hatch Spacing 0.070 mm

Fig. 4. Illustration of wire-EDM sampling. 

Fig. 5. Feret caliper (FC) method for measuring defect size. 
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as an effective defect size. The grouping or clustering effect of de
fects was not accounted for in the size of the defects. Only individual 
pores were measured to simplify this study. A total of 769 pores 
were collected and measured.

Prediction of extreme defect size with alternative CDFs

Dataset characteristics and distributions

To benchmark the popular Gumbel CDF for predicting the max
imum defect size in metal AM, four different CDFs are listed in 
Table 3, as well as definitions of their parameters and regression 
equations.

Seven different cases were investigated to predict the maximum 
defect size from the collected porosity data. The first six cases follow 
the peak over threshold (POT) approach of using all data above a 
threshold value. The last case follows the block maxima (BM) ap
proach of only using the maximum defect size measured from each 
inspection area.

While the BM approach limits the amount of data used to the 
number of inspection areas, the POT approach allows the flexibility 
of varying the amount of data used by setting a threshold. This can 
be seen as an optimization problem involving a balance between 
sample size and level of defect magnitude. By varying the amount 
and magnitude of the data used by the POT approach, the possible 
dependence of the predictions on these factors can be investigated. 
The six POT cases are as follows. 

Case 1. : Entire dataset (threshold set to be below the minimum 
measured pore size).

Case 2. : Dataset from the right face of each sliced sample (same 
threshold as Case 1, just less data).

Case 3. : Dataset from every other right face of each sliced sample 
(see Fig. 4).

Case 4. : Dataset with defect size threshold to 100 µm (i.e., data 
exceeding 100 µm).

Case 5. : Dataset with defect size threshold of 212.93 µm (i.e., data 
equal to and above the median value of all data).

Case 6. : Dataset with defect size threshold to only keep the largest 
100 defects.

For the BM approach, the largest defect size from each of the 28 
inspection areas is used for linear fitting and extrapolation. Each 
distribution gives an estimate of the largest expected defect size, 
corresponding to a cumulative probability of 99.9%. The predictions 
are compared to the measured data and a discussion of the results is 
given.

Table 4 gives descriptive measures of each of the datasets used 
for the comparative approaches. Fig. 6 shows the histograms of the 
data from each of the 6 POT cases, which all have the same general 
trend of being right-skewed.

Procedure for predicting maximum defect size

The procedure used to predict the defect size corresponding to a 
certain cumulative probability (e.g., 99.9%) of not being exceeded is 
as follows. 

(1) Sort the porosity data in ascending order and assign each value a 
rank j (e.g., smallest pore has rank =j 1, next smallest has rank 
=j 2, continue up to largest pore with rank equal to sample 

size n).
(2) Find the Cumulative Distribution Function (CDF) value Fj for 

each pore using Eq. (3).

= +F ,j
j

n 1 (3) 

(3) Find the inverse CDF value yj for each pore using the respective 
equations from Table 3 with Fj from step 2.

(4) Plot the pore diameters in ascending order against the corre
sponding inverse CDF values.

(5) Apply the Method of Least Squares (MLS) to fit a linear (re
gression) line to the data.

Table 3 
Cumulative distribution functions (CDFs). 

Gumbel Weibull Gamma* Lognormal*

CDF

=
µ

F d e( ) e

d
= ( )F d e( ) 1

d
=F d x e dx( ) a a

d
a

x1
( )

0

1 = =µ( )F d( ) dln standard normal CDF (see Fig. 2)

Reduced Variate = µy d =y d =y d =y d

Parameters µ= = b
m
1 =, 0

m
1 =d amean of µ = =d dln(mean of ) stand. dev. of ln

Inverse CDF =y Fln[ ln( )]j j =y F[ ln(1 )]j j
1 =y F aGAMMA. INV( , , )j j µ=y FLOGNORM. INV( , , )j j

Regression Equation = + = = µy md bm b1 = + =y md bm 1 = +y md b = +y md b

*Inverse CDF given as Microsoft ® Excel ® function

Table 4 
Descriptive measures of porosity distributions. 

