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ARTICLE INFO ABSTRACT

Available online Xxxxx Compared to traditional subtractive manufacturing processes, powder bed fusion (PBF) shows promise for
making complex metal parts with design freedom, short development time, and environmental sustain-
ability. However, there is a consensus within the additive manufacturing (AM) community that the random
geometrical defects (e.g., porosity, lack-of-fusion) produced in PBF processes pose a great challenge to
fabricating load-bearing parts, particularly under dynamic loading conditions. Therefore, it is imperative to
quantify defect sizes and distributions to predict the critical, life-limiting defect size that significantly re-
duces fatigue life. This paper presents a comprehensive analysis of the defects induced by selective laser
melting to quantify their sizes and statistical distributions. Then four cumulative distribution functions (i.e.,
Weibull, Gamma, Gumbel, and Lognormal CDFs) are leveraged and compared to predict the maximum
defect size based on the principle of statistics of extremes. Both the peak over threshold (POT) approach and
the block maxima (BM) approach are used for these predictions. The results show that the BM approach-
based predictions for all CDFs to be much larger than the measured maxima while the POT approach-based
predictions have less deviation. The Weibull and Gamma CDFs were best correlated to the data, measured
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by Pearson’s R correlation coefficient, while the Gumbel and Lognormal CDFs were also well correlated.

© 2022 CIRP.

Introduction

The quality of a printed part by powder bed fusion (PBF) process
can be characterized by the geometrical defects [1], microstructures
[2], and residual stress [3]. There is a consensus within the additive
manufacturing (AM) community that among the concerned quality
factors the random geometrical defects (e.g., porosity, lack-of-fusion)
pose the greatest challenge to fabricating load-bearing parts, parti-
cularly fatigue performance in dynamic loading conditions. Techni-
cally, a defect renders a part defective. Some geometrical
inhomogeneities are tolerable due to their relatively small size due
to their relatively small size and low volume fraction. Thus, as Snow
et al. note [4] the term ‘flaw’ is more appropriate as a general label
for pores and cracks. Since this paper focuses on critical flaws, the
term ‘defect’ will be used. The geometrical defects can be mainly
measured optically or with X-ray computed tomography (CT) [5],
and both approaches have been applied to studies of PBF parts (e.g.,
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[6]). Excluding surface roughness, the main geometrical defects are
porosity (e.g., gas pores) and lack-of-fusion (LOF, e.g., un-melted
particles). Porosity is often caused by insufficient energy input, while
the LOF defects result from excess energy input. It is desirable to
control these defects by optimizing process parameters, as has been
studied extensively (e.g., [7]). Finding a suitable method of pre-
dicting the geometrical defects of geometrical defects for certifying
the AM parts is of great interest [1,8-12].

The effect of the geometrical defects on the fatigue performance
of PBF parts is a prominent area of research [1,3,10,13-15]. The fa-
tigue characteristics of AM materials must be understood and con-
trolled to meet design requirements. For example, the high surface
roughness from unmelted particles on the part surface lowers the
fatigue life and fatigue strength in bending [15]. Tension-compres-
sion fatigue testing has shown that the geometrical defects are just
as harmful as surface roughness [16]. It has been shown that post-
processing surface finishing (e.g., [17], [18]) and hot isostatic
pressing (HIP) [1] can increase the fatigue strength of L-PBF parts by
eliminating or reducing the size of internal defects and relieving
residual stresses.

Fatigue data of PBF specimens are distinctly unpredictable, i.e.,
scattering, due to the random geometrical defects. The scattering can
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be organized into three different observed cases: identical prints
giving different fatigue lives [19,20], different lives for as-built vs.
post-processed samples [21-23], and different lives for different
materials made under the same process conditions [24]. Identical
printings using same process parameters may generate different life-
limiting defects due to uncertainties in the melting and solidification
process. Post-processing can relieve residual stresses, modify surface
roughness, and mitigate internal defects of as-printed materials,
therefore, improve fatigue performance. Furthermore, different
materials will have different properties even under same processing
conditions, which causes different lives.

