
The Annals of Probability
2023, Vol. 51, No. 1, 359–395
https://doi.org/10.1214/22-AOP1597
© Institute of Mathematical Statistics, 2023

FREE ENERGY OF A DILUTED SPIN GLASS MODEL WITH QUADRATIC
HAMILTONIAN
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We study a diluted mean-field spin glass model with a quadratic Hamil-
tonian. Our main result establishes the limiting free energy in terms of an in-
tegral of a family of random variables that are the weak limits of the quenched
variances of the spins in the system with varying edge connectivity. The key
ingredient in our argument is played by the identification of these random
variables as the unique solution to a recursive distributional equation. Our re-
sults in particular provide the first example of the diluted Shcherbina–Tirozzi
model, whose limiting free energy can be derived at any inverse temperature
and external field.

1. Introduction. In the study of fully connected mean-field spin glass models, intensive
investigations on the Sherrington–Kirkpatrick (SK) model as well as its variants have at-
tracted a lot of attention and resulted in many rigorous mathematical results justifying physi-
cists’ observations and theories for the past decades; see [14, 16, 27, 28]. While the strength
of the spin interactions in the SK model is uniformly defined across all sites, a set of more
realistic mean-field spin glass models, called the diluted spin glasses, was introduced to cap-
ture the situation in which the spins are only allowed to interact with a bounded number of
neighbors on average; see, for instance, [11, 13, 30]. In particular, within the Parisi frame-
work of replica symmetry breaking theory, the work of Mézard and Parisi [13] proposed an
ansatz to understand a spin glass model in the Bethe lattice. Later several attempts to justify
the ansatz of [13] have been conducted in the setting of the diluted p-spin model and the
diluted random K-SAT model; see [6, 7, 17, 18, 20–22]. Studies of high temperature behav-
ior of diluted models have also been performed in the SK model [12], the V -statistics model
[29], the random K-SAT model [15, 19, 26] and the Viana–Bray model [10].

Besides the studies above, a natural class of mean-field models that is of great importance
and interest is the Shcherbina–Tirozzi (ST) model [23, 24], which originated from the study of
Gardner’s problem [8, 9]; see [3, 25] for more recent studies of Gardner’s problem. In addition
to being defined through a full rank disorder matrix that captures the mean-field interactions
among all sites as in the SK model, the Hamiltonian in the ST model is set to be convex in
the spin configuration space so that the corresponding Gibbs measure is strictly log-concave.
Due to this feature, the usual concentration inequality for log-concave measures, such as
the Brascamp–Lieb inequality, readily implies that any Lipschitz observable is concentrated
around its Gibbs average. Consequently, it is expected that the solution to the ST model
should always be replica symmetric in the sense that the Gibbs expectations of the spins are
asymptotically independent and distributed as a function of i.i.d. Gaussian random variables,
as an outcome of central limit theorem, parametrized by a set of order parameters that are
the solution to a system of consistency equations. If the latter is known to possess a unique
solution, the replica symmetric solution can be justified and further used to compute the
limiting free energy; see [2, 23, 24, 27]. However, while this is usually the case when the
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model is at very high temperature, the completely solvable cases in the entire temperature
regime are only known in the Gardner model as well as in the quadratic model; see [2, 24].

The diluted version of the ST model was proposed in Talagrand’s book [27], Section 6.7,
where the spin interaction is described instead by a sparse random matrix. As in the original
ST model, one again expects the diluted ST model to exhibit replica symmetric solutions at
any temperature, but this mechanism becomes more subtle, due to the sparsity of the disorder
matrix, in which the Gibbs expectations of the spins should be governed by certain probability
distribution that is the fixed-point solution to some distributional equation. Under the setting
that the Hamiltonian is Lipschitz, the rigorous proof of this description has been carried out
in [27], Section 6.7, but there remains a missing key ingredient, that is, the justification of
the uniqueness of the fixed-point solution to the underlying distributional equation at any
temperature; see [27], Research Problem 6.7.14. If this is achieved, then one can express the
limiting free energy of the model in terms of this solution via the Aizenmann–Sims–Starr
scheme [1]. Incidentally, such uniqueness can be achieved by a contraction argument at very
high temperature; see [27], Theorem 6.6.1. However, validating this behavior throughout the
entire temperature regime is a challenging problem in any reasonable setting.

In the present paper, we propose to study a diluted ST model with a quadratic Hamilto-
nian disordered by a symmetric distribution with finite second moment. Under our setting,
the Gibbs measure readily reads as a high-dimensional Gaussian measure with covariance
matrix A−1

N , where AN is an N × N sparse random matrix written as the sum of the identity
matrix along with a Poisson number of rank-one matrices, where the edges are formed only
among p uniformly chosen vertices. Furthermore, the free energy can be written as a func-
tion of the matrix AN . Our study achieves two main results. First of all, we show that the
joint spin variances, (A−1

N )11, . . . , (A
−1
N )nn, are asymptotically independent and identically

distributed. More importantly, we identify the weak limit of these objects as the unique fixed-
point solution to a distributional equation. Based on this, the second main result settles a neat
expression for the limiting free energy by a cavity computation.

We emphasize that although our study specializes to the quadratic Hamiltonian, it turns
out that the analysis is highly dedicated to reflecting the nature of dilution of the model in
spite of being replica symmetric. To the best of our knowledge, this is the first example of the
diluted ST model for which the limiting free energy can be completely solved in the entire
temperature regime and at any external field. We believe some of the ideas in our approach
might be potentially useful in understanding related diluted ST models. Additionally, the
presence of the matrix AN can be viewed as a model for covariance matrix constructed from p

sparse vectors. It is an interesting random matrix model on its own and is worth investigating.

1.1. The model and main results. Consider a positive real α and a natural number p. Let
β > 0 and h ∈ R be the (inverse) temperature and external field parameters, respectively. For
any N ≥ 1, define the quadratic Hamiltonian by

−HN(σ) = −β

M∑
k=1

( p∑
r=1

gk,I (k,r)σI (k,r)

)2

+ h

N∑
i=1

σi

for σ ∈ R
N , where M is a Poisson random variable with mean αN , the disorder matrix

g = (gk,i)k≥1,1≤i≤N consists of i.i.d. entries sampled from a symmetric distribution D with
finite second moment, and

I = (
I (k,1), . . . , I (k,p)

)
k≥1(1)

is a collection of i.i.d. random vectors sampled uniformly from the index set {(i1, . . . , ip) :
1 ≤ i1, . . . , ip ≤ N are distinct}. All randomness here are independent of each other. Denote
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by ηN the N -dimensional standard Gaussian measure on R
N . Define the free energy and the

Gibbs measure associated to HN , respectively, by

FN = 1

N
log

∫
e−HN(σ)ηN(dσ)

and

GN(dσ) = e−HN(σ)ηN(dσ)∫
e−HN(σ ′)ηN(dσ ′)

.

For i.i.d. samples (or replicas) σ,σ 1, σ 2, . . . from GN , we use 〈·〉 to denote the Gibbs ex-
pectation with respect to these random variables. In view of the quadratic Hamiltonian HN ,
the Gibbs measure is a Gaussian measure in R

N (explained in detail in Section 3) with mean
μN = hA−1

N 1 (where 1 = (1, . . . ,1) ∈ R
N ) and covariance matrix A−1

N , where AN is a sparse
N × N matrix defined as

AN = IN + 2β

M∑
k=1

vkv
T
k .(2)

Here, IN is an N ×N identity matrix and vk is the vector, whose nonzero entries are gk,I (k,r)

at the position I (k, r) for 1 ≤ r ≤ p. The free energy can be computed explicitly in terms of
μN and AN ,

FN = h

2

∑N
i=1(μN)i

N
+ log detAN

2N
= h2

2

1T A−1
N 1

N
+ log detAN

2N
.(3)

To prepare for the statements of our main results, we introduce an operator associated to
our model. Let P([0,1]) be the space of probability distributions on [0,1]. Let T = Tα be a
self map on P([0,1]) defined as

T (μ) = Law of

(
1 +

R∑
k=1

2βζ 2
k

1 + 2β
∑p−1

r=1 Xk,rξ
2
k,r

)−1

,(4)

where (ζk)k≥1 and (ξk,r )k≥1,1≤r≤p−1 are i.i.d. distributed according to the random variable D
and (Xk,r )k≥1,1≤r≤p−1 are i.i.d. distributed according to μ ∈ P([0,1]), R is Poisson(αp), and
these are all independent of each other. Our first main result says that T is the key operator
to describe the weak limit of the spin variances.

THEOREM 1.1 (Distribution and asymptotic independence of spin variances). For any
α > 0, Tα has a unique fixed point, μ(α). Moreover, for any n ≥ 1, the vector of spin variances(〈(

σ1 − 〈σ1〉)2〉
, . . . ,

〈(
σn − 〈σn〉)2〉) = ((

A−1
N

)
11, . . . ,

(
A−1

N

)
nn

)
converges weakly to (X1, . . . ,Xn) as N tends to infinity, where X1, . . . ,Xn are i.i.d. with a
common distribution μ(α).

Now, using the fixed-point distribution, we establish an expression for the limiting free
energy. For x ∈ (0,1], denote by μ(αx) the unique solution to the distributional equation
T (μ) = μ in which R is replaced with Poisson(αxp).

THEOREM 1.2 (Free energy). Let α > 0 and p ∈ N. For any β > 0 and h ∈ R, we have
that

FN
L1−−−−→

N→∞
h2

2
EX(1) + α

2

∫ 1

0
E log

(
1 + 2β

p∑
r=1

ζ 2
r Xr(x)

)
dx,
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where for any x ∈ (0,1], X(x),Xr(x)
i.i.d.∼ μ(αx), ζr

i.i.d.∼ D, and they are independent of
each other.

The main feature in Theorem 1.2 is that although FN is written in terms of the mean and the
covariance through (3), the limiting free energy essentially depends only on the spin variances
of the system with varying edge connectivity. In addition, we mention that the formula here
is obtained via a cavity argument in M , the number of edges. One can also perform a more
conventional cavity computation in N , the number of sites, instead as in the Aizenmann–
Sims–Starr scheme [1, 17], but the resulting formula will become more complicated involving
a difference of two major terms again in terms μ(αx) for x ∈ (0,1].

1.2. Open problems. Following our study, there are a couple of problems yet to be un-
derstood. First, while our main result studies the limiting free energy, it is a relevant question
to understand the asymptotic behavior of the Gibbs measure, that is, the limiting distribu-
tion of σ ∼ N(μN,A−1

N ). From the convexity of −HN , we expect that asymptotically the
marginals of the spin configuration σ are i.i.d. Gaussians as N tends to infinity. Thus, to
figure out the limiting distribution of σ , we need to investigate the limiting joint distribution
of (〈σ1〉, 〈(σ1 − 〈σ1〉)2〉), or equivalently, (h

∑N
i=1(A

−1
N )1i , (A

−1
N )11). As we will discuss in

Section 2 on how (A−1
N )11 converges to X weakly via the Sherman–Morrison formula, it

can also be checked (proof omitted in this paper) that if this pair converges weakly to some
pair (Y,X), then when p = 2, the pair (X,U) for U := Y/(hX) must satisfy the following
consistency equation:

(U,X)
d=
(

1 −
R∑

k=1

2βζkξkXkUk

1 + 2βξ2
k Xk

,

(
1 +

R∑
k=1

2βζ 2
k

1 + 2βξ2
k Xk

)−1)
,(5)

where (Uk,Xk)k≥1 are i.i.d. copies of (U,X), (ξk)k≥1 and (ζk)k≥1 are i.i.d. copies of D,
and R is Poisson with mean 2α. There are all assumed to be independent of each other.
Theorem 1.1 has shown that the second coordinate has a unique fixed point. We believe that
the following is true.

CONJECTURE 1.3. (5) has a unique fixed point.

Throughout the entire paper, we assume that the distribution of the disorder random vari-
able D is symmetric. As one shall see, Theorem 1.1 holds in general without this assump-
tion, but in the derivation of the limiting free energy, we require that E(A−1

N )ij = 0 and
E(A−1

N )ij (A
−1
N )ik = 0 for distinct i, j , k in order to deduce that FN ≈ EFN and the right-

hand side ultimately depends only on the main diagonal terms of A−1
N so that we can handle

the limiting free energy via the fixed point of T . Our argument to show that the mean and
covariance of the off-diagonal terms (A−1

N )ij vanish uses the assumption that D is symmetric.
From numerical simulations, it seems to indicate that these behaviors remain asymptotically
true without the symmetry assumption. We thus close this subsection with the following con-
jecture.

CONJECTURE 1.4. Theorem 1.2 holds for any distribution D with finite second moment.

1.3. Structure of the paper. The rest of the paper is organized as follows. In Section 2,
we provide an outline for the proofs of Theorems 1.1 and 1.2. In Section 3, we establish
the concentration of the free energy. Section 4 contains the proof of the concentration of the
generalized multi-overlap of a coupled system that will be used in Section 5, in which we
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establish the asymptotic independence of spin variances. In Section 6, we prove the unique-
ness of μ as being the solution to the distributional equation T (μ) = μ and show how the
limiting distribution of the spin variances gives rise to the distributional operator T and is
distributed according to μ. Gathering these results, we complete the proofs of Theorems 1.1
and 1.2 in Section 7. For technical purposes, our Sections 4 to 7 are handled assuming that D
is bounded. In Section 8, we remove this restriction and generalize Theorems 1.1 and 1.2 to
the case that D has finite second moment.

2. Proof sketch. To facilitate our proofs for Theorems 1.1 and 1.2, we describe our ap-
proach and outline some basic ideas in this section. As one shall see, our proof of Theorem 1.1
is long and consists of a number of key steps, but it contains some essential ideas that might
be potentially useful in related models and problems.