POT or BM Sample size Mean (μm) Median (μm) Standard Deviation (μm) Minimum (μm) Maximum (μm)

Case 1 769 274.025 212.933 221.029 26.236 1525.947
Case 2 383 264.801 209.587 209.593 26.236 1231.468
Case 3 178 282.195 221.573 220.991 26.236 1231.468
Case 4 612 327.017 272.667 218.041 100.099 1525.947
Case 5 385 429.978 359.801 215.199 212.933 1525.947
Case 6 100 724.563 674.920 210.848 499.315 1525.947
BM 28 899.803 898.639 244.184 423.006 1525.947
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(6) Extrapolate from the regression equation to find the maximum 
defect size (at a given probability, e.g., 99.9% @ =F 0.999j ) 
(granted, of course, the regression line is well-correlated to 
the data).

The resulting predicted sizes are compared to the maximum 
diameter of each dataset to quantify how much the predictions de
viate from the measurements. Pearson’s R, defined as

= =R R1 1, ,
n

d d y y

s s
1
1

( )( )j
n

j j

d y

1

(4) 

is used as a correlation factor to compare the goodness of fit of each 
CDF. sd and sy are the sample standard deviations of the measured 
pore diameter d and reduced variate/inverse CDF value y , respec
tively, while d and y are their mean values. Regressions with R close 
to 1 signify a good correlation between d and y. For CDFs with shape 

Fig. 6. Histograms of the six data cases used for the POT approach. 
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parameters (i.e., the Weibull and Gamma CDFs), an initial guess is 
used to generate a value for R . Then the shape parameter value is 
tuned to give an R value closest to one. The regression equation 
associated with the tuned shape parameter is then used in step 6 of 
the prediction procedure.

Table 5 lists the predictions of each CDF and their deviations from 
the measured maxima of each data case, which is graphically dis
played in Fig. 7. POT cases 3–5 had matching predictions for the 

Weibull and Gamma CDFs, and predictions for POT cases 1, 2, and 6 for 
these two distributions were also similar. Overall, the Weibull and 
Gamma CDFs resulted in the highest correlations (see Fig. 8) for all POT 
cases. Increasing the sample size may have slightly raised the R values 
for the Weibull and Gamma CDFs, while no clear trend is visible for the 
Gumbel and Lognormal CDFs. From a broader perspective, however, 
each CDF was able to correlate well to the porosity data for the POT 
approach, with all maximum R values being above 0.975. The Gumbel 
CDF yielded predictions below the measured maxima for POT cases 1 
and 4. The Lognormal CDF had the largest prediction deviations for 
POT cases 1–3, where the threshold value was kept at its lowest (es
sentially zero). The Lognormal CDF had much more similar predictions 
to the other CDFs for POT cases 4–6 where the threshold value was 
increased successively, although the prediction deviation did not seem 
affected by these consecutive changes.

A histogram of the maximum pore sizes used for the BM ap
proach is shown in Fig. 9, which is normally distributed. All the BM 
predictions have deviated from the measured maximum pore size of 

Table 5 
Predicted maximum defect sizes (rounded) using regression equations from Table 6. 

CDF POT Case 
or BM

Prediction (μm) % Difference from case 
maximum

Gumbel Case 1 1398 -8%
Case 2 1339 9%
Case 3 1438 17%
Case 4 1441 -6%
Case 5 1542 1%
Case 6 1843 21%
BM 2306 51%

Weibull Case 1 1606 5%
Case 2 1546 26%
Case 3 1665 35%
Case 4 1646 8%
Case 5 1744 14%
Case 6 1884 23%
BM 5861 384%

Gamma Case 1 1552 2%
Case 2 1492 21%
Case 3 1665 35%
Case 4 1646 8%
Case 5 1744 14%
Case 6 1931 27%
BM 2623 172%

Lognormal Case 1 2161 42%
Case 2 2113 72%
Case 3 2302 87%
Case 4 1799 18%
Case 5 1635 7%
Case 6 1723 13%
BM 2168 42%

Fig. 7. POT prediction deviation from the measured ones. 