Quantifying the determinantal effect of geometrical defects on
fatigue limit and its scattering is contingent on the termination of
the defect sizes and distributions. The literature uses the estimation
method proposed by Murakami to predict the maximum effective
size \/areama of irregularly shaped defects [15], where the ./aredmax
parameter is defined as the square root of the defect area normal to
the direction of maximum tensile loading. This method is based on
the Gumbel cumulative distribution function (CDF). On the other
hand, there are three alternative CDFs, i.e., Weibull, Gamma, and
Lognormal CDFs. However, which CDF may give the most accurate
prediction of the maximum effective size has yet to be investigated.
This question leads to the following objectives of this study:

e Assess the state-of-the-art predictive methods of geometrical
defects in metal AM

e Conduct a comprehensive characterization of a wide range of
geometrical defects produced in laser-based PBF (1-PBF)

e Benchmark the performance of the Weibull, Gamma, and
Lognormal CDFs vs. the Gumbel CDF by comparing with the
predicted maximum effective defect sizes vs. the measured data

State-of-the-art analysis
Geometrical defects formation mechanisms

PBF-induced geometrical defects can be grouped based on their
mechanisms of formation. As summarized by Snow et al. [4] these
defects are gas porosities, melt pool instabilities, and regions with a
lack of fusion (LOF). (1) Gas pores are identified as near spherical
voids within a printed part, and typically are the smallest in size of
all three defect groups. These are introduced into the solidified metal
either by the release of trapped gas inside the virgin (i.e., unmelted)
powder stock or by gas bubbles enveloped by the melt pool. (2) Melt
pool instabilities result in voids and pores due to the vaporization
loss. At higher energy inputs, more molten metal from the melt pool
can evaporate. This occurs when high energy densities are applied
when using high laser powers and slow scanning speeds or when
deceleration of the laser exposes the area of the powder bed incident
to the energy source for more time. (3) LOF can occur systematically
and stochastically, generally resulting in large, irregular voids, often
identified by partially melted powder inside voids. Laser power and
scanning speed parameters must be optimized to ensure subsequent
scanning passes completely fuse both and with any previously so-
lidified material below. Even with optimized parameters, random
LOF defects may still occur due to the highly volatile PBF process.
The unmelted powder can contaminate the melt pool as a spatter or
powder is blown by inert shielding gas and cause incomplete fusion.

Geometrical defect morphology characterization

Morphology (morph- from the Greek popen, or form) is a key part
of characterizing defect size and shape in PBF. As discussed in the
preceding section, based on the shape and size of a defect the for-
mation mechanism responsible for its creation can be identified.
Thus, by characterizing defect geometry and location within a
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component, manufacturers can determine the root causes of any
defect formation and tune their process parameters accordingly.

Morphology studies of internal defects originally required de-
structive methods (e.g., mechanical cutting) to investigate samples.
By taking slices or sections of a sample, a 2D inspection area of the
interior geometry can be observed by optical methods (e.g., [16]).
While this method is simple and easy for most investigators to
perform, the nature of the destructive method of inspection does not
leave the part intact for additional testing. This is not altogether
unfavorable if simultaneous studies can be performed on the same
sliced sample, e.g., microstructure formation and hardness. Yet, it
still restricts morphology analysis to 2D descriptions of defect size
and shape.

X-ray computed tomography (CT) is a popular non-destructive
method of detecting internal cracks and porosity and measuring
defect sizes [9,25-31]. While being expensive and time-consuming,
CT can resolve the entire population of internal defects in each
sample region and accurately portray not only 2D but also the 3D
shape of defects with additional image processing. This allows direct
3D quantification of defects (e.g., population, volume fraction,
sphericity, spatial orientation). Of course, the limiting size of defects
that can be detected depends on the maximum resolution available,
which can be on the order of tens of microns [32].

Juan et al. [33] presented a hybrid destructive and non-destruc-
tive investigative method for characterizing metal inclusions, first
using scanning ultrasonic microscopy to detect the location of large
internal defects and then dissecting the specimen to better observe
the defects with scanning electron microscopy. While this does help
to reduce the risk of missing or overlooking critical defects in a part,
it lacks the advantage of 3D defect characterization.

3D representations of defects can be used to quantify the reg-
ularity or irregularity of defect shape. The measure of sphericity is
the ratio of sphere surface area to defect surface area for a sphere
with equal volume to the defect. Sphericity close to one will result in
near-spherical defects while low sphericity values denote irregular
defects.