2.1. Proof sketch of Theorem 1.1. (i) Uniqueness of the fixed point: We do not know
how to show that the map T is contractive. Our idea is to introduce a new operator T by
conjugating T with the logarithm map and show that T is contractive. For q ≥ 1, let Pq(R+)

be the space of probability distributions on R+ = [0,∞) with
∫

xqν(dx) < ∞. The map T
from Pq(R+) to Pq(R+) is defined as

T = φ ◦ T ◦ φ−1

for φ(x) = − logx, where φ−1(ν) and φ(μ) are understood as the push-forward measures of
μ ∈ P([0,1]) and ν ∈ Pq(R+) under φ and φ−1, respectively. To show that T (μ) = μ has a
unique solution, it is enough to show that T (ν) = ν has a unique solution in Pq(R+). To ac-
complish this, we equip Pq(R+) with the Wasserstein q-distance and argue (see Lemma 6.4)
that T is indeed a contraction for sufficiently large q ≥ 1 (depending on β).

(ii) Independence of spin variances: The most technical step in our argument is to show
that for any fixed n ≥ 1, the first n terms((

A−1
N

)
11, . . . ,

(
A−1

N

)
nn

)
in the main diagonal of A−1

N are asymptotically independent as N tends to infinity. To prove
this, we shall view τ := σ − 〈σ 〉 as a centered spin configuration sampled from a (centered)
Gibbs measure Gc

N corresponding to the Hamiltonian,

XN(τ) := β
∑
k≤M

( p∑
r=1

gk,I (k,r)τI (k,r)

)2

.

In view of (2), τ ∼ N(0,A−1
N ) and it suffices to show that 〈|τ1|2〉c, . . . , 〈|τn|2〉c are asymp-

totically independent, where 〈·〉c is the Gibbs expectation associated to the measure Gc
N . We

adapt an analogous treatment from the study of the diluted ST model in [27], Section 6.7,
by showing that the generalized overlaps are concentrated under the annealed measure E〈·〉c.
More precisely, for any κ ≥ 1 and any function φ :Rκ →R of mild growth,

lim
N→∞E

〈∣∣Q −E〈Q〉c∣∣〉c = 0(6)

for Q := N−1 ∑N
i=1 φ(τ 1

i , . . . , τ κ
i ), where τ 1, . . . , τ κ are i.i.d. replicas drawn from Gc

N . Once
this is valid, we utilize the symmetry among the replicas and spins to conclude that the en-
tries in any weak limit of (〈|τ1|2〉c, . . . , 〈|τn|2〉c) must be independent. Although this de-
duction will be detailed in the proof of Proposition 5.1, to foster intuition, we provide a
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quick explanation on how (6) implies that 〈|τ1|2〉c and 〈|τ2|2〉c are asymptotically uncorre-
lated. Let τ 1 and τ 2 be two replicas drawn from Gc

N . Consider Q1 := N−1 ∑N
i=1 |τ 1

i |2 and
Q2 := N−1 ∑N

i=1 |τ 2
i |2. Then we can write

E
〈|τ1|2〉c〈|τ2|2〉c = E

〈∣∣τ 1
1
∣∣2∣∣τ 2

2
∣∣2〉c

= 1

N(N − 1)

∑
1≤i 
=j≤N

E
〈∣∣τ 1

i

∣∣2∣∣τ 2
j

∣∣2〉c

≈ 1

N2

∑
1≤i,j≤N

E
〈∣∣τ 1

i

∣∣2∣∣τ 2
j

∣∣2〉c = E〈Q1Q2〉c

≈ E〈Q1〉cE〈Q2〉c = E
〈|τ1|2〉cE〈|τ2|2〉c,

where the first approximation follows because the N diagonal terms have a vanishing contri-
bution, while the second approximation utilizes the concentrations of Q1 and Q2. Addition-
ally, the second and last equalities use the symmetry of the spins in i.

The justification of (6) relies on showing two concentrations,

lim
N→∞E

〈∣∣Q − 〈Q〉c∣∣〉c = 0(7)

and

lim
N→∞E

∣∣〈Q〉c −E〈Q〉c∣∣ = 0.(8)

To this end, we consider the coupled Hamiltonian,

XN

(
τ 1)+ · · · + XN

(
τκ)− λNQ

(
τ 1, . . . , τ κ),

and the associated Gibbs expectation 〈·〉cλ and free energy Fc
N(λ). First of all, from the con-

vexity of the Hamiltonian XN , it can be checked that the Gibbs measure associated to this
coupled Hamiltonian is strictly log-concave for small enough λ and as a result, the Brascamp–
Lieb inequality (see [5] or [27], Theorem 3.1.4) readily implies that there exists a constant
K > 0 such that E〈|Q − 〈Q〉cλ|2〉cλ ≤ K/N for any |λ| small enough and N ≥ 1. In particular,
this implies (7). Next, to show (8), we use the fact that d

dλ
F c

N(λ) = 〈Q〉cλ and the convexity
of Fc

N(λ) to bound

E
〈∣∣〈Q〉c −E〈Q〉c∣∣〉c ≤ 1

λ

(
E
∣∣Fc

N(λ) −EFc
N(λ)

∣∣+E
∣∣Fc

N(−λ) −EFc
N(−λ)

∣∣
+E

∣∣Fc
N(0) −EFc

N(0)
∣∣)+EFc

N
′
(λ) −EFc

N
′
(−λ).

Here, the last term can be controlled by

EFc
N

′
(λ) −EFc

N
′
(−λ) =

∫ λ

−λ
EFc

N
′′
(t) dt = N

∫ λ

−λ
E
〈(
Q − 〈Q〉ct

)2〉c
t dt ≤ 2Kλ

after using the bound in the first part. Therefore, as long as we can show that there exists
some constant K ′ > 0 such that

max|t |≤λ
E
∣∣Fc

N(t) − Fc
N(t)

∣∣ ≤ K ′
√

N
(9)

for all small enough λ and N ≥ 1, taking λ = N−1/4 would then yield the second concen-
tration since E〈|〈Q〉 − E〈Q〉c|〉c ≤ (3K ′ + 2K)N−1/4. We achieve (9) by making use of the
martingale difference technique. At the center of our argument, we will need a fourth-moment
bound E[〈|τ 


i |4〉cλ|M] ≤ K ′′(1 + (M/N)2). The subtlety here is that this bound appears to be
far from reach if λ is fixed, but fortunately, it holds when λ vanishes in the order N−1/4 (see
Lemma 4.3) and this is good enough to establish (9).
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REMARK 2.1. In [27], Section 6.7, a similar strategy for (6) was also adapted to deal
with the concentration of Q in the diluted ST model, where the Hamiltonian is Lipschitz
and this condition is strong enough to show that the exponential moment of the spins is
bounded. In contrast, our Hamiltonian is quadratic and this results in extra complications in
the analysis. For instance, controlling the fourth moment of τ1 becomes substantially involved
(see Lemma 4.3 below), which is the most crucial step in proving (9).

(iii) Convergence of (A−1
N )NN . Next, we continue to show that (A−1

N )NN converges weakly
to μ, where μ is the unique solution of T (μ) = μ. Clearly, ((A−1

N )NN)N≥1 is a tight family of
random variables since 0 ≤ (A−1

N )NN ≤ 1. The key step is to show that for large N , (A−1
N )NN

obeys the following approximate distributional recursion:

(10)
(
A−1

N

)
NN

d≈ T
((

A−1
N

)
NN

)
.

In the above, T (X) denotes the random variable with law T (μX) for X ∼ μX . If (10) holds,

then any limit point Z of (A−1
N )NN would satisfy Z

d= T (Z). So, by the uniqueness of the
fixed point of μ = T (μ), we must have Z ∼ μ. This guarantees the weak convergence
of (A−1

N )NN to μ. Once we prove that the marginals converge, the joint convergence of
((A−1

N )11, . . . , (A
−1
N )nn) easily follows from their asymptotic independence.

To establish (10), using the thinning property of the Poisson random variable, we di-
vide v1, . . . , vM into two groups (uk)k≤Q and (wk)k≤R , where Q ∼ Poisson(α(N − p)),
R ∼ Poisson(αp), and they are independent. In the first group, N does not appear in
the index set (I (k,1), . . . , I (k,p)) of vk and in the second, N appears as one of indices
I (k,1), . . . , I (k,p). Thus we can write

AN
d= I + 2β

∑
k≤Q

uku
T
k + 2β

∑
k≤R

wkw
T
k = BN + 2β

∑
k≤R

wkw
T
k ,

where the vector wk can be represented as

wk =
p−1∑
r=1

ξk,Ī (k,r)eĪ (k,r) + ζkeN,

where (ei)1≤i≤N is the standard basis, (ζk)k≥1 and (ξk,i)k≥1,1≤i≤N−1 are i.i.d. sampled from
D, (Ī (k,1), . . . , Ī (k,p − 1))k≥1 are i.i.d. uniformly sampled from {(i1, . . . , ip−1) : 1 ≤ ir ≤
N − 1, all distinct}, and these are all independent of each other.

We view AN as a finite-rank perturbation of BN and use the Woodbury matrix identity to
write (A−1

N )NN in terms of entries of B−1
N and obtain that

(11)
(
A−1

N

)
NN ≈

(
1 +

R∑
k=1

2βζ 2
k

1 + 2β
∑p−1

r=1 ξ2
k,Ī (k,r)

(B−1
N )Ī (k,r),Ī (k,r)

)−1

.

In the above approximation, the error involves O(R) entries of B−1
N of the form (i)

(B−1
N )Ī (k,r),Ī (k,s), 1 ≤ r 
= s ≤ p − 1, 1 ≤ k ≤ R, and (ii) (B−1

N )Ī (l,r),Ī (k,s),1 ≤ r, s ≤
p − 1,1 ≤ k 
= l ≤ R. Since the indices Ī (k, r) are independent of BN , to control the ap-
proximation error we need to show that an off-diagonal entry of B−1

N , chosen randomly inde-
pendent of BN , is small. This can be argued easily based on the identity

(
B−2

N

)
ii =

N∑
j=1

((
B−1

N

)
ij

)2
.
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Taking expectation, using the fact that 0 ≤ (B−1
N )ii , (B−2

N )ii ≤ 1, and the symmetry of distri-
bution of off-diagonal entries of B−1

N , we obtain that

1 ≥ (N − 1)E
((

B−1
N

)
12

)2
,

yielding that E|(B−1
N )12| ≤ (N − 1)−1/2.

Now define

A′
N = BN + 2β

∑
k≤R′

(
w′

k

)(
w′

k

)T
,

where (R′, (w′
k)k≥1) is an independent copy of (R, (wk)k≥1), which is also independent of

BN . Clearly, AN and A′
N have the same distribution. From the resolvent identity and the fact

that random off-diagonal entries of B−1
N are small, we can derive that

(12)
(
B−1

N

)
Ī (k,r),Ī (k,r) ≈ (

A′
N

)−1
Ī (k,r),Ī (k,r)

d= (
A−1

N

)
Ī (k,r),Ī (k,r).

Combining (11) and (12) and noting that the diagonal entries (A−1
N )Ī (k,r),Ī (k,r),1 ≤ k ≤ R,

1 ≤ r ≤ p − 1 are asymptotically independent of each other and have the same distribution
as (A−1

N )NN , the equation (10) follows as desired.

2.2. Proof sketch of Theorem 1.2. First of all, we verify that FN is concentrated. Recall
the formula (3) of FN . The second term can be written as the empirical spectral measure
μAN−I of AN − I as

log detAN

2N
= 1

2

∫
log(1 + λ)dμAN−I (λ),

whose concentration follows from an application of the rank inequality for the empirical
spectral measure and the Efron–Stein inequality. However, the first term is more delicate as
it can not be related to any such empirical spectral measure. We establish the desired concen-
tration by a key observation that the symmetry of the disorder distribution D implies that the
off-diagonal entries of A−1

N are centered and are uncorrelated; see Lemma 3.2. Combining
them together, we arrive at

FN ≈ EFN = h2

2N

N∑
i=1

E
(
A−1

N

)
ii + E log detAN

2N
= h2

2
E
(
A−1

N

)
11 + E log detAN

2N
.

In the previous subsection, we have seen that the term (A−1
N )11 converges weakly to μ(α) and

hence, so do their expectations. It remains to compute E log detAN . For this purpose, letting
Sl = I + 2β

∑l
k=1 vkv

T
k for 0 ≤ l ≤ M , we perform a cavity computation in l by writing

1

N
E log detAN = 1

N

M−1∑
l=0

log
detSl+1

detSl

= E
1

N

M−1∑
l=0

log
(
1 + 2βvT

l+1S
−1
l vl+1

)
,

where the last equality used the matrix determinant lemma. We use M/N ≈ α and notice that
vl+1 is independent of S−1

l to approximate the right-hand side as

αE
1

M

M−1∑
l=0

log
(
1 + 2βvT

l+1S
−1
l vl+1

) ≈ αE
1

M + 1

M∑
l=0

log
(
1 + 2βvT S−1

l v
)

= αE log
(
1 + 2βvT S−1

L v
)
,

where v is a copy of v1 and L, conditionally on M , is uniform from {0,1, . . . ,M} and inde-
pendent of everything else. It follows from a property of Poisson distribution (see Lemma 7.1)
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that SL has same distribution of as AN , with the Poisson (αN) number of edges replaced by
Poisson(αUN), where U is an independent uniform random variable on [0,1]. As argued in
the third part of the last subsection, given U = x, (S−1

L )ij ≈ 0 for all i 
= j . So, the quadratic
form vT S−1

L v essentially depends only on p of the main diagonal terms in S−1
L , which are

asymptotically independent and equal to μ(αx) in distribution if U = x. Averaging over x

gives rise to the integral formula in Theorem 1.2.

3. Concentration of the free energy. The main result of this section establishes the
concentration of the free energy.

THEOREM 3.1. There exists a positive constant K independent of N such that

E|FN −EFN | ≤ K√
N

∀N ≥ 1.

Before we turn to the proof of Theorem 3.1, we explain why GN ∼ N(μN,A−1
N ) and

the validity of (3), where AN is defined in (2) and μN = hA−1
N 1. Henceforth, we drop the

subscript N in AN and μN for notational clarity. Since

−HN(σ) − 1

2
‖σ‖2 = −1

2
σT Aσ + hσT 1 = −1

2
(σ − μ)T A(σ − μ) + h2

2
1T A−11

for any bounded measurable function f , we can rewrite

∫
f (σ)e−HN(σ)ηN(dσ) = e

h2
2 1T A−11

(2π)N/2

∫
f (σ)e− 1

2 (σ−μ)T (A−1)−1(σ−μ) dσ

and compute

(13)

∫
e−HN(σ)ηN(dσ) = e

h2
2 1T A−11

(2π)N/2

∫
e− 1

2 (σ−μ)T (A−1)−1(σ−μ) dσ

= e
h2
2 1T A−11 det(A)1/2.

