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The effect of inert gas on melt pool dynamics has been largely overlooked but is crucial for laser powder bed fusion
(LPBF). Physics-based simulation models are computationally expensive while data-driven models lack transpar-
ency and need massive training data. This work presents a physics-informed deep learning (PIDL) model to accu-
rately predict the temperature and velocity fields in the melting domain using only a small training data. The PIDL
model can also learn unknownmodel constants (e.g., Reynolds number and Peclet number) of the governing equa-
tions. Furthermore, the robust PIDL algorithm converges very fast by enforcing physics via soft penalty constraints.

© 2023 CIRP. Published by Elsevier Ltd. All rights reserved.
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Fig. 1. Schematic of Argon (Ar) gas flow and process by-products in LPBF.
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1. Introduction

The importance of inert gas flow (e.g., argon, nitrogen, or helium)
is evident in laser powder bed fusion (LPBF) [1]. The recent results
have revealed its significant influences on LPBF processes and consis-
tent quality attributes, e.g., surface roughness, microstructure, poros-
ity, and lack of fusion of the printed components [2�4]. The gas flow
across the laser-melt pool interaction not only provides an inert
atmosphere to prevent oxidation during printing but also transports
microscale process by-products (e.g., plume, condensate, and spat-
ters) away from the laser path to reduce beam scattering and attenu-
ation (Fig. 1). While the increased gas flow speed will blow away the
plume, the speed needs to be kept below a threshold to avoid particle
pickup [5]. Furthermore, the variations in gas flow uniformity may
impact the melt pool [6] and properties of the components [2].

Several computational fluid dynamics (CFD) models have been
developed to simulate the velocity field of gas flow, improve its distribu-
tion uniformity in the build chamber [2], and evaluate the influence on
soot and spatter particles [7]. Discrete phase models have also been
developed to investigate spatter transport in a build chamber under
Argon gas flow [8]. These computational models may help to under-
stand the complex heat transfer phenomena between the gas-metal
pool interface, but require the calibration of model parameters to
account for the varying process conditions, which are computationally
expensive. The high pressure, velocity, and surface temperature gra-
dients coupledwith the shear-driven action of gas flow driveMarangoni
flows in the melt pool, which leads to process instability. These CFD
models may simulate the velocity field of gas flow but the effect of gas
flow on themelt pool dynamics is not analyzed well.
On the other hand, machine learning (ML) has the potential to
handle the high dimensionality and big volume of online melt pool
data (e.g., temperature) for process diagnosis, prognosis, and deci-
sion-making. However, the current pure data-driven ML algorithms
suffer from the “black-box” nature � lacking process physics and
explainability, inherently computation-intensive and storage-inten-
sive (e.g., time-consuming), and the need of a large amount of train-
ing data to achieve an accurate prediction [9].

Initial efforts have been tried using a physics-informed neural net-
work to solve LPBF problems [9�11]. However, a deep knowledge gap
exists between ML and computational models for developing a data-
efficient and explainable ML method to understand the complex multi-
physical dynamics between the gas flow-melt pool in an LPBF process.
To address this intractable problem, the three-fold objectives of this
work are to: (1) develop a physics-informed deep learning (PIDL) frame-
work by integrating deep learning and the physical laws underlying
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melt pool dynamics; (2) predict the temperature and velocity fields of
the melt pool under the shear-driven influence of the gas flow; and (3)
infer model constants of the governing equations of the melt pool with
the known temperature and velocity fields.

2. PIDL methodology for multi-physical dynamics

2.1. Governing equations of gas shear-driven melt pool dynamics

This section presents the governing equations of gas shear-driven
melt pool dynamics. As shown in Fig. 1, the Ar flows across the top
surface of the melt pool. A rectangular domain of the melt pool is
approximated for simplicity in this study. The top boundary is consid-
ered as the Ar moving with an assumed constant speed. To generalize
the PIDL method to cover a broad range of LPBF conditions and pow-
der materials, the governing partial differential equations (PDEs) are
normalized using the maximum temperature and maximum velocity
of the Argon which makes these equations independent of the maxi-
mum values of the involved parameters such as temperature, veloc-
ity, and pressure. Eqs. (1�4) represent energy conservation,
momentum conservation, and mass conservation, respectively.
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where T*, u*, v*, and p* represent the normalized melt pool tempera-
ture, x-component of velocity, y-component of velocity, and pressure,
respectively. Pe and Re represent the Peclet number and Reynolds
number and r 2 is the Laplace operator. To generate the datasets for
training and testing the neural network (NN), COMSOL software is
used to simulate the multiphysics problem. The melt pool flow is
assumed to be laminar and values of Reynolds and Peclet numbers
are 100 for this study [12]. The simulation has been performed from
0 to 4 s after which a steady-state fluid motion is achieved in the
melting domain.