Equivalent diameter is a measure of 3D defect size, defined as the
diameter of a sphere of equal volume [33]. This may not be suitable
for elongated, irregular pores (e.g., LOF) since such defects may
misrepresent how detrimental long, crack-like defects with rela-
tively small areas can be to the fatigue performance of PBF compo-
nents [34].

For 2D observations of defects, the maximum effective size
Jaream,x parameter adopted in Murakami’s work [35,36] is a pop-
ular choice for representing defect size [8,9,26,28,31,37], partly be-
cause it is used to predict the fatigue limit of PBF components. This
gives a 1D (length) measurement to represent the 2D (area) size of
the defect. In some cases, defects are grouped closely together,
making it difficult to assume the individual defects to be in-
dependent of or unaffected by the group. There are also times when
defects are close enough to the part surface that the area between
the defect and the surface does not offer much structural integrity. In
these situations, an effective defect size [1] can be taken to estimate
the total area affected by the sub-surface or interacting defects by
drawing around the outer borders of the affected region to com-
pletely envelop all defects and/or the sub-surface defect area and the
area immediately separating it from the free surface. Naturally, this
requires the use of image analysis software, which is often included
in optical measurement systems.

These methods are not intended to precisely measure actual
defect size but rather estimate an effective crack length with ap-
proximately the same impact. This was explained by Murakami and
Endo through their investigation by comparing artificial defect holes
with specific diameters to non-propagating cracks in steel speci-
mens [38]. The level of precision of the measured area depends on
how closely drawn the enveloping contour is to the actual
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Fig. 1. Schematic of Feret caliper (FC) diameter.
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Fig. 2. Schematic of the normal distribution (PDF ¢ and CDF ®).

boundaries of the defect. As mentioned by Oberreiter et al., higher
precision can be more favorable for accurately depicting the actual
defect area, which comes at the price of more complicated and te-
dious creation of the contours in image analysis software [31].

Possibly more accurate measurement of defect size is the max-
imum Feret or Feret caliper (FC) diameter [39]. The FC diameter
measures the distance between two points across from each other
on the boundary of interest, and was used by Nicoletto et al. [40] in
measuring the size of metallographically observed casting defects.
The distribution of defect sizes was used in comparison to the
Jaream,x parameter in Murakami’s work to predict the maximum
defect size, resulting in much larger predictions, yet well correlated,
nonetheless. The predicted critical defect sizes using the FC diameter
description also yielded closer approximations of fatigue strength of
cast AlSi7Mg.

The FC diameter is also advantageous over area measurements
because it carries physical significance whereas area measurements
are more abstract in concept. To illustrate this point, consider an
irregular pore inscribed inside a circle of radius r (see Fig. 1). The
longest dimension of the pore should be approximately equal to the
circle diameter 2r. In most cases, the inscribed pore will not cover all
the area of the circle circumscribing it. Even for a perfectly circular
pore, its area would be 712, which would result in a 1D defect size of
about 1.772r using the /area parameter method.

CIRP Journal of Manufacturing Science and Technology 41 (2023) 124-134
Extreme of statistics-based prediction method for defect size

The aim of the statistical theory of extreme values, in appli-
cation to porosity, is to analyze observed pores in a printed sample
and to forecast further extremes [41] (e.g., a maximum pore size).
Extremes are rare events that are not often observed. The lower
and upper bounds can be estimated probabilistically by extra-
polating from the available data. This relies on certain functions,
namely the probability density function (PDF) and the cumulative
distribution function (CDF). The PDF describes the relative fre-
quency of a continuous distribution of values and is analogous to a
histogram of discrete data. The CDF describes the cumulative
frequency of a continuous distribution of values. By definition, the
CDF is the integral of the PDF. Fig. 2 gives an example plot of the
well-known normal distribution, which has a PDF shaped like
a bell.

In application to predicting the extreme defect sizes, the values
at the left and right tails of a PDF are of interest. These regions
correspond to the extreme minima and maxima of distribution, re-
spectively. While a CDF can output the probability for a given range
of values, the inverse of the CDF can be used to solve for the values,
given a probability. In this way, a prediction can be made about
extreme values corresponding to a set probability.