Consequently,

〈
f (σ)

〉 = 1

(2π)N/2 det(A)1/2

∫
f (σ)e− 1

2 (σ−μ)T (A−1)−1(σ−μ) dσ.

In other words, under 〈·〉, σ is a multinormal random vector with mean μ = hA−11 and
covariance matrix A−1. From (13), we also see that

FN = h2

2

1T A−11

N
+ log detA

2N
.(14)

We establish the concentration of the free energy by showing that the two terms on the right-
hand side are concentrated, which are based on the next two subsections.

3.1. Mean and covariance of A−1
ij . The following lemma is one of the key ingredients in

this paper, which studies the mean and covariance of the entries of A−1
ij and will be used to

show the concentration of the first part in (14).
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LEMMA 3.2. We have that

EA−1
12 = 0,(15)

EA−1
12 A−1

13 = 0,(16)

EA−1
12 A−1

34 = 0.(17)

We need a lemma before we turn to the proof of Lemma 3.2.

LEMMA 3.3. For any 
 ≥ 0 and 1 ≤ i 
= j ≤ N , conditionally on M and{
I (k,1), . . . , I (k,p)

}
1≤k≤M,

A

ij can be written as a sum of the terms of the form P(g)Q(g), where P is a polynomial and

is even in each coordinate and

Q(g) =
M∏

k=1

N∏
b=1

g
dk(b)
k,b

for some nonnegative integers dk(b)’s satisfying that
∑M

k=1 dk(b) is even for b 
= i, j and∑M
k=1 dk(i) and

∑M
k=1 dk(j) are both odd.

PROOF. Without loss of generality, we take i = 1 and j = 2. When 
 = 0, our assertion
obviously holds since A


12 = 0. Henceforth, we assume that 
 ≥ 1. For 1 ≤ k ≤ M , let I(k) :=
{I (k,1), . . . , I (k,p)}. From the definition of A, for any indices i and j , we have

Aij = δij + 2β
∑

k:i,j∈I(k)

gk,igk,j .

We write

A

12 = ∑

i1,...,i
−1

Ai0i1Ai1i2 · · ·Ai
−1i
 ,

where the sum is over all possible indices i0 = 1, i1, i2, . . . , i
−1, i
 = 2 from {1,2, . . . ,N}.
Given a choice of such indices i0, i1, . . . , i
−1, i
, define R = {0 ≤ j ≤ 
 − 1 : ij = ij+1} to
be the set that records the positions of consecutive repetition on the sequence. We then can
separate out the product as

Ai0i1Ai1i2 · · ·Ai
−1i
 = ∏
j∈R

Aij ij · ∏
j∈Rc

Aij ij+1 .

The function

P(g) := ∏
j∈R

Aij ij = ∏
j∈R

(
1 + 2β

∑
k:ij∈I(k)

g2
k,ij

)

is a polynomial which is even in each coordinate. The other product can further be expressed
as the sum ∏

j∈Rc

Aij ij+1 = ∑
1≤kj≤M,j∈Rc:
ij ,ij+1∈I(kj )

∏
j∈Rc

(2βgkj ,ij gkj ,ij+1).

For a fixed sequence i0, i1, . . . , i
−1, i
 and for a fixed choice of 1 ≤ kj ≤ M , j ∈ Rc such
that ij , ij+1 ∈ I(kj ), we define

Q(g) := ∏
j∈Rc

(2βgkj ,ij gkj ,ij+1).
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It remains to show that Q satisfies the desired properties stated in the lemma. If we view
the sequence (ij )j∈Rc , obtained from the original sequence i0, i1, . . . , i
−1, i
 by removing
consecutive repetitions, as a “path” π from 1 to 2, then the following observations are true.
If π visits any index (or “vertex”) i other than 1 and 2, then it must enter and exit i equal
number of times. As a result, such i will appear an even number of times as a “vertex index”
(i.e., the second index) of the disorder g in Q. On the contrary, since 1 and 2 are terminal
vertices, the numbers of times π enters and exits each of them are always differed by one
in absolute value. Therefore, both 1 and 2 will appear an odd number of times as a “vertex
index” of g in Q. This completes the proof. �

PROOF OF LEMMA 3.2. We only handle EA−1
12 A−1

13 = 0 as the arguments for the other
two statements are the same. First of all, we consider the case that D is bounded. Since A ≥ I ,
we can express

A−1 =
∫ ∞

0
e−tA dt.

Also, since e−tA ≤ e−tI , we can bound∣∣(e−tA)
ij

∣∣ ≤ √(
e−tA

)
ii

(
e−tA

)
jj ≤

√(
e−tI

)
ii

(
e−tI

)
jj ≤ e−t .

Consequently, from the Fubini theorem,

EA−1
12 A−1

13 =
∫ ∞

0

∫ ∞
0

E
(
e−tA)

12

(
e−sA)

13 dt ds.

Our assertion would hold as long as we establish that E(e−tA)12(e
−sA)13 = 0 for all s, t ≥ 0.

It suffices to show that EA

12A


′
13 = 0 for all 
, 
′ ≥ 0. To see this, from Lemma 3.3, condi-

tionally on M and I , we expand A

12 and A
′

13 as sums of the terms of the forms P(g)Q(g)

and P ′(g)Q′(g), respectively, where P and P ′ are polynomials and even in each coordinate
and

Q(g) =
M∏

k=1

N∏
i=1

g
dk(i)
ki and Q′(g) =

M∏
k=1

N∏
i=1

g
d ′
k(i)

ki ,

where
∑M

k=1 dk(1),
∑M

k=1 dk(2),
∑M

k=1 d ′
k(1), and

∑M
k=1 d ′

k(3) are all odd and
∑M

k=1 dk(i) for
i 
= 1,2 and

∑M
k=1 d ′

k(i) for i 
= 1,3 are all even. Consequently, from the symmetry of D,
conditionally on M and I (k, r)’s, if we replace (gk2)1≤k≤M by (−gk2)1≤k≤M , then

P(g)Q(g)P ′(g)Q′(g)
d= P(g)P ′(g)

(
M∏

k=1

(−gk2)
dk(2)+d ′

k(2)

)(∏
i 
=2

M∏
k=1

g
dk(i)+d ′

k(i)

k1

)

= −P(g)P ′(g)

(
M∏

k=1

g
dk(2)+d ′

k(2)

k2

)(∏
i 
=2

M∏
k=1

g
dk(i)+d ′

k(i)

k1

)

= −P(g)Q(g)P ′(g)Q′(g),

where we used the symmetry in P , P ′ and the fact that
∑M

k=1 dk(2) is odd and
∑M

k=1 d ′
k(2)

is even. Hence, by the boundedness of D and the dominated convergence theorem,
E[P(g)Q(g)P ′(g)Q′(g)] = 0, and thus, EA


12A

′
13 = 0.

Next, the validity EA−1
12 A−1

13 = 0 without the boundedness of D can be obtained by
first truncating D to be supported on [−c, c], noting that the corresponding Ac satisfies
|((Ac)−1)ij | ≤ 1 for any c, and then sending c to infinity in E((Ac)−1)12((A

c)−1)13 = 0
by the dominated convergence theorem. This completes our proof. �
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3.2. Concentration of linear statistics of eigenvalues. Let F be a symmetric matrix. For
any real-valued continuous function f on R, f (F ) := Uf (�)UT is a well-defined symmetric
matrix, where F has the spectral decomposition U�UT with U being an orthonormal matrix
and � being a diagonal matrix of eigenvalues of F . In all our cases, the matrix F will be
nonnegative definite, and hence we are allowed to define f (F ) whenever f is defined on
R+. Denote L = 2β

∑
k≤M vkv

T
k . The following lemma controls the variance of the trace of

f (L).

LEMMA 3.4. For any continuous function f of bounded variation defined on R+, we
have that

1

N2 Var
(
trf (L)

) ≤ 8α‖f ‖2
BV

N
.

PROOF. We recall the rank inequality for the empirical spectral distribution of matrices
(see, e.g., [4]): for M1, M2 two N × N Hermitian matrices with rank(M1 − M2) = r ,∣∣∣∣

∫
f (x)μM1(dx) −

∫
f (x)μM2(dx)

∣∣∣∣ ≤ r

N
‖f ‖BV,(18)

for any continuous function f of bounded variation, where μMi
is the empirical spectral

distribution of the matrix Mi .
Now, let f be any continuous function of bounded variation. For any 1 ≤ k ≤ M , let v′

k be
an independent copy of vk and let

Lk = L − 2β
(
vkv

T
k − v′

kv
′
k
T )

.

In other words, Lk is obtained from L by replacing vkv
T
k by v′

kv
′
k
T . Since rank(L − Lk) ≤ 2,

the rank inequality implies that∣∣∣∣ 1

N
trf (L) − 1

N
trf (Lk)

∣∣∣∣ =
∣∣∣∣
∫

f (x)μL(dx) −
∫

f (x)μLk
(dx)

∣∣∣∣ ≤ 2‖f ‖BV

N
.

Consequently, from the Efron–Stein inequality,

1

N2 Var
(
trf (L)|M) ≤ 2M‖f ‖2

BV

N2 .(19)

Similarly, conditionally on g and I , if M ′ is an independent copy of M and L′ :=∑
k≤M ′ vkv

T
k , then rank(L − L′) ≤ |M ′ − M| and

∣∣∣∣ 1

N
trf (L) − 1

N
trf

(
L′)∣∣∣∣ =

∣∣∣∣
∫

f (x)μL(dx) −
∫

f (x)μL′(dx)

∣∣∣∣ ≤ ‖f ‖BV|M − M ′|
N

and from Jensen’s inequality,

1

N2 Var
(
trf (L)|g,I

)≤ ‖f ‖2
BVE|M − M ′|2

N2 = 2α‖f ‖2
BV

N
.

This and (19) together completes the proof since

Var
(
trf (L)

) ≤ 2E
[
Var

(
trf (L)|M)]+ 2E

[
Var

(
trf (L)|g,I

)]
. �
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3.3. Proof of Theorem 3.1. In view of (14), the proof of Theorem 3.1 follows directly
from Lemmas 3.5 and 3.6 below.

LEMMA 3.5. There exists a constant K > 0 independent of N such that

E

∣∣∣∣ 1

N
1T A−11 − 1

N
E1T A−11

∣∣∣∣2 ≤ K

N
.

PROOF. From (15), we can write

(20)

E

∣∣∣∣ 1

N
1T A−11 − 1

N
E1T A−11

∣∣∣∣2 = E

∣∣∣∣∣ 1

N

N∑
i=1

(
A−1

ii −EA−1
ii

)+ 1

N

∑
i 
=j

A−1
ij

∣∣∣∣∣
2

≤ 2E

∣∣∣∣∣ 1

N

N∑
i=1

(
A−1

ii −EA−1
ii

)∣∣∣∣∣
2

+ 2E
∣∣∣∣ 1

N

∑
i 
=j

A−1
ij

∣∣∣∣2.
To control the second term, note that 0 ≤ A−2

11 ≤ 1 so that

1 ≥ EA−2
11 =

N∑
i=1

EA−1
1i A−1

i1 = E
∣∣A−1

11

∣∣2 + (N − 1)E
∣∣A−1

12

∣∣2,
which implies that (N − 1)E|A−1

12 |2 ≤ 1, and thus, this together with (16) and (17) yields that

E

∣∣∣∣ 1

N

∑
i 
=j

A−1
ij

∣∣∣∣2 = 1

N2

∑
i 
=j

E
∣∣A−1

ij

∣∣2 = N − 1

N
E
∣∣A−1

12

∣∣2 ≤ 1

N
.

Next, we handle the first term of (20). Note that if we take f (x) = 1/(1+x) for x ∈R+, then
f (L) = A−1 and from Lemma 3.4 and noting that ‖f ‖BV = 1,

E

∣∣∣∣∣ 1

N

N∑
i=1

(
A−1

ii −EA−1
ii

)∣∣∣∣∣
2

= 1

N2 Var
(
trA−1) ≤ 16α

N
.

This completes our proof. �

LEMMA 3.6. There exists a constant K > 0 independent of N such that

E

∣∣∣∣ 1

N
log detA − 1

N
E log detA

∣∣∣∣ ≤ K√
N

.

PROOF. For any c > 0, let fc(x) = log(1 + x ∧ c) if x ≥ 0. Recall L from Lemma 3.4
and let λi(L) be the eigenvalues of L. Write

log det(I + L) = trfc(L) + ∑
i:λi(L)>c

log
(
1 + λi(L)

)− log(1 + c)#
{
i : λi(L) > c

}

so that ∣∣∣∣ 1

N
log det(I + L) − 1

N
trfc(L)

∣∣∣∣
≤ 1

N

∑
i:λi(L)>c

log
(
1 + λi(L)

)+ log(1 + c)

N
#
{
i : λi(L) > c

}

≤ 1

N

∑
i:λi(L)>c

λi(L)1/2 + log 2(1 + c)

N
#
{
i : λi(L) > c

}
,
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where the second inequality used 1 + x ≤ 2ex1/2
for x > 0. To control this inequality, from

the Cauchy–Schwarz and Markov inequalities, we obtain

1

N
E#

{
i : λi(L) > c

} ≤ E trL

cN

and

1

N
E

∑
i:λi(L)>c

λi(L)1/2 ≤ E

(
#{i : λi(L) > c}

N

)1/2( trL

N

)1/2
≤ E trL√

cN
.

Since

1

N
E trL = 2β

N
E

M∑
k=1

p∑
r=1

g2
k,I (k,r) = 2βpαEg2

1,1,

putting these inequalities together yields that

E

∣∣∣∣ 1

N
log det(I + L) − 1

N
trfc(L)

∣∣∣∣ ≤ 2βαpEg2
1,1

(
1√
c

+ log 2(1 + c)

c

)
(21)

On the other hand, note that ‖fc‖BV = log(1 + c) so that from Lemma 3.4,

E

∣∣∣∣ 1

N
trfc(L) − 1

N
E trfc(L)

∣∣∣∣ ≤ 8α log2(1 + c)

N
.