Fig. 8. POT approach goodness of fit dependence on amount of data. 

Fig. 9. Histogram of porosity data for BM approach. 
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about 1526 µm, which the minimum prediction exceeded by 42% 
(see Table 5). In comparison, assuming from Fig. 9 that the max
imum defect size is normally distributed, the empirical rule (a.k.a, 
the 68–95–99.7 rule) can be used to predict the maximum defect. 
Using the sample mean and sample standard deviation for the BM 
approach data from Table 4, approximately 99.85% (99.7% within 
three standard deviations of the mean and an additional 0.15% of 
smaller values outside this interval) of all observations will be less 
than a defect with a size three standard deviations larger than the 
mean, which equals about 1632 µm. This prediction has only a 7% 
deviation from the measured maximum and is more realizable than 
the BM approach-based predictions.

While the Weibull and Gamma CDFs could be tuned to correlate 
well to the data from the POT approach, tuning their shape para
meters with the data from the BM approach gave unrealistic re
sults. Figs. 10–11 depict the results of tuning the shape parameters 
to give R values closer to 1. While the CDFs were become 

increasingly well correlated, the prediction deviations rose dra
matically. A maximum R value was reached for the Weibull dis
tribution with = 2.6 while the Gamma CDF prediction deviation 
continued to grow when approaching an upper limit for R (see 
Fig. 10). Whenever extrapolation methods are used, therefore, one 
must be careful not to rely only on regressions that are highly 
correlated to the data and must ensure that the regression gives 
realistic results.

Table 6 shows the CDF parameter values and regression equation 
slope and intercept values corresponding to the highest R values, 
except for the Gamma CDF regression with the BM approach, where 
the tuning of the shape parameter showed an almost unbounded 
rise in the prediction deviation when approaching larger R values 
(see Fig. 10). It is interesting to note that the shape parameter = 1
for the Weibull CDF gave the best correlation for all but the 6th POT 
case. This simplifies the Weibull 2-parameter CDF to become the 
Exponential distribution, which only has one parameter.

Fig. 10. Gamma CDF shape parameter tuning, BM method: (a) Shape parameter a v.s. Pearson’s R and % deviation of prediction; (b) Inverse Gamma CDF plotted at shape 
parameters =a 0.2, 2, 20.

Fig. 11. Weibull shape parameter tuning, BM approach: (a) shape parameter v.s. Pearson’s R and % deviation of prediction; (b) Inverse Weibull CDF with = 2.6, the case with 
the largest R value.

P. Kousoulas and Y.B. Guo CIRP Journal of Manufacturing Science and Technology 41 (2023) 124–134

131



Additionally, Figs. 12–13 show the plotted regression lines for the 
Weibull and Gamma CDFs with the best overall correlation coeffi
cient values for the POT approach. The extrapolated maximum de
fect sizes are superimposed to better illustrate step 6 of the 
prediction procedure.

Conclusions

Geometrical defects are a common inhibitor of product perfor
mance in powder bed fusion (PBF) components. Understanding how 
to quantify the size and distribution of geometrical defects is key for 
certifying AM parts and improving printing processes. The 

Table 6 
Linear regression results with the highest R* (in bold). 

CDF POT Case or BM Linear regression Distribution parameters

Method of Least Squares Correlation Coefficient Shape Scale Location

Slope m Intercept b Pearson’s R µ

Gumbel Case 1 0.005636 -0.97067 0.983876 -177.419 172.2157
Case 2 0.005898 -0.99047 0.984766 -169.56 167.9441
Case 3 0.005487 -0.98223 0.981543 -182.247 179.0092
Case 4 0.005685 -1.28585 0.981249 -175.911 226.1962
Case 5 0.005695 -1.87768 0.976372 -175.577 329.679
Case 6 0.005677 -3.55318 0.987116 -176.155 625.9121
BM 0.004531 -3.54230 0.98337986 -220.726 781.878

