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Abstract—With increased privacy concerns, anonymity tools
such as VPNs and Tor have become popular. However, the packet
metadata such as the packet size and number of packets can
still be observed by an adversary. This is commonly known as
fingerprinting and website fingerprinting attacks have received
a lot of attention recently as a known victim’s website visits can
be accurately predicted, deanonymizing that victim’s web usage.
Most of the previous work have been performed in laboratory
settings and have made two assumptions: 1) a victim visits one
website at a time, and 2) the whole website visit with all the net-
work packets can be observed. To validate these assumptions, a
new private webbrowser extension called WebTracker is deployed
with real users. WebTracker records the websites visited, when
the website loading starts, and when the website loading finishes.
Results show that users’ browsing patterns are different than
what was previously assumed. Users may browse the web in a
way that acts as a countermeasure against website fingerprinting
due to multiple websites overlapping and downloading at the
same time. Over 15% of websites overlap with at least one other
website and each overlap was 66 seconds. Moreover, each overlap
happens roughly 9 seconds after the first website download
has started. Thus, this reinforces some previous work that the
beginning of a website is more important than the end for a
website fingerprinting attack.
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Website  Fingerprinting,

I. INTRODUCTION

Privacy is becoming an increasing concern for many. VPN,
Tor, and DuckDuckGo are increasingly being used. Moreover,
many companies such as Apple and Brave are touting more
private solutions. Users thus want to hide their browsing
activities so that they cannot be tracked. This includes clearing
browser cache, hiding their IP address and the server’s IP
address, and installing privacy tools such as ad-blockers.
However, nothing is 100% secure or private. Even with all
these measures in place, network traffic data can still be
collected by a passive adversary. Even though the network
traffic is encrypted, the size of each network packet, the
number of packets, and the direction of the packets (from
client to server or from server to client) can still be seen.
Furthermore, if the adversary is at the first hop of the victim,
e.g. the Internet Service Provider (ISP), then that adversary
knows the identity of the victim. The adversary still needs to
determine the identity of the server/destination based only on
the packet size and number of packets sent. This is an attack
known as website fingerprinting.

Website fingerprinting has been known for a while now [1].
Much of the work in this area has improved on the accuracy
and feasibility of the attack. Website fingerprinting defenses

have also been proposed and implemented in Tor [2]. However,
most of the work have made some assumptions about the
user. For example, only one website is visited at a time and
it can be determined when a website download starts and
ends. Moreover, all the website fingerprinting data have been
collected in laboratory settings.

The motivation for this work is that nobody has tried to de-
termine whether website fingerprinting attacks are possible in
a realistic setting based on real users’ webbrowsing behaviors.
The goal of this research is to find real users’ webbrowsing
behaviors in a privacy-preserving manner. A webbrowser
extension called WebTracker was developed to track which
websites users are visiting, when a website download starts,
and when a website finishes downloading. Participants were
then recruited and compensated to fill out an anonymous
survey and to install WebTracker.

The results from WebTracker show that almost 16% of
websites visited had an overlap with at least one other website.
An overlap means that two websites visits are happening at the
same time, thus that makes website fingerprinting harder as it
cannot be determined whether a network packet is for websitel
or for website2. This result shows that it is important to de-
termine real webbrowsing behaviors and use that information
to perform more realistic website fingerprinting attacks and to
design more efficient defenses.

The contributions of this research are as follows.

o Empirically determine real users’ browsing behaviors.

o Develop a privacy-preserving webbrowser extension,

called WebTracker, to track user’s webbrowsing activities.

o Evaluation shows that a non-trivial part of website down-

loads overlap with other websites, which could make
website fingerprinting harder.

The paper is organized as follows. Section II provides some
background information of webbrowsing behaviors and web-
site fingerprinting, along with related work. Section III shows
the design of the proposed webbrowser extension WebTracker.
The data collection procedure and webbrowsing results are
shown in Section IV. Discussion and limitations of our work
are outlined in Section V. Section VI provides a summary and
some avenues for future work.