2.2. PIDL framework for multi-physical dynamic problems

In this study, a fully connected deep neural network (DNN) is used
where every neuron in the hidden layer is connected to all the neu-
rons of the previous and next layer (Fig. 2). In the hidden layer, the
relation between the previous(n-1th) and current(nth) layer output is
given by:

zn ¼ sn wT
n zn�1 þ bn

� � ð5Þ
where wnand bn are the weights and biases for the current layer and
snis the swish activation function [10]. The input for the network is f
tn; xn; yn; TngNn¼1 that corresponds to the value of passive scalar tem-
perature at the spatial-temporal coordinates. In this study, tempera-
tures at 10,000 scattered points per time step in the computation

Fig. 2. PIDL architecture and loss function.
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domain at 10 different time frames were used to train the model. The
output of the network is fTn; un; vngNn¼1 which is the predicted tem-
peratures and velocities at the same spatial-temporal coordinates.
The novelty of the PIDL is manifested by its power of learning the
velocity values without any training data except the used tempera-
ture data and boundary conditions. The temperature distribution in
the melt pool is affected by the fluid flow which results in coupled
energy and Navier Stokes equations. Due to this coupling of the gov-
erning equations, it is possible for PIDL to predict the velocity distri-
bution in the melting domain by using the temperature data only. It
is worth noting that many manufacturing phenomena like melt pool
dynamics in LPBF are multiphysics problems where transport equa-
tions are coupled. In the case of LPBF, the surface temperatures of the
melt pool can be collected using co-axial pyrometers or infrared cam-
eras, one may predict the fields of other parameters such as velocity
field in the melt pool without solving the non-linearly coupled Navier
Stokes equations through the PIDL method. To calculate the deriva-
tives of different parameters in the governing equations, an open-
source software library Tensorflow has been used in this study. Ten-
sorflow uses automatic differentiation instead of the Taylor series to
compute the derivatives, which is fundamentally different from tra-
ditional numerical differentiation. This makes this PIDL method supe-
rior to conventional physics-based simulations.

The loss function (Fig. 2) has three terms � data fitting, residual of
governing equations, and boundary conditions fitting. The data fitting
loss function in terms of mean squared error (MSE) corresponds to
the training data ftn; xn; yn; TngNn¼1 which utilizes the temperature
data in the melting domain for training the network. The second loss
term represents the penalty for four governing PDEs. The third loss
term represents the MSE for the velocity boundary condition. The
second and third loss functions make the PIDL a data-efficient model
and help in the prediction of the velocity field without any additional
training data. Compared with the conventional neural networks, after
predicting the temperature and velocity values in each epoch, the
PIDL model gives an extra penalty to the loss if Eqs. (1�4) are not sat-
isfied by the predicted data. In this way, the loss function will con-
verge very fast, and less training data is required to train the PIDL
model when compared to the conventional machine learning mod-
els.

3. Forward learning of melt pool temperature and velocity

3.1. Ar flow shear-driven cavity

The effect of Ar flow on the melt pool dynamics is investigated to
assess the performance of PIDL. Fig. 3 shows the comparison between
the exact temperatures and velocities calculated from computational
fluid dynamics (CFD) simulations with those predicted from the PIDL
model. The “perfect” match between the exact data and predicted
data shows the accuracy of the PIDL neural network to learn the tem-
perature and velocity fields. It should be mentioned that only the
scattered data of temperature is used for training and PIDL can pre-
dict the exact velocity field in the domain. This capability of the PIDL
model is very useful for additive manufacturing and other industrial
processes where physics-based simulations are very time-consuming
and expensive due to the complex physics and coupled governing
equations.

3.2. Effect of boundary conditions on PIDL model prediction

For certain multiphysics problems, PIDL may predict the velocity
field accurately even without using the boundary conditions [13].
However, if boundary conditions for velocities are not enforced in
this study, PIDL does not predict very well near the boundaries
(Fig. 4) when compared with the predictions using boundary condi-
tions. This is due to the fact that there is a steep velocity gradient at
the top boundary due to which it is not converging to a single solu-
tion. Therefore, it would be very necessary to enforce boundary con-
ditions in a PIDL model where steep gradients are present at the
boundaries.
g of gas flow-melt pool multi-physical dynamics during powder bed
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Fig. 3. Comparison of the exact values (a-c) and PIDL predictions (d-f) of T, u, and v contours @ t = 4 s and u and v profiles (g-h) along the center line. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Velocity predictions without enforcing BCs. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Model training efficiency in terms of mean squared error (MSE). (For interpreta-
tion of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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3.3. Effect of training data on PIDL model predictions

To check the robustness of the PIDL algorithm, a systematic study
has been performed with respect to the spatial-temporal resolution
of the temperature where the different amounts of data at different
amounts of time frames were fed to the model. Fig. 5 shows that algo-
rithm breaks down if less than 900 data points and 6 time-frames are
used. It suggests a threshold combination (e.g., [900,6] for this case)
of training data points and time frames exist for an accurate predic-
tion. Here the relative L2 error is defined in terms of the predicted
function f ðxiÞ and exact function gðxiÞ.
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Fig. 5. Effect of spatial-temporal resolution on the relative L2 error.

Fig. 7. Model training efficiency in terms of the relative L2 error.