Plugging c = N into these two inequalities yields the desired result. �

4. Concentration of the generalized multioverlap. Let 〈·〉c be the Gibbs measure as-
sociated to the partition function

∫
e−XN(τ)ηN(dτ), where

XN(τ) := β

M∑
k=1

( p∑
r=1

gk,I (k,r)τI (k,r)

)2

.

The XN here is different from HN by dropping out the external field term, that is, h = 0.
While σ ∼ 〈·〉 is N(μ,A−1) as explained in Section 3, we see that τ ∼ 〈·〉c is N(0,A−1).

Let κ ≥ 1 and f :Rκ → [−1,1] be a smooth function satisfying that∣∣f (x) − f
(
x′)∣∣ ≤ ∥∥x − x′∥∥ ∀x, x′ ∈ R

κ(22)

and

−1

4
I ≤ �2f (x) ≤ 1

4
I ∀x ∈ R

κ .(23)

For i.i.d. samples τ 1, . . . , τ κ from 〈·〉c, denote �τ = (τ 1, . . . , τ κ) and

‖�τ‖ =
√∥∥τ 1

∥∥2 + · · · + ∥∥τκ
∥∥2

.

Define the generalized multioverlap by

Q = Q(�τ) = 1

N

N∑
i=1

f
(
τ 1
i , . . . , τ κ

i

)
.

The main result of this section is the following concentration.

PROPOSITION 4.1. Assume that D is bounded. There exists a constant K > 0 (depending
on α, β , κ and D) such that

E
〈∣∣Q −E〈Q〉c∣∣〉c ≤ K

N1/4 ∀N ≥ 1.
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For the rest of this section, we establish this proposition in three subsections. Throughout
our entire argument as well as in the statements of the lemmas, the letters K , K ′, K ′′, etc.
stand for deterministic constants dependent on α, β , κ and D and independent of N , but they
might be different from each occasion.

4.1. Moment controls. For any |λ| ≤ 1, define an auxiliary free energy by

Fc
N(λ) = 1

N
log

∫
e−∑κ


=1 XN(τ
)+λNQ(�τ)ηN(d �τ).

Denote by 〈·〉cλ the Gibbs expectation associated to Fc
N(λ). In this section, we establish two

moment bounds for the spin configuration sampled from 〈·〉cλ.

LEMMA 4.2. Assume that D is bounded. For any n ≥ 1, there exists a constant K > 0
such that for all |λ| ≤ 1 and N ≥ 1,

〈‖�τ‖2n〉c
λ ≤ KNn

(
1 + M

N

)n

.

PROOF. First of all, we claim that there exists a constant K such that

〈
e

1
4 ‖�τ‖2 〉c

λ ≤ eK(
∑M

k=1 ‖vk‖2+N),

where we recall that vk’s are the vectors defined in (2). To see this, note that∫
e

1
4 ‖�τ‖2−∑κ


=1 XN(τ
)+λNQ(�τ )ηN(d �τ) ≤ 1

(2π)κN/2

∫
e

1
4 ‖�τ‖2− 1

2 ‖�τ‖2+|λ|N d �τ

= e|λ|N

(2π)κN/2

∫
e− 1

4 ‖�τ‖2
d �τ ≤ KN

for some K > 0 independent of λ. On the other hand, by Jensen’s inequality,

log
∫

e−∑κ

=1 XN(τ
)+λNQ(�τ)ηN(d �τ) ≥ −

∫ κ∑

=1

XN

(
τ 
)ηN(d �τ) − N

= −βκ

M∑
k=1

‖vk‖2 − N.

Putting these two inequalities together yields our claim. Finally, recall from [27], Lem-
ma 3.1.8, that for any nonnegative random variable Y ,

EYn ≤ 2n(nn + (logE expY)n
)
, n = 1,2,3, . . . .

Our proof is completed by applying this inequality with Y = ‖�τ‖2 and using the boundedness
of D. �

LEMMA 4.3. Assume that D is bounded. There exists a constant K > 0 such that for any
N ≥ 1 and |λ| ≤ 1/N1/4,

E
[〈∣∣τ 


i

∣∣4〉c
λ|M

] ≤ K

(
1 +

(
M

N

)2)

for all 1 ≤ i ≤ N and 1 ≤ 
 ≤ κ .
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PROOF. For any fixed 1 ≤ 
 ≤ κ , by symmetry among the spins τ 

1 , . . . , τ 


N , it can be
seen that E[〈|τ 


i |4〉cλ|M] are all the same for 1 ≤ i ≤ N . Although they might vary in 
, our
proof does not distinguish between different 
’s and we shall establish our assertion only
for E[〈|τ 1

1 |4〉cλ|M]. To begin with, note that for any smooth φ of moderate growth, that is,

lim‖�x‖→∞ |φ(�x)|e−t‖�x‖2 = 0 for all t > 0, we can write

〈
τ 1

1 φ(�τ)
〉c
λ = 〈τ 1

1 φ(�τ)eλNQ(�τ )〉c
〈eλNQ(�τ )〉c .

In the numerator, since τ 1, . . . , τ κ are i.i.d. samples from N(0,A−1), we can apply the Gaus-
sian integration by parts for τ 1

1 to see that

〈
τ 1

1 φ(�τ)eλNQ(�τ )〉c =
N∑

j=1

A−1
1j

〈(
∂τ 1

j
φ(�τ) + λNφ(�τ)∂τ 1

j
Q(�τ)

)
eλNQ(�τ )〉c

=
N∑

j=1

A−1
1j

〈(
∂τ 1

j
φ(�τ) + λφ(�τ)∂x1f (�τj )

)
eλNQ(�τ )〉c

with the understanding that �τj = (τ 1
j , . . . , τ κ

j ). Consequently,

〈
τ 1

1 φ(�τ)
〉c
λ =

N∑
j=1

A−1
1j

〈
∂τ 1

j
φ(�τ)

〉c
λ + λ

〈
φ(�τ)

N∑
j=1

A−1
1j ∂x1f (�τj )

〉c

λ

.(24)

In particular, we have

〈∣∣τ 1
1
∣∣4〉c

λ = 3A−1
11

〈∣∣τ 1
1
∣∣2〉c

λ + λ

〈(
τ 1

1
)3

N∑
j=1

A−1
1j ∂x1f (�τj )

〉c

λ

.

Applying (24) one more time for the second term gives

〈∣∣τ 1
1
∣∣4〉c

λ = 3A−1
11

〈∣∣τ 1
1
∣∣2〉c

λ + 2λA−1
11

〈
τ 1

1

N∑
j=1

A−1
1j ∂x1f (�τj )

〉c

λ

+ λ

〈∣∣τ 1
1
∣∣2 N∑

j=1

∣∣A−1
1j

∣∣2∂x1x1f (�τj )

〉c

λ

+ λ2

〈∣∣τ 1
1
∣∣2∣∣∣∣∣

N∑
j=1

A−1
1j ∂x1f (�τj )

∣∣∣∣∣
2〉c

λ

.

Observe that if we switch τ 1
1 to τ 1

i , the same formula remains valid with the only change
that τ 1

1 A−1
11 is replaced by τ 1

i A−1
ii and A−1

1j is replaced by A−1
ij . Consequently, adding

〈|τ 1
1 |4〉cλ, . . . , 〈|τ 1

N |4〉cλ together and using symmetry among the spins, we arrive at

NE
〈∣∣τ 1

1
∣∣4〉c

λ = 3E
N∑

i=1

A−1
ii

〈∣∣τ 1
i

∣∣2〉c
λ + 2λE

〈
N∑

i,j=1

A−1
ij

(
A−1

ii τ 1
i

)
∂x1f (�τj )

〉c

λ

(25)

+ λE

〈
N∑

i,j=1

∣∣A−1
ij

∣∣2∣∣τ 1
i

∣∣2∂x1x1f (�τj )

〉c

λ

(26)

+ λ2
E

〈
N∑

i=1

∣∣∣∣∣τ 1
i

N∑
j=1

A−1
ij ∂x1f (�τj )

∣∣∣∣∣
2〉c

λ

.(27)
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We control these terms as follows. To simplify our notation, we denote E[·|M] by E[·]. Recall
that 0 ≤ A−1

ii ≤ 1 and ‖A−1‖ ≤ 1. It follows that (25) can be controlled by using Lemma 4.2,

E

N∑
i=1

A−1
ii

〈∣∣τ 1
i

∣∣2〉c
λ ≤ E

〈∥∥τ 1∥∥2〉c
λ ≤ K(M + N),(28)

E

〈∣∣∣∣∣
N∑

i,j=1

A−1
ij

(
A−1

ii τ 1
i

)
∂x1f (�τj )

∣∣∣∣∣
〉c

λ

≤ E
〈∥∥τ 1∥∥∥∥∂x1f (�τ)

∥∥〉c
λ ≤ K

√
N(M + N),(29)

where ∂x1f (�τ) := (∂x1f (�τ1), . . . , ∂x1f (�τN)). Next, since the Hadamard product A−1 ◦ A−1

satisfies ‖A−1 ◦ A−1‖ ≤ ‖A−1‖2 ≤ 1, (26) can be handled by

(30)

E

〈
N∑

i,j=1

∣∣A−1
ij

∣∣2∣∣τ 1
i

∣∣2∂x1x1f (�τj )

〉c

λ

≤ E
∥∥A−1 ◦ A−1∥∥〈( N∑

i=1

∣∣τ 1
i

∣∣4)1/2( N∑
j=1

∣∣∂x1x1f (�τj )
∣∣2)1/2〉c

λ

≤ K
√

N

(
E

〈
N∑

i=1

∣∣τ 1
i

∣∣4〉c

λ

)1/2

= KN
(
E
〈∣∣τ 1

1
∣∣4〉c

λ

)1/2
.

To handle (27), we use the identity ‖x‖2 = sup‖a‖=1(a
T x)2 to write

E

〈
N∑

i=1

∣∣∣∣∣τ 1
i

N∑
j=1

A−1
ij ∂x1f (�τj )

∣∣∣∣∣
2〉c

λ

= E

〈
sup

‖a‖=1

(
N∑

i,j=1

A−1
ij

(
aiτ

1
i

)
∂x1f (�τj )

)2〉c

λ

≤ KNE

〈
sup

‖a‖=1

∣∣∣∣∣
N∑

i=1

(
aiτ

1
i

)2

∣∣∣∣∣
〉c

λ

.

Here, the last inequality can be controlled by using the Cauchy–Schwarz inequality,

E

〈
sup

‖a‖=1

∣∣∣∣∣
N∑

i=1

(
aiτ

1
i

)2

∣∣∣∣∣
〉c

λ

≤ E

〈(
N∑

i=1

∣∣τ 1
i

∣∣4)1/2〉c

λ

≤
(
E

〈
N∑

i=1

∣∣τ 1
i

∣∣4〉c

λ

)1/2

= √
N
(
E
〈∣∣τ 1

1
∣∣4〉c

λ

)1/2
,

which implies that

E

〈
N∑

i=1

∣∣∣∣∣τ 1
i

N∑
j=1

A−1
ij ∂x1f (�τj )

∣∣∣∣∣
2〉c

λ

≤ KN
√

N
(
E
〈∣∣τ 1

1
∣∣4〉c

λ

)1/2
.(31)

Now combining (28), (29), (30) and (31) together, for any |λ| ≤ 1/N1/4,

E
〈∣∣τ 1

1
∣∣4〉c

λ ≤ K(1 + M/N) + K
(
λ
√

1 + M/N + λ2
√

N
)(
E
〈∣∣τ 1

1
∣∣4〉c

λ

)1/2

≤ K(1 + M/N) + K ′√1 + M/N
(
E
〈∣∣τ 1

1
∣∣4〉c

λ

)1/2

for some constant K ′ independent of N . This inequality readily implies that

E
〈∣∣τ 1

1
∣∣4〉c

λ ≤ K ′′(1 + (M/N)2). �
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4.2. Concentration of the free energy. We proceed to show that the auxiliary free energy
Fc

N(λ) is concentrated by using Section 4.1.

PROPOSITION 4.4. Assume that D is bounded. There exists a constant K > 0 such that
for any N ≥ 1 and |λ| ≤ 1/N1/4,

E
∣∣Fc

N(λ) −EFc
N(λ)

∣∣ ≤ K√
N

.

The rest of this subsection establishes this proposition. Recall I from (1). For any random
variable or random vector X, EX stands for the expectation in X only. Now, write by using
the Jensen inequality,

E
∣∣Fc

N(λ) −EFc
N(λ)

∣∣ ≤ E
∣∣Fc

N(λ) −EMFc
N(λ)

∣∣+E
∣∣EMFc

N(λ) −EMEg,IFc
N(λ)

∣∣
≤ E

∣∣Fc
N(λ) −EMFc

N(λ)
∣∣+E

∣∣Fc
N(λ) −Eg,IFc

N(λ)
∣∣.

The proof of Proposition 4.4 is completed by the following two lemmas.

LEMMA 4.5. Assume that D is bounded. There exists a constant K > 0 such that for any
N ≥ 1 and |λ| ≤ 1/N1/4,

E
∣∣Fc

N(λ) −EMFc
N(λ)

∣∣ ≤ K√
N

.

PROOF. Let M̂ be an independent copy of M . Let X̂N and F̂ c
N(λ) be equal to XN and

Fc
N(λ) with the replacement of M by M̂ . Assume that M ≤ M̂ . Since XN ≤ X̂N , we have

F̂ c
N ≤ Fc

N . On the other hand,

F̂ c
N(λ) − Fc

N(λ) = 1

N
log

〈
exp

(
−β

κ∑

=1

∑
M<k≤M̂

( p∑
r=1

gI (k,r)τ


I (k,r)

)2)〉c

λ

≥ − β

N

κ∑

=1

∑
M<k≤M ′

〈( p∑
r=1

gk,I (k,r)τ


I (k,r)

)2〉c

λ

≥ −K

N

κ∑

=1

∑
M<k≤M̂

p∑
r=1

〈∣∣τ 

I (k,r)

∣∣2〉c
λ,

where the first inequality used the Jensen inequality and the second inequality used the bound-
edness of D. Since conditionally on M and M̂ with M < M̂ , {I (k, r)}

M<k≤M̂,1≤r≤p
is inde-

pendent of {I (k, r)}1≤k≤M,1≤r≤p that appear in 〈·〉cλ, taking expectation and using symmetry
in the spins implies that on the event M < M̂ ,

E
[∣∣F̂ c

N(λ) − Fc
N(λ)

∣∣|M,M̂
] ≤ K

N
(M̂ − M)p

κ∑

=1

E
[〈∣∣τ 


1

∣∣2〉c
λ|M,M̂

]

= K

N2 (M̂ − M)pE
[〈‖�τ‖2〉c

λ|M,M̂
]
.