Table 1 lists different CDFs used in the literature to predict
extreme sizes of defects in metals. Generalized distributions, like
the Generalized Extreme Value (GEV) and Generalized Pareto (GP),
are good starting points for modeling defect data but simulta-
neously more tedious to apply since they represent the most
general case with no simplifying assumptions. Anderson et al. [37]
compared the precision of estimates of the maximum inclusion
size in a steel bar made using GEV and GP distributions of inclusion
data as well as simplified forms of the two distributions. Their
results showed higher precision with the GP estimate in compar-
ison to the GEV estimate and further showed an increase in pre-
cision for the simplified distributions. The simplification of the
GEV and GP distributions was setting the shape parameter to zero.
This changed the GEV distribution to a Gumbel distribution (Eq.
(1)) and the GP distribution to an Exponential distribution (Eq.
(2)). Overall, the Exponential distribution gave the narrowest
confidence intervals.

F(x) = exp[—exp(%)] (1)

F(x)=1— e (2)

While the same inclusion data (measuring ./areanm.x larger than a
threshold of 5um) was used for all the predictions, the GEV and
Gumbel distributions used only the maximum inclusion sizes mea-
sured from each inspection area (called the block maxima (BM)
approach [32]) while the GP and Exponential distributions used all
inclusion sizes above the threshold (called peak over threshold (POT)
approach [32]). Murakami followed the block maxima approach in
his earlier publications on metallic inclusions in steel (e.g., [16]). By

Table 1

Representative cumulative distribution functions (CDFs) for defect analysis.
Distribution (s) Application Reference
GEV, GP Predicting maximum inclusion size in steel [37]
Lognormal, Gumbel Predicting maximum inclusion size in steel [33]
Gumbel Predict maximum defect size in SLM-ed Ti6Al4V [28]
GEV Predicting maximum inclusion size in steel [8]
Gumbel Size distribution of pores in .-PBF-ed SS-316L [30]
GEV Evaluation of probability of occurrence of fracture-initiating defects [31]
GP, Gumbel Estimate maximum defect from CT data [32]
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Fig. 3. SLM scanning strategy and printed SS-316L block.

observing a set area of steel from different sample slices, only the
maximum inclusion from each observed area would be recorded. In
this way, only a distribution of the maximum inclusions relative to
the set inspection area would be modeled, as detailed by Gumbel
regarding the statistics of extremes [41].

Juan et al. [33] showed the distribution of metallic inclusion size
(equivalent diameter) to follow a lognormal distribution. However, a
definition of inclusion size was not explicitly given. It is inferred
from the study that the longest dimension of an observed inclusion
cross section was taken as the defect size.

By analyzing the literature, several essential questions in prob-
abilistic modeling remain to be investigated, i.e., how much data
needs to be measured to yield a reliable prediction, which CDF best
describes the defect size, and which approach (BM or POT) is ap-
propriate for use [32,42].

Sample fabrication, preparation, and characterization of
geometrical defects

SLM of SS-316L block and sample preparation

An AconityMiNi SLM printer was used to print a rectangular SS-
316L block 14 x 68 x 78.08 mm? in a flowing argon environment. The
block was printed with a 90-degree cross-hatching scanning strategy
(see Fig. 3). The top face (68 x 78.08 mm?) lay parallel to the sub-
strate, with the vertical dimension of 14 mm oriented in the build-up
direction. The process parameters (see Table 2) were selected in-
tentionally to produce a wide range of geometrical defects
throughout the block.

To expose the printed geometrical defects, wire-EDM was used
to section the sample for measurement. Fourteen slices were taken
from the sample block to quantify the size of the defects and their
distribution through optical metrology. The sample slices were
designed with a dog bone geometry to be used in future fatigue
testing.

