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Manufacturing processes are becoming increasingly data-driven. Integrating manufacturing data and process
models in real-time, a digital twin (DT) may function as an autonomous and dynamic digital replica. This, in
turn, may enable manufacturers to not only understand and monitor a process but also proactively control it
in real-time or a product over its life cycle. This paper examines the DT concept and its evolution and presents
a future DT framework. DTs’ key components (e.g., process models) and implementation are focused on addi-
tive manufacturing, electrical discharge machining, and electrochemical machining. Furthermore, current

challenges and future research directions are summarized.

© 2023 CIRP. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Industry 4.0 provides an opportunity to achieve higher levels
of productivity through interconnected intelligent elements (e.g.,
machines, robots, sensors) on the shop floor. The technology
allows remote sensing, real-time monitoring, device control, and
cyber-physical manufacturing, therefore, enable direct integra-
tion and synchronization from the physical to the digital world
[142,183]. Digital technologies enable virtual product and process
planning through simulation and other various predictive tools
for real-time planning. One of these model-based technologies
with great potential is Digital Twin (DT) which is the real-time
virtual replica of a manufacturing process or a physical asset (e.g.,
product, tool, machine, factory, people). A manufacturing DT
offers the unique opportunity to simulate and optimize the
manufacturing system. DT has been explored to increase effi-
ciency, competitiveness, and productivity in different
manufacturing areas including production planning and control
[204], facility maintenance [48,228], and layout planning [235].

A functionally robust and repeatable DT model should be capa-
ble of providing necessary support services such as monitoring,
diagnosis, optimization, and control. The current concept of DT
spreads across various business and engineering functions, thus
blurring its scope and objectives. To facilitate seamless integra-
tion of DT, a proper definition of the concept, scope, and frame-
work is a must based on its functionality and goal of bringing in
productivity improvements and economic benefits. Amidst the
fast-evolving technical landscape, manufacturing systems of yes-
ter years will require modification to meet customer
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requirements and cut-throat competition as the industry contin-
ues to integrate and implement smart manufacturing philosophy
as part of Industry 4.0. The existing predominant digital and auto-
mated workflow in many digital manufacturing processes, such as
additive manufacturing (AM), make them ideal candidates for DT.
Manufacturing processes involve many process variables (e.g.,
powder bed fusion (PBF) has more than 150 variables) while
translating CAD data to a physical part, these parameters also
introduce deviations and part reliability issues [101]. DT can help
address the long-lasting issue of uncertainty in manufacturing
processes. Considering the growing market of advanced
manufacturing, research and development in DT is critical for
early technology adopters in the twin arena. Hence, an in-depth
analysis of the state-of-the-art technology, current challenges,
and a visionary outlook on DT applications in the strategic impor-
tant manufacturing processes would be very necessary.

According to the Deloitte survey [3], the global market for DT
was estimated to grow from US$ 3.8 billion in 2019 to US$ 35.8
billion by 2025, at a compound annual growth rate of 37.8%. The
increasing adoption of emerging technologies, such as smart
sensing, the Internet of Things (IoT), edge/cloud computing, Arti-
ficial Intelligence (Al)/Machine Learning (ML), and Model Predic-
tive Control (MPC) drive the demand for DT. The encouragement
from the business potentials of DT in certain industries, e.g.,
healthcare, aerospace & defense, automotive & transportation,
and smart cities, are also prevalent [62]. It is noteworthy that the
realization of DT is closely linked with the automation pyramid
and cyber-physical systems (CPS) models prevailing in many
advanced industrial settings [45].

In this paper, the focus is to provide an in-depth assessment
and understanding of the dynamically evolving DT concept, defi-
nitions, and perspectives (Chapter 2) of DT technologies. The DT
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framework, building blocks, and enabling components (Chapter
3) are proposed to act as the foundation to build next-generation
DTs for addressing the gaps in the existing digital workflow.
Then, the state-of-the-art of DT and its applications in the energy
beam (e.g., photonic) processes (Chapter 4), electro-physical
process (e.g., electrical discharge machining/EDM), and chemical
process (e.g., electrochemical machining/ECM) are thoroughly
analyzed in Chapter 5. The industrial DT trailblazers are intro-
duced in Chapter 6. The thorough analysis also identifies the
current technical challenges and outlook (Chapter 7). Last, the
key points are summarized (Chapter 8) based on the in-depth
analysis.

2. Digital twin concept, definitions, and perspectives
2.1. Defining the digital twin (DT)

The idea of duplicating physical systems dates back to the 1960s.
It was popularized by the famous Apollo 13 mission, where the simu-
lators were physical counterparts to the actual Apollo spacecraft [34]
(Fig. 1). There were some digital aspects to them in that they were
running primitive computers with the same programs as the actual
spacecraft itself. The development of the DT does have a strong con-
nection to NASA. However, the claim that the DT originates in the
Apollo program is unfounded. The DT Model idea was first introduced
by Grieves in 2002 as a concept for Product Lifecycle Management
(PLM), but without a name [71]. The model was later named Digital
Twin which is “. . . a set of virtual information constructs that fully
describes a potential or actual physical manufactured product from
the micro atomic level to the macro geometrical level.” published by
Grieves and Vickers [72,74]. While the DT has changed over time
since John Vickers of NASA coined the terminology in 2010 [194], the
basic concept and model format have remained the same. The first
recognition of DT has already appeared in the NASA Technology
Roadmaps [183,213].

Virtual Space

Physical Space

Fig. 1. Digital twin concept [72].

While DT in its original concept describes mirroring a product,
the concept evolved to include manufacturing processes as sub-
jects of virtual space reproduction (“twinning”) to gain the very
same benefits [130]. DT could be best defined as the evolving digi-
tal profile of the current and historical behavior of a process or
physical object that helps optimize manufacturing performance
[182]. It implies that the objective of a DT is to create an exact dig-
ital replica of a physical entity, which could be either a process,
product, or system. In other words, a DT is the enabling tool of the
Industry 4.0 era for proactive organizations or production units
that guides them through data-driven decision-making models
without triggering potential issues or failures. DTs are well
beyond just pure models, they include data, which describe their
physical counterparts and decisive action in the manufacturing
system based on real-time data [34,132,204].

As digital twin is sometimes used in the context with digital
thread, it is necessary to differentiate the DT concept from that of the
digital thread. The foundation of digital transformation is a connected

enterprise that integrates operational technology (OT) and informa-
tion technology (IT). This results in a digital thread of information
that spans the entire value chain — a seamless data flow from design,
manufacturing, to the product life cycle.

A more widely acknowledged definition was given by Glaesse-
gen and Stargel in 2012, who defined DT as “an integrated multi-
physics, multiscale, probabilistic simulation of an as-built vehicle
or system that uses the best available physical models, sensor
updates, and fleet history, to mirror the life of its corresponding
flying twin” [70]. The essence of this definition is to highlight the
basic components of a reliable and robust DT model. These com-
ponents include the physical component, virtual or digital compo-
nent, and data exchange or communication component (two-way
dynamic mapping between the physical component and the vir-
tual or digital component) [230]. These components will be fur-
ther discussed in detail in Section 3 along with an in-depth
analysis of their interconnection.

When it comes to the context of manufacturing systems, DT is
defined as: “The DT consists of a virtual representation of a pro-
duction system that can run on different simulation disciplines
that are characterized by the synchronization between the virtual
and real system, thanks to sensed data and connected smart devi-
ces, mathematical models and real-time data elaboration” [66].
The topical role within Industry 4.0 manufacturing systems is to
exploit these features to forecast and optimize the behavior of
the production system at each life cycle phase in real time”
[66,183].

2.2. DT perspective from physical-digital integration

A recent survey has shown that there is no unanimous defini-
tion of DT as it is often used synonymously with digital models
(DM) and digital shadow (DS) [130]. The main reason for the con-
fusion is the variety of application areas in different disciplines.
For example, a digital twin is viewed as a high-fidelity model-
based replication of manufactured parts [51]. On the other hand,
a digital twin can be recognized based on efficient computational
models, enabling real-time process monitoring and control
[123]. A classification of DTs has been proposed into three subca-
tegories based on the level of data integration between a physi-
cal object and its digital object (Fig. 2). A DM is a digital
representation of an existing physical object that has no form of
automated data exchange with the digital object. If there exists
an automatic one-way data flow from the physical object to the
digital object, such a configuration is termed a DS. If further, the
data flow between the physical object and the digital object is
fully automated in both directions, one might refer to it as Digital
Twin [130]. However, reasons for automatic vs. manual data
transmission certainly exist in terms of the quality of the data
and the timeliness of the data, but that would not change the
movement of data in any significant way. Manual or automatic
data transmission would not be a differentiator to justify differ-
ent names and models.

Automatic data flow Automatic data flow

Manual data flow
e |

Physical |
object

Physical |

Physical |
object / igita object

Automatic data flow
(c) Digital Twin (DT)

Manual data flow
(a) Digital Model (DM)

Manual data flow
(b) Digital Shadow (DS)

Fig. 2. Level of integration between physical object and digital object [130].

The analysis of the state-of-the-art of DT concept shows that
the majority of the bulk literature is categorized with the type
“concept”, definition, or review without specific use cases
[35,130]. However, several use-case studies have been developed
at the lower levels of integration for both DM and DS and the rela-
tive number of case studies significantly decreases with an
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increase in the level of integration from DM to DT. There are few
DT cases implemented in a laboratory environment. The main
focus of recent research on manufacturing DTs addresses
manufacturing planning and control as it is the main data reser-
voir for a manufacturing system that unites all elements together.

2.3. DT perspective from the physical asset

A specifically tailored definition of DT and DS from the view-
point of physical objects (e.g., products, machine tools) has been
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given in [17]. DT and DS are defined only for real physical assets
and not for manufacturing processes, Fig. 3. Therefore, the work-
piece, the physical tools (i.e., milling cutter, tool electrode, and
forming die), and the machines are real physical objects which
possess digital representatives. The manufacturing process itself
does not have a DT and DS and can be understood as a transfer
function of the mechanical, thermal, and chemical interaction
between the physical objects involved which therefore undergo
process-related state changes.

There is always only one and no second DT including and combin-
ing all relevant properties of the real physical object. Structure and
resolution (e.g., the mandatory necessity for real-time data acquisi-
tion for time-critical processes) can be application-oriented and must
not be universally valid, see [17].

Dlgltal Twin = Dlgltal TWIn Processes that bnng
of the BUERELE opout a change in the
machine

state of physical
- assets (real twins)
‘ . can be understood as
a transfer function.

Process

) only The process itself
# / transfer has no DT / DS —
/4 function

but is the link
between states.

Fig. 3. Aachen approach on DT of the workpiece, tool, and machine based on [17].

This so-called “Aachen approach” reviewed DT from a different
perspective when applying the concept over the whole lifecycle
perspective of a physical product, see Fig. 4. As the manufacturing
process itself has no lifecycle and therefore cannot be seen as a
real-world asset, the DT of the workpiece could be identified as
an according information carrier from the manufacturing phase
to the use phase of a real product. The manufacturing process-
induced material loads generate material modifications according
to the concept of process signature [36]. This will influence —
under the boundary conditions of the actual geometry and spe-
cific material characteristics — the final resulting part functional-
ity in the use phase, see Fig. 5 [105]. In this context, the tooling
(a real physical object like tool electrodes in EDM and ECM) and
the machine tool can be recognized as the initial workpiece or
assembled part system in the use phase. Therefore, the historical
data of all processes involved during the manufacturing phase —

Manufacturing Phase — > « Use Phase —
Substractlve Manufacturin

=[] |08

Primary shaping

Process (cm»m/
UO:»

Additive or
conventional

route ... ’

Fig. 4. The digital twin of the physical asset as information carrier from manufacturing
to use phase with intended overall added value utilization.

Process 1

............ Workpiece

inverse problem

of manufacturing

function-oriented
manufacturing

Fig. 5. Causal sequence of manufacturing processes, based on [105].

Process
Signature

from primary shaping processes (e.g., AM processes and conven-
tional ones) to finishing by subtractive and even non-subtractive
operations for changing material characteristics (e.g., heat treat-
ment, shot peening) — are allocated in just one DT which is
finally relevant for real applications.

The manufacturing process has not to be mirrored in its own DT,
but can be added as individual load history acting on the workpiece,
the tool, and the machine. This would avoid the need for unnecessary
additional information storage without defined integration in the
surrounding production phase and conditions. According to [36], the
workpiece and, therefore, the physical asset does not know the pro-
cess but just feels the loads and reacts accordingly. To comprehensi-
bly describe the temporal and spatial material loads involved in the
manufacturing process, a comprehensive process model is still neces-
sary. Only relevant information (in terms of mechanical, thermal, and
chemical loads resulting in local modifications) at the interface to the
real asset is stored in the DT.

2.4. Digital twin evolution

Conceptualization and complexity of DT have been constantly
evolving from simulations to DTs over the decades, as depicted in
Fig. 6. Today, DT has been projected as an enabling technology
that will revolutionize the landscape of the Industry4.0 paradigm,
but on the ground level its conceptualization and bounds remain
to be defined and its significance in various domains still needs
reexamination.

y <1960 ﬁ ’
4

Emergmg
Simulation

Simulation

Multiphysics
Applications

Simulation

Digital Twins

1960 - 1984

1985 - 1999

2000 - 2014 2015 - Present

Fig. 6. Concept evolution towards DT development (adapted from [132]).