Since this inequality is also valid if M ≥ M̂ with the obvious replacement of M̂ − M by
M − M̂ , we conclude that after using Lemma 4.2,

E
[∣∣F̂ c

N(λ) − Fc
N(λ)

∣∣|M,M̂
] ≤ K ′

N
|M̂ − M|

(
1 + M

N

)
≤ K ′

N
|M̂ − M|

(
1 + M + M̂

N

)
.
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It follows from the Jensen inequality and the Cauchy–Schwarz inequality that

E
∣∣EMFc

N(λ) − Fc
N(λ)

∣∣ ≤ E
∣∣F̂ c

N(λ) − Fc
N(λ)

∣∣
≤ K ′

N

(
E|M̂ − M|2)1/2

(
1 + (EM2)1/2 + (EM̂2)1/2

N

)
.

Since EM2 = (αN)2 + αN and E|M̂ − M|2 = 2αN , plugging these into the last display
completes our proof. �

The next lemma controls E|Fc
N(λ) −Eg,IFc

N(λ)|2.

LEMMA 4.6. Assume that D is bounded. There exists a constant K > 0 such that for any
N ≥ 1 and |λ| ≤ 1/N1/4,

E
∣∣Fc

N(λ) −Eg,IFc
N(λ)

∣∣2 ≤ K

N
.

PROOF. Let (g̃1i )1≤i≤N and (Ĩ (1, r))1≤r≤p be independent copies of (g1i )1≤i≤N and
(I (1, r))1≤r≤p , respectively. These are also independent of each other and everything else.
Let F̃ c

N(λ) be defined as Fc
N(λ) except that we replace the component

κ∑

=1

( p∑
r=1

g1,I (1,r)τ


I (1,r)

)2

in the Hamiltonian associated to Fc
N(λ) by

κ∑

=1

( p∑
r=1

g̃1,Ĩ (1,r)
τ 


Ĩ (1,r)

)2

.

We claim that for any M ≥ 1,

E
[∣∣Fc

N(λ) − F̃ c
N(λ)

∣∣2|M] ≤ K

N2

(
1 + M2

N2

)
.(32)

To this end, let F̄ c
N(λ) be defined as Fc

N(λ) except that we delete the component

κ∑

=1

( p∑
r=1

g1,I (1,r)τ


I (1,r)

)2

from the Hamiltonian associated to Fc
N(λ). Consequently, from the Jensen inequality,

0 ≥ Fc
N(λ) − F̄ c

N(λ) ≥ − β

N

κ∑

=1

〈( p∑
r=1

g1,I (1,r)τ


I (1,r)

)2〉−

λ

,

0 ≥ F̃ c
N(λ) − F̄ c

N(λ) ≥ − β

N

κ∑

=1

〈( p∑
r=1

g̃1,Ĩ (1,r)
τ 


Ĩ (1,r)

)2〉−

λ

,

where 〈·〉−λ is the Gibbs expectation corresponding to F̄ c
N(λ). Consequently, from the bound-

edness of D and Jensen’s inequality,

∣∣Fc
N(λ) − F̃ c

N(λ)
∣∣2 ≤ K

N2

κ∑

=1

p∑
r=1

(〈∣∣τ 

I (1,r)

∣∣4〉−
λ + 〈∣∣τ 


Ĩ (1,r)

∣∣4〉−
λ

)
.
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From this, noting that (I (1, j), Ĩ (1, j))1≤j≤p do not appear in 〈·〉−λ and using the symmetry
among the spins in each τ 
 yield that whenever M ≥ 1,

E
[∣∣Fc

N(λ) − F̃ c
N(λ)

∣∣2|M] ≤ K

N2

κ∑

=1

p∑
r=1

(
E
[〈∣∣τ 


1

∣∣4〉−
λ |M]+E

[〈∣∣τ 

1

∣∣4〉−
λ |M])

≤ K ′

N2

(
1 +

(
M − 1

N

)2)
≤ K ′

N2

(
1 + M2

N2

)
,

where the last inequality used Lemma 4.3. This completes the proof of our claim.
We now turn to the proof of our assertion. Consider the filtration (Fs)s≥1 defined as F0 =

{∅,�} and for s ≥ 1, Fs = σ(gk,I (k,r) : 1 ≤ k ≤ s,1 ≤ r ≤ p). Define

ds = E
[
Fc

N(λ)|Fs,M
]−E

[
Fc

N(λ)|Fs−1,M
]
.

Then
∑M

k=1 dk = Fc
N(λ)−Eg,IFc

N(λ). Since (ds)1≤s≤M is a martingale difference, it follows
that

E
[∣∣Fc

N(λ) −Eg,IFc
N(λ)

∣∣2|M] =
M∑

k=1

E
[
d2
k |M]

.(33)

Finally, from Jensen’s inequality and symmetry, we see that for any 1 ≤ k ≤ M ,

E
[
d2
k |M] ≤ E

[∣∣Fc
N(λ) − F̃ c

N(λ)
∣∣2|M]

.

Consequently, from this inequality, (33) and (32),

E
[∣∣Fc

N(λ) −Eg,IFc
N(λ)

∣∣2] ≤ K ′

N2E

[
M

(
1 + M2

N2

)
;M ≥ 1

]
≤ K ′′

N
. �

REMARK 4.7. The proof of Lemma 4.6 heavily relies on the fourth moment bound in
Lemma 4.3. Although it is not needed, whether Lemma 4.3 also holds for fixed λ or can be
extended to higher moments remains elusive.

REMARK 4.8. In view of the proof of Proposition 4.1, it might seem like that one can
also prove the concentration for FN in Theorem 3.1 by the same approach for Proposition 4.4.
Although ideally this should be the case, we point out that the missing ingredient in doing
so is an upper bound for E〈|σ1|4〉 similar to the one for E〈|τ 


i |4〉cλ in Lemma 4.3. To explain
the main obstacle, we recall that as σ1 ∼ N(μ1,A

−1
11 ), we have 〈|σ1|4〉 = μ4

1 + 6μ2
1(A

−1
11 )2 +

3(A−1
11 )4. Since μ1 = h

∑N
i=1 A−1

1i , it seems to be a very challenging task to show that Eμ4
1 is

of order O(1).

4.3. Proof of Proposition 4.1. We need the following lemma.

LEMMA 4.9 (Thermal concentration). There exists a deterministic constant K > 0 such
that for any |λ| ≤ 1 and N ≥ 1,

〈∣∣Q − 〈Q〉cλ
∣∣2〉c

λ ≤ K

N
.

PROOF. From (22),

∣∣Q(
τ 1, . . . , τ κ)− Q

(
τ̂ 1, . . . , τ̂ κ)∣∣ ≤ 1

N

N∑
i=1

(
κ∑


=1

∣∣τ 

i − τ̂ 


i

∣∣2)1/2

≤ 1√
N

(
κ∑


=1

∥∥τ 
 − τ̂ 

∥∥2

)1/2

.



FREE ENERGY OF A DILUTED SPIN GLASS MODEL WITH QUADRATIC HAMILTONIAN 379

Note that from (23), for any |λ| ≤ 1,

‖x‖2

4
− λf (x)

is a convex function on R
κ so that for any x, y ∈ R

κ ,

1

2

(
1

2
‖x‖2 − λf (x)

)
+ 1

2

(
1

2
‖y‖2 − λf (y)

)
−
(

1

2

∥∥∥∥x + y

2

∥∥∥∥2
− λf

(
x + y

2

))

= 1

2

(
1

4
‖x‖2 − λf (x)

)
+ 1

2

(
1

4
‖y‖2 − λf (y)

)

−
(

1

4

∥∥∥∥x + y

2

∥∥∥∥2
− λf

(
x + y

2

))
+ 1

4

∥∥∥∥x − y

2

∥∥∥∥2

≥ 1

4

∥∥∥∥x − y

2

∥∥∥∥2
.

This together with the fact that −∑κ

=1 XN(τ
) is concave implies that the measure 〈·〉cλ is

a strongly log-concave measure, and consequently, from the Brascamp–Lieb inequality [27],
Theorem 3.1.4, the assertion follows. �

We are ready to establish the proof of Proposition 4.1. For N ≥ 1, let λ = 1/N1/4. Write

E
〈∣∣Q −E〈Q〉c∣∣〉c ≤ E

〈∣∣Q − 〈Q〉c∣∣〉c +E
〈∣∣〈Q〉c −E〈Q〉c∣∣〉c.

Note that from Lemma 4.9, we readily see that E〈|Q − 〈Q〉c|〉c ≤ K/
√

N . To handle the
second term, using the convexity of Fc

N(λ) and noting that Fc
N

′(0) = 〈Q〉c, we can bound
(see, e.g., [16], Lemma 3.2),

E
∣∣〈Q〉c −E〈Q〉c∣∣ ≤ 1

λ

(
E
∣∣Fc

N(λ) −EFc
N(λ)

)∣∣+E
∣∣Fc

N(0) −EFc
N(0)

∣∣
+E

∣∣Fc
N(−λ) −EFc

N(−λ)
∣∣) +E〈Q〉cλ −E〈Q〉c−λ.

Here, by Lemma 4.9,

〈Q〉cλ − 〈Q〉c−λ = N

∫ λ

−λ

〈
Q
(
Q − 〈Q〉ct

)〉c
t dt = N

∫ λ

−λ

〈(
Q − 〈Q〉ct

)(
Q − 〈Q〉ct

)〉c
t dt

= N

∫ λ

−λ

〈(
Q − 〈Q〉ct

)2〉c
t dt ≤ 2λK.

Putting these and using the concentration in Proposition 4.4 together yields

E
∣∣〈Q〉c −E〈Q〉c∣∣ ≤ K ′

λ
√

N
+ 2λK = K ′′

N1/4 .

This completes our proof.

5. Independence of local magnetizations. Throughout this entire section, we still as-
sume that D is bounded. Let n ≥ 1 be fixed. Assume that (Z1,Z2, . . . ,Zn) is a weak limit
of (〈(

σ1 − 〈σ1〉)2〉
, . . . ,

〈(
σn − 〈σn〉)2〉)

N≥1 = (
A−1

11 , . . . ,A−1
nn

)
N≥1

along a subsequence. Note the existence of this weak limit is ensured by the fact that 0 ≤
A−1

11 , . . . ,A−1
nn ≤ 1.
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PROPOSITION 5.1. (Z1, . . . ,Zn) are independent and identically distributed.

PROOF. By symmetry in the spins, Z1, . . . ,Zn are obviously identically distributed. It
remains to show that they are independent. Recall from the beginning of Section 4, we can
write 〈(

σi − 〈σi〉)2〉 = 〈|τi |2〉c.
By a diagonalization process, we pass to a subsequence along which for any integer r ≥
0, if τr,i := (τi ∧ r) ∨ (−r), then (〈|τr,1|2〉c, 〈|τr,2|2〉c, . . . , 〈|τr,n|2〉c) converges to some
(Z1,r ,Z2,r , . . . ,Zn,r) weakly. For notational clarity, we shall assume that these convergences
are valid in N .

We claim that (Z1,r , . . . ,Zn,r ) are independent. For any 
 ≥ 1, denote τ 

r,i = (τ 


i ∧ r) ∨
(−r), where τ 
 are i.i.d. samples from 〈·〉c. For integers a1, . . . , an ≥ 0, let Is be the collection
of integers in the interval (

∑s−1
i=1 ai,

∑s
i=1 ai]. Denote b = ∑n

i=1 ai . Set

Qi = Qi

(
τ 1, . . . , τ b) = 1

N

N∑
j=1

φi

(
τ 1
j , . . . , τ b

j

)
,

where φi(x
1, . . . , xb) := ∏


∈Ii
|(x
 ∧ r) ∨ (−r)|2 for x1, . . . , xb ∈ R and we adapt the tradi-

tion that
∏


∈∅ |(x
 ∧ r) ∨ (−r)|2 = 1. Note that since φi is a constant as long as x1, . . . , xb

are all outside the interval [−r, r], for any given ε > 0, we can approximate φi uniformly,
‖φi − φ̂i‖∞ < ε, by a smooth function φ̂i , which is a constant whenever x1, . . . , xb are all
outside the interval [−r −1, r +1]. This implies that φ̂i ∈ [−Ci,Ci], φ̂i is Ci-Lipschitz func-
tion, and −CiI/4 ≤ ∇2φ̂i ≤ CiI/4 for some large constant Ci . From these, φ̂i/Ci ∈ [−1,1]
and it satisfies (22) and (23). Consequently, from Proposition 4.1, if

Q̂i := 1

N

N∑
j=1

φ̂i

(
τ 1
j , . . . , τ b

j

)
,

then

E
〈∣∣Q̂i −E〈Q̂i〉c

∣∣〉c ≤ CiK

N1/4

for some constant K depending on α, β , p, b. As a result,

E
〈∣∣Qi −E〈Qi〉c

∣∣〉c ≤ CiK

N1/4 + 2ε.

Next, using the symmetry among replicas and spins and this inequality, for fixed ε > 0 and
any large enough N ,

E

n∏
i=1

(〈|τr,i |2〉c)ai = E

〈
n∏

i=1

∏

∈Ii

∣∣τ 

r,i

∣∣2〉c

= E

〈
n∏

i=1

Qi

〉c

+ o(1)

=
n∏

i=1

E〈Qi〉c + o(1) + O(ε) =
n∏

i=1

E
(〈|τr,i |2〉c)ai + o(1) + O(ε).