Wire-EDM is a thermal process where high discharging energy
was applied between a thin wire (e.g., brass with 0.25 mm diameter
in this experiment) and the metal block and erodes the material
along a prescribed path. The thermal nature of wire-EDM introduced
a heat-affected zone (HAZ) at the workpiece surface. The EDMed
surfaces of each sample were prepared using a two-stage grinding

Table 2

SLM process parameters.
Parameter Value Units
Laser Power 250 w
Laser Diameter 0.050 mm
Scan Speed 800 mm/s
Layer Thickness 0.050 mm
Hatch Spacing 0.070 mm
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Fig. 4. Illustration of wire-EDM sampling.

followed by polishing after wire-EDM. This removed the HAZ from
the samples so only the as-SLMed microstructure and related me-
chanical properties would be subjected to measurement. Polishing
also gave a smooth surface for inspecting pores with optical mi-
croscopy. First, 220 grit sandpaper was used to remove the HAZ, then
1000 grit sandpaper was used to remove the grinding marks from
the previous step and polish the surfaces to an average Sa 1.5 um.
During the grinding and polishing processes, cold tap water was
used to eliminate frictional heat to avoid the potential of altering the
as-printed microstructure and flush away loose particles. Fig. 4
shows the exposed geometric defects (i.e., pores and LOFs) on the
sliced sample.

Characterization of geometrical defects

Each sample was inspected using a Keyence VR 3100 optical
microscope. 3D surface topography of the right and left faces was
also measured to quantify the surface roughness of the polished
samples. The surface roughness of a 1 x 1 mm? area free of pores was
inspected on the right and left faces of each sample. The number of
defects and their sizes inside a 5 x 5 mm? measurement area of each
sliced sample surface were counted and measured using the Feret
caliper (FC) method (see Fig. 5).

The FC diameter pore size was quantified by inscribing each pore
within the smallest circle possible and using the resulting diameter

T T R e R R R O B O B R S S TR MR SR D T
(1) Circumscribe circle about pore.
(2) Find longest dimension of pore.
(3) Let pore diameter be the longest dimension.

Fig. 5. Feret caliper (FC) method for measuring defect size.
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Table 3
Cumulative distribution functions (CDFs).
Gumbel Weibull Gamma* Lognormal*
CDF d—p a\ d X (lnd—u) .
=£ -4 1 1,3 F(d) = ®( —* |®= standard mal CDF Fig. 2
F(d):e*e( ¢ ) Fd)=1-e (“) F(d) = ﬁﬂr(a)gx“ le"Bdx () - standard norma (see Fig. 2)
Reduced Variate y=dzk y=4 y=d y=d
g a
Parameters o= _l‘u — bo a7 #0a= 1 mean of d = aB w# = In(mean of d)o = stand. dev. of Ind
m m
Inverse CDF ¥ = —In[-In(F)] J = [-In(1 — Fj)l% ¥ = GAMMA. INV(F}, a, 8) ¥ = LOGNORM. INV(F}, 1, 0)
j; =

Regression Equation

- —_lp_H
y_md+bm_—gb 5

y=md+Db

y=md+b

*Inverse CDF given as Microsoft ® Excel ® function

as an effective defect size. The grouping or clustering effect of de-
fects was not accounted for in the size of the defects. Only individual
pores were measured to simplify this study. A total of 769 pores
were collected and measured.

Prediction of extreme defect size with alternative CDFs
Dataset characteristics and distributions

To benchmark the popular Gumbel CDF for predicting the max-
imum defect size in metal AM, four different CDFs are listed in
Table 3, as well as definitions of their parameters and regression
equations.

Seven different cases were investigated to predict the maximum
defect size from the collected porosity data. The first six cases follow
the peak over threshold (POT) approach of using all data above a
threshold value. The last case follows the block maxima (BM) ap-
proach of only using the maximum defect size measured from each
inspection area.

While the BM approach limits the amount of data used to the
number of inspection areas, the POT approach allows the flexibility
of varying the amount of data used by setting a threshold. This can
be seen as an optimization problem involving a balance between
sample size and level of defect magnitude. By varying the amount
and magnitude of the data used by the POT approach, the possible
dependence of the predictions on these factors can be investigated.
The six POT cases are as follows.

Case 1. : Entire dataset (threshold set to be below the minimum
measured pore size).

Case 2. : Dataset from the right face of each sliced sample (same
threshold as Case 1, just less data).

Case 3. : Dataset from every other right face of each sliced sample
(see Fig. 4).