This underscores the fact that DT technology in its full essence is
yet to be fully understood. Its depth and breadth are evolving. More-
over, myriad recent research highlights that DTs may not be limited
to a single definition [143,204,229]. Rather, the level of integration in
existing process/product design and the complexity of applications
determines the definition of DT in the context [73]. While a lot of con-
ceptual studies have been conducted for DT, few research papers
have demonstrated practical implementation of DT to date. This is a
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critical research gap because the definition and functional properties
of an evolving concept like DT should be directly linked to experi-
mental outcomes [45].

Built on the DT literature review, the Scopus literature data-
bases were searched for all articles, books, journals, or similar rel-
evant materials bearing “Digital Twin” titled publications. Going
further back from 2015, only 3 DT-titled research works were
published. Nearly 1700 articles (Fig. 7) have come on the scene in
2021. In comparison, DT manufacturing publications started to
emerge in 2015. More than 700 articles, books, or journals refer-
ring to DT manufacturing have been published in 2021 alone.
This trend clearly shows a tremendous increase in the impetus

of DT.
EDT = DT+Manufacturing l
S l l L

2015 2016 2017 2018 2019 2020 2021 2022

2800 -
2400
2000
1600 -
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Fig. 7. “DT"-titled vs. “DT + manufacturing”-titled publications.

Such astounding figures and ubiquitous coverage suggest that
DT implementation has come a long way in various application
domains [130,229]. Yet, the reality begs to differ. The latest litera-
ture review suggested that, while theoretical conceptualization,
definition, and high-level schematics of DT have been widely pre-
sented, very few papers/ articles have gone one step ahead to dis-
cuss empirical system architecture, data acquisition and
transmission modeling, bi-directional communication schema
(for software related to CAD/ CAM/FEA or topology optimization),
and necessary hardware (sensors, actuators, and base physical
systems) that are required to realize a basic level DT (either prod-
uct or process) [4]. Hence, from the standpoint of future research,
it is crucial to identify and segregate literature sources that would
provide fundamental building blocks for both academia and
industry to explore the next avenues of DT technology [45]. It has
been a well-established agreement that the core of a DT lies in
the generation, processing, and exchange of information between
interacting components of DT-enabled systems. Consistent data
generation, interpretation and processing, and universality in the
exchanged data format are critical [34,132,204].

DT as a concept has been far more practical and executable
for ‘systems-of-systems’ than it was coined in 2002. Advances in
data transmission, resolution, AI/ML, and data-driven MPC have

2002 2010
Grieves first proposes] Vickers of NASA coined the
an idea of “Digital “Model” as the Digital Twin
Twin Model” as a 2011

t for Product
Eﬁzzsgem e Digital Twin first defined in
relation to Industry 4.0 at
Management (PLM) Hannover Messe, Germany

2 2|

Grieves publishes the
white paper on Digital Twin
model, 3-part definition

made it possible for manufacturers to leverage DT in reducing
design lead times, managing gigantic ecosystems, dynamically
re-calibrating, and creating a better production environment
through software-driven devices [170]. Fig. 8 clearly shows that
in the past two decades, DT has gained a lot of traction, and
sustained momentum toward digital transformation will play a
crucial role in realizing ubiquitous smart manufacturing.

3. Digital twin framework
3.1. Digital twin framework for manufacturing processes

Fig. 9 represents a DT framework for a manufacturing process in
the physical domain and its companion twin in the digital domain,
which consists of: a) the process or physical object(s) and their envi-
ronment, b) the digital twin (i.e., digital model), and c) the two-way
communications (also referred to as the digital connections) between
the two entities.

Physwal Process Real-time data to process model

Manufacturing pre >

(——
Digital Twin

Sensor data

I |
Process dynamics Q Process model
! [ =1 (simulation or
= = data-driven models )
Online sensors <
! Real-time proactive control |

Decision-making

Communication network

Fig. 9. Digital twin framework for manufacturing processes.

The DT serves as a virtual real-time replica of what is happening in
the physical process. The DT model provides a mechanism for two-
way communication between the physical manufacturing process
and its DT. The journey between physical-digital interactivity under-
scores the profound potential of DTs: various sensors take continu-
ous, nontrivial measurements that are streamed to a DT, which, in
turn, performs the real-time diagnosis, prognosis, and control to opti-
mize a process transparently.

The development of a DT involves two main aspects: i)
designing the DT process and information requirements, and ii)
the creation of the enabling technology to integrate a process or
a physical object and its DT for the real-time data flow between
the physical world and the digital world. The process DT can be
expressed or defined through five enabling components (Fig. 10)
— sensors and actuators in the physical domain, integration,
data, and analytics — and the continuously updated DT applica-
tion [187].

The data create/ingestion step encompasses in-situ monitoring of
the process, the machine, and its surroundings. The real-time data
can be transmitted into a secured digital format using encoders and
then fed to a DT. The sensor data may also be augmented with other

2017
Digital Twin concept

proposed for shop floors
and cyber-physical
production systems

2019

Gartner classifies
‘Digital Twin’ in top 5
strategic technology

Microsoft delivers
Digital Twin as part
of Azure portfolio

2017

2005 2012 2013
Digital Twin Digital twin defined by First research work
reported for Digital
Twins in manufacturing

conceptual NASA and US Air Force

model (Glaessgen & Stargel)
formulated as:
“Information
Mirroring Model”

Fig. 8. Evolution of DT since its inception.
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for 3D printing
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Digital Twin definition 2018
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Digital Twin application

b Digital twin classification
in Industry 4.0
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Fig. 10. Digital twin constituent elements [187].

information such as the CAD model. This would provide the DT with a
stream of contextual data.

The communication step achieves seamless, real-time, bidirec-
tional connectivity between a manufacturing process and a database
through three mechanisms: edge/cloud computing, communication
interface, and edge security.

The aggregation step curates and integrates the heptamerous data
into a federated database in an edge or cloud environment. Edge
computing operates on the “instant data" (e.g., real-time data from
sensors and computer numerical control (CNC) controller) and pro-
vides execution resources with sufficient connectivity close to users
on the factory floor.

The analysis step involves advanced data analytics approaches (e.
g., AI/ML) or physics-driven ML approaches for model predictions.
The models driven by the “instant data" data may incorporate process
dynamics to generate real-time insights and recommendations for
decision-making.

In the insight step, insights from the data analytics are visualized
and highlighted on dashboards or edge devices for monitoring and
identifying process anomalies.

The act step is where actionable insights/decisions can be trans-
lated into actions back to the physical manufacturing process.
Insights/decisions pass through programmable logic controllers
(PLCs) and are fed into the actuators of the machine to adjust process
parameters in real-time. This proactive control completes the closed-
loop connection between the physical asset and the DT.

3.2. Process models: building blocks for DTs

Models are core assets of DTs in manufacturing processes. The role
of models in a DT is to analyze, predict, and optimize process behav-
iors. Process models are in the form of analytical, simulation, or data-
driven formats. In the mentality of the general public, a simulation
model is often regarded as a DT. However, DT is well beyond simula-
tions and data-driven models. For a process-related DT, the non-real-
ized or neglected two-way communication between the process and
the process model will lead to missing the key feature of a DT, which
will reduce the DT to DS.

3.2.1. Physics-based simulation models

Physical process models serve a three-fold purpose: (a) under-
standing the process nature and its basic characteristics; (b) gen-
erating the complementary data which cannot be measured
otherwise, and (c) developing a model-based predictive control-
ler for manufacturing process control. Traditional analytical and/
or mechanistic models have been developed for various
manufacturing processes based on process mechanics (e.g., static
or dynamic mechanistic models). However, these models (either
analytical or numerical models) have an inherent bias due to their
assumptions or incomplete physics underlying complex
manufacturing processes [77]. With the increasing high-perfor-
mance computing, physics-based white box numerical simulation
modeling (e.g., finite element models/FEMs) becomes a dominant
approach. However, the accuracy of the simulation models is lim-
ited due to the assumptions or simplifications made for model
derivation. In particular, simulation models require calibration of
model constants when process dynamics change (e.g., tool wear
in cutting, melt pool instability in metal AM) and are too compu-
tationally expensive to be used in real-time prediction [77,104].
Also, simulation models may not leverage the rich real-time pro-
cess data collected from online process monitoring, which reflects
the process dynamics.

3.2.2. Reduced order models (ROM)

The runtime of simulation models should be close to real-time in a
DT setting. One key issue for physics-based simulation models is that
they need expensive computation resources, and the computation
cost is too high (hours to run) to be real-time (e.g., minutes or sec-
onds) for process control. The computation time of a simulation
model can be significantly cut down to real-time in a DT setting
through the ROM techniques [102,261].

The common scenarios that call for ROM include (a) massive data
to analyze, (b) process physics with uncertainty, (c¢) known process
equations with non-trivial solutions, and/or very high computation
time is resource intensive.

ROM represents a cluster of methods to transform a complex,
time- and resources-consuming simulation model into a significantly
simpler system through both intrusive methods for known system
equations and nonintrusive methods [44,58,95,248] for both known
and unknown equations. Among the different techniques available
for ROM generation, a posteriori or non-intrusive technique has great
potential, especially integrated with real process data. These order
reduction methods are purely data-driven when compared to data-
driven ML models.

CAELIA™ has been proven to be an enabling toolset for ROM gen-
eration and management using the tensor-rank-decomposition
(TRD) technique [262], which translates a coupled multi-physics sim-
ulation into a sequence of products of separable 1-D functions that
can be solved on the fly.

3.2.3. Data-driven models

In the era of massive or big data, an unprecedented amount of
manufacturing data has provided unparalleled opportunities as well
as demands for data analytics [65]. ML, due to its learning capability
and structural compatibility with advanced computing, has become
one of the most advocated methods in advanced manufacturing. In
recent decades, ML has gained prevalence in manufacturing indus-
tries as a means of process modeling and optimization [67]. The mas-
sive data in manufacturing applications, due to advances in sensing
methods, reduced cost of sensors, and computing infrastructure, has
enabled intensive exploration of ML.

ML is “data-driven” and can converge to models that characterize
domain “rules” and that enable decision-making in high-dimensional
input space. At the methodology level, ML is related to statistical
analysis, which is the traditional pillar of data science, but distinct in
objectives — instead of making inferences about the population (like
statistics does), ML seeks the general predictive patterns in data [38]
and utilizes them to support future decision-making. ML also differs
from data mining despite their overlaps in methodology, as the latter
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emphasizes knowledge discovery from data [85] rather than predic-
tive decision-making.

The key advantage of the data science (DS) methods is the capabil-
ity of processing the high dimensionality, heterogeneity, and big data
and incorporating the in-process uncertainties for efficient discovery
of patterns and knowledge. However, their “black box” nature
[43,77,156,241] has been criticized for lacking physics understanding,
and the ML models need to be carefully trained using massive data —
with inevitable measurement errors, limited interpretability, and
poor applicability, generalizability, and transferability for other pro-
cess conditions.

3.3. Process control

Process control makes the leap from a DT to action in the physical
process through real-time control — that constitutes the essence of
being smart. When DT-based decisions are translated into actions,
the ultimate goal of predictive models can be formulated as an opti-
mal control problem. As described in the process-DT loop (Fig. 9) the
back from DT to the physical process — from process models
to actions in the physical manufacturing process through control —
constitutes the essence of DT manufacturing. The uncertainty in
manufacturing process models (e.g., tool wear in machining and
powder variation in AM) cannot sufficiently be taken into consider-
ation in current adaptive control systems [9,223]. A model predictive
controller (MPC) is an intuitive control algorithm, which requires an
accurate process model of the dynamic behavior to predict future
behavior [223]. In particular, the unknown nonlinearities and rapid
dynamic behavior in a manufacturing process are challenging to con-
trol, but crucial for product quality, productivity, and safety. Further-
more, model coefficients for a nonlinear dynamic state must be
adapted when the process state changes. But the determination of
specific coefficients is expensive in both time and effort. Most
approaches are far from being real-time or online capable [9]. Accu-
rate process models are often assumed known and model parameters
are kept constant during the entire manufacturing process
[9,147,223]. These assumptions certainly cannot meet the require-
ments of nonlinear process dynamics and uncertainties for future
needs.

The principle of MPC is to determine an optimal pointwise
control policy through online optimization [202]. The optimiza-
tion problem associated with the MPC algorithm can be solved
against new measurements, thus resulting in updated control
input at each sampling time. The key advantages of MPC are its
ability to adapt to process variation and handle hard input/out-
put constraints. A potential drawback of MPC schemes is to cal-
culate the control gain online [16]. Although effective linear
programming (LP), quadratic programming (QP), and linear
matrix inequality (LMI) solutions based on active sets or interior
points are available, calculating control input still requires a lot
of online computing resources.

Data-driven models (e.g., ML) may effectively harness the massive
online data and incorporate the process dynamics into MPC for
improving control accuracy and robustness [9,56,96,104,223]. Never-
theless, the computational cost (i.e., storage and computation) is usu-
ally very high for a learning control method, in particular, if deep
learning (DL) is adopted.