Fig. 8. Effect of the NN architecture on the relative L2 error.
3.4. Model training efficiency and the effect of the NN architecture

Unlike conventional data-driven machine learning models with the
inherent lengthy training time, the PIDLmodel converges very fast with a
much less amount of data. Figs. 6 and 7 represents the data efficiency of
the PIDL algorithm. This innovation is attributed to the soft penalty to the
PIDL model for not satisfying the governing equations. The PIDL model in
this study converges after only 6000 iterations that need approximately
16min to complete. This is a dramatic improvement in training efficiency
compared with the training time at the scale of hours/days for conven-
tional ML. The loss function convergence helps in determining the opti-
mized training time for themodel.
Please cite this article as: R. Sharma et al., Physics-informed deep learnin
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To assess the effect of a NN architecture on the prediction error, a
systematic study was conducted with different combinations of hid-
den layers and neurons per layer (Fig. 8). It was found that 10 hidden
layers with 200 neurons per layer are sufficient for the PIDL algo-
rithm to converge. It is noted that other combinations of hidden
layers and neurons may also lead to convergence.
g of gas flow-melt pool multi-physical dynamics during powder bed
0.1016/j.cirp.2023.04.005

https://doi.org/10.1016/j.cirp.2023.04.005


ARTICLE IN PRESS
JID: CIRP [m191;April 12, 2023;10:23]

4 R. Sharma et al. / CIRP Annals - Manufacturing Technology 00 (2023) 1�4
4. Inverse learning model constants of governing equations

In many practical problems, model constants of the governing
equations are generally unknown or just roughly estimated values. In
this case, the estimated values of Reynolds number (Re) and Peclet
number (Pe) in Eqs. (1�3) were used for forward learning of melt
pool temperature and velocity fields. However, accurate values of Re
and Pe are very challenging to determine by either experimental or
physics-based simulation methods considering the highly dynamic
nature of the harsh melt pool. Multiphysics simulations of complex
practical problems like LPBF have very high computational costs. The
developed PIDL method provides a unique avenue to overcome these
challenges in these situations where one can do physics-based simu-
lations for a very short period to get the model training data. Using
that data one can find the model constants like Re and Pe in Eqs.
(1�3). With the inferred model constants and training data of one
process parameter (e.g., temperature), one may use the forward
problem-solving method in Section 3 to efficiently predict the values
of unknown parameters (e.g., velocity field) for future time steps. The
fast convergence of the PIDL algorithm will significantly reduce the
computation cost inherited with physics-based simulations.

In this study, the temperature and velocity data of 10,000 scat-
tered points in the computation domain at 10 different time frames
are input to the PIDL model for training. The expected output is the
predicted value of the Reynolds number (Re), Peclet number (Pe), and
their relative errors in Table 1. It shows a good agreement with the
exact values. It should be mentioned that the PIDL model needs initial
values for these model constants to learn.
Table 1
The inferred Reynolds number (Re) and Peclet number (Pe).

Inferred model constants Training time: 5 hrs.

Reference Inferred Relative L2 error

Re 100 105.38 5.38%
Pe 100 100.615 0.62%
5. Discussion and conclusions

This paper presents a data-efficient PIDL method to address the
gas flow shear-driven multi-physical dynamics of the melt pool in
LPBF. Several aspects of the PIDL method are worth discussing.

(1) The computation domain is a 2-dimensional (2D) rectangular
zone for simplification. A more accurate domain geometry of the
melt pool can be approximated based on a measurement of the
cross-section of the solidified melt pool. The 2D domain can also
be extended to a 3D domain.

(2) For the generalization purpose regardless of LPBF conditions, the
temperature, velocity, and pressure parameters in the governing
equations are normalized by their maximum values. This will
simplify and streamline the PIDL model training. The predicted
data in their normalized format can be conveniently converted
to absolute values.

(3) Deep learning usually needs massive training data of high quality
which are difficult to obtain in many processes. By embedding
process physics, PIDL offers a unique advantage of strong gener-
alization using small data.

(4) To infer an unknown model constant of the governing equations,
the required initial value can be an averaged value or an esti-
mated value from an experiment.
Please cite this article as: R. Sharma et al., Physics-informed deep learnin
fusion, CIRP Annals - Manufacturing Technology (2023), https://doi.org/1
Unlike traditional data-driven ML models, the data-efficient PIDL
model of the gas-melt pool dynamics generates the key results.
� The PIDL model may solve forward problems to predict the tem-
perature and velocity fields under the impact of gas flow with only
labeled discrete temperature data and boundary conditions.

� The PIDL model can solve inverse problems to learn the model
constants of governing equations by using the scattered data of
temperature and velocity in the melting domain.

� The PIDL algorithm is very robust as it functions very well on low
spatial-temporal resolution.

� PIDL converges very fast by enforcing a soft penalty in the loss
function for not satisfying the physical laws.
Supplemental dataset

The dataset and code used for the current study can be found at
https://github.com/rhl8272/PIDL.git
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