Case 4. : Dataset with defect size threshold to 100 pm (i.e., data
exceeding 100 pum).

Table 4
Descriptive measures of porosity distributions.

Case 5. : Dataset with defect size threshold of 212.93 um (i.e., data
equal to and above the median value of all data).

Case 6. : Dataset with defect size threshold to only keep the largest
100 defects.

For the BM approach, the largest defect size from each of the 28
inspection areas is used for linear fitting and extrapolation. Each
distribution gives an estimate of the largest expected defect size,
corresponding to a cumulative probability of 99.9%. The predictions
are compared to the measured data and a discussion of the results is
given.

Table 4 gives descriptive measures of each of the datasets used
for the comparative approaches. Fig. 6 shows the histograms of the
data from each of the 6 POT cases, which all have the same general
trend of being right-skewed.

Procedure for predicting maximum defect size

The procedure used to predict the defect size corresponding to a
certain cumulative probability (e.g., 99.9%) of not being exceeded is
as follows.

(1) Sort the porosity data in ascending order and assign each value a
rank j (e.g., smallest pore has rank j = 1, next smallest has rank
j =2, continue up to largest pore with rank equal to sample
size n).

(2) Find the Cumulative Distribution Function (CDF) value F; for
each pore using Eq. (3).

o

n+1’

Fj= (3)

(3) Find the inverse CDF value y; for each pore using the respective
equations from Table 3 with F; from step 2.

(4) Plot the pore diameters in ascending order against the corre-
sponding inverse CDF values.

(5) Apply the Method of Least Squares (MLS) to fit a linear (re-
gression) line to the data.

POT or BM Sample size Mean (pm) Median (pm) Standard Deviation (pm) Minimum (pm) Maximum (pm)
Case 1 769 274.025 212.933 221.029 26.236 1525.947
Case 2 383 264.801 209.587 209.593 26.236 1231.468
Case 3 178 282.195 221.573 220.991 26.236 1231.468
Case 4 612 327.017 272.667 218.041 100.099 1525.947
Case 5 385 429.978 359.801 215.199 212.933 1525.947
Case 6 100 724.563 674.920 210.848 499.315 1525.947
BM 28 899.803 898.639 244184 423.006 1525.947
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Fig. 6. Histograms of the six data cases used for the POT approach.

(6) Extrapolate from the regression equation to find the maximum
defect size (at a given probability, e.g., 99.9% @ F; = 0.999)
(granted, of course, the regression line is well-correlated to
the data).

The resulting predicted sizes are compared to the maximum
diameter of each dataset to quantify how much the predictions de-
viate from the measurements. Pearson’s R, defined as
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is used as a correlation factor to compare the goodness of fit of each
CDF. sq and s, are the sample standard deviations of the measured
pore diameter d and reduced variate/inverse CDF value y, respec-
tively, while d and y are their mean values. Regressions with R close

to 1 signify a good correlation between d and y. For CDFs with shape
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Table 5
Predicted maximum defect sizes (rounded) using regression equations from Table 6.

CDF POT Case Prediction (pm) % Difference from case
or BM maximum
Gumbel Case 1 1398 -8%
Case 2 1339 9%
Case 3 1438 17%
Case 4 1441 -6%
Case 5 1542 1%
Case 6 1843 21%
BM 2306 51%
Weibull Case 1 1606 5%
Case 2 1546 26%
Case 3 1665 35%
Case 4 1646 8%
Case 5 1744 14%
Case 6 1884 23%
BM 5861 384%
Gamma Case 1 1552 2%
Case 2 1492 21%
Case 3 1665 35%
Case 4 1646 8%
Case 5 1744 14%
Case 6 1931 27%
BM 2623 172%
Lognormal Case 1 2161 42%
Case 2 2113 72%
Case 3 2302 87%
Case 4 1799 18%
Case 5 1635 7%
Case 6 1723 13%
BM 2168 42%
30007 | o measured maximum
2800 4 Gumbel prediction
—— Weibull prediction
26001 |—— Gamma prediction
2400 4 Lognormal prediction
R 2200
5 2000 A
“ 1800 %
1600 + M/\/
o o
100 ] \/—//
1200 A 0 0
1000 T T T T T T
1 2 3 4 5 6
Case

Fig. 7. POT prediction deviation from the measured ones.

parameters (i.e., the Weibull and Gamma CDFs), an initial guess is
used to generate a value for R. Then the shape parameter value is
tuned to give an R value closest to one. The regression equation
associated with the tuned shape parameter is then used in step 6 of
the prediction procedure.