3.4. Digital twin-enabling components

3.4.1. Sensors — data ingestion

Data is the lifeblood of DT, and sensors of many and varied
types (e.g., accelerometers, dynameters, IR cameras) provide the
needed data at the process, machine, and factory floor levels.
The IoT sensors are reviving up DTs. IoT enables connected
machine tools and devices to share data with their DTs and vice
versa. That is because DTs are always on and are always repre-
senting up-to-date simulations or ML models of IoT-connected
manufacturing processes they represent. DTs are virtual replicas
that may capture the changing process conditions internally and

externally in real-time, as measured by myriad connected sen-
sors and devices driven by cloud or edge computing. They can
also run ML and/or simulation models in the virtual environ-
ment to predict, make recommendations, and test the solutions
for improvements through service updates.

The requirement for digital transformation drives increasingly
affordable smart sensors with data storage and wireless commu-
nications capabilities [161]. Smart sensors may integrate micro-
processors and functions of memory, diagnostics, self-calibration,
and connectivity. They can collect and store data, and perform
certain data analyses, thereby identifying anomalous data. The
data can be communicated and used to assist operator decisions,
production planning, and maintenance schedules instead of man-
ual data collection [5,161].

A rapidly growing sensor type is the wireless sensor which pro-
vides process information remotely and is flexible [205]. If a plant
has wireless communications which could be simple and similar to
home Wi-Fi, wireless sensors would be easy to deploy. Industrial con-
trollers combine data collection, data analytics, control, and alerts for
use with the sensors. The maintenance requirements of the sensors
also need to be considered.

3.4.2. High-speed communications

Digital twin manufacturing requires fast, reliable, and (preferably)
wireless data transmission systems for real-time monitoring and con-
trol of time-critical processes with very challenging requirements in
terms of low latency, reliability, and determinism [205]. Current fac-
tory floors are dominated by wire-bound Ethernet networks and/or
wireless (e.g., Wi-Fi) [2].

Traditionally, the sensor data streams have been sent securely and
with high integrity via hardwire in the factory environment. As digi-
tal transformation advances, the use of sensors and other sources of
data will be relied upon at an increasing rate. The cost and physical
space to physically connect this equipment cannot be economically
and efficiently done with hardwiring. A wireless solution that allows
flexibility, mobility, and lower installation complexity and associated
cost is a required substitute.

Manufacturers are looking to adopt emerging wireless technolo-
gies into their facilities to benefit from communication protocols
such as 5 G and 6 G, Wi-Fi 6, Ultrawideband (UWB), and other proto-
cols [125]. The emerging wireless communication technologies will
achieve high throughputs, ultra-low latency, and high reliability
[1,2,205] to facilitate real-time process control.

3.4.3. Data curation and integration

Manufacturing process data is not only heterogeneous (CAD
data, sensor data, production data, simulation data) but also
massive [167]. The data can be categorized into structured data
(e.g., process parameters) and unstructured data (e.g., time-
series and image data). However, simply putting all the data
into the same repository would not make the data actionable to
drive a DT [177]. An information management system consisting
of data standardization, placement, discovery, integration, and
interoperation will overcome the inefficiencies caused by the
current data management shortcomings.

First of all, data integration is the key to ensuring data is inter-
operable [56]. With data integration, potentially related datasets
can be found and linked together. Scripts (i.e., code or programs)
can be automatically generated to connect the related datasets.
Content similarity, syntactic similarity, and semantic relatedness
can be leveraged to find related datasets. Datasets with large
enough similarities are considered related. DL techniques may be
used to measure semantic similarity. Program synthesis techni-
ques [75] could be used to automatically generate scripts/codes/
programs to join related datasets.

Second, data discovery is one of the most fundamental bar-
riers to effective data sharing [60]. A data catalog can be built
for all the data in the data warehouse. Each entry in the data
catalog corresponds to a dataset in the system and contains the
physical location and metadata of the dataset [175]. The data
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catalog, as well as the original datasets, may be indexed to pro-
vide multiple interactive, self-service data discovery functionali-
ties such as dataset recommendation and browsing by
categories. Also, with data integration, a system can create link-
ages between related datasets. These linkages can be used in
data discovery and exploration to diversify query results.

Third, data standardization and normalization are very essential.
Data generated by different sources might have different formats and
standards. To improve data usability [98], batch editing, constraints,
normalization, and error detection and repair can be used to materi-
alize data standardization. Transformation rules can also be learned
from user edits and applied to other applicable entries. In addition,
implicit constraints may be mined from existing data and explicit
constraints can be specified by the users.

In addition, edge computing [214] operates on “instant data"
and provides execution resources with sufficient connectivity
close to users on the factory floor. The major benefits of edge sol-
utions are low latency, high bandwidth, and safe computing and
storage, which are particularly important for real-time process
control. Holistic data architecture and algorithms are critical and
highly needed to curate and integrate these multimodal data at
the edge for subsequent real-time data analytics and process
control.

4. Digital twins for energy beam processes
4.1. Metal AM

Metal AM processes, including powder bed fusion (PBF) and
directed energy deposition (DED), involve intense Marangoni
flow, steep temperature gradient, high cooling rate, and intrinsic
cyclic heat treatment which are not encountered in conventional
manufacturing processes (e.g., casting). Attempts to develop DTs
of metal AM processes aimed to recapitulate key phenomena dur-
ing the printing process, e.g., energy-material interactions, heat-
ing, solidification dynamics, phase transformation Kkinetics,
development of defects, residual stresses, and distortions, which
are fundamental to understanding microstructure and part prop-
erties (Fig. 11); or in the case of the vat-photopolymerization pro-
cess the curing kinetics including the variation of glass transition
temperature and vitrification [198,231].

Macroscale Model

Output: Temperatures, residual
stresses, part distortions

Inputs: Constitutive equations, heat
absorptions and transport models

Reduced
computational costs
Time-step & Mesh
adaptivity,
Implicit modelling

Microscale Mode

Output: Grain morphology,

Output: Surface quality,
B 2 ¥ texture, phase distribution

geometrical defects

Inputs: Transformations,

Inputs: Powder dynamics, UL L
chemical interactions

vapor & gas flow
properties

Fig. 11. Key DT building blocks for metal AM (adapted from [171]).

However, the development of proper process models is not a
trivial task due to the complex relationship between material-
process-microstructure-property as shown in Fig. 11. Table 1
summarizes the current physics-based multiscale simulation
methods, and their applications in metal AM processes. The fol-
lowing sections summarize the modeling methods at different
AM process stages from powder spreading, rapid melting, and

fast solidification [144,164,173,184]. Alternatively, pure data-
driven ML models are also emerging.

4.1.1. Powder spreading

The DEM method aims to simulate a cluster of discrete par-
ticles and the translational and rotational motions of an individ-
ual particle by incorporating their size distributions [251,271].
For the deposition of powders, different types of forces are mod-
eled on the individual particle [64], e.g., wall force due to contact
with constraining surfaces, adhesive bonding force, damping
force caused by the surrounding environment, and electromag-
netic force, respectively.

Table 1
Simulation methods and applications in metal AM.

Simulation Methods Process Phenomena Process Physics

Discrete element
method (DEM)
Computational fluid
dynamics (CFD)
DEM-CFD

Powder spreading Particle dynamics

Powder melting Thermal fluid dynamics
Powder packing-melting Particle & thermal fluid
dynamics

Lattice Boltzmann Powder packing-melting Thermal fluid dynamics
method (LBM)

Phase field (PF)

Cellular automata (CA)

Finite element method
(FEM)

Solidification
Solidification
Workpiece cooling

Phase dynamics
Phase dynamics
Heat transfer

The feasibility of DEM has been shown for powder-based
metal AM [271]. The DEM method has been further applied in
several AM processes [81,188,224] (e.g., Fig. 12). The key problem
of DEM is that particle fusion and plastic deformation may not be
modeled. A coupled DEM-CFD model can be extended to solve the
problem.

Fig. 12. Powder packing state under gap height 120 xm [250].

4.1.2. Powder melting

The melting pool is the key element of DTs of metal AM. Many
CFD models have been developed by incorporating the Navier-
Stokes equation with the energy balance equation to understand
and predict the melt-pool behaviors (e.g., temperature, velocity,
pressure) at the microscale [50,78,146,186,234,237]. A 3-D CFD
model has been developed to simulate a multilayer DED process
with coaxially fed powders (Fig. 13) [164]. Heat transfer between
the powders and laser beam was modeled during their flight
between the nozzle and the growth surface and after they deposit
on the surface. The geometry of the deposited layers measured
from the experiments was compared with that predicted by the
model. The spatial variation of melt pool geometry, peak temper-
atures, and cooling rate was examined in all layers. A good agree-
ment was achieved between the computed geometry, cell
spacings, and hardness with the experimental data. However,
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Fig. 13. Multiscale full process model for DED [164].

most studies assumed several simplifications, e.g., 2-D approxi-
mations, 3-D calculations ignoring convective heat transfer, and
3-D convective studies assuming a flat top surface. Recently,
progress has been made to model the free surface profile using
either the level-set method or the volume of fluid (VOF) method
(Fig. 14).
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Fig. 14. (a) 3-D longitudinal section of temperature fields: (a1) and (a3) are at the end
of fusing the 1st track, and (a2) and (a3) for the 2nd track; b) 2-D vertical section of
temperature fields (adapted from [144]).

A novel CFD model has been proposed for laser-based PBF (L-
PBF) to study the evolution of the surface morphology of the melt
pool with the driving forces of the Marangoni effect and steam
recoil during pulsed 1-PBF [269]. The results show that a longer
exposure time produces greater recoil pressure and sufficient
molten liquid, resulting in a more crowded fish scale pattern, as
shown in Fig. 15. The recoil forces, Marangoni, and surface ten-
sion forces have also been studied in L-PBF (Fig. 16) [234].
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Fig. 15. Evolution of molten pool morphology (adapted from [270]).

The LBM method has been applied to simulate melt pool
dynamics in metal AM processes [8,61,127,128,168,200,259]. The
thermal model with a Gaussian-type heat source and the hydro-
dynamic model are often used in LBM [127,259]. For PBF, the sur-
face heat source model is often used because a large fraction of
the laser intensity is reflected and most laser energy is absorbed
on the surface [61]. The flow in the melt pool is driven by
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Fig. 16. Contours of the recoil force (a), Marangoni force (b), and surface tension force
(c)[234].

capillary, Marangoni forces, recoil pressure, and the wettability of
the powders. Several LBM-based simulations have been devel-
oped by incorporating free surface boundary conditions, surface
tension, phase transitions, and wetting. e.g., wall formation
(Fig. 17) in an electron-beam based AM process [8,128,168,200].

60 mm/s 150 mm/s 300 mm/s

(2) 1.0 J/mm

Fig. 17. Wall formation as a function of beam velocity and line energy [128].

4.1.3. Solidification

The solidification model is another key element of a digital
twin of any PBF or DED system. Numerical approaches, including
Monte Carlo (MC) [176,203], Phase Field (PF) [6,106,133], Cellular
Automaton (CA) [7,124], and its modified method [191], and Den-
dritic Needle Network (DNN) methods [233] have been developed
to simulate the grain morphology evolution during the solidifica-
tion process. Although each of these methods has its pros and
cons, the common challenge is that these methods are computa-
tionally expensive which limits their applications to relatively
small tempo-spatial scales.

The solidification texture of IN 718 fabricated by DED has been
investigated and showed the differences in solidification textures
under the effect of local temperature fields due to the different scan-
ning strategies [244]. The solidification texture is influenced by the
directions of local heat flow and the competing grain growth in pre-
ferred growth directions which depends on the crystal structure
alloy. The numerical model has shown that the primary dendrites
form a 60° orientation with the horizontal direction (Fig. 18a-b) in
unidirectional laser scanning. For bidirectional laser scanning
(Fig. 18c-d), the angle between primary dendrites of neighboring
layers was about 90°

The solidification mechanism under complex boundary condi-
tions imposed by electron beam melting (EBM) (Fig. 19) has been
investigated in [52] and [199]. These studies demonstrated the
ability to induce site-specific microstructures within a given part
configuration and highlighted the ability to use DTs for customiz-
ing solidification textures during the AM process. The effect of
thermo-mechanical cycles on substrate warping and residual
stress during EBM has been investigated using ABAQUS [195]. In
this case, additional coarse-graining has been performed to lump
several successive layers.

Technology (2023), https://doi.org/10.1016/j.cirp.2023.05.007

Please cite this article as: Y. Guo et al., Digital twins for electro-physical, chemical, and photonic processes, CIRP Annals - Manufacturing



https://doi.org/10.1016/j.cirp.2023.05.007

JID: CIRP

[m191;June 20, 2023;19:19]

Y. Guo et al. / CIRP Annals - Manufacturing Technology 00 (2023) 1-27 9

Build direction

(3) (c4)

B . L__| L
0.04-0.23  0.23-0.42 0.42-0.62 0.62-0.80  0.80-1.00
0.602 0301  0.081 0.013 0.001

o 2x102

Fig. 19. Site-specific microstructures in EBM (adapted from [52,199]).