II. BACKGROUND AND RELATED WORK

To obtain user’s webbrowsing behaviors, real users need to
be recruited. Crowdsourcing platforms such as MTurk [3] and
Microworkers [4] are used by researchers and companies to
obtain real users to perform various tasks, such as completing
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a survey, testing some website features, or reviewing an ap-
plication. Anybody can become a user of these crowdsourcing
platforms. They may sign up for tasks and are compensated
for their time. Users can also be recruited through social
media platforms. In our case, we recruited participants from
Microworkers to fill out an anonymous survey hosted by
Qualtrics and then to install WebTracker on their computer.
Microworkers was chosen over MTurk due to the ease of ask-
ing participants to download software. Since the participants
are anonymous, we could not actually identify who installed
our extension and compensated everybody who filled out the
survey. Qualtrics includes a feature which does not log any IP
addresses.

To record webbrowsing, a webbrowser extension was de-
veloped as it is lightweight and can access the internals of a
webbrowser without being a full blown application. Any user
of a computer can easily (un)install a webbrowser extension.

Website fingerprinting [1], [2], [S]-[35] is an attack that
attempts to identify the website visited based only on network
traffic. Other fingerprinting attacks [36] exist but do not rely
on network traffic and are orthogonal to this research. The
adversary in a website fingerprinting attack sits on the first hop
of the victim, e.g. the ISP or a Tor [37] entry relay. Knowing
the victim, the goal of the adversary is to determine the website
visited given that the IP address is hidden, e.g. using Tor or a
VPN. Thus, only the size of each network packet, the number
of packets, the direction of each packet (from server to client
or from client to server), and the timing information of each
packet are observed. Using only this information and machine
learning algorithms such as k-nearest neighbor (K-NN), SVM,
or deep learning, it has been shown that a website can be
predicted with an accuracy over 94%.

The dataset used by the majority of previous work has been
in a laboratory setting, where the authors collect the network
traffic from a pre-determined set of websites using their lab
machines. This is not a realistic setting as regular users browse
the web differently than going to websitel, wait a certain
amount of time, close the tab, and then go to website2, wait a
certain amount of time, close the tab, and then go to website3,
etc. More recent work [38] has looked at real browsing traffic
on Tor — the authors showed that the accuracy decreases
significantly when monitoring more than 25 websites. This
work complements that paper by looking at how users browse
the web to determine if website fingerprinting is still practical.

Much of the work on website fingerprinting has collected
data from one website at a time, which means a user would
browse the web visiting one website at a time. Some of the
previous work also clears the webbrowser cache between web-
site visits. Although some research [39], [40] has relaxed some
of these assumptions by looking at multiple tabs being opened
and overlapping website visits, there has been little work on
how users actually browse the web. This research looks at real
users’ webbrowsing behaviors, how many websites are visited,
and how often they visit each website. This research will
impact the practicality and feasibility of website fingerprinting
attacks and defenses.

There have been previous work on monitoring user’s web-
browsing behaviors [41]-[46]. Although previous work fo-
cused on creating a user browsing model or predicting which
websites users will visit or determining the websites visited,
this work focuses on whether users browse multiple websites
at the same time. While designing the experimental data
collection, [47] advice was followed.

III. DESIGN

To track real users’ webbrowsing behaviors, a privacy-
preserving webbrowser extension called WebTracker was de-
veloped. WebTracker tracks when a user visits a new webpage
and when the webpage finishes downloading. An overview of
WebTracker is given in Figure 1. The tool tracks 1) when
a user visits a new webpage, either by typing a URL and
clicking Enter or by clicking on a URL link; 2) when a
webpage finishes downloading; and 3) when a webbrowser
tab is closed. Item #3 is not important for tracking users’
webbrowsing behaviors. The data collected are.

o userID: a number that is randomly generated when Web-
Tracker is installed. The number stays the same even
if WebTracker is enabled/disabled. The number will be
regenerated if the user uninstalled and reinstalled Web-
Tracker. This is to track each user.

o tabID: the tab number that an action was triggered on.

o URL: the second-level domain of the webpage.

o status: start downloading (0), finish downloading (1), or
tab closed (2).

o timestamp (in UTC).