Table 5 lists the predictions of each CDF and their deviations from
the measured maxima of each data case, which is graphically dis-
played in Fig. 7. POT cases 3-5 had matching predictions for the
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Fig. 9. Histogram of porosity data for BM approach.

Weibull and Gamma CDFs, and predictions for POT cases 1, 2, and 6 for
these two distributions were also similar. Overall, the Weibull and
Gamma CDFs resulted in the highest correlations (see Fig. 8) for all POT
cases. Increasing the sample size may have slightly raised the R values
for the Weibull and Gamma CDFs, while no clear trend is visible for the
Gumbel and Lognormal CDFs. From a broader perspective, however,
each CDF was able to correlate well to the porosity data for the POT
approach, with all maximum R values being above 0.975. The Gumbel
CDF yielded predictions below the measured maxima for POT cases 1
and 4. The Lognormal CDF had the largest prediction deviations for
POT cases 1-3, where the threshold value was kept at its lowest (es-
sentially zero). The Lognormal CDF had much more similar predictions
to the other CDFs for POT cases 4-6 where the threshold value was
increased successively, although the prediction deviation did not seem
affected by these consecutive changes.

A histogram of the maximum pore sizes used for the BM ap-
proach is shown in Fig. 9, which is normally distributed. All the BM
predictions have deviated from the measured maximum pore size of
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about 1526 pm, which the minimum prediction exceeded by 42%
(see Table 5). In comparison, assuming from Fig. 9 that the max-
imum defect size is normally distributed, the empirical rule (a.k.a,
the 68-95-99.7 rule) can be used to predict the maximum defect.
Using the sample mean and sample standard deviation for the BM
approach data from Table 4, approximately 99.85% (99.7% within
three standard deviations of the mean and an additional 0.15% of
smaller values outside this interval) of all observations will be less
than a defect with a size three standard deviations larger than the
mean, which equals about 1632 pm. This prediction has only a 7%
deviation from the measured maximum and is more realizable than
the BM approach-based predictions.

While the Weibull and Gamma CDFs could be tuned to correlate
well to the data from the POT approach, tuning their shape para-
meters with the data from the BM approach gave unrealistic re-
sults. Figs. 10-11 depict the results of tuning the shape parameters
to give R values closer to 1. While the CDFs were become
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increasingly well correlated, the prediction deviations rose dra-
matically. A maximum R value was reached for the Weibull dis-
tribution with y = 2.6 while the Gamma CDF prediction deviation
continued to grow when approaching an upper limit for R (see
Fig. 10). Whenever extrapolation methods are used, therefore, one
must be careful not to rely only on regressions that are highly
correlated to the data and must ensure that the regression gives
realistic results.