The CA method has been leveraged to simulate the columnar
grains (Fig. 20a) in the traverse cross-sections during a single
deposition track. The dependence of grain morphology on pro-
cess parameters has been studied during the EBM of IN718 by
tracking the magnitude and direction of the simulated tempera-
ture gradients [129]. The columnar grain structure evolved to the
equiaxed grain structure when changing the scan speed from 2.2
to 8.8 m/s and the hatching offset from 150 um to 37.5 um at
laser power 594 W. A 2-D coupled LBM-CA model has been
developed to study the impact of melting strategies on the final
grain morphology [200]. The coupling effect was modeled by
interchanging the phase state information and the current tem-
perature field. The LBM model provides the temperature infor-
mation which drives grain growth, while the CA model provides
the phase information to the LBM model. An example of the sim-
ulated columnar grain in a multi-layer deposition is shown in
Fig. 20b).

A coupled DEM-CFD model has also been developed to simulate a
multi-layer deposition process in 1-PBF [14,243]. The geometrical
information of the metal-gas interface was extracted from the simu-
lated results of the CFD model and fed into the DEM model as a
boundary condition for next-layer deposition. The molten pool data,
such as the fields of temperature and metal fraction, was also
extracted and then interpolated to re-initiate the computational
domain of the CFD model. By repeating the process, the multi-layer
LPBF process can be simulated successively. The model combination
mechanism is shown schematically in Fig. 21.

(b)

500 um

Fig. 20. Simulated columnar grains traverse cross-sections: (a) single deposition track
[191], (b) multi-layer deposition [200].

Layer 1

Fig. 21. Coupled DEM-CFD model for multi-layer deposition (adapted from [14]).

4.1.4. Residual stress

The unique rapid heating-melting-cooling thermal cycle of metal
AM causes high residual stress during and after processing. The resid-
ual stress-induced part distortion may damage the recoater blade
during an AM process and dramatically deteriorate the functionality
of the final parts. The steep temperature gradients are the underlying
mechanisms for residual stress formation [172].

One technical route to predict microscale residual stresses is com-
putation-intensive fully coupled thermo-mechanical FEM which
requires no calibration; for example, the software package Netfabb.
Macroscale residual stresses have been modeled through a multi-
layer build-up process using the element “birth and death” technique
[53]. The temperature-thread [145] method can be used to speed up
the lay-building process in L-PBF for efficient FEM modeling. The pre-
sentative predicted results are shown in Fig. 22.

The other technical route to predict residual stresses is through
the inherent strain method [258]. However, a calibration step is
required to capture the inherent strain developed for a combination
of machine, scan process, and material. Several commercial software
packages, including Amphyon, Simufact, and Additive Print, belong
to this technical route.

The influence of thermo-mechanical cycles during EBM on resid-
ual stress and distortion of the substrate has been investigated using
ABAQUS (Fig. 23) [195]. In this case, coarse-graining has also been
conducted to lump several successive layers.

4.1.5. DTs: beyond process simulations

A process simulation is the core component of a DT, but they are
two very different things. A DT uses simulation models to not only
produce information about how a process or product will perform in
the physical world under a wide variety of conditions but also how
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Fig. 23. FEA modeling of substrate distortion with simplified temperature input to

quantify displacement at various stages of processing (adapted from [195]).

that performance will change throughout its value-chain or lifecycle.
Simulations can be performed on DTs of the existing processes or
products. However, simulations can be performed on processes or
products under development to validate that a new process or prod-

uct will meet its requirements once it is physically manufactured.

Despite the significant developments of process models to
describe the morphological transformations of the materials during
the printing process and post-printing consequences (e.g., residual
stress, distortion), previous models do not allow the complete virtual
description of the entire production process. The data-driven and
physical simulation models were combined in a DT for the prediction

of the geometry of single tracks produced by LMD [87].

Besides AM processes, DTs for AM must be able to incorporate
design, inspection, and evaluation aspects integrating data analytics

and Al engines for decision-making (Fig. 24).
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Fig. 24. DT for the entire AM production process (adapted from [87]).

Recently, a generalized framework has been proposed for an
AM process DT, which can be applied to different AM processes
(Fig. 25) [76]. For the prediction of mechanical properties, imag-
ing techniques and augmented reality (AR) were used to predict
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Fig. 25. Simplified representation of the ecosystem of a process DT (adapted from [76]).

the localized properties of PBF parts [212]. Similarly, X-ray com-
puted tomography (CT) was used to investigate the effect of the
L-PBF scanning parameters and strategies on the distribution and
size of pores within the printed parts [54]. The anisotropy of
mechanical properties in extruded parts has been studied using
imaging techniques for optimizing printing paths [148].

DT frameworks have been proposed to control specific process
parameters such as gas flow [109] or temperatures [63]. A DT-driven
data management framework has been proposed for metal AM pro-
cesses to enable the development of advanced data analytics, which
allows the implementation of intelligent process monitoring, control,
and optimization (Fig. 26) [150]. In this model, the cloud DT commu-
nicates with a distributed edge-based DT at different stages of prod-
uct lifecycle. A hierarchical DT framework (Fig. 27) was also proposed
with four distinct levels, which provides a unified ontology for the
unique needs of metal AM [193].
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Fig. 26. Conceptual framework of a digital twin to enable collaborative data manage-
ment (adapted from [150]).
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Fig. 27. Hierarchy of a metal AM digital twin (adapted from [193]).

4.2. Polymer AM

Several mechanistic and phenomenological models have been
proposed to simulate photocuring reactions in stereolithography
(SLA). Several phenomenological models have been developed to
simulate the curing kinetics in laser-based and mask-based SLA
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systems [11-13,169]. The models include the effect of key material
properties, e.g., photo-initiator concentration and viscosity and the
effect of light intensity. Morphological development analysis was
conducted using models determining the variation of glass transition
during the photo-curing process, which allows predictions related to
the need for post-curing. The models, developed for the free radical
photopolymerization process, are also able to predict the overall
shrinkage of printed parts.

Post-curing models have been also developed. Recently, a
phenomenological model has been used to simulate the shrink-
age anisotropy phenomenon that occurs during the sintering
process of previously cured highly reinforced resins [163]. It
demonstrated that the phenomenon is caused by non-ideal parti-
cle packing between the successive printed layers. Based on this
finding, a sintering model has been developed for the prediction
of the sintering anisotropy. The model also allowed the predic-
tion of part dimensional changes during sintering.

A predictive model has been developed to assist in the design
and manufacture of structures produced through photopolymeri-
zation based on inkjet printing using photoreactive liquid inks
and photopolymerization (Fig. 28) [268]. The model simulates the
curing Kinetics as a function of critical process parameters such
as UV source pathway, UV intensity, printing strategy, and inter-
layer attenuation.
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Fig. 28. Degree of vinyl group consumption [268].

For fused deposition modeling (FDM), a DT has been designed
and developed by integrating the modules of quality evaluation,
compensation of printing effects, and monitoring and control for
improving system reliability, monitoring the process, and opti-
mizing the process ultimately [181]. Fig. 29 shows the DT archi-
tecture, to highlight the information flow between the physical
and the virtual environments.
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Fig. 29. DT architecture data-processing for FDM [181].

download

In extrusion AM, the molten polymeric material is deposited
on a platform and starts to solidify while cooling down. The
layer-by-layer build-up process of consecutive layers introduces
heat treatment of the previously printed material, generating a
complex thermal cycle with a significant influence on the mate-
rial properties of the printed scaffolds. Therefore, the accurate
prediction of the thermal cycle is essential to design and print

polymer scaffolds and the bonding between the layers. A novel
multi-stage predictive model has been developed by coupling a
2D representation of the dynamic printing process and a 3D ther-
mal model to simulate the deposition process [254]. The simula-
tions have shown how the deposition velocity controls the
spatial dimensions of the individual deposition layers and the
cooling process when consecutive layers are deposited during
printing. Moreover, the numerical results show that the model
predictions are consistent with the experimental data. Numerical
models were implemented using the ANSYS Workbench software
(ANSYS, US) and conducted using a multi-phase model in terms
of energy and thermal equations with the assumption of an
incompressible and non-Newtonian material. The models are
capable of simulating both temperature history and dimensional
characteristics of filaments during an extrusion process (Figs. 30
and 31). The different simulation scenarios were experimentally
extruded using a 3D-BioPlotter (Envisiontech, Germany), and the
temperatures were measured using thermal imaging through a
thermal IMAGER TIM 160S (Micro-Epsilon, UK).
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Fig. 30. Comparison between numerical and experimental thermal imaging results of
the temperature history for the one-layer filament case [254].
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Fig. 31. Temperature results of a two-layer filament model with v = 3.5 mm/s and v,
=3.5 mm/s (a) section view of the filament temperature distribution at different
times, (b) relative temperature cooling profile at different positions (time measured
from the end of the deposition of the 2nd layer). Vertical temperature variations and
thermal imaging of case with (c) ve/v, = 3.5/3.5 mm/s and (d) ve /v, = 3.5/2.7 mm/s
(time corrected to the corresponding experimental time) (adapted from [254]).

For filament-based extrusion processes, an analytical model
has been developed to compute the minimum force necessary to
push the filament into the extruder according to the process
parameters [192]. The model accounted for the contributions of
both the deposition force and the extrusion force. This will allow
the prediction of the variation of the required pushing force
when the layer height varies.

The impact of printing conditions on the behavior of shape-
hanging parts (4D Printing) was investigated [267]. Parts were
produced using vat-photopolymerization and methacrylate res-
ins and, as described, scan speed and layer thickness have a con-
siderable impact on the shape-changing performance. The
proposed model allows, not only for prediction with high
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accuracy fixity and recovery cycles but also to tailor the shape-
changing performance by changing processing conditions.

Electrohydrodynamic (EHD) inkjet printing is an AM process
that like electrospinning, which can be characterized by the crea-
tion of a stable Taylor cone. Printed filament diameters, which
are proportional to the jet thickness, are determined by key proc-
essing parameters such as applied voltage, nozzle-inlet velocity,
and distance between the nozzle-platform. Therefore, for each
specific material, process optimization is a complex task. A multi-
physics model has been developed using COMSOL by coupling
the electric and hydrodynamic fields followed by using the level
set approach to tracking the air-liquid phase boundary [189]. A
stable Taylor cone can be achieved using suitable boundary con-
ditions and parameter magnitudes. Similarly, a CFD model has
been developed to investigate the cone-jet printing process
including cone formation, jet generation, jet break, and droplet
expansion (Fig. 32) [100]. The CFD model allows for determining
the operating parameters for a specific printing resolution given a
new material formulation, thus minimizing the need for extensive
and expensive experimental tests.

bbb b
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Fig. 32. The simulation and experiment validation of the droplet generation process
(Voltage is 800 V, the pulse frequency is 20 Hz, the duty ratio is 1%, and the flow rate is
1 wL/min) [100].

A critical problem in inkjet printing is related to air-flow oscilla-
tions that give rise to print defects due to the misplacement of low
Stokes number satellite droplets. This complex problem was investi-
gated using an innovative dispersed-phase continuum method,
which permits the force exerted by the multitude of high Stokes
number main droplets to be modeled as a continuous smooth field
[162]. Results suggested that the oscillations can be linked to the
deformation of the primary vortex upstream in the printing zone and
consequently the introduction of extra flow in the direction of the
platform motion which improves printing quality.

In addition to the process-level DTs, machine-level DTs for mate-
rial extrusion 3D printers have also been developed and tested for
process monitoring and quality assessment [47,256]. For example,
Fig. 33 shows the machine-level DT of an extrusion printer which
consists of three main modules: a core containing the simulation
engine, a data interface managing incoming data, and a graphical
interface enabling user remote control.

4.3. Laser machining

DT has been explored in several laser machining cases. A self-
aware digital twin (Fig. 34) of laser cutting has been developed to
reason about behaviors of laser power, machine power, and gas flow,
and control the process upon needs [225]. The “self-awareness” was
realized by a supervised ML model driven by big data of multidimen-
sionality to reason the process behavior.

Molecular dynamics (MD) simulations were utilized as a DT of
femtosecond laser material removal processes by integrating simula-
tion predictions into the DT using ML, process physics, and decision-
making algorithms [222].

At the machine level, a DT of the five-axis laser drilling machine
tool has been developed by estimating nonlinear multivariable
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Fig. 33. DT structure of material extrusion 3D printers [47].
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dynamic models in a non-intrusive way using the in-process CNC
data [238].

4.4. Synopsis of DTs for photonic processes

The literature survey and analysis demonstrate that the matu-
rity of DT models varies from process to process, while 1-PBF is
most investigated compared to other photonic processes. The
bulk is at the stage of the process modeling (i.e., DT) develop-
ment while the real-time data feeding to a DT and the DT predic-
tion-based proactive process control are still at the conceptual
level. From the viewpoint of technology readiness level (TRL), the
key components of DT models for AM and laser machining vary
significantly: online sensing (TRL 3-7); data transmission (TRL
3—4), process modeling (TRL 3-6), decision-making (TRL 3-5),
and real-time control (TRL 2—3).

5. Digital twins for electro-physical and chemical processes

In the context of the DT concept for enhancing manufacturing
processes, several challenges and opportunities can be identified for
the electro-physical and chemical processes. For EDM processes, gen-
erally, the process performance in terms of achievable material
removal rate (MRR) and sufficient surface integrity — while keeping
sufficient process stability — plays a major role in process optimiza-
tion. For ECM processes, the precise forecast of the resulting work-
piece geometry and the derivation of the tool geometry are the most
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important aspects to be considered. Surface integrity is important as
well in ECM, but currently only plays a minor role compared to the
macro geometrical aspects.