m b R
Weibull Case 1 0.004439 -0.22049 0.998651 1 225.2988

Case 2 0.004618 -0.23044 0.996892 1 216.5397
Case 3 0.004282 -0.22252 0.995329 1 233.5283
Case 4 0.004484 -0.47159 0.998561 1 222.9949
Case 5 0.004502 -0.94347 0.997812 1 222.1021
Case 6 0.003517 -1.6222 0.99624 1.2 284.2977
BM 0.001371 -0.35010 0.98415738 2.6 729.216

m b R a
Gamma Case 1 1.112191 -31.7277 0.998726 1.2 228.3547

Case 2 1.119871 -33.4478 0.997463 1.2 220.6682
Case 3 1.2084 -62.7939 0.995329 1 282.1956
Case 4 1.466478 -154.218 0.998561 1 327.0172
Case 5 1.93595 -405.674 0.997812 1 429.9786
Case 6 2.545674 -1130.57 0.995721 1.6 452.852
BM 2.222616 -1127.6933 0.972113648 2 449.901

m b R µ
Lognormal Case 1 1.50089 -37.6857 0.986847 0.795823 5.61322

Case 2 1.50419 -37.6993 0.984419 0.800342 5.578982
Case 3 1.46731 -33.0888 0.989186 0.800097 5.6426
Case 4 1.11294 23.8003 0.99647 0.590194 5.790013
Case 5 0.92375 71.5436 0.984271 0.421622 6.063735
Case 6 0.90351 93.9785 0.980285 0.266377 6.585569
BM 0.983824 44.53503 0.985147839 0.286 6.802

*For Gamma CDF’s regression higher values of R are possible, but predictions become highly deviated from the measured maximum pore diameter.

Fig. 12. Weibull regression lines for extrapolating maximum defect size, POT ap
proach, cases 3–6.

Fig. 13. Gamma regression lines for extrapolating maximum defect size, POT ap
proach, cases 1–5.
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maximum defect size predicted to exist in the literature is dom
inantly based on the Gumbel CDF. In this study, a variety of geo
metric defects from an SS-316L block fabricated by selective laser 
melting was measured using the Feret caliper (FC) diameter. The 
measured data were then fitted to four different CDFs. The predic
tions from each CDF and the correlation coefficients (Pearson’s R) 
were compared by both peak over the threshold (POT) and block 
maxima (BM) approaches of analyzing the porosity data. Six dif
ferent data cases were tested based on the POT approach. The main 
results are as follows. 

• The Weibull and Gamma CDFs showed similar predictions with a 
close agreement with the measured maxima of each POT 
data case.

• The Weibull and Gamma CDFs resulted in the highest R values for 
all POT cases.

• Sample size did not significantly affect correlation.

• All four CDFs correlated well to the porosity data for the POT 
approach, with all maximum R values being above 0.975.

• The Lognormal CDF had large prediction deviations with a zero- 
threshold data value and had consistently close predictions when 
the threshold value was increased.

• The BM approach predictions deviated from the measured 
maximum by large margins.

• Well-correlated regressions must also give realistic results to be 
useful.

Declaration of Competing Interest

The authors declare that they have no known competing fi
nancial interests or personal relationships that could have appeared 
to influence the work reported in this paper.

Acknowledgment

The authors would like to thank the financial support of the 
National Science Foundation under the grant CMMI-2152908.

References

[1] Masuo, H., Tanaka, Y., Morokoshi, S., Yagura, H., Uchida, T., Yamamoto, Y., 
Murakami, Y., 2018, Influence of Defects, Surface Roughness and HIP on the 
Fatigue Strength of Ti-6Al-4V Manufactured by Additive Manufacturing. 
International Journal of Fatigue, 117:163–179.

[2] Yu, C., Zhang, P., Zhang, Z., Liu, W., 2020, Microstructure and Fatigue Behavior of 
Laser-powder Bed Fusion Austenitic Stainless Steel. Journal of Materials Science 
and Technology, 46:191–200.