Every time an action is triggered, the information above is
concatenated as a comma-separated string and sent as a POST
request to our webserver. We emphasize that the tool does not
store any data locally. Every action is sent as an encrypted
POST packet to our webserver. An eavesdropper could poten-
tially determine that a user has installed WebTracker but this
does not reveal the website visited.

To measure the start/finish of a page download, the
chrome.tabs API for Chrome and the browser.tabs API for
Firefox is used. That API has a method onUpdated, which is
called whenever a tab is updated in any way. The method has
a type, changelnfo, with sub-type “status” which returns the
status of the tab. For our purposes, the relevant return values
were “loading” and “complete” which are codes of “1” and
“2” respectively. The timestamp is also provided — this way we
were able to determine the amount of time taken for the tab to
go from “loading” to “complete”. Whenever a tab is closed,
the chrome/browser.tabs API fires an event onRemove — the
event has a type TabID, which is used to track which tab was
closed. We would check to ensure that the tab being closed
was actually a website, and not just a blank tab.

To protect the privacy of the users, the webserver is set to
not record any IP address. Thus, the only information recorded
is the information sent from the webbrowser. To further protect
the privacy of the users, each URL is hashed. The webserver
is only publicly accessible through port 443.
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Fig. 1: Overview of WebTracker.

WebTracker was implemented as an extension for two
webbrowsers: Google Chrome and Mozilla Firefox. Since
they are extensions, they utilize HTML (~40 lines of code),
CSS (~100 lines of code), and JavaScript (~200 lines of
code). The implementation is straightforward and contains a
simple ON/OFF switch for users to choose when they want
to have their webbrowsing behavior tracked or not. jQuery, a
JavaScript library, is used for the switch to work. To avoid
accidental downloads of the WebTracker, we did not post the
extension in the official Chrome web store or Firefox add-on
extension site. To install the webbrowser extension in either
Firefox or Chrome, a user needs to manually download the
extension from our webserver and manually install it.

The functionality begins with the application recognizing if
the extension is on or off, as shown in Figure 1. If it is off,
it does nothing. If it is on, the extension utilizes JavaScript
listener events to listen for when Chrome or Firefox fires
a trigger that something changed on the browser. Then the
data userID,tablD,URL, status, timestamp is collected
and then sent encrypted to our webserver. The webserver
creates a log of all that information that is sent.

IV. EVALUATION
A. Data Collection

WebTracker was active, collecting data, from June 1, 2020
to December 31, 2020. Since we did not know who installed
WebTracker, we could not ask the participants to uninstall
the extension. Thus, on January 1, 2021, WebTracker au-
tomatically disabled itself. Users were recruited from Mi-
croworkers [4] crowdsourcing platform from June 1, 2020
to September 1, 2020. This allowed for four months of data
recorded for the participants recruited on September 1 and
seven months of data recorded for the participants recruited
on June 1. Participants could disable or uninstall WebTracker
at any time. IRB (Institutional Review Board) approval was
obtained before the experiments were conducted.

Participants recruited from Microworkers had to be over
18 years old, had to understand English and can be from
any country. We could not verify this information since we
do not know who the workers were, but these were options
selected on the Microworkers site. Every participant was asked
to fill out a brief survey. The survey described the experiment

and asked for their worker ID. Before filling out the worker
ID, participants were asked to install WebTracker. They were
provided installation and uninstallation instructions for both
Mozilla Firefox and Google Chrome. Each participant was
compensated with $1.50 after completion of the survey. Due
to the privacy features implemented in WebTracker, it cannot
be determined whether a participant installed the extension. A
total of 238 participants were recruited.

B. WebTracker Results

Browsing Results.