In contrast to conventional machining processes, e.g., milling
and grinding, EDM is already a feedback-controlled process more
or less since the very beginning. Nevertheless, there is still fur-
ther optimization potential in form of DT for the advanced model
predictive control loop (two-way data flow between the physical
and digital objects). Sections 2.2 and 3.1 can be implemented to
still improve process performance based on the actual specific
boundary conditions and process characteristics. Regarding the
resulting workpiece surface integrity (physical asset viewpoint of
DT, Section 2.3), it is of great importance to develop a so-called
overall thermal load model to track the relevant local heat dissi-
pation and resulting surface modifications over several process
steps. This especially plays an important role for EDM processes
as typically several discharge regimes are applied sequentially to
reduce the discharge energy and therefore the extent of the heat
affected zone (HAZ). The corresponding process chains incorpo-
rate roughing and finishing steps for Sinking EDM as well as
rough/main cuts and subsequent trim/finish cuts for Wire EDM.
Besides the effects on the workpiece, this is also important for
the tool to track the wear behavior and therefore resulting in
geometrical deviations during its applications.

For ECM technology, the availability of advanced multi-physics
simulation approaches in combination with high-performance
computing hardware allows nowadays to achieve very precise
process forecasts for the achievable workpiece geometry in the
digital world. Overcoming the fact of just being a sophisticated
process model, actual boundary conditions of a given ECM opera-
tion in real production must be taken into account in future DT
concepts. Ideally, the actual specific MRR and/or frontal gap size
could be determined at an early process phase, which allows for
virtually optimizing the process in the meantime. Finally, the
optimized machining parameters could be used during the finish-
ing phase in the physical domain — closing the loop of the two-
way data flow of the DT according to Section 3.1. In addition, the
first models for ECM are available to forecast the local resulting
micro geometry. In fact, surface integrity aspects in terms of local
phase concentration changes, pitting corrosion, or flow grooves
are recently getting more into focus from the part functionality
point of view. The related digital replicas cover the physical asset
point of view of DT according to Section 2.3.

In the following sections, the current states of process models and
transformation levels in the context of the DT concept will be pre-
sented and discussed in detail according to the above-described func-
tionality for both EDM and ECM.

5.1. EDM

Similar to Metal AM (see Section 4.1), EDM processes involve
local steep temperature gradients for heating and cooling of the
material and finally also intrinsic cyclic heat treatment due to
consecutive process events. Of course, the process itself is
intended to subtract material by mainly melting and evaporation
instead of adding. Therefore, process models (elsewhere dis-
cussed in detail, e.g. [89]) are needed as the basis for any DT
approach. But in contrast to AM processes, an additional major
challenge can be identified. For EDM, the discharge locations
cannot be determined exactly in advance but are the result of a
combination of probabilistic and deterministic effects [89]. Any
envisaged further DT-based process optimization is therefore
highly dependent on a sophisticated digital model describing the
actual real-time discharge distribution on the physical object for
a given process setting.

To build an overall thermal load model of the workpiece
(from the viewpoint of the physical asset) and also of the tool
electrode with resulting surface modifications, it is necessary, to
track and evaluate the locally dissipated discharge energies in
Fig. 35 [252,253].
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Fig. 35. Modeling of energy dissipation of single EDM discharge and simulation of sub-
sequent local workpiece material loadings and resulting modifications (so-called pro-
cess signature principle) [91]. The DT of the workpiece (physical asset) is built based
on the DS of actual energy input.

This can either be done by a kind of white box approach (Section
3.2) analyzing every single discharge over time and position or by a
kind of black box approach by incorporating, e.g., statistical
approaches, Fig. 36, or worst-case scenario techniques. Also combina-
tions, of course, are imaginable (gray box approaches).

Volume fraction

u=20V 1000 discharges

Fig. 36. DT statistically describes the martensite evolution of the HAZ as the function
of varying EDM discharge durations (a) 50 us; (b) 100 us for simulated randomly dis-
tributed pulses, based on [151].

While first only being a DS of the process as a kind of heat map of
the corresponding discharge position and/or local energy distribu-
tion, the DS will immediately transform into a DT when additional
ICME/ICM?E (Integrated Computational Materials and Manufacturing
Engineering) algorithms are incorporated to forecast the material
reaction/modification based on the measured process load [245].

5.1.1. Tracking of discharge location as a basis for DT

For the detailed tracking of each EDM discharge, it is first impor-
tant to analyze the exact 3-dimensional coordinates of the plasma
channel foot points both on the workpiece and the tool electrode
side (if in focus). In the second step, the discharge must be analyzed
regarding its locally converted and dissipated heat energy. It must be
evaluated which fraction is dissipated into the tool electrode, the
dielectric, and the workpiece [253].

To track the exact discharge position, the first attempts were done
for Wire EDM as two of the three coordinate components can easily
be derived from the machine tool axis positions according to the
given cutting path within the G-code, Fig. 37. For roughing condi-
tions, the discharge position is then assumed to be in the frontal posi-
tion of the wire electrode while for the trim cuts a lateral position is
typically assumed. By correlating the electrical process signals with
local metallurgical rim zone analysis, first position-based process
models could therefore be created to, at least, identify critical areas
along the Wire EDM cutting path.

The concept of determining the vertical discharge position over
the workpiece height by calculating the ratio of the resulting local
discharge currents over upper and lower wire guidance systems has
been known for decades [83,141,217]. In the context of advanced
process control, this is nowadays successfully used in industrial
praxis due to the availability of hardware and computing power on
machine tools. Exemplarily, the so-called Discharge Tracker of the
company GF Machining Solutions (GFMS) is mentioned which
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Fig. 38. Real-time control of process parameters in Wire EDM based on discharge loca-
tion measurement, adopted from [28,29].

successfully applies this technology for a real-time process monitor-
ing of each Wire EDM discharge and corresponding process adapta-
tions for changing workpiece heights, Fig. 38.

Concepts for similar determination approaches for Sinking EDM
are also known. The basic idea is to measure the resulting individual
discharge currents via three or more defined workpiece clamping
positions — ideally the four edges for a cuboid geometry
[126,135,257]. Based on the given ratios for the two lateral coordi-
nate axes, the lateral discharge position could be reasonably calcu-
lated. Taking the frontal tool electrode movement into account, the
third coordinate for the discharge position in a workpiece coordinate
system can also be derived from a model-based assumption of the
frontal gap. While such a measurement system can easily be applied
in a lab environment, the industrial application for different and
ever-changing workpiece geometries (e.g., tool and die-making
industry) turns out to be much more complicated. Nevertheless, con-
cepts for separated tool electrode features with individual discharge
current contacts in one universal clamping system have already been
presented as prototypes, e.g., Fig 39. This allows, for example, to indi-
vidually control, adapt, and optimize the discharge currents and the
generator usage for different local boundary conditions (e.g., filigree
vs. volumetric feature) during Sinking EDM.
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Fig. 39. Simultaneous Sinking EDM of different areas with separated tool electrode
parts and individual generator connection, based on [27].

5.1.2. DT implementations based on the discharge location

GFMS recently presented the first successful industrial application
of discharge position tracking during Wire EDM in the sense of a DT
for the tool electrode. The wire temperature is calculated in real-time
by taking the local model-based thermal loads of normal discharges
and the analytical heat conduction into account, Fig. 40. The basic
idea behind this can scientifically be traced back to earlier theoreti-
cal/static approaches [99,137]. The new approach could be referred

Fig. 40. Real-time wire temperature simulation in the sense of DT during the rough
cutting of a non-homogeneous height steel part, based on [55].

to as the physical asset viewpoint — virtually tracking the tool wear
based on DS measurements of the locally dissipated energy. Further-
more, this allows for critical monitoring of unfavorable discharge
agglomerations which could result in local wire degradations and
finally unwanted wire ruptures to be avoided by the advanced pro-
cess control. The latter case closes the data flow back from the digital
object to the physical object satisfying the DT definition.

5.1.3. Process sensing as the basis for the DT concept

In the context of process position analysis for Sinking EDM, a sys-
tematic correlation between discharge voltage and local discharge
position for comparably long and filigree tool electrodes has experi-
mentally been determined, Fig. 41. By setting the corresponding
threshold values, the machine process control can therefore deter-
mine between frontal and side gap discharge positions finally allow-
ing to suppress unwanted discharges before piloting the high-power
level. Therefore, lateral tool electrode wear can be drastically mini-
mized, and process efficiency considerably increases.
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Fig. 41. Correlation of electrical signals and high-speed camera images during Sinking
EDM: Left: the image of a spark (75 us duration, 20 A) and its voltage and current signals,
sorted from the acquired oscilloscope data using MATLAB sub-routines. Right: method of
spark characterization based on voltage and current thresholds, based on [166].

For an in-process characterization of the energy fraction dis-
sipating into the tool electrode during Sinking EDM, a correlation
between the peak acoustic emission (AE) signal and discharge
force was experimentally determined for single discharges,
Fig. 42. The discharge force acting on the workpiece strongly
depends on the local dielectric fluid conditions. High forces can
be correlated to discharges in liquid while low forces belong to
discharges in the already existing local gas bubbles. Accordingly,
the energy dissipation into the electrodes and the dielectric fluid
can be modeled specifically and individually. The AE signal might
therefore be used in the future as a real-time indicator for the
local discharge conditions and the resulting energy dissipation,
resulting in individual thermal loads for a single discharge. This
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Fig. 42. Information about discharge forces contained in the AE signals as a further
process sensing approach as a basis for DT, based on [91].

could then also be done for a sequence of consecutive discharges,
see [91,111].

5.1.4. Basic adaptive control and data-driven approaches for DT

Besides the just-described white box modeling methods,
black box (i.e., data-driven) modeling approaches also exist for
EDM. These also serve as the contextual basis for future DT con-
cepts. They include — typically based on the application of Al —
early Adaptive Control Systems, Fuzzy Logic up to Virtual Opera-
tors, and the latest advanced Neural Networks (NNs) [211].
Adaptive Control Constraint (ACC) and Adaptive Control Optimi-
zation (ACO) have been applied to EDM die-sinking applications,
e.g., [88,219]. These were foreseen to improve the machining
results — either reaching a target or a maximum value — by
altering the established standard machine control based on pro-
cess background knowledge and prior machining results. In the
same context, expert systems (ES), aka Knowledge-Based Sys-
tems (KBS), were established especially focusing on the auto-
mated feedback of expert user experience to improve the
process, see e.g., [220].

Around 1990 the application of Artificial Neuronal Networks
(ANN) approaches was established in EDM for further data-based
process optimization. Typically, MRR and surface roughness (Ra)
could be modeled much faster and more accurately for the given
boundary conditions mitigating the challenges of high complexity
and stochastic nature of the EDM process, e.g., [97]. In parallel, also
purely statistical-based approaches — particularly the Analysis of Var-
iance (ANOVA) became very popular for EDM modeling. Up to now,
many papers have been published in this context so far. While on the
one hand representing pragmatic and efficient modeling approaches
for EDM processes, the broad applicability, and generalization capa-
bility as well as a better scientific process understanding are on the
other hand very limited (i.e., only gaining trivial results that, e.g., the
discharge current has the highest influence on the MRR). Only a very
focused and heuristic setting can finally be covered by these basic
modeling approaches. For serial and mass production scenarios this
could give added value to the industry, but by far most EDM applica-
tions only represent single-piece production with ever-changing
boundary conditions.

In the mid ninetieth year, the Fuzzy Logic (FL) application for opti-
mizing the gap control of EDM was introduced in machining systems,
e.g., [31]. FL allowed the implementation of qualitative and nonquan-
titative rules — close to human expert reasoning — for describing
highly non-linear process behaviors. Therefore, a wider range of
operating conditions could be covered compared to conventional
controllers. In addition, also Neuro-Fuzzy approaches — combining FL
with ANN — were developed, e.g., [15,118]. Finally, the Genetic Algo-
rithm (GA) and recently the Evolution Strategy (ES) were introduced
to EDM modeling approaches to take randomized input parameters
into account. The ES, which is a stochastic metaheuristic optimization
method, allows for efficiently optimizing EDM drilling parameters,
see [227]. Again, GA and ES modeling approaches are only valid

under limited process conditions (chosen material, tool, dedicated
geometry) and do not allow a generalization of the results.
Stochastic optimization algorithms have also recently been
successfully applied to the optimization of EDM drilling opera-
tions, [165]. Hierarchical cluster analysis has been used for pat-
tern recognition during Sinking EDM process monitoring. The
method allows the identification of a set of suitable and non-
suitable machining conditions through a variety of key process
parameters. The key advantage of the unsupervised approach is
that the analysis can be performed by observing all the relevant
sensor features simultaneously [39,40]. Also, big data analytics is
nowadays researched in EDM series and mass production of fuel
injection systems which provides a data basis for DT [122].