[3] Edwards, P., Ramulu, M., 2014, Fatigue Performance Evaluation of Selective Laser 
Melted Ti–6Al–4V. Materials Science and Engineering A, 598:327–337.

[4] Snow, Z., Nassar, A.R., Reutzel, E.W., 2020, Invited Review Article: Review of the 
Formation and Impact of Flaws in Powder Bed Fusion Additive Manufacturing. 
Additive Manufacturing, 36:101457.

[5] Gapinski, B., Wieczorowski, M., Marciniak-Podsadna, L., Pereira Domínguez, A., 
Cepova, L., Martinez Rey, A., 2018, Measurement of Surface Topography Using 
Computed Tomography.  Springer International Publishing: 815–824.

[6] Mohr, G., Altenburg, S.J., Ulbricht, A., Heinrich, P., Baum, D., Maierhofer, C., 
Hilgenberg, K., 2020, In-Situ Defect Detection in Laser Powder Bed Fusion by 
Using Thermography and Optical Tomography—Comparison to Computed 
Tomography. Metals, 10/1: 103.

[7] Koutiri, I., Pessard, E., Peyre, P., Amlou, O., De Terris, T., 2018, Influence of SLM 
Process Parameters on the Surface Finish, Porosity Rate and Fatigue Behavior of 
As-built Inconel 625 Parts. Journal of Materials Processing Technology, 
255:536–546.

[8] Deng, H., Liu, Q., Liu, H., Yu, H., 2018, Long-Life Fatigue of Carburized 12Cr2Ni 
Alloy Steel: Evaluation of Failure Characteristic and Prediction of Fatigue 
Strength. Metals, 8/12.

[9] Nadot, Y., Nadot-Martin, C., Kan, W.H., Boufadene, S., Foley, M., Cairney, J., Proust, 
G., Ridosz, L., 2020, Predicting the Fatigue Life of an AlSi10Mg Alloy 
Manufactured Via Laser Powder Bed Fusion by Using Data from Computed 
Tomography. Additive Manufacturing, 32:100899.

[10] Yukitaka Murakami, H.M., Tanaka, Yuzo, Nakatani, Masanori, 2019, Defect 
Analysis for Additively Manufactured Materials in Fatigue from the Viewpoint of 
Quality Control and Statistics of Extremes. Fatigue Design, 113–122.

[11] Mukherjee, T., DebRoy, T., 2018, Mitigation of Lack of Fusion Defects in Powder 
Bed Fusion Additive Manufacturing. Journal of Manufacturing Processes, 
36:442–449.

[12] Gerdes, N., Hoff, C., Hermsdorf, J., Kaierle, S., Overmeyer, L., 2021, Hyperspectral 
Imaging for Prediction of Surface Roughness in Laser Powder Bed Fusion. 
International Journal of Advanced Manufacturing Technology, 115/4: 1249–1258.

[13] Sanaei, N., Fatemi, A., 2021, Defects in Additive Manufactured Metals and Their 
Effect on Fatigue Performance: A State-of-the-art Review. Progress in Materials 
Science, 117:100724.

[14] Shrestha, R., Simsiriwong, J., Shamsaei, N., 2021, Fatigue Behavior of Additive 
Manufactured 316l Stainless Steel Under Axial Versus Rotating-bending Loading: 
Synergistic Effects of Stress Gradient, Surface Roughness, and Volumetric 
Defects. International Journal of Fatigue, 144.

[15] Murakami, Y., Takagi, T., Wada, K., Matsunaga, H., 2021, Essential Structure of S-N 
curve: Prediction of Fatigue Life and Fatigue Limit of Defective Materials and 
Nature of Scatter. International Journal of Fatigue, 146.

[16] Murakami, Y., 1994, Inclusion Rating by Statistics of Extreme Values and Its 
Application to Fatigue Strength Prediction and Quality Control of Materials. 
Journal of Research of the National Institute of Standards and Technology, 99/4: 
345–351.