Note that the first error o(1) accounts for those terms in the expansion
∏n

i=1 Qi whose spin
indices are not distinct and that the other two o(1) errors are the same as the first. It follows
that by using the dominated convergence theorem in the limit N → ∞ and then sending
ε ↓ 0,

E

n∏
i=1

Z
ai

i,r =
n∏

i=1

EZ
ai

i,r .
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Since this is valid for any integers a1, . . . , an ≥ 0 and Z1,r , . . . ,Zn,r are bounded, we con-
clude that Z1,r , . . . ,Zn,r are independent of each other.

The remaining step is to show that Z1, . . . ,Zn are independent. Let f1, . . . , fn be bounded
and Lipschitz functions on R. Assume that their supremum norms and Lipschitz constants
are all bounded by K0. Write

〈τi〉c − 〈τr,i〉c = 〈
(τi − r)I(τi ≥ r)

〉c + 〈
(τi + r)I(τi ≤ −r)

〉c
= 〈

sign(τi)
(|τi | − r

)
I
(|τi | ≥ r

)〉c
,

which implies that by the Cauchy–Schwarz inequality,∣∣〈τi〉c − 〈τr,i〉c
∣∣ ≤ √〈|τi |2〉c√〈

I
(|τi | ≥ r

)〉c
.

Hence, ∣∣∣∣∣
n∏

i=1

fi

(〈τi〉c)−
n∏

i=1

fi

(〈τr,i〉c)
∣∣∣∣∣ ≤ Kn

0

n∑
i=1

√〈|τi |2〉c√〈
I
(|τi | ≥ r

)〉c
.

Consequently, by the symmetry among the spins, the Cauchy–Schwarz inequality, and then
the Markov inequality,∣∣∣∣∣E

n∏
i=1

fi

(〈τi〉c)−E

n∏
i=1

fi

(〈τr,i〉c)
∣∣∣∣∣ ≤ nKn

0
(
E
〈|τ1|2〉c)1/2(

E
〈
I
(|τ1| ≥ r

)〉c)1/2

≤ nKn
0E〈|τ1|2〉c

r
≤ nKn

0

r
,

where the last inequality used the bound E〈|τ1|2〉c = EA−1
11 ≤ 1 since A−1

11 ≤ 1. Sending N

to infinity and using the independence of Z1,r , . . . ,Zn,r , this inequality readily implies that

E

n∏
i=1

fi(Zi) =
n∏

i=1

Efi(Zi).

Since this equation holds for all bounded Lipschitz functions fi , it follows that Z1, . . . ,Zn

are independent of each other and this completes our proof. �

6. Convergence of the spin variance. Let T be the operator defined in (4). For the
reader’s convenience, we recall that for any μ ∈ P([0,1]), T (μ) is defined as the distribution
of (

1 +
R∑

k=1

2βζ 2
k

1 + 2β
∑p−1

r=1 Xk,iξ
2
k,r

)−1

,(34)

where (ζk)k≥1, (ξk,r )k,r≥1
i.i.d.∼ D, (Xk,r)k,r≥1

i.i.d.∼ μ, R is Poisson(αp), and these are all in-
dependent of each other. This section is devoted to establishing the one-dimensional case of
Theorem 1.1 assuming that D is bounded.

PROPOSITION 6.1. Assume that D is bounded. The law of the random variable (A−1
N )NN

converges weakly to the unique solution of the distributional equation T (μ) = μ.

The remaining of this section will establish this proposition. Let Q and R be two indepen-
dent Poisson random variables with mean α(N − p) and αp, respectively. Consider(

Î (k,1), . . . Î (k,p)
)
k≥1 i.i.d. uniform on

{
(i1, . . . , ip) : 1 ≤ ir ≤ N − 1, all distinct

}
,(

Ī (k,1), . . . , Ī (k,p − 1)
)
k≥1 i.i.d. uniform on

{
(i1, . . . , ip−1) : 1 ≤ ir ≤ N − 1, all distinct

}
.
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In addition, let (ξ̂k,i)k≥1,1≤i≤N−1, (ζk)k≥1, and (ξk,i)k≥1,1≤i≤N−1 be i.i.d. sampled from D.
Assume that these are all independent of each other. Recall that (ei)1≤i≤N is the standard
basis of RN . Set the column vectors

uk =
p∑

r=1

ξ̂
k,Î (k,r)

e
Î (k,r)

,

wk =
p−1∑
r=1

ξk,Ī (k,r)eĪ (k,r) + ζkeN .

Using the thinning property of the Poisson random variable, we can write

A
d= I + 2β

∑
k≤Q

uku
T
k + 2β

∑
k≤R

wkw
T
k = B + 2β

∑
k≤R

wkw
T
k .(35)

In words, we decompose A into two components in distribution. The first, B , is a block matrix
with the principal (N − 1)× (N − 1) block recording the entries of A at indices belonging to
the set {1, . . . ,N −1} and it satisfies BNi = BiN = 0 for all 1 ≤ i ≤ N −1 and BNN = 1. The
term

∑
k≤R wkw

T
k accounts for the entries of A whose indices are connected to the vertex N .

From (35), for the rest of this section, we assume that

A = B + 2β
∑
k≤R

wkw
T
k .(36)

6.1. Some preliminary estimates. Define the matrix E = (Ekl)1≤k,l≤R as

Ekl =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2β
∑

1≤r,s≤p−1

ξk,Ī (k,r)ξl,Ī (l,s)B
−1
Ī (k,r),Ī (l,s)

if k 
= l,

2β
∑

1≤r 
=s≤p−1

ξk,Ī (k,r)ξk,Ī (k,s)B
−1
Ī (k,r),Ī (k,s)

if k = l

and let ζ = (ζ1, . . . , ζR)T .

LEMMA 6.2. There exists a constant K independent of N such that

∣∣∣∣∣A−1
NN −

(
1 +

R∑
k=1

2βζ 2
k

1 + 2β
∑p−1

r=1 ξ2
k,Ī (k,r)

B−1
Ī (k,r),Ī (k,r)

)−1∣∣∣∣∣ ≤ K‖ζ‖2‖E‖.

PROOF. Let W ∈ R
N×R be the matrix that records the vectors (

√
2βwk)1≤k≤R along

the columns. Let D ∈ R
R×R be a diagonal matrix whose kth diagonal entry is 1 +

2β
∑p−1

r=1 ξ2
k,Ī (k,r)

B−1
Ī (k,r),Ī (k,r)

. From the identity (36) and the Woodbury matrix identity, we
write

A−1
NN = B−1

NN − (
B−1W

(
I + WT B−1W

)−1
WT B−1)

NN.

Noting the block structure of B , we obtain

A−1
NN = 1 − 2βζT (I + WT B−1W

)−1
ζ

= 1 − 2βζT (2βζζT + D + E
)−1

ζ.
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The second line above follows from the definition of D and E. Indeed, for 1 ≤ k, l ≤ R,

(
I + WT B−1W

)
kl = δkl +

N∑
i,j=1

WikWjlB
−1
ij = δkl + 2βζkζl +

N−1∑
i,j=1

WikWjlB
−1
ij

= δkl + 2βζkζl + 2β
∑

1≤r,s≤p−1

ξk,Ī (k,r)ξl,Ī (l,s)B
−1
Ī (k,r)Ī (l,s)

= 2βζkζl + Dkl + Ekl,

where δkl is the Kronecker delta between k and l and in the second equality we used that
B−1

Nj = B−1
jN = 0 for j 
= N and B−1

NN = 1. Using the resolvent identity followed by the
Sherman–Morrison formula, we further obtain

A−1
NN = 1 − 2βζT (2βζζT + D

)−1
ζ + �

= 1 − 2βζT

(
D−1 − 2β

D−1ζ ζ T D−1

1 + 2βζT D−1ζ

)
ζ + �

= 1

1 + 2βζT D−1ζ
+ �

=
(

1 +
R∑

k=1

2βζ 2
k

1 + 2β
∑p−1

r=1 ξ2
k,Ī (k,r)

B−1
Ī (k,r),Ī (k,r)

)−1

+ �,

where

� = 2βζT (2βζζT + D + E
)−1

E
(
2βζζT + D

)−1
ζ.

Note that the last term above can be bounded as

|�| ≤ K‖ζ‖2∥∥(2βζζT + D + E
)−1∥∥‖E‖∥∥(2βζζT + D

)−1∥∥.
The result follows since ‖(2βζζT + D + E)−1‖ ≤ 1 and ‖(2βζζT + D)−1‖ ≤ 1. �

The estimate in Lemma 6.2 involves the main diagonal of B−1, which is of constant order.
The following lemma shows that the entries of B−1 will be of order O(1/

√
N) if the random

indices are not identically the same.

LEMMA 6.3. For any N ≥ 3, there exists a constant K independent of N such that

max
1≤k≤l

1≤r<s≤p−1

E
[(

B−1
Ī (k,r),Ī (k,s)

)2|R = l
] ≤ K

N
, ∀l ≥ 1,

max
1≤k<t≤l

1≤r≤s≤p−1

E
[(

B−1
Ī (k,r),Ī (t,s)

)2|R = l
] ≤ K

N
, ∀l ≥ 2.

PROOF. Note that for 1 ≤ a ≤ N − 1,

1 ≥ (
B−2)

aa =
N−1∑
b=1

(
B−1

ab

)2 ≥ ∑
1≤b≤N−1

b 
=a

(
B−1

ab

)2
.

By symmetry between the sites, for 1 ≤ b, b′ ≤ N − 1 and b, b′ 
= a, we have

E
[(

B−1
ab

)2|R = l
] = E

[(
B−1

ab′
)2|R = l

]
.
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Hence, we obtain that for 1 ≤ b ≤ N − 1 with b 
= a,

E
[(

B−1
ab

)2|R = l
] ≤ 1

N − 2
.(37)

Now, for any 1 ≤ k ≤ l and 1 ≤ r < s ≤ p − 1, we have

E
[(

B−1
Ī (k,r),Ī (k,s)

)2|R = l
] = 2

∑
1≤a<b≤N−1

E
[(

B−1
ab

)2|R = l
]
P
(
Ī (k, r) = a, Ī (k, s) = b

)

≤ 2 · (N − 1)(N − 2)

2
· 1

N − 2
· 2

(N − 1)(N − 2)
≤ K

N
.

To prove the second assertion, let El be the event that the sites {Ī (k, r) : 1 ≤ k ≤ l,1 ≤ r ≤
p − 1} are all distinct and R = l and E ′

l = Ec
l ∩ {R = l}. Then

P
(
E ′

l |R = l
) = 1 −

l−1∏
k=0

(
N − 1 − k(p − 1)

p − 1

)
(
N − 1
p − 1

) ≤ K

N
.(38)

It follows that for any 1 ≤ k < t ≤ l and 1 ≤ r ≤ s ≤ p − 1,

E
[(

B−1
Ī (k,r),Ī (t,s)

)2|R = l
] = E

[(
B−1

Ī (k,r),Ī (t,s)

)2
I(El)|R = l

]+E
[(

B−1
Ī (k,r),Ī (t,s)

)2
I
(
E ′

l

)|R = l
]

≤ E
[(

B−1
1,2

)2|R = l
]+ P

(
E ′

l |R = l
) ≤ K ′

N
,

where the first inequality used symmetry among the sites and the fact |B−1
ij | ≤ 1, while the

second inequality holds thanks to (37) and (38). �

6.2. Uniqueness of the fixed-point solution. The following lemma takes care of the
uniqueness of the fixed-point solution of T stated in Proposition 6.1, where we do not need
D to be bounded.

LEMMA 6.4. The solution to the fixed-point equation, T (μ) = μ, is unique.

PROOF. Let q ≥ 1. Denote by Pq(R+) the collection of all ν ∈P(R+) with
∫

xqν(dx) <

∞. We equip this space with the Wasserstein q-distance defined as

Wq(ν1, ν2) = inf
(
E|Z1 − Z2|q)1/q

for any ν1, ν2 ∈ Pq(R+), where the infimum is taken over all joint random vectors (Z1,Z2)

with Z1 ∼ ν1 and Z2 ∼ ν2. Denote γ = (2β)−1. Let φ(x) = − logx. Understanding φ−1(ν)

and φ(μ) as the push-forward measures of μ ∈ P([0,1]) and ν ∈ Pq(R+) under φ and φ−1

respectively, we define a self-map on Pq(R+) as T = φ ◦ T ◦ φ−1, namely, for any ν ∈
Pq(R+), T (ν) is the distribution of

log

(
1 +

R∑
k=1

ζ 2
k

γ +∑p−1
r=1 ξ2

k,re
−Yk,r

)
,

where R ∼ Poisson(αp), (ξk,r )k,r and (ζk)k
i.i.d.∼ D, Yk,r

i.i.d.∼ ν, and these are all independent
of each other. To see that T is a self-map, note that for all q ≥ 1 and ν ∈ Pq(R+), if ν′ =
T (ν), then there exists a constant K > 0 such that∫

xqν′(dx) ≤ E logq

(
1 +

R∑
k=1

ζ 2
k

γ

)
≤ KE

R∑
k=1

ζ 2
k ≤ KαpEξ2

1 < ∞.(39)
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We claim that T is a contraction as long as q is large enough. To this end, for l ≥ 1, define
gl :Rl+ ×R

p−1
+ →R+ by

gl(y) := gl

(
(yk,r )k≤l,r≤p−1

) = log

(
1 +

l∑
k=1

ζ 2
k

γ +∑p−1
r=1 ξ2

k,re
−yk,r

)
.

A direct computation gives

∑
k,r

∣∣∂yk,r
gr(y)

∣∣ =
∑l

k=1
ζ 2
k �k

(γ+�k)
2

1 +∑l
k=1

ζ 2
k

γ+�k

≤
∑l

k=1
ζ 2
k

γ+�k

1 +∑l
k=1

ζ 2
k

γ+�k

≤
∑l

k=1
ζ 2
k

γ

1 +∑l
k=1

ζ 2
k

γ

= χl

γ + χl

for �k := ∑p−1
r=1 ξ2

k,re
−yk,r and χl := ∑l

k=1 ζ 2
k . Now for two probability measures ν1, ν2 ∈

Pq(R+), let ν∗ be an optimal coupling between ν1 and ν2 under the Wasserstein q-distance,
namely,

Wq
q (ν1, ν2) =

∫
|x1 − x2|q dν∗.