5.1.5. Emerging data-driven concepts representing the DT concept

Selected emerging and outstanding examples of data-driven con-
cepts — with high significance for the development of the DT idea —
will be presented in the following:

An industrial important recent approach includes the image-
based measurement of workpiece roughness using ML techniques
during Sinking EDM, Fig. 43. By integrating an inexpensive indus-
trial camera system into the machine tool, fast closed-loop con-
trol of the surface roughness is nowadays achievable allowing an
in-situ and automated metrology step without the need for
demounting and unclamping of the workpiece. The approach
relies on a Convolutional Neural Network (CNN) analysis of the Ra
value which must first be trained by experiments for a given
workpiece and tool electrode material and according to process
settings (heuristic frame), see [69,206].
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Fig. 43. Sinking EDM machine with imaging sensor (a), the workpiece (b), and inte-
grated GUI (c), for Al-based roughness analysis, based on [69].

While on the one hand representing a two-way data flow
from physical to digital object and back, a necessity for real-time
application on the other hand is not given. In fact, this DT loop
must be executed between different process steps and could
therefore also fit ideally to the concept of the product/physical
asset-driven DT.

Another promising approach includes the model-based deter-
mination of unwanted discharge characteristics during Sinking
EDM. By taking a worst-case scenario into account for a probabi-
listic discharge distribution along the height of a filigree tool elec-
trode, Fig. 44, unwanted heating, bending, and final rupture as a
function of the discharge settings can be forecasted and avoided
by advanced control loops. This approach allows a fast Monte
Carlo simulation of discharge position scenarios and is therefore
efficiently avoiding the need for overall discharge monitoring, see
[91,265].

Further work focused on a simulation method of Sinking EDM by
determining discharge locations based on spots with the shortest dis-
charge delay time. The simulations repeat their routines consisting of
the determination of discharge location, removal of electrodes, gen-
eration, and displacement of debris, and tool electrode feeding. The
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Fig. 44. Determination of unwanted discharge distributions in Sinking EDM by an iter-
ative approach to defining characteristic curves (data source left side: [108]), based on
[91,265].

calculations are done probabilistically assuming that an exponential
distribution applies. Simulation results were in good agreement with
the experimental data for different working surfaces [180].

The studies for reciprocated traveling Wire EDM proposed a
method of online estimation pf the workpiece height based on a sup-
port vector machine (SVM). The algorithm was integrated into a
newly developed CNC system to monitor current and voltage signals
from the discharge gap and an adaptive control unit. Training data
were derived from machining stair-shaped workpieces and valida-
tion was finally executed by machining variable heights. The overall
machining time was reduced by more than 30% and the resulting
estimation error was within 2 mm [94].

For the “zero-defect” manufacturing, an advanced process
monitoring procedure was designed and tested for detecting pro-
cess conditions which lead to surface defects in Wire EDM. Based
on signal feature extraction for the construction of sensor fusion
pattern vectors, a methodology has been proposed and imple-
mented with a high sampling rate of 100 MHz. The extracted fea-
tures from the experimental data were used to construct the
pattern vectors to be used as input to the supervised NN algo-
rithm to find correlations between signal features and surface
quality. Results showed that a strong correlation exists, as the
success rate was always above 80% [41,42].

Research work on pattern recognition during Wire-EDM
focused on the time-based analysis of process stability by analyz-
ing the discharge energy. Differences between characteristic
parameters of a stable and unstable process and the distribution
of different discharge types have been investigated, which pro-
vides a basis for early detection of process anomalies, e.g., wire
breakages [23].

5.1.6. Recent data-driven approaches toward the DT concept

A further logic development in Sinking EDM targets not only sup-
pressing unfavorable discharges but also actively adapting the igni-
tion voltage, Fig. 45, in real-time for every single discharge realizing a
sort of electronic servo system [32]. This SPVC (Single Pulse Voltage
Control) could react 1000 times faster than the established mechani-
cal servo system. A prototype system shows remarkable increases in
the discharge frequency and consequently in MRR without penalizing
the other process characteristics.

Another recent approach comprises the development of virtual
operators in EDM with self and transfers learning ability, Fig. 46.
Inspired by the typically great experimental knowledge of experi-
enced human operators in EDM, an automated machine system is
created by incorporating Bayesian Optimization with Gaussian-dis-
tributed processes for multi-dimensional model-based process opti-
mization based on experimentally gathered process information of
dedicated case studies [57].

Real-time sensing approaches for Wire EDM applications have
been analyzed by applying FPGA (Field Programmable Gate Array)
tools during online process monitoring to constantly detect and eval-
uate single discharges with high measurement frequency. The system
finally only stores characteristic numbers and thus a continuous
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Fig. 45. Al-based derivation of a digital representation of MRR for Sinking EDM. Based
on this DS, process optimization in the sense of DT can be achieved, dO and d1 can
influence the single discharge form, based on [32].
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Fig. 46. Bayesian Optimization of machining speed for Wire EDM as a basis for efficient
DT transfer learning process optimization, based on [57].

process can be recorded without generating too large data volumes
[139].

With the help of FPGA technology, the discharge location tracker
(DLT) of GFMS could be enhanced for an industrially implemented
ISPS (Intelligent Spark Protection System). This system monitors and
avoids local discharge concentrations and is, therefore, able to
increase the general level of applied energy. Even with the increased
pulse energy, the resulting white layer still could be kept similar
because of the realization of a homogeneous discharge distribution.
Finally, the usage of DLT as a measuring device of the height curva-
ture is envisaged [30].

Recent advances in Wire EDM, therefore, comprise the prediction
of geometrical accuracy by analyzing continuously recorded process
data. Here, it is important to take the effect not only of normal dis-
charges but also of short circuits into account. Fig. 47 exemplarily
shows the spatially resolved ratio of normal discharges over the
workpiece height. Locally, this ratio can be reduced but the intro-
duced energy is increased [138].
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Fig. 47. Heat maps of the ratio of normal discharges and disseminated process energy
over workpiece height and cutting length, based on [138].

Taking the significant effect of short circuits into account, unsu-
pervised ML was further applied to ensure that no relevant informa-
tion is lost. As a result, the determined statistical variables, e.g.,
Fig. 48, show a good correlation with the experimentally determined
workpiece curvature. A model could, therefore, be developed in the
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Fig. 48. Correlation between wire EDM workpiece height curvature and the ratio of
the max. # of short circuits and normal discharges, based on [140].

future in the sense of DT that predicts the geometrical accuracy based
on process data only [140].

Further research work focuses on the data-driven statistical analy-
sis of the discharge positions of consecutive discharges along the wire
length and the workpiece height as a function of the discharge fre-
quency. Resulting probability distributions should be used in the
future to predict the next discharge positions and suppress unfavor-
able events in advanced process control [131].

5.1.7. DT concept as a virtual replica of the product

For achieving maximum output out of the DT concept, it is neces-
sary to change the product (i.e., physical asset) point of view. Ideally,
the existing process models can here be taken as the basic transfer
function to build an in-process/real-time DT of the workpiece, the
tool, and the machine tool. This virtual twin of the real physical object
is then always available to track the current status. By applying physi-
cal modeling a DT is formed out of occasionally derived DS informa-
tion used for alignment and validation. Therefore, intermediate
processing or usage steps along the process chain — without the
chance to apply measurements — can be interpolated and future
behavior even up to the use phase extrapolated. Some (further)
examples and ongoing research work will be presented as follows.

Recent work regarding the discharge energy-dependent material
load on the workpiece side (in the frame of the Process Signature
Concept, see Section 2.3) calculates in detail the up-to-now unknown
and not measurable temperature field induced during single dis-
charges as well as during consecutive discharges [209]. While the
heat dissipation of the single discharge is described according to the
given heat conduction equation, the heat load of consecutive dis-
charges uses probability models to derive the according distances on
the workpiece surface. Also based on the physics-based calculation of
the workpiece thermal load of single discharges, a phenomenological
correlation to the resulting residual stresses for the continuous pro-
cess becomes possible. A model-based prediction of the stress distri-
bution as a function of discharge energy and workpiece material
(including heat treatment state) under the given experimental
boundary conditions could successfully be shown for EDM processes,
see [112]. Even complete physics-based modeling is currently
aspired, [210]. A first example in the micro domain successfully com-
pared calculated and measured deformations [260].

A high-fidelity simulation method was developed for Wire EDM
by solving the reverse process problem using parametric program-
ming. Parameters, including the ignition delay time, explosive force,
damping coefficient, and relative permittivity of dielectric are diffi-
cult to measure in actual machining conditions and are, therefore,
determined to solve the reverse problem. The simulation process
includes searching for discharge locations, removing material, and
analyzing wire vibration [84].

As first modeling approaches for the resulting surface modifica-
tion of EDM generally assumed a total transformation to martensite,
see [151,152], the latest modeling approaches based on the phase-
field approach simulate in detail the micro structure evolution, e.g.
Fig. 49, as a function of the thermal cycle (heating and cooling gra-
dients) and the given local material micro structure, [21,22]. This pro-
cedure can be interpreted as DT as the DS of the locally dissipated
discharge energies is further digitally processed to forecast the result-
ing surface modifications. By consecutively executing this modeling
procedure, a complete EDM sequence and even process chain could

te=80p8 Ug =27V
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Fig. 49. DT-based modeling of the grain size distribution of the workpiece by phase-
field approach as a function of varying discharge conditions, average grain size con-
cerning temperature gradients (a), EBSD of crater cross-section for experiment number
14 for validation (b), based on [22].

be virtually replicated in a DT representing the aspired overall ther-
mal workpiece model.

Physical asset approaches incorporate the virtual tool electrode
feed path planning for multi-axis EDM. The goal is to plan an interfer-
ence-free and optimal tool movement while keeping the size of the
electrode as large as possible for complex workpiece geometries dur-
ing a dynamic programming methodology [153,154]. Further
approaches focus on the reverse simulation of suitable tool electrode
geometries for complex target workpiece geometries taking the wear
behavior into account. The experimental results showed that the
EDMed workpiece geometry was closer to that of the target work-
piece when the tool electrode shape was obtained from the reverse
simulation compared to offsetting the target workpiece shape at a
distance equal to the gap width [134,136].

Considering the wire electrode as a physical asset, an in-process
modeling of wire displacement was successfully developed based on
2D optical wire displacement measurement above the machining
area and an inverse simulation of the discharge reaction force. There-
fore, virtually the 3D wire behavior could be predicted in the context
of a DT approach [215]. Even the discharge location could also be
taken into account with the chance to update in real-time during
machining [216]. Again taking the wire electrode into focus, CFD ana-
lyzes and simulates the influence of nozzle jet flushing near steps in
the workpiece heights [107]. This is of high practical importance for
the avoidance of wire breakages before the actual step position dur-
ing machining is reached which could be determined by a corre-
sponding DT of the wire in the future.

5.1.8. Synopsis of DTs for EDM processes

The successful development and application of the DT concept in
the EDM area still need further steps going far beyond the actual state
described as being in its infancy. Most important is the aspect that for
a reasonable and industrial-relevant implementation the concept
must especially overcome only applying process models and/or sim-
ple workpiece material models. In fact, the actual boundary condi-
tions of a given machining operation in real production must be
taken into account. This applies, for example, to the integration of the
real workpiece conditions in form of the current material characteris-
tics as well as the influence of actual given geometrical influences. On
the TRL scale, most current DT approaches and ideas can be classified
as levels 2—3. Only the spark location-based wire temperature mea-
surement and the Al-based surface characterization loop could be
labeled levels 4—6.

52. ECM

To generate a fully digital model to forecast both the macro
and micro geometrical evolution of the workpiece geometry for
ECM, multi-physics FEM simulation approaches have been estab-
lished during the last 10—15 years [120,121]. These models allow
comprehensively taking all thermal, electrical, chemical, and
fluid-dynamical aspects into account in modeling material
removal to precisely describe the changing electrolyte properties
along its flow path, see Fig. 50. The time-based evolution of the
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Fig. 50. Fluid characteristic-dependent material removal during ECM and resulting
iteration cycle for process design, based on [116,120].

workpiece geometry can therefore be virtually displayed for a
given tool electrode geometry and process setting. This allows
for the drastic reduction of experimental efforts in the classically
established process design iteration cycles, see Fig. 50. In an
inverse approach, this digital process model can also be used to
optimize the tool electrode geometry by correcting digitally final
deviations. Thus, the extensive and inefficient efforts of experi-
mental iterations to optimize the overall material removal pro-
cess can be drastically minimized with this new virtual approach
[121].

5.2.1. Multi-physics process models as the basis for DTs

The most important aspect of all modeling approaches is the
correct local and overall physical description of the fluid charac-
teristics in the complete tooling system. Local fluid velocity and
resulting gas volume fraction due to electrochemical reactions
have a strong influence on the resulting local fluid temperature
increase by Joule heating, see Fig. 51. Therefore, the resulting spa-
tial conductance can be increased in a self-reinforcing cycle.
These effects, which could result in local form deviations, can
only be identified in the digital approach as real production only
can take place in a completely closed setup. This strongly applies
for constant Direct Current applications (DC-ECM) — typically
used for roughing operations — or jet applications (Jet-ECM) —
but also for electrically pulsed (Pulse-ECM) as well as additionally
mechanically pulsed/precise (PECM) variants — typically used for
precision and finishing applications, [116,117].

Gas volume fraction €

Velocity v/ m/s

Temperature T/ K Conductance k / mS/cm

305 315

Fig. 51. Digital model of fluid characteristically phenomena at a blade trailing edge
towards the end of DC-ECM as a basis for DT, based on [121].