Recall that the goal of WebTracker is to privately collect
participants’ web browsing behavior in order to garner insight
on real-world website visit overlaps, which can be used further
in website fingerprinting research. The data collected includes
a unique and random userID so that each individual user can
be monitored, the tabID in case a user visits the same website
using different tabs, the URL, the status so that we know when
website download starts and stops, and the timestamp of that
event. Users can enable/disable WebTracker at anytime. More-
over, webbrowsers could crash or be closed before all websites
have finished downloading. Finally, WebTracker could have
been installed while other website visits are in progress. It is
highly unlikely that a user will install WebTracker on a fresh
webbrowser. Thus, our data collection was conservative: 1) we
excluded any URLs that did not have a start downloading or
finish downloading status; 2) we excluded any website visits
that took longer than 10 minutes to download. It is atypical
for a webpage to take more than several seconds to finish
downloading. That large download time could be because it
was a visit to the same URL on the same tab but at a later
time. As an example, a participant could start to visit a website
on the first tab and then disable WebTracker. The website
finishes downloading. Some time later, the same participants
visits the same website on the first (same) tab, then enables
WebTracker. The extension will log when that website finishes
downloading. The time difference for that URL will be big
since WebTracker only knew about the start of the first visit
and the end of the second visit; 3) we excluded data that
came from the microworkers.com website. The reason is that
our participants were recruited from that website and likely
visited it often, potentially skewing the data.

Webtracker was installed a total of 83 times. This is lower
than the 283 users recruited because not all users installed the
extension. Due to the way the experiment was setup, it was
not possible to determine which user installed the extension.
Moreover, some users uninstalled the extension soon after
install because we only obtained data from some userIDs
for only a few minutes. The total time elapsed between the
start of our data collection and the end is about 211 days
(almost 7 months from June 1 to December 31). The total
number of websites counted in this entire dataset is 57,097
websites, or roughly about 270 websites visited a day on
average. Out of that time, users spent 50.88% of that time
downloading data, or about 107 days. Furthermore, out of all
the time spent downloading, 15.66% of downloaded websites
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were overlapping, with 2.11 websites in an overlap on average.

Figure 2 shows that up to 75% of websites take less than
10 seconds to download. Some websites do take longer to
download. This could be possible because websites that users
visit could include downloading files such as photos, videos,
and music, which are often large in file size and take longer
to download. Moreover users that participated in this research
might have come from different countries, meaning some may
not have access to high internet speeds, which may result in a
longer download time. The average download time was 16.68
seconds, and the median download time was 3.57 seconds with
a standard deviation of 47.95 seconds. This indicates that the
data itself varies greatly, but the low median suggests most
websites do not take long to download, with larger websites
bringing up the average. A larger variance in website down-
loads potentially indicates that websites are more unique. If a
website took a longer time to download than usual, its packet
data could point to it belonging to a media website, such as
one with videos or pictures. Figure 3 shows the download time
only for websites that are overlapping with other websites. As
shown in the figure, the median download time is 12.5 seconds,
which is much higher than the median download time of 3.57
seconds for all websites. This makes sense as websites that
take longer to download (for example, downloading a movie)
are more likely to overlap with other websites as the user opens
a different tab. Furthermore, Figure 4 includes the websites
visits of the 83 users that participated in this research. Some
users only visited a few sites while using WebTracker, but the
greater proportion visited tens or hundreds of websites, with
50% of users visiting at least roughly 50 websites.
Overlapping Results.

An overlap occurs when two or more websites are be-
ing downloaded at the same time. Determining when an
overlap ends is more involved. Figure 5 shows a diagram
of a hypothetical webbrowsing history for a user. The user
visits three websites: Websitel starts at t1 and ends at to,
Website2 starts at t2 and ends at t4, and Website3 starts at
t3 and ends at t5. The overlap time in the figure is t5-t2
and encompasses all three websites. Though more than two
websites are overlapping, the entire overlap time is taken as
the elapsed time when all involved websites are overlapping
each other. Therefore, Website2 and Website3 are not counted
as their own overlap, given that they overlap already with
Websitel — the three websites are counted as one overlap.
However, not all websites were downloading across the entire
overlap, such as Website3 was not present for time t2 to t3. We
instead averaged the number of active websites in the overlap:
first, there were 2 websites in the overlap between t2 and t3,
then 3 websites between t3 and t4, then 2 websites between
t4 and t5. Therefore, the number of websites in this overlap is
(2+3+2)/3 = 2.33. Another important metric is the elapsed
time before overlap occurs, which in the diagram is t2-t1. This
shows the time when Websitel is downloading before other
websites start. This is important as a longer t2 - t1 time means
a possibly easier prediction of Websitel. The last metric is

download time. The download time for Websitel is t6 - tl.
The download time for Website2 is t4 - t2. The download
time for Website3 is t5 - t3.