For each k, r , let (Yk,r , Y
′
k,r ) be sampled independently from ν∗ and be independent of other

randomness. Let Y := ((Yk,r )k≥1,r≤p−1) and Y ′ := ((Y ′
k,r )k≥1,r≤p−1). Then, by the mean-

value theorem and the inequality above, we have for every q ≥ 1,

E
∣∣gl(Y ) − gl

(
Y ′)∣∣q ≤ E sup

y

∥∥∇gl(y)
∥∥q

1 max
k≤l,r≤p−1

∣∣Yk,r − Y ′
k,r

∣∣q
≤
(
E sup

y

∥∥∇gl(y)
∥∥q

1

)
l(p − 1)Wq

q (ν1, ν2)

≤
(
E

(
χl

γ + χl

)q)
l(p − 1)Wq

q (ν1, ν2).

Hence, we arrive at

Wq
q

(
T (ν1),T (ν2)

) ≤ E

[(
χR

γ + χR

)q

R(p − 1)

]
Wq

q (ν1, ν2).

Here, choosing q sufficiently large, the expectation on the right-hand side is strictly less
than 1. Indeed, this can be seen by noting that

(
χR

γ + χR

)q

R(p − 1) ≤ R(p − 1)

and the left-hand side converges to zero a.s. as q ↑ ∞ and applying the dominated conver-
gence theorem. This completes the proof of our claim.

Now we turn to the proof of the uniqueness of the fixed point of T . Assume that μ1

and μ2 are two distinct fixed points of T . Note that from the definition of T in (34), both
μ1 and μ2 cannot charge positive masses at 0. From this, the distributions ν1 and ν2 of
− logX1 and − logX2 for X1 ∼ μ1 and X2 ∼ μ2 are probability distributions on R+. Fur-
thermore, in a similar manner as (39), E| logX1|q < ∞ and E| logX2|q < ∞, which implies
that ν1, ν2 ∈ Pq(R+). Since now ν1 and ν2 are two distinct fixed points of T , this contradicts
the contractivity of T . Hence, the fixed point of T must be unique. �
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6.3. Proof of Proposition 6.1. For convenience, with a slight abuse of notation, we shall
use T (X) to stand for the random variable whose law is given by the application of T to the

law of X. In this notation, T (μ) = μ is equivalent to T (X)
d= X for X ∼ μ.

Let (J̄ (k,1), . . . , J̄ (k,p − 1))k≥1 be an independent copy of {Ī (k,1), . . . , Ī (k,p − 1)}k≥1
and (ξ ′

k,i)k≥1,i≥1 and (ξ ′
k)k≥1 be i.i.d. copies of D, and R′ be Poisson(αp). Assume that these

are all independent of each other. Recall that {e1, . . . , eN } is the standard basis for RN . Let

w′
k =

p−1∑
r=1

ξ ′
k,J̄ (k,r)

eJ̄ (k,r) + ζ ′
keN .

Recall the decomposition of A in (36). Let

A′ = B + 2β

R′∑
k=1

w′
kw

′T
k .

Note that A′ d= A. Let f :R→R be a bounded Lipschitz function. Set

U =
(

1 +
R∑

k=1

2βζ 2
k

1 + 2β
∑p−1

r=1 ξ2
k,Ī (k,r)

B−1
Ī (k,r),Ī (k,r)

)−1

,

V =
(

1 +
R∑

k=1

2βζ 2
k

1 + 2β
∑p−1

r=1 ξ2
k,Ī (k,r)

A′−1
Ī (k,r),Ī (k,r)

)−1

.

We have ∣∣Ef
(
A−1

NN

)−Ef
(
T
(
A′−1

NN

))∣∣ ≤ ∥∥f ′∥∥∞E
∣∣A−1

NN − U
∣∣+ ∥∥f ′∥∥∞E|U − V |

+ ∣∣Ef (V ) −Ef
(
T
(
A′−1

NN

))∣∣.(40)

We will now bound the three terms in (40).
First term: Recall the definition of El and E ′

l from the proof of Lemma 6.3. From
Lemma 6.2, |A−1

NN | ≤ 1, |U | ≤ 1, El ⊆ {R = l}, and P(E ′
l ) ≤ KN−1

P(R = l) (thanks to (38)),
we can bound

(41)

E
∣∣A−1

NN − U
∣∣ = ∞∑

l=0

E
[∣∣A−1

NN − U
∣∣|El

]
P(El) +

∞∑
l=0

E
[∣∣A−1

NN − U
∣∣|E ′

l

]
P
(
E ′

l

)

≤ K

∞∑
l=0

E
[‖ζ‖2‖E‖|El

]
P(R = l) + 2K

N

∞∑
l=0

P(R = l)

≤ K ′
∞∑
l=0

E
[‖E‖|El

]
P(R = l) + 2K

N
,

where the second inequality used the boundedness of D. Using the definition of E and letting
‖E‖F to denote the Fröbenius norm of E, from the estimates in Lemma 6.3, we have

E
[‖E‖2|El

] ≤ E
[‖E‖2

F |El

]
= 4β2

∑
k≤l

E

[( ∑
1≤r 
=s≤p−1

ξk,Ī (k,r)ξk,Ī (k,s)B
−1
Ī (k,r),Ī (k,s)

)2∣∣∣El

]

+ 8β2
∑

1≤k<t≤l

E

[( ∑
1≤r,s≤p−1

ξk,Ī (k,r)ξk,Ī (t,s)B
−1
Ī (k,r),Ī (t,s)

)2∣∣∣El

]
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≤ Kl

N
+ Kl2

N
.

Thus, from (41) and noting that R ∼ Poisson(αp), we obtain that

E
∣∣A−1

NN − U
∣∣ ≤ K ′′

√
N

.(42)

Second term: Note that

E|U − V |

≤ 2βE

∣∣∣∣∣
R∑

k=1

ζ 2
k

(
1

1 + 2β
∑p−1

r=1 ξ2
k,Ī (k,r)

B−1
Ī (k,r),Ī (k,r)

− 1

1 + 2β
∑p−1

r=1 ξ2
k,Ī (k,r)

A′−1
Ī (k,r),Ī (k,r)

)∣∣∣∣∣

≤ 4β2
E

∣∣∣∣∣
R∑

k=1

p−1∑
r=1

ζ 2
k ξ2

k,Ī (k,r)

(
B−1

Ī (k,r),Ī (k,r)
− A′−1

Ī (k,r),Ī (k,r)

)∣∣∣∣∣
≤ KE

∣∣B−1
1,1 − A′−1

1,1

∣∣,
where for the last line, we used the independence of the quantities R, the boundedness of
ζk and ξk,i , and the symmetry between the sites 1, . . . ,N − 1. To proceed, we can use the
resolvent identity to obtain

E
∣∣B−1

11 − A′−1
11

∣∣ = 2βE

∣∣∣∣∣
R′∑

k=1

p−1∑
r,s=1

ξ ′
k,J̄ (k,r)

ξ ′
k,J̄ (k,s)

B−1
1,J̄ (k,r)

A′−1
1,J̄ (k,s)

∣∣∣∣∣
≤ KE

∣∣B−1
1,J̄ (1,1)

∣∣ ≤ K ′
√

N
,

where the first inequality used |A′−1
ij | ≤ 1 and the boundedness of D and the second inequality

used (37). Therefore,

E|U − V | ≤ K ′′
√

N
.(43)

Third term: Write

Ef (V ) =
∞∑
l=0

E
[
f (V )|El

]
P(El) +

∞∑
l=0

E
[
f (V )|E ′

l

]
P
(
E ′

l

)
.

Here, on one hand, from (38), P(E ′
l ) ≤ K/N . On the other hand, note that on the event El ,

the indices Ī (k, r) for 1 ≤ k ≤ l and 1 ≤ r ≤ p − 1 are all distinct. Let L(k, r) = (k − 1)(p −
1) + r for k ≥ 1 and 1 ≤ r ≤ p − 1. Since A′ is independence of {Ī (k, r) : 1 ≤ k ≤ l,1 ≤ r ≤
p − 1}, (ξk,i)k,i≥1, and (ζk)k≥1, using the symmetry between the diagonal entries of A′−1

leads to

E
[
f (V )|El

] = Ef

((
1 +

l∑
k=1

2βζ 2
k

1 + 2β
∑p−1

r=1 ξ2
k,L(k,r)A

′−1
L(k,r),L(k,r)

)−1)

= Ef

((
1 +

l∑
k=1

2βζ 2
k

1 + 2β
∑p−1

r=1 ξ2
k,rA

′−1
L(k,r),L(k,r)

)−1)
.
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Consequently, using these and noting that El ∪ E ′
l = {R = l} yields

∣∣∣∣∣Ef (V ) −Ef

((
1 +

R∑
k=1

2βζ 2
k

1 + 2β
∑p−1

r=1 ξ2
k,rA

′−1
L(k,r),L(k,r)

)−1)∣∣∣∣∣ ≤ K ′

N
.

Hence, we arrive at

(44)

∣∣Ef (V ) −Ef
(
T
(
A′−1

NN

))∣∣
≤
∣∣∣∣∣Ef

((
1 +

R∑
k=1

2βζ 2
k

1 + 2β
∑p−1

r=1 ξ2
k,rA

′−1
L(k,r),L(k,r)

)−1)
−Ef

(
T
(
A′−1

NN

))∣∣∣∣∣+ K ′

N
.

To sum up, after combining (40), (42), (43) and (44), we obtain that for any bounded
Lipschitz function f ,

∣∣Ef
((

A−1
N

)
NN

)−Ef
(
T
((

A′−1
N

)
NN

))∣∣
≤
∣∣∣∣∣Ef

((
1 +

R∑
k=1

2βζ 2
k

1 + 2β
∑p−1

r=1 ξ2
k,rA

′−1
L(k,r),L(k,r)

)−1)
−Ef

(
T
(
A′−1

NN

))∣∣∣∣∣+ K ′′
√

N
.

Now since 0 ≤ (A′−1
N )ii ≤ 1 for all 1 ≤ i ≤ N and N ≥ 1, by a diagonalization procedure, we

can assume without loss of generality that for each l ≥ 1, as N tends to infinity,

((
A′−1

N

)
11, . . . ,

(
A′−1

N

)
l(p−1),l(p−1),

(
A′−1

N

)
NN

)
d= ((

A−1
N

)
11, . . . ,

(
A−1

N

)
l(p−1),l(p−1),

(
A−1

N

)
NN

)
⇒ (X1, . . . ,Xl(p−1),X)

for some random vector (X1, . . . ,Xl(p−1),X). By symmetry among the sites and Proposi-
tion 5.1, X1, . . . ,Xl(p−1),X are independent and identically distributed. Using the continu-
ous mapping theorem, it follows that

lim
N→∞

∣∣∣∣∣Ef

((
1 +

R∑
k=1

2βζ 2
k

1 + 2β
∑p−1

r=1 ξ2
k,rA

′−1
L(k,r),L(k,r)

)−1)
−Ef

(
T
(
A′−1

NN

))∣∣∣∣∣
=

∣∣∣∣∣Ef

((
1 +

R∑
k=1

2βζ 2
k

1 + 2β
∑p−1

r=1 ξ2
k,rXL(k,r)

)−1)
−Ef

(
T (X)

)∣∣∣∣∣
= ∣∣Ef

(
T (X)

)−Ef
(
T (X)

)∣∣ = 0.

Since this holds for all Lipschitz f , we conclude that T (X)
d= X and Lemma 6.4 implies that

X is the unique solution to the fixed-point equation T (X)
d= X. Finally, since every weakly

converging subsequence of (A−1
N )NN converges to the same limit, the entire sequence must

converge weakly to the fixed point of T (X)
d= X and this completes our proof.

REMARK 6.5. Throughout the entire proof, the assumption on the boundedness of D is
only used when we are applying Proposition 5.1 to ensure that X1, . . . ,Xl(p−1),X are inde-
pendent. The general case is handled in the last section where a truncation will be employed.
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7. Proof of Theorems 1.1 and 1.2 for bounded D.

PROOF OF THEOREM 1.1 (FOR D BOUNDED). Let n ≥ 1 be fixed. Since the space
of probability distributions on [0,1]n is compact, for any subsequence of ((A−1

N )11, . . . ,

(A−1
N )nn)N≥1, we can pass to a subsequence Nl such that((

A−1
Nl

)
11, . . . ,

(
A−1

Nl

)
nn

)
l≥1

converges weakly to some random vector (X1, . . . ,Xn). From Proposition 5.1, we readily

see that X1, . . . ,Xn are i.i.d. copies of some random variable X. Noting that (A−1
Nl

)11
d=

(A−1
Nl

)NlNl
, Proposition 6.1 ensures that the distribution of X is indeed the unique fixed point

of T . In other words, any convergent subsequence of ((A−1
N )11, . . . , (A

−1
N )nn)N≥1 has the

same limit (X1, . . . ,Xn). This implies the convergence of ((A−1
N )11, . . . , (A

−1
N )nn)N≥1 with

the desired limit. �

To establish the proof of Theorem 1.2, we need a technical lemma.

LEMMA 7.1. Let λ > 0. Suppose that M ∼ Poisson(λ) and L|M ∼ Unif({0, . . . ,M})
and that U ∼ Unif([0,1]) and L′|U ∼ Poisson(λU). Then L

d= L′.

PROOF. For any integer l ≥ 0, we have

P(L = l) =
∞∑
k=l

P(L = l|M = k)P(M = k) =
∞∑
k=l

1

k + 1

λk

k! e
−λ = e−λ

λ

∞∑
k=l+1

λk

k! ,

P
(
L′ = l

) =
∫ 1

0
P
(
L′ = l|U = u

)
du =

∫ 1

0

(λu)l

l! e−λu du.

Here, one can match these two quantities directly by using integration by parts to the last
integral for l many times. �

PROOF OF THEOREM 1.2 (FOR D BOUNDED). For any x ∈ (0,1], denote by X(x) the
random variable associated to μ(αx), the fixed point of T associated to the Poisson rate αx.
Recall the identity (3) for FN . From Lemma 3.2, Theorem 3.1 and Proposition 6.1, we readily
see that

lim sup
N→∞

E

∣∣∣∣∣ 1

N

N∑
i,j=1

A−1
ij −EX(1)

∣∣∣∣∣ = 0

and

lim sup
N→∞

E

∣∣∣∣ 1

N
log detA − 1

N
E log detA

∣∣∣∣ = 0.