In the context of virtually impossible experimental accessibility,
the idea of virtual sensors gains high importance to locally analyze
the exact process conditions, e.g., PECM [114] and Jet-ECM [207].
Hereby, insufficient fluid flow, boiling of electrolytes, or cavitation
phenomena [110] can, for example, be identified. This especially
becomes true for PECM processes where much higher transient

sional challenges in PECM simulations.

Successful applications of multi-physics modeling approaches can
exemplarily be seen for the simulation-based cathode design for
Pulse-ECM jet engine vanes production [59], PECM impeller manu-
facture [157], and precision machining of internal macro geometries
(i.e., involute splines or feather key grooves) [79]. Also, cooling hole
precision during DC-ECM sinking could be evaluated by analyzing
the electrolyte temperature field [ 149]. An efficient roughing of BLISK
(Blade Integrated Disks) channels by DC-ECM with variable feed rates
could be designed based on modeling approaches [240]. Areal PECM
machining of metallic interconnect plates with a flow channel array
for fuel cells could be optimized by the application of multiphysics
simulation approaches to enhance flushing performance [155]. Simi-
lar investigations could support the optimization of internal flushing
arrays in AM-manufactured tool cathodes [86]. Also, simulation-
based process design for Jet-ECM took place [80].

5.2.2. Digital object representation approach for physical assets

Besides focusing on the development of advanced process models
as the basis for DT, the digital replica (i.e., DT in the sense of a physical
asset) of a physical object is very advantageous for optimizing ECM
processes. The effect of process parameters can for example be evalu-
ated on the DT of the workpiece in a virtual iteration cycle parallel —
or in the future before — applying it to the real process. An example
of a turbine blade manufactured by PECM and simulated in parallel is
given in Fig. 52. Simulated current density and measured form devia-
tions of the real process correlate quite well, which validates the
applicability of this approach.

-80 0
Deviation d / um

80 0.5 225 3
Current density j / A/mm?

Fig. 52. Physical object (turbine blade) and digital representation (DT in physical asset
view) represented by form deviation optically measured compared to nominal geome-
try and current density acting on the part for PECM within a simplified stationary 3D
simulation, based on [20].

In the context of intersecting line removals during Jet-ECM,
multiphysics simulation approaches have also been developed to
analyze asymmetrical temporal removal behavior and to derive
potential for optimization [190]. Based on this, a finite element
area grit-based simulation of jet electrochemical material removal
on the workpiece side was developed [247]. This new approach is
less resource-intensive and complex compared to the established
FEM or Finite Volume Method (FVM) [246]. In the underlying
model, the surface of the workpiece is divided into square sec-
tions. To each of the squares, a time-dependent depth value in the
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sense of a DS/DT can be assigned to track the topography evolu-
tion. Point as well as line removals and even crossing lines could
successfully be modeled. Finally, a 3D process model has been
developed and validated to predict the resulting surface geometry
of curved channels and calculate optimized feed rates for locations
of the toolpath with impaired geometry [26].

Finally, models regarding the microstructure evolution during
ECM have also been developed. This is especially important for the
forecast of surface roughness but also surface integrity for multi-
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phase materials. One example is shown in Fig. 53 where the inhomo-
geneous pearlite dissolution in a passivating electrolyte system is
presented. The decisive impacts of the oxide layer and the electric
double layer were studied utilizing a thin semiconductor layer in the
model. This allows the different properties of each material phase be
taken into account in the example of the steel 42CrMo4 [113]. The
microstructural aspects including the description of the change of
local phase concentrations and the development of flow grooves dur-
ing ECM are characterized in [18]. Surface smoothening as a function
of process time is furthermore important to gain the whole picture.
First modeling approaches can, for example, be found for plasma
electrolytic polishing [49]. A stochastic method was set up to predict
the achievable surface roughness based on the initial one and after a
standard and a jet-based process variant.
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Fig. 53. Digital product analysis regarding micro geometry —simulation of inhomoge-
neous pearlite dissolution during ECM, based on [18].

5.2.3. ECM process sensing as the basis for the DT concept

Numerical models regarding ECM usually do not describe the
dissolution process by including all relevant physical equations in
detail. Especially for multi-phase materials, the large number of
degrees of freedom requires a suitable modeling approach for
describing the effects with sufficient accuracy. Therefore, experi-
mentally derived values typically serve as the basis for multi-
physics simulations [103]. The applicability and suitability of the
frontal standardized gap experiments for modeling and simula-
tion of lateral gaps were successfully analyzed for the current
density distribution. Simulations have to be refined only for
applications with uncontrolled electrolyte outlets.

The methodologies to consequently align the simulations with
specific experimental data (i.e., measured specific MRRs) in the con-
text of specifically entitled DT approaches were presented for PECM
[160] as well as for Jet-ECM [158]. Defined data chains foresee the
removal characterization feeding the simulation to derive optimized
process parameters for the given machining task.

For the DT development of the workpiece, it is important to know
the exact working gap distance over time. This can either be deter-
mined during the already mentioned basic material removal trials
offline. An alternative — at least for PECM — could be to use the elec-
trical current during the process as in-process sensing of the working
gap. By using piloting pulses for different known tool electrode posi-
tions, the exact distance could be calculated based on the difference
in the electrical currents.

The electrolyte jet of Jet-ECM can be used accordingly for gap dis-
tance measurements. This can be done by detecting electrical signals
like the actual total current, see [263]. The working gap can therefore
be adjusted before and controlled during the process. The surface
topography can likewise be measured using the electrolyte jet to
determine the electrical parameters when passing over the surface,
Fig. 54. Features can therefore be evaluated post-machining using the
“dormant” excitation of the electrolyte jet [25]. Following a simple

Fig. 54. Principal and example of Jet-ECM measurement, based on [24].

calibration of the jet resistance response, high measurement accuracy
is achieved.

The proposed technique will enable rapid on-machine inspection
of Jet-ECM surfaces leading to better process control. An example
comparing the Jet-ECM with a tactile measurement is shown in
Fig. 55. The developed measurement system further claims to provide
a low-cost but accurate surface imaging approach that can be easily
integrated with industrial ECM processes [24]. Consequently, another
approach proposes that Jet-ECM can be applied to create depth-con-
trolled measurement surfaces for metallographic analyses at a signifi-
cantly lower cost and time intervention than electron beam-based
analysis methods [221].
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Fig. 55. Comparison of stylus and jet measurement of reference groove using different
nozzle diameters, based on [25].

5.2.4. Data-driven approaches as DT basis

Besides physical-based approaches, relevant data-driven
approaches can recently be identified for ECM. The industry is nowa-
days able to track and store high data volumes. Especially for highly
complex systems and processes, hidden relationships may be uncov-
ered by data science approaches. Using data mining approaches like
clustering, parameters like voltage, current, or fluid conductivity
were successfully correlated with optical measurement data during
PECM blisk production [266]. Therefore, process anomalies and new
approaches for process control could be identified. Further works
include the development of online evaluation systems [232]. A fur-
ther work presents a complete framework for a data-driven ECM
model, which is based on the supervised machine learning approach,
for predicting the final profile of the machined feature in the ECM
process [249]. After training this data-driven neuronal network
model, successful predictions and experimental validations have
been conducted for laser-electrochemical machining. Parameters
even outside the given window have been used to demonstrate the
performance of generalization and applicability to a wide range of
machining parameters. Lastly, DoE (design of experiment)-based sta-
tistical analysis methods have effectively been applied to ECM pro-
cesses like the Jet-ECM variant [264].

5.2.5. Synopsis of DTs for ECM processes

The successful development and application of the DT concept for
the area of ECM also still needs further development steps. In fact,
the process models still need to be enhanced to suit an automated
digital replica. While the fundamental governing equations of ECM
are already known for a long time [89], the current typical FEM-based
multiphysics simulation approaches still represent relatively complex
systems only to be operated by experts. Also, computation-intensive
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tasks like remeshing still need novel approaches to make the simula-
tion approaches more robust and industrially applicable, e.g., [236].
First attempts for more “user-friendly” 3D simulations for ECM were
already presented 15 years ago, see [33], but still, a lot of effort is nec-
essary. In the context of IoP (Internet of Production) concept, cloud-
based solutions including the rental of both soft- and high-perfor-
mance hardware (as well as expert support) seem to be a current
interesting alternative, and a new business model for optimizing
ECM processes with the help of DTs could become possible. On
the TRL scale, the current DT approaches for ECM can be classified as
levels 1-3.

6. Industrial DT trailblazers

Industry leaders have realized the immense potential of DT.
A few early adopters have already started frameworks for the
product or process design utilizing DT principles [197]. An
excerpt from the manufacturing trends 2019 report published
by Microsoft has eloquently summarized the value of DT to the
industry [174]. Mostly, DTs are used for quality control,
improvement, system diagnostics, monitoring, optimization, and
prediction of production outcomes and machinery performance
[46]. In a 2019 review, recent examples of DT applications were
presented in healthcare, aviation, software, transportation,
defense, and manufacturing, to name a few [196]. By 2021, 20%
of G2000 manufacturers will depend on emerging technologies
like IoT, machine learning, and blockchain to automate large-
scale processes [174]. DTs empower manufacturers to take cor-
rective actions in nearly real-time. It is estimated that there will
be approximately US$36 Billion IoT connected devices by 2021
and IoT is projected to create US$15 Trillion of global GDP by
2030 [174], which hints that companies with IoT-enabled physi-
cal assets will be favored strategically and make the most out of
this DT revolution.

In Deloitte’s 2018 white paper [182], some key signals for the
growth of DTs have been elucidated. Market leaders and chief
product innovators have already identified DT as an instrumen-
tal component to accelerating product design and innovation
cycle, process efficiency improvement, and optimization of daily
production operations coupled with predictive maintenance
capabilities. Not to forget, it is the courtesy of DT that corpora-
tions today can plan large-scale infrastructure changes by creat-
ing a virtual model of the proposed designs [196]. As part of the
digital transformation programs under the Industry 4.0 para-
digm, Gartner predicted that “billions of things in the near
future” will be represented by their digital avatars, which in
itself is a true testament to the huge expectations placed on the
exponentially growing technology avatars [182,185].

DT technology continues to get greater acceptance and attention
from industry leaders, such as Amazon, General Electric, IBM, Sie-
mens, Microsoft, and ANSYS which are among the top players. Giant
technology companies, e.g., GE Digital and Microsoft (with its Azure
DTs), are offering commercial DT solutions for different levels of pro-
duction. NVIDIA Omniverse is the world’s first scalable, multi-GPU
DT platform. The partnership between NVIDIA and Siemens will inte-
grate NVIDIA Omniverse and Siemens Xcelerator, which enables an
industrial metaverse with physics-based digital models from Siemens
and real-time Al from NVIDIA in which companies make decisions
faster and with increased confidence. In addition, Ansys Twin Builder
is an open solution that allows engineers to create simulation-based
digital twins with Hybrid Analytics [4].

As DTs continue to top the industry trend charts, it is pro-
jected that DTs will be utilized by up to 50% of large industrial
companies, which could potentially save billions in operation
and maintenance [92]. According to expert reports, up to 60% of
manufacturers will be monitoring product performance and
quality using DTs and approximately 60% of global companies

will use DTs to offer better customer service [179]. Though hav-
ing a lot of potential, DT projects need to be backed up with a
sound business case and greater accountability to ensure full-
scale integration from pilot to production environment.

Digitalist magazine [92] outlined six key benefits of DT technol-
ogy. Specifically, DTs can help companies to: (1) minimize product,
asset, and supply chain complexity to maximize quality and perfor-
mance; (2) gain a holistic perspective to better manage risk and
safety; (3) broaden external networks to enhance partner collabora-
tion; (4) create new business models, offer differentiated services,
and maintain consistency to compete for both globally and locally;
(5) collect real-time data to accelerate and improve decision making;
and (6) develop individualized products to deliver superior customer
experiences. 10T sensors and data analytics are two key enablers of
the potential of DT. IoT sensors help generate a huge amount of data
and sound data analytics help draw sensible conclusions about the
health of the product and related processes in situ.

7. Challenges and outlook

Putting the state-of-the-art analysis in the context of the DT
framework, it is clear that DTs face many challenges to achieve the
goal of real-time digital models that allow for automatic self-diagno-
sis, self-optimization, and self-configuration. On the other hand, as
an enabling technology for Industry 4.0, DTs also have the unique
opportunity to leverage interdisciplinary knowledge. CIRP as a plat-
form makes it a viable technical approach for a broad range of indus-
try and service sectors. The CIRP research community is in a unique
position to play a pivotal role in addressing these challenges. The key
challenges and potential research directions are discussed as follows.

7.1. Federated database management system

7.1.1. Heterogeneous data curation and integration

Data is the foundation of DT. Manufacturing processes gener-
ate a large volume of heterogeneous/multimodal data from sen-
sors, simulations, machines, and quality characterization.
Databases store these data on disk in persistent so that the data
can be accessed and reused by the users later. Users can perform
in-depth and complex data analysis in the future. Moreover, the
user can explore, visualize, and monitor the data stored in data-
bases using well-studied specialized tools. However, database
systems are well known for being “one-size-not-fit-all” [226], i.e.,
no database system can handle all kinds of data. To store the het-
erogeneous data generated in manufacturing processes, multiple
database systems may be leveraged, e.g., an image database to
store the melt pool images taken by the CMOS camera and the
emissivity images taken by the pyrometer during a metal AM pro-
cess, a time-series data to store physical features of melt pool
such as the spatial and temporal distribution of temperature,
pressure, and velocity, a feature database to store the learned fea-
tures and predictions made by process models, and a regular rela-
tional database to store the simulation data, quality data, and
CAD data.