Figure 6 shows how our algorithm works in calculating
overlaps. The active list keeps track of all websites that are
still downloading (status “1”’). Websites are removed from the
active list when they are finished downloading; those will have
a status of “2”. If a website starts downloading and the active
list is empty, then the start of a new overlap is found. If a new
website starts downloading and the number of websites in the
active list is greater than 1, then an overlap is occurring and is
measured accordingly. When a website finishes downloading
and the number of websites in the active list decreases back
to 1, then overlapping has stopped.

Figure 7 shows the CDF for the overlap times, with the
average length of an overlap being 223.19 seconds and the
median time being 66.68 seconds with a standard deviation
of 836.07 seconds. This indicates that the data for the overlap
time varies significantly. This suggests that the overlap length
is dependent on user activity, whether they are downloading
a large file while browsing other websites, watching multiple
videos, streaming, or performing multiple small tasks at the
same time. Long overlaps could potentially produce enough
noise in the data to make it difficult to fingerprint the website.
If the overlap is long, it would suggest that the websites are
overlapping during the duration of their entire downloading
period, rather than a small overlap where websites overlap
momentarily. Figure 9 show the elapsed download time of
the first website before overlap occurs. 25% of the time,
the overlap occurs after 4 seconds of download. The average
amount of time a website downloads before overlapping occurs
is 24.06 seconds with a median of 8.738 seconds and standard
deviation of 45.62 seconds. Additionally, Figure 8 demon-
strates the total elapsed download time of the first website
in an overlap. The average amount of time it takes for the
first website to download is 97.92 seconds, with median 41.46
seconds with a standard deviation of 127.24. The long elapsed
times from Figure 9 indicate it generally takes some time
before the first website overlaps with another website. That can
pose an issue as most website fingerprinting algorithms look
at the whole website network trace rather than just the first
few packets or seconds. Therefore, an earlier overlap means
it might be more difficult to perform a website fingerprinting
attack. As can be seen from Figure 8 and Figure 9, it takes
almost 9 seconds before overlap occurs. Moreover, the first
website, when overlap occurs, takes 41 seconds to download.
This means that 22% of the first website is not overlapping
with any other website.

Summary

The results can be summarized as follows:

e 15.66% of websites were overlapping with at least one

other website.

o The median download time for non-overlapping website

was 3.57 seconds.

¢ The median download time for overlapping websites was

12.5 seconds.
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Fig. 2: Empirical Cumulative Distribution Function (CDF) plot of time taken to download a website. (a) shows the CDF for
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Fig. 4: Empirical cumulative distribution function (CDF) plot of number of websites visited per user. (a) shows the CDF for
up to 1,200 website visits (b) shows a zoomed-in figure with the CDF percentage up to 60%.

o The median time of an overlap was 66.68 seconds.
o The median time before an overlap starts for a website
was 8.738 seconds.

The results indicate that overlapping could have an effect on
website fingerprinting attacks, especially if the models consid-
ers the whole website instead of the first few network packets.
This would make webbrowsing safer and more private. The
second website will not be distinguishable in an overlapping
download. However, the first 9 seconds of the first website
are still vulnerable to website fingerprinting attacks — future
work could address whether that is enough time to perform

an accurate website fingerprinting attack.

V. DISCUSSION

The results show that users’ browsing habits are different
than assumed. We found that occasionally even four web-
sites can download at the same time. This adds a layer of
complexity to determining what website(s) a network trace
belongs to. Additionally, overlaps, though varying greatly in
length, tended to be long, with a median of 66 seconds. Long
overlaps could be a potential countermeasure against website
fingerprinting attacks as overlapping websites are more dif-
ficult to identify. However, users only spent 15.66% of their
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Fig. 5: Diagram demonstrating how an overlap is counted.
It is not contingent on the number of websites present, but
rather on when all websites that are overlapping have finished.
Therefore, though there are more than two websites, the entire
bundle of websites is counted as one overlap. The overlap time
is thus t5 - t2. The elapsed time before overlap is t2 - t1.
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Fig. 6: Flowchart showing how our algorithm works in calcu-
lating overlaps.