For the remainder of the proof, we handle

lim
N→∞

1

N
E log detA.

Let S0 = I and for l ≥ 1, define

Sl = I + 2β
∑
k≤l

vkv
T
k .
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Thus, A = SM . Write

1

N
E log detA = 1

N
E

M∑
l=1

log
detSl

detSl−1
= 1

N
E

M∑
l=1

log
det(Sl−1 + 2βvlv

T
l )

detSl−1

= 1

N
E

M∑
l=1

log
(
1 + 2βvT

l S−1
l−1vl

)
,

where the last equality used the matrix-determinant lemma. Let v be an N -dimensional col-

umn vector whose first p entries are g1, . . . , gp
i.i.d.∼ D and the rest are all zero. Assume that

v is independent of all other randomness. We continue to write the last term in the previous
display as

1

N

∞∑
m=0

P(M = m)

m−1∑
l=0

E log
(
1 + 2βvT

l S−1
l vl

)

= 1

N

∞∑
m=0

P(M = m)

m∑
l=0

E log
(
1 + 2βvT

l S−1
l vl

)+ O

(
1

N

)

= 1

N

∞∑
m=0

P(M = m)

m∑
l=0

E log
(
1 + 2βvT S−1

l v
)+ O

(
1

N

)

= E

[
M + 1

N
E
[
log

(
1 + 2βvT S−1

L v
)|M]]+ O

(
1

N

)
,

where the first equality holds since ‖S−1
l ‖ ≤ 1 for all l, the second equality used the fact that

vl is independent of Sl and the symmetry among the sites of vl , and in the third equality, L

depends only on M with the conditional law L|M ∼ Unif({0, . . . ,M}).
Next, From the Cauchy–Schwarz and Jensen inequalities, M ∼ Poisson(αN) and the

bound ‖B−1
L ‖ ≤ 1, we have

E

[∣∣∣∣M + 1

N
− α

∣∣∣∣E[log
(
1 + 2βvT S−1

L v
)|M]]

≤
(
E

∣∣∣∣M + 1

N
− α

∣∣∣∣2
)1/2(

E log2(1 + 2βvT S−1
L v

))1/2 ≤ K ′

N
.

With the help of Lemma 7.1 and the fact that (Sl)l≥0 is independent of M , we arrived at

1

N
E log detA = αE log

(
1 + 2βvT S−1

L v
)+ O

(
1

N

)
,

where we now read L as a random variable with conditional law L|U ∼ Poisson(αUN) for
some U ∼ Unif([0,1]) and these are independent of other randomness. From this equation,
if we let Lx be an independent Poisson random variable with mean αxN , then

1

N
E log detA

= αE
[
log

(
1 + 2βvT S−1

L v
)]+ O

(
1

N

)

= α

∫ 1

0
E log

(
1 + 2βvT S−1

Lx
v
)
dx + O

(
1

N

)

= α

∫ 1

0
E log

(
1 + 2β

p∑
r=1

g2
r

(
S−1

Lx

)
rr + 4β

∑
1≤r<s≤p

grgs

(
S−1

Lx

)
rs

)
dx + O

(
1

N

)
.
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Notice that for each x the matrix SLx is the same as the matrix A in distribution, except
that M ∼ Poisson(αN) has been replaced by Lx ∼ Poisson(αxN). We can employ the same
argument as (37) to get that

sup
x∈[0,1]

max
1≤r<s≤N

E
∣∣(S−1

Lx

)
rs

∣∣2 = O

(
1

N

)
.

Consequence, using the inequality∣∣log(1 + u) − log(1 + v)
∣∣ ≤ |u − v|, u, v > 0

yields

1

N
E log detA =

∫ 1

0
E log

(
1 + 2β

p∑
r=1

g2
r

(
S−1

Lx

)
rr

)
dx + O

(
1√
N

)
.

Together with Theorem 1.1 (the only place where the boundedness of D is needed), which
although stated for A, continue to hold for SLx under the replacement of α by αx, we have

lim
N→∞E

1

N
log detA = α

∫ 1

0
E log

(
1 + 2β

p∑
r=1

g2
r Xr(x)

)
dx

concluding our proof. �

8. Proof of Theorems 1.1 and 1.2 for general D. Throughout this section, we assume
that D has finite second moment. Recall that (gk,i)k≥1,1≤i≤N are i.i.d. copies of D. Also
recall the vk’s from the definition of A in (2). For a truncation level c > 0, define

gc
k,i = gk,iI

(|gk,i | ≤ c
)

and define the vectors vc
k by replacing (gk,i)1≤i≤N in vk with (gc

k,i)1≤i≤N . Set

Ac = I + 2β
∑
k≤M

vc
kv

c
k
T
.

Likewise, ξc
k,i and ζ c

k are defined accordingly from ξk,i and ζk with the same truncation
level c. Define Tc as the operator T in (34) with the replacement of ξk,i and ζk by ξc

k,i and ζ c
k .

Denote by μc the unique fixed point of Tc.

LEMMA 8.1. As c → ∞, μc converges weakly to μ∞, the unique fixed point of the
operator T .

PROOF. Let μ0 be the weak limit of some convergent subsequence (μcl
)l≥1 of the family

of tight probability measures (μc)c>0. We claim that μ0 is a fixed point of T . If this holds,
then from Lemma 6.4, μ0 must be the unique fixed point of T , which implies that every
weakly convergent subsequence of (μc)c>0 shares the same limit μ0 and this concludes that
(μc)c>0 converges to μ0 as c → ∞.

We now turn to the proof of our claim. To ease our notation, without loss of generality, we
assume that (μc)c>0 converges to μ0. Let dL be the Lévy metric on P([0,1]). We write

dL

(
T (μ0),μ0

) ≤ dL

(
T (μ0), Tc(μc)

)+ dL

(
Tc(μc),μ0

)
.

Our proof will be completed if the two terms on the right-hand side vanishes as c tends to
infinity. The second term obviously converges to zero since Tc(μc) = μc converges to μ0

weakly. To handle the first term, let (Xc
k,r )k≥1,1≤r≤p−1

i.i.d.∼ μc and (Xk,r )k≥1,1≤r≤p−1
i.i.d.∼
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μ0. Assume that these are independent of each other and everything else. Now since μc con-
verges to μ0 weakly and (Xc

k,r )k≥1,1≤r≤p−1, (ξc
k,r )k≥1,1≤r≤p−1, (ζ c

k )k≥1 are all independent
of each other, it follows that for any l ≥ 0, we have the following joint convergence:

((
Xc

k,r

)
1≤k≤l,1≤r≤p−1,

(
ξc
k,r

)
1≤k≤l,1≤r≤p−1,

(
ζ c
k

)
1≤k≤l

)
⇒ (

(Xk,r )1≤k≤l,1≤r≤p−1, (ξk,r )1≤k≤l,1≤r≤p−1, (ζk)1≤k≤l

)
.

Consequently, for any l ≥ 0,

Uc
l :=

(
1 +

l∑
k=1

2β(ζ c
k )2

1 + 2β
∑p−1

r=1 Xc
k,r (ξ

c
k,r )

2

)−1

c→∞=⇒
(

1 +
l∑

k=1

2βζ 2
k

1 + 2β
∑p−1

r=1 Xk,rξ
2
k,r

)−1

=: Ul.

Consequently, if Yc ∼ Tc(μc) and Y0 ∼ T (μ0), then for any bounded continuous function f ,

Ef (Yc) =
∞∑
l=0

Ef
(
Uc

l

)
P(R = l) →

∞∑
l=0

Ef (Ul)P(R = l) = Ef (Y0),

where we used the dominated convergence theorem. As a result, Tc(μc) ⇒ T (μ0), which
implies that dL(T (μ0), Tc(μc)) → 0 and this completes our proof. �

We are ready to establish Theorem 1.2 for the general case.

PROOF OF THEOREM 1.2. Let Fc
N be the free energy of our model associated to the

truncated disorders (gc
k,i)k≥1,i≥1. Our goal is to show

lim
c→∞ lim sup

N→∞
1

N

∣∣EFN −EFc
N

∣∣ = 0.(45)

Once we prove (45), Theorem 1.2 follows from Theorem 3.1, Theorem 1.2 for the bounded
case, and Lemma 8.1 with an application of the continuous mapping theorem of weak con-
vergence.

To show (45), from (3) and (15), we have

EFN = h2

2

E tr(A−1)

N
+ E log detA

2N
,

EFc
N = h2

2

E tr((Ac)−1)

N
+ E log detAc

2N
.

Let fc(x) := log(1 + x ∧ c) for x ≥ 0. Applying (21) to the original and truncated disorders,
we obtain

lim sup
N

∣∣∣∣ 1

N
E log detA − 1

N
E trfc(A − I )

∣∣∣∣ ≤ K√
c
,(46)

lim sup
N

∣∣∣∣ 1

N
E log detAc − 1

N
E trfc

(
Ac − I

)∣∣∣∣ ≤ K√
c

(47)
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for some constant K that does not depend on c and N . Next, let μA−I and μAc−I be the
empirical spectral measures of A − I and Ac − I , respectively. From (18), we obtain that

(48)

∣∣∣∣ 1

N
E trfc(A − I ) − 1

N
E trfc

(
Ac − I

)∣∣∣∣ =
∣∣∣∣E

∫ ∞
0

fc d(μA−I − μAc−I )

∣∣∣∣
≤ ‖fc‖BVE[rank(A − Ac)]

N

≤ 2 log(1 + c)E
∑M

k=1 I(vk 
= vc
k)

N

≤ 2αp log(1 + c)P
(|g1,1| > c

)
.

As a consequence of (46), (47) and (48), we have the following bound:

lim sup
N

∣∣∣∣ 1

N
E log detA − 1

N
E log detAc

∣∣∣∣ ≤ 2K√
c

+ 2αp log(1 + c)P
(|g1,1| > c

)

≤ 2K√
c

+ 2αp log(1 + c)
E|g1,1|

c
,

which yields that

(49) lim
c→∞ lim sup

N

∣∣∣∣ 1

N
E log detA − 1

N
E log detAc

∣∣∣∣ = 0.

Next, we define f (x) = 1/(1 + x) for x ≥ 0 and argue similarly as above to conclude that∣∣∣∣ 1

N
E tr

(
A−1)− 1

N
E tr

((
Ac)−1)∣∣∣∣ =

∣∣∣∣E
∫ ∞

0
f d(μA−I − μAc−I )

∣∣∣∣ ≤ 2αpP
(|g1,1| > c

)
,

which implies that

(50) lim
c→∞ lim sup

N

∣∣∣∣ 1

N
E tr

(
A−1)− 1

N
E tr

((
Ac)−1)∣∣∣∣ = 0.

Now (45) follows immediately from (49) and (50). �

The proof of Theorem 1.1 is based on the following lemma.

LEMMA 8.2. We have that

lim
c→∞ lim sup

N→∞
E
∣∣A−1

11 − ((
Ac)−1)

11

∣∣ = 0.

PROOF. Define

A = I + 2β

M∑
k=1

εkvkv
T
k = I + 2β

M∑
k=1

εk

(
vc
k

)(
vc
k

)T
,

where εk’s are Bernoulli variables given by

εk =
{

1 if |gk,I (k,r)| ≤ c for all 1 ≤ r ≤ p,

0 otherwise.

Note that εk = 1 implies that vk = vc
k , which justifies the second equality in the definition

of A. We have A ≥ A and Ac ≥ A. Therefore, A−1
11 ≤ A−1

11 and ((Ac)−1)11 ≤ A−1
11 . Conse-

quently, ∣∣A−1
11 − ((

Ac)−1)
11

∣∣ ≤ (
A−1

11 − A−1
11

)+ (
A−1

11 − ((
Ac)−1)

11

)
.
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Taking expectation and using the symmetry of the spin coordinates, we obtain

E
∣∣A−1

11 − ((
Ac)−1)

11

∣∣ ≤ (
1

N
E trA−1 − 1

N
E tr

(
A−1))+

(
1

N
E trA−1 − 1

N
E tr

((
Ac)−1))

=
∫ ∞

0
f d(μA−I − μA−I ) +

∫ ∞
0

f d(μA−I − μAc−I ),

where f (x) = 1/(1 + x) for x ≥ 0 and μA−I , μAc−I and μA−I are the empirical spectral
measures of A − I , Ac − I and A − I , respectively. Observe that both rank(A − A) and
rank(Ac −A) are bounded above by p

∑M
k=1 I(εk = 0). Consequently,

E

∫ ∞
0

f d(μA−I − μA−I ) ≤ ‖fc‖BVE[rank(A −A)]
N

≤ pE
∑M

k=1 I(εk = 0)

N
≤ αp2

P
(|g1,1| > c

)
.

The same bound also holds for E
∫∞

0 f d(μA−I − μAc−I ). Therefore, we arrive at the bound

E
∣∣A−1

11 − ((
Ac)−1)

11

∣∣ ≤ 2αp2
P
(|g1,1| > c

)
and the assertion follows. �

PROOF OF THEOREM 1.1. Let n ≥ 1 be fixed and f be a Lipschitz function on R
n. For

each fixed c > 0, from Theorem 1.1 for bounded D case, we have

lim
N→∞Ef

(((
Ac)−1)

11, . . . ,
((

Ac)−1)
nn

) = Ef
(
Xc

1, . . . ,X
c
n

)
,

where Xc
1, . . . ,X

c
n are i.i.d. copies of μc. It follows that from Lemma 8.1,

lim
c→∞ lim

N→∞Ef
(((

Ac)−1)
11, . . . ,

((
Ac)−1)

nn

) = lim
c→∞Ef

(
Xc

1, . . . ,X
c
n

) = Ef (X1, . . . ,Xn)

for X1, . . . ,Xn i.i.d. copies of μ∞, the unique fixed point of the operator T . Finally, our proof
is completed by applying Lemma 8.2,

lim
c→∞ lim sup

N→∞
∣∣Ef

(
A−1

11 , . . . ,A−1
nn

)−Ef
(((

Ac)−1)
11, . . . ,

((
Ac)−1)

nn

)∣∣ = 0. �
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