[17] Alfieri, V., Argenio, P., Caiazzo, F., Sergi, V., 2016, Reduction of Surface Roughness 
by Means of Laser Processing over Additive Manufacturing Metal Parts. Materials 
(Basel), 10/1.

[18] Scherillo, F., 2019, Chemical Surface Finishing of AlSi10Mg Components Made by 
Additive Manufacturing. Manufacturing Letters, 19:5–9.

[19] Hatami, S., 2021, Variation of Fatigue Strength of Parts Manufactured by Laser 
Powder Bed Fusion. Powder Metallurgy, 1–6.

[20] Luo, Y.W., Zhang, B., Li, C.P., Chen, G.F., Zhang, G.P., 2019, Detecting Void-induced 
Scatter of Fatigue Life of Selective Laser Melting-fabricated Inconel 718 Using 
Miniature Specimens. Materials Research Express, 6/4:046549.

[21] Le, V.-D., Pessard, E., Morel, F., Prigent, S., 2020, Fatigue Behaviour of Additively 
Manufactured Ti-6Al-4V Alloy: The Role of Defects on Scatter and Statistical Size 
Effect. International Journal of Fatigue, 140:105811.

[22] Moran, T.P., Carrion, P.E., Lee, S., Shamsaei, N., Phan, N., Warner, D.H., 2022, Hot 
Isostatic Pressing for Fatigue Critical Additively Manufactured Ti-6Al-4V. 
Materials, 15/6: 2051.

[23] Yamashita, Y., Murakami, T., Mihara, R., Okada, M., Murakami, Y., 2018, Defect 
Analysis and Fatigue Design Basis for Ni-based Superalloy 718 Manufactured by 
Selective Laser Melting. International Journal of Fatigue, 117:485–495.

[24] Mower, T.M., Long, M.J., 2016, Mechanical Behavior of Additive Manufactured, 
Powder-bed Laser-fused Materials. Materials Science and Engineering, A, 
651:198–213.

[25] Boyce, B.L., Salzbrenner, B.C., Rodelas, J.M., Swiler, L.P., Madison, J.D., Jared, B.H., 
Shen, Y.-L., 2017, Extreme-Value Statistics Reveal Rare Failure-Critical Defects in 
Additive Manufacturing. Advanced Engineering, 19/8:1700102.

[26] Wu, Z., Wu, S., Bao, J., Qian, W., Karabal, S., Sun, W., Withers, P.J., 2021, The Effect 
of Defect Population on the Anisotropic Fatigue Resistance of AlSi10Mg Alloy 
Fabricated by Laser Powder Bed Fusion. International Journal of Fatigue, 
151:106317.

[27] Sombatmai, A., Uthaisangsuk, V., Wongwises, S., Promoppatum, P., 2021, 
Multiscale Investigation of the Influence of Geometrical Imperfections, Porosity, 
and Size-dependent Features on Mechanical Behavior of Additively 
Manufactured Ti-6Al-4V Lattice Struts. Materials and Design, 209:109985.

[28] Hu, Y.N., Wu, S.C., Wu, Z.K., Zhong, X.L., Ahmed, S., Karabal, S., Xiao, X.H., Zhang, 
H.O., Withers, P.J., 2020, A New Approach to Correlate the Defect Population with 
the Fatigue Life of Selective Laser Melted Ti-6Al-4V Alloy. International Journal 
of Fatigue, 136:105584.

[29] Gordon, J.V., Narra, S.P., Cunningham, R.W., Liu, H., Chen, H., Suter, R.M., Beuth, 
J.L., Rollett, A.D., 2020, Defect Structure Process Maps for Laser Powder Bed 
Fusion Additive Manufacturing. Additive Manufacturing, 36:101552.

[30] Zhang, M., Sun, C.-N., Zhang, X., Goh, P.C., Wei, J., Hardacre, D., Li, H., 2017, Fatigue 
and Fracture Behaviour of Laser Powder Bed Fusion Stainless Steel 316L: 
Influence of Processing Parameters. Materials Science and Engineering, A, 
703:251–261.