downloading time in overlap, meaning that a majority of users’
website visits could potentially be identified. Additionally,
we found that websites download a few seconds of data
before overlap occurs, with a median of 8.738 seconds elapsed
time. Previous research have devised an algorithm that can
accurately predict a website with only the first few seconds
of its packet data with about 85% accuracy [48]. This is
because websites are easier to identify from the beginning of
the trace rather than the end of the trace. Therefore, though
overlaps tend to be long, some websites may still be able to
be identified if they are the first website in an overlap but the
second website will be harder to identify. Based on this result,
website fingerprinting models that utilize the whole network
traffic are likely not reliable.

All the webbrowsing data collected are through a Firefox
or Chrome extension. We did not measure whether the traffic
is through a VPN or through the Tor network or whether the
participants were using the Tor browser. Most web users do not
use Tor, thus we doubt that any of the data collected is through
the Tor network. This could be future research to measure only
webbrowsing behavior on the Tor browser.

We claim our WebTracker to be “privacy-preserving”’; how-
ever, it is still a tracker. We attempted to remove any identifi-
able information such as IP address and URL. Due to privacy
issues, we did not collect the network traffic. This could have
provided more insight on who is browsing how. Due to the
lack of URLs and the lack of actual packet metadata, we

could not do a website fingerprinting attack on the data we
collected. It would have been interesting to determine the
website fingerprinting accuracy on the overlapped websites.

We do not expect that the data collection sent to the
server interferes with the data collection. The data sent is
small (around 5KB including the TLS handshake) and is not
recorded by the WebTracker extension.

There are some limitations. The first one is that participants
were aware that their browsing activities were being moni-
tored, thus the webbrowsing behavior might not be natural.
Participants could also turn off/on the webbrowser extension
at any time. Another limitation is that WebTracker did not
have a mobile version and only recorded webbrowsing habits
of desktop users of Firefox and Chrome. Therefore, users’
mobile browsing habits are not known, nor is it known if
browsing through apps rather than only through a dedicated
browser affects overlaps. Moreover, there were only 83 installs
of WebTracker. Due to the longer than normal download times
of a few seconds, it could be that many of the participants
had slower Internet connection or were not from the US or
using a VPN. More users from more diverse locations need
to be recruited. Future work might also explore requiring
participants to upload a screenshot showing the extension has
been installed before compensation.

VI. CONCLUSION AND FUTURE WORK

This research showed two main results: 1) privately track
real users’ webbrowsing behaviors such as how many websites
they visit, how long each website takes to download, and
how many websites are visited at the same time; 2) show
that website fingerprinting attacks make a strong assumption
that users browse one website at a time and the adversary
have access to all the network packets for each website visit.
Actually, over 15% of all website visits overlapped with at
least one other website. Moreover, each overlap lasted about
66 seconds. Only the first 9 seconds of a website, on average,
are clean and are not overlapping with other website visits.

Our results show that more work is needed to determine the
practicality of website fingerprinting attacks. Moreover, with
the way the participants in this research browsed the web, there
were overlaps which in some way act as a countermeasure
against website fingerprinting. Overlaps tend to decrease the
accuracy of website fingerprinting attacks. Unfortunately, we
could not record the number of packets and thus, could
not determine the number of packets during the first non-
overlapping 9 seconds of website download.

As future work, more participants and from more diverse
locations need to be recruited and their webbrowsing behaviors
analyzed. This work could also be extended to mobile devices
such as smartphones and tablets. Recording webbrowsing
behaviors on the Tor browser could also be future work.
No website fingerprinting attack is performed — the next
step would be to collect data by simulating the webbrowsing
behavior observed and determine the effectiveness of website
fingerprinting attacks.
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Fig. 7: Empirical cumulative distribution function (CDF) plot for overlap times. (a) shows the CDF for overlap times up to
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(a) shows the CDF for loading times up to 200 seconds and (b) shows a zoomed-in figure with the percentage up to 60%.
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