To manage these databases, a federated database management
system is required to provide a common user interface to store, link,
and query the data. Records stored in different database systems can
share the same identifiers to link related data. The record identifiers
are managed and assigned by the federated database management
system. The system also keeps metadata and catalogs of all the data
stored in the databases. Users issue queries directly to the system. It
converts the query based on the record identifier, metadata, and cata-
logs to one or more specific queries to the underlying databases and
returns the desired data to users.
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7.1.2. Online and offline data curation

Sensors are prone to fail, and sensed data could be noisy. Spikes,
outliers, delays, and missing data are not uncommon in the time-
series sensor data. Furthermore, data fed to the process DTs are usu-
ally preprocessed to meet the specifications of the models. For this
purpose, online and offline data curation is required (Fig. 56). Online
data curation leans towards efficiency while offline data curation
leans towards data quality.

Online data curation consists of data cleaning, data smoothing,
data transformation, and data imputation. Simple models and algo-
rithms are often used for online data curation for efficiency consider-
ation. For delayed and missing data, algorithms and lightweight
models can be developed to impute the data. For spikes and outliers,
approaches to smooth the data may be designed while maintaining
the trends as much as possible. In addition, efficient data wrangling
to transform the data from one format to another remains to be
studied.

Offline data curation consists of data integration, data standardi-
zation, and indexing. Programming-by-example (a.k.a. program syn-
thesis) techniques are required to automatically generate scripts/
codes/programs to standardize data. The system may take a few
user-provided input-output examples as input, produce some pro-
grams that are consistent with these examples, and rank these pro-
grams. This process could be repeated until the user is satisfied with
the generated program. Data integration and standardization are the
keys to ensuring data interoperability. With data integration, poten-
tially related datasets could be found and linked together in the con-
text of a concerned process. For this purpose, content similarity,
semantic similarity, and uniform record identifiers can be leveraged
to link related data. In addition, data indexing will be useful for fast
query access.

7.2. Real-time data updating to the DTs

IoT sensors enable continuous process monitoring, resulting in
data-rich environments, but meanwhile, necessitate the regulariza-
tion of data acquisition in terms of both quality and quantity. The
process data may evolve and show occasional, unexpected changes.
To make the DT framework adaptive and robust to these adversarial
factors and continuously deliver expected process outcomes, real-
time data updating must be incorporated into the process DTs, ML
models in particular, that underly the DT framework. Not only does
this updating procedure control production indices but it also facili-
tates dynamic optimization [178].

The sensor data, image data, and process data are generated in
real-time at high velocity, while the CAD data, simulation data,
and quality data can be produced offline (Fig. 56). For a process
DT, it is key to process the high-velocity data efficiently and feed
them directly to the process DT. An in-memory buffer needs to be
managed. The process DT can take data in the in-memory buffer
as inputs directly.

Data generated offline can also be sent to the federated data-
base management system for persistent storage. Data generated

online go to the in-memory buffer to be processed in real-time
and fed to a real-time process DT. The data in the buffer needs to
be first curated such that its format and quality meet the require-
ment and specifications of process DTs. At the same time, a copy
of the data can be periodically written to disk through the feder-
ated database management system for persistent storage. The
memory occupied by the data written to the disk can be released
anytime to make space for the buffer. The buffer replacement
could be managed by the system algorithmically to make sure no
data is lost while maintaining high throughputs. In addition, the
in-memory buffer may read some data from the databases neces-
sary to process DTs, while predictions and decisions made by the
DTs are written to the federated system to be reused and ana-
lyzed in the future.

With the data stored inside the in-memory buffer, an estab-
lished ML model can be updated and adapted to the new envi-
ronment or evolved process. For conventional ML, model
updating requires retraining with new data, which creates a cer-
tain lag in time and is computationally expensive. Recent works
have been seeking to develop online and incremental learning
methods. Online learning attempts to tackle some predictive tasks
by learning from a sequence of data instances one by one at each
time [90]. Incremental learning is related to online learning, in
which input data is continuously utilized to extend the existing
model’s knowledge [68]. ML methods in this branch have been
explored in manufacturing applications to infer causal relation-
ships [10], detect anomalies [242], determine design parameters
[255], and validate large-scale machine coordination [239]. Com-
pared to traditional learners, ML models with online/incremental
learning capabilities are advocated for building DTs. Their auto-
mated update based on new information facilitates the overall
system operation and makes the most of real-time data.

7.3. Efficient physics-informed learning models with small data

To enhance the usefulness and validity of ML-based DTs, a new
topic of ML research termed physics-informed machine learning
(PIML) has emerged [77]. PIML refers to a hybridized kind of ML that
incorporates process laws and domain constraints into ML models to
significantly improve prediction efficiency, accuracy, and transpar-
ency while avoiding the reliance on massive training data. Existing
PIML works have exploited physical information from the mathemat-
ical formulation of physical processes, post-process inspection, and
domain knowledge. For example, partial differential equations
(PDEs) of melt pool fluid dynamics in metal AM have been incorpo-
rated into several ML models to regularize model training, especially
optimization algorithms [77].

Pioneering work in developing physics-regularized ML solvers is
represented by Physics-Informed NNs (PINN) [201]. PINN is a DL
framework for solving forward and inverse problems involving non-
linear PDEs. It leverages deep NNs (DNNs) as universal function
approximators to tackle nonlinear process problems without the
need to commit to prior assumptions or local time-stepping. This
work stemmed from computational physics and involved consider-
able mathematical formulations and derivations.

The core concept of PINN is to train DNNs to approximate solu-
tions by minimizing the residual of the PDEs and also the initial and
boundary conditions [201,218]. Their development represents a
milestone for enriching ML with physics and has inspired numerous
related works.

Fundamentally, PDML-related research can be pursued in five
directions when considering the various stages of ML model develop-
ment (Fig. 57): (1) physics-informed ML input, 2) physics-regularized
model training, 3) physics-informed model component, 4) physics-
driven ML architecture, and 5) physics-informed ML output. These
directions provide the following benefits:
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e Using physical measures or physics-constrained data as ML input
helps improve the scientific meanings of ML model decision logic
and predictions.

Guiding model training with physical/domain knowledge
improves computational efficiency and data utilization while con-
fining model decision logic with physical laws.

Modifying ML model components, such as activation functions,
with physical knowledge, can facilitate convergence to a physics-
informed solution.

Imbuing ML architectures with prior knowledge enables the com-
bination of ML with physical and mathematical models, as well as
the satisfaction of practical constraints.

Imposing physical constraints on model output penalizes vio-
lations of physical laws and improves model consistency with
those laws.

7.4. Uncertainty-quantified DTs

Uncertainty sources are very common in manufacturing pro-
cesses. For example, there are 150 process parameters, and each has
its variation characteristics during an L-PBF process [93]. The main
challenge is that many individual process parameters and the combi-
nations of these parameters may cause uncertainties and propaga-
tions along the manufacturing value chain, which significantly
influences the accuracy and adaptiveness of a DT in real-time what-if
scenarios. The uncertainties can be classified into two categories: ale-
atory uncertainty and epistemic uncertainty [82]. Since manufactur-
ing process dynamics are critical for product quality and safety,
uncertainty quantification (UQ) and model validation are of utmost
importance for model-centric process DTs.

Future DTs should address this challenge to account for, describe,
and quantify sources of uncertainty associated with process modeling
and simulations. From the application perspective, there are many
commercially available simulation packages for manufacturing pro-
cesses. While these are considered the state of practice, they do not
support the integration of uncertainty quantification (UQ). Advance-
ment of uncertainty-quantified DTs that model the relationships
between process- microstructure-property has the potential to revo-
lutionize progress toward robust DTs. DTs have tremendous potential
to unlock a foundational understanding of manufacturing processes,
the materials they produce, and the way that materials perform. Inte-
gration of UQ tools with DTs will significantly advance the DTs by
analysis paradigms.

7.5. Ultra-low latency for DT’s sensing-learning-control loop

Real-time monitoring, modeling, decision-making, and con-
trol of time-critical manufacturing processes require ultra-low
latency (in order of milliseconds) communications support with
extremely high reliability. 5 G holds the key to this challenging
problem due to its unique communication capabilities of ultra-
low latency (~1 ms), high data transmission rates (up to 20 Gb/
s), high reliability (> 99.999%), high availability, and flexibility
(operating many devices simultaneously) [2,205]. However, the
diverse and heterogeneous nature of manufacturing processes is
characterized by very different applications and use cases, with
widely varying requirements. How to fully align 5G-related stan-

dardization bodies with the manufacturing industry and how to
find the best spectrum usage solution and operator models to
meet the specific and distinct requirements of the manufacturing
processes are major challenges. Therefore, a new knowledge
base needs to be created for sufficient validation of 5G-enabled
manufacturing.

In contrast to the conventional static sequential production para-
digm, future smart factories will be characterized by a flexible, modu-
lar production paradigm that requires powerful and efficient wireless
communication and localization services. This is true, in particular,
for latency-critical manufacturing processes. For example, chatter in
blisk milling is very difficult to real-time monitor and correct while
the process is under way because the latency of current sensing tech-
nology is too long, which leads to surface defects, and a rework rate
as high as 25%, and high cost [37]. While blisk milling is an extreme
example, latency-critical manufacturing is generic and ubiquitous as
real-time sensing-learning-control is a very common and compli-
cated challenging problem. With the advent of 5 G and future 6 G
wireless communication, however, this may change fundamentally,
since only 5 G holds the key to this challenging problem due to its
unique communication capabilities of ultra-low latency, high speed,
high reliability, and flexibility (wireless) to meet the demanding
requirements of latency-critical manufacturing [2]. 5G-enabled DTs
can provide the degree of ultra-low latency, flexibility, mobility, and
versatility that is required for the factories of the future towards a
smart, sustainable, and resilient future.

7.6. Future prospects of DT within the CIRP community

CIRP has a rich research tradition in developing process mod-
els, the core building block of DTs. This paper focuses on the
domains of electro-physical, chemical, and photonic processes,
but the developed approaches may also apply to other categories
of manufacturing processes. In addition to manufacturing pro-
cesses, DT has broad applications in machine tools, design, assem-
bly, life cycle engineering, and services and optimization. The
interdisciplinary knowledge across different STCs will advance
the knowledge and development of DTs.

As data is the lifeblood of DTs, expertise in data science and Al/ML
is essential for DT development. As CIRP is production-oriented,
collaborations between CIRP members and researchers from other
communities (e.g., computer science and engineering) can help to
address the current major challenges.

Real-time process control is also critical as the final goal of a DT is
optimization. Many CIRP members have control expertise, and col-
laborations between CIRP with communication and control societies
are also expected to fully utilize the emerging smart wireless sensors
and learning-based control methods for reduced latency.

CIRP is well positioned as an international production society to
make the collaborative initiative more effective by creating an essen-
tial platform that provides the knowledge infrastructure for engag-
ing, coordinating, and synergizing.

8. Summary and conclusions

A DT is defined, fundamentally, as a dynamic digital replica of the
prospective, historical, and current behavior of a manufacturing pro-
cess or physical asset that helps optimize manufacturing perfor-
mance. The real power of a digital twin — and why it matters so
much — is that it can provide a real-time two-way data flow between
the physical and digital worlds, which enables autonomous process
diagnosis, prognosis, and control that would otherwise be unattain-
able through current methods. A future DT encompasses five key
components: online sensing, data transmission, predictive modeling,
decision-making, and real-time control. The key points are summa-
rized as follows.
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e A DT framework consists of three main components: a) a process
or physical object in the physical world, b) a digital model (e.g., a
simulation or data-driven model) in the digital world, and c) the
two-way communications (e.g., data flow and proactive control)
between the physical and virtual worlds.

e Process models are the core asset of DTs for manufacturing pro-
cesses. However, a DT is well beyond a process model. The key dif-
ference is that a DT not only takes real-time process data but also
controls it autonomously through AI/ML. Compared to a vertical
process DT, a horizontal object (e.g., products, machines) DT
embodies the historical data throughout the entire product life-
cycle, in which AI/ML will make possible an intelligent DT.

e From the viewpoint of hierarchy, a DT may evolve through four
stages: (1) multi-physics simulation and/or offline data-driven
process models (e.g., ML); (2) integration of real-time data with
physics-based simulation or data-driven models to incorporate
process dynamics and uncertainty; (3) real-time model predictive
control (MPC) for manufacturing processes through adjusting a
single process parameter; and (4) Al-based autonomous decision-
making for real-time process control and optimization.

¢ From the viewpoint of technology readiness level (TRL), the key
components of DT models vary significantly from process to pro-
cess and object to object. Among the concerned manufacturing
processes, DTs of AM processes have the highest TRLs due to their
digital nature.

¢ From the viewpoint of outlook, the major challenges facing future
functional DTs include the lack of a federated database manage-
ment system, the interface between a database and a DT, efficient
physics-informed machine learning (PIML) models, uncertainty-
quantified process models, and the ultra-low latency for a real-
time sensing-learning-control loop.
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