[31] Oberreiter, M., Fladischer, S., Stoschka, M., Leitner, M., Probabilistic, A., 2022, 
Fatigue Strength Assessment in AlSi-Cast Material by a Layer-Based Approach. 
Metals, 12/5: 784.

[32] Romano, S., Brandão, A., Gumpinger, J., Gschweitl, M., Beretta, S., 2017, 
Qualification of AM Parts: Extreme Value Statistics Applied to Tomographic 
Measurements. Materials and Design, 131:32–48.

[33] Juan, R., Wang, M., Lian, J., Gu, C., Li, L., Bao, Y., 2021, Quantifying the 
Comprehensive Characteristics of Inclusion-Induced Defects Using an Integrated 
Destructive and Non-Destructive Method. Materials, 14/6: 1475.

[34] Hastie, J.C., Kartal, M.E., Carter, L.N., Attallah, M.M., Mulvihill, D.M., 2020, 
Classifying Shape of Internal Pores Within AlSi10Mg Alloy Manufactured by 
Laser Powder Bed Fusion Using 3D X-ray Micro Computed Tomography: 
Influence of Processing Parameters and Heat Treatment. Materials 
Characterization, 163:110225.

[35] Murakami, Y., Endo, M., 1986, Effects of Hardness and Crack Geometries on ΔKth 
of Small Cracks Emanating from Small Defects. Miller KJ, de Los Rios ER, (Eds.) 
The Behavior of Short Fatigue Cracks, EGF Pub. 1.  Mechanical Engineering 
Publications, London: 275–293.

[36] Yukitaka, M., Masahiro, E., 1983, Quantitative Evaluation of Fatigue Strength of 
Metals Containing Various Small Defects or Cracks. Engineering Fracture 
Mechanics, 17/1: 1–15.

P. Kousoulas and Y.B. Guo CIRP Journal of Manufacturing Science and Technology 41 (2023) 124–134

133



[37] Anderson, C.W., Shi, G., Atkinson, H.V., Sellars, C.M., Yates, J.R., 2003, 
Interrelationship between Statistical Methods for Estimating the Size of the 
Maximum Inclusion in Clean Steels. Acta Materialia, 51/8: 2331–2343.

[38] Murakami, Y., Endo, T., 1980, Effects of Small Defects on Fatigue Strength of 
Metals. International Journal of Fatigue, 2/1: 23–30.

[39] Wang, Q.G., Jones, P.E., 2007, Prediction of Fatigue Performance in Aluminum 
Shape Castings Containing Defects. Metallurgical and Materials Transactions B, 
38/4: 615–621.

[40] Nicoletto, G., Konečná, R., Fintova, S., 2012, Characterization of Microshrinkage 
Casting Defects of Al-Si Alloys by X-ray Computed Tomography and 
Metallography. International Journal of Fatigue, 41:39–46.

[41] Gumbel, E.J., 1957, Statistics of Extremes.  Columbia University Press, New York, 
NY, USA. pp. 1–36, 82, 113, 156–159.

[42] Holický, M., 2013, Selected Models of Continuous Variables.  Springer, Berlin 
Heidelberg: 63–78.

P. Kousoulas and Y.B. Guo CIRP Journal of Manufacturing Science and Technology 41 (2023) 124–134

134


	On the probabilistic prediction for extreme geometrical defects induced by laser-based powder bed fusion
	Introduction
	State-of-the-art analysis
	Geometrical defects formation mechanisms
	Geometrical defect morphology characterization
	Extreme of statistics-based prediction method for defect size

	Sample fabrication, preparation, and characterization of geometrical defects
	SLM of SS-316L block and sample preparation
	Characterization of geometrical defects

	Prediction of extreme defect size with alternative CDFs
	Dataset characteristics and distributions
	Procedure for predicting maximum defect size

	Conclusions
	Declaration of Competing Interest
	Acknowledgment
	References