Table 6 shows the CDF parameter values and regression equation
slope and intercept values corresponding to the highest R values,
except for the Gamma CDF regression with the BM approach, where
the tuning of the shape parameter showed an almost unbounded
rise in the prediction deviation when approaching larger R values
(see Fig. 10). It is interesting to note that the shape parameter y = 1
for the Weibull CDF gave the best correlation for all but the 6th POT
case. This simplifies the Weibull 2-parameter CDF to become the
Exponential distribution, which only has one parameter.
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Table 6
Linear regression results with the highest R* (in bold).
CDF POT Case or BM Linear regression Distribution parameters
Method of Least Squares Correlation Coefficient Shape Scale Location
Slope m Intercept b Pearson’s R a )4
Gumbel Case 1 0.005636 -0.97067 0.983876 -177.419 172.2157
Case 2 0.005898 -0.99047 0.984766 -169.56 167.9441
Case 3 0.005487 -0.98223 0.981543 -182.247 179.0092
Case 4 0.005685 -1.28585 0.981249 -175.911 226.1962
Case 5 0.005695 -1.87768 0.976372 -175.577 329.679
Case 6 0.005677 -3.55318 0.987116 -176.155 625.9121
BM 0.004531 -3.54230 0.98337986 -220.726 781.878
m b R 14 @
Weibull Case 1 0.004439 -0.22049 0.998651 1 225.2988
Case 2 0.004618 -0.23044 0.996892 1 216.5397
Case 3 0.004282 -0.22252 0.995329 1 233.5283
Case 4 0.004484 -0.47159 0.998561 1 222.9949
Case 5 0.004502 -0.94347 0.997812 1 2221021
Case 6 0.003517 -1.6222 0.99624 1.2 284.2977
BM 0.001371 -0.35010 0.98415738 2.6 729.216
m b R a B
Gamma Case 1 1.112191 -31.7277 0.998726 1.2 228.3547
Case 2 1119871 -33.4478 0.997463 12 220.6682
Case 3 1.2084 -62.7939 0.995329 1 282.1956
Case 4 1.466478 -154.218 0.998561 1 327.0172
Case 5 1.93595 -405.674 0.997812 1 429.9786
Case 6 2.545674 -1130.57 0.995721 1.6 452.852
BM 2222616 -1127.6933 0.972113648 2 449.901
m b R o u
Lognormal Case 1 1.50089 -37.6857 0.986847 0.795823 5.61322
Case 2 1.50419 -37.6993 0.984419 0.800342 5.578982
Case 3 1.46731 -33.0888 0.989186 0.800097 5.6426
Case 4 111294 23.8003 0.99647 0.590194 5.790013
Case 5 0.92375 71.5436 0.984271 0.421622 6.063735
Case 6 0.90351 93.9785 0.980285 0.266377 6.585569
BM 0.983824 44.53503 0.985147839 0.286 6.802

*For Gamma CDF's regression higher values of R are possible, but predictions become highly deviated from the measured maximum pore diameter.
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Fig. 12. Weibull regression lines for extrapolating maximum defect size, POT ap-
proach, cases 3-6.

Additionally, Figs. 12-13 show the plotted regression lines for the
Weibull and Gamma CDFs with the best overall correlation coeffi-
cient values for the POT approach. The extrapolated maximum de-
fect sizes are superimposed to better illustrate step 6 of the
prediction procedure.

132

3000 - Case 5: ¥(0.999)=2970.19

2750

2500
Case 4: y(0.999)=2258.95
2250
2000 {Case 3: y(0.999)=1949.34

1750 JCase 1:y(0.999)=1693.98
1500 {Case 2: y(0.999)=1636.96

1250 o
1000 —— GammaCase1
750 4 GammaCase2
500 —— GammaCase3
GammaCase4
2507 _ GammaCase5

0 T 7 T T T : 1
0 500 1000 1500 2000

d_predicted (um)

Fig. 13. Gamma regression lines for extrapolating maximum defect size, POT ap-
proach, cases 1-5.

Conclusions

Geometrical defects are a common inhibitor of product perfor-
mance in powder bed fusion (PBF) components. Understanding how
to quantify the size and distribution of geometrical defects is key for
certifying AM parts and improving printing processes. The
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maximum defect size predicted to exist in the literature is dom-

ina

ntly based on the Gumbel CDF. In this study, a variety of geo-

metric defects from an SS-316L block fabricated by selective laser
melting was measured using the Feret caliper (FC) diameter. The
measured data were then fitted to four different CDFs. The predic-
tions from each CDF and the correlation coefficients (Pearson’s R)
were compared by both peak over the threshold (POT) and block
maxima (BM) approaches of analyzing the porosity data. Six dif-
ferent data cases were tested based on the POT approach. The main
results are as follows.

The Weibull and Gamma CDFs showed similar predictions with a
close agreement with the measured maxima of each POT
data case.

The Weibull and Gamma CDFs resulted in the highest R values for
all POT cases.

Sample size did not significantly affect correlation.

e All four CDFs correlated well to the porosity data for the POT

approach, with all maximum R values being above 0.975.

The Lognormal CDF had large prediction deviations with a zero-
threshold data value and had consistently close predictions when
the threshold value was increased.

The BM approach predictions deviated from the measured
maximum by large margins.

Well-correlated regressions must also give realistic results to be
useful.
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