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Abstract

We study the Kardar—Parisi—Zhang (KPZ) equation on the half-line x > 0 with
Neumann type boundary condition. Stationary measures of the KPZ dynamics
were characterized in recent work: they depend on two parameters, the bound-
ary parameter u of the dynamics, and the drift —v of the initial condition at
infinity. We consider the fluctuations of the height field when the initial condi-
tion is given by one of these stationary processes. At large time ¢, it is natural
to rescale parameters as (u,v) = ~'/3(a, b) to study the critical region. In the
special case a + b = 0, treated in previous works, the stationary process is sim-
ply Brownian. However, these Brownian stationary measures are particularly
relevant in the bound phase (a < 0) but not in the unbound phase. For instance,
starting from the flat or droplet initial condition, the height field near the bound-
ary converges to the stationary process with @ > 0 and b = 0, which is not
Brownian. For a 4+ b > 0, we determine exactly the large time distribution Fz‘f,]‘,t
of the height function %(0, 7). As an application, we obtain the exact covariance
of the height field in a half-line at two times 1 < #; < t, starting from sta-
tionary initial condition, as well as estimates, when starting from droplet initial
condition, in the limit #; /, — 1.
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1. Introduction and main results

1.1. Introduction

The Kardar—Parisi—Zhang (KPZ) equation [1] in one dimension describes the time evolution of
the height field /(x, f) of an interface which undergoes a local growth process driven by white
noise. It is a paradigmatic element of a large universality class of one dimensional models
with identical universal behavior at large scale, the so-called KPZ class. Since the interface is
growing, with h(x, ) ~ vt at large time, it is intrinsically an out of equilibrium problem. One
can nevertheless ask whether a stationary state can be reached at large time. While the height at
one point grows linearly in time with non trivial 7'/? fluctuations, the height difference between
any two points, a(x, ) — h(y, t), reaches a stationary distribution. Even when this distribution
is known, it says nothing about the increments of the height field in time, say 4(0, ¥) — h(0, 0).
In this paper, we are interested in computing these temporal increments and their asymptotics
at stationarity (i.e. starting from a stationary initial condition), and apply it to compute the
two-time covariance of the height field.

Let us first briefly review what is known about stationary distributions for the KPZ equation.
They depend on whether one considers the equation on the full-line, or in a restricted geometry
such as a half-line or an interval. On the full-line, it has been predicted for a long time [2, 3]
that the KPZ equation admits the Brownian motion (BM) with an arbitrary drift as a station-
ary measure. This was proved rigorously in [4], and in [5] for periodic boundary conditions.
Interestingly, in the cases of the half-line and the interval, the generic situation is more com-
plicated (not translation invariant, not Gaussian, see below). One typically imposes Neumann
type boundary conditions (that is, one fixes the derivative of the height field at the boundary)
so that stationary measures depend on boundary parameters. For the interval it depends on the
two boundary parameters, while for the half-line it depends on one boundary parameter and
on the drift at infinity. In the special case when boundary and drift parameters are such that the
slope imposed at the origin has the same value as the drift at infinity, the BM (with the same
drift) is again stationary, as was shown in the case of the half-line in [6] (this specific half-
line stationary measure was studied in the equivalent directed polymer context in [7]). But this
Brownian stationary measure is not unique, and for arbitrary values of the drift parameter, the
stationary measures have been found only recently.

For the KPZ equation on an interval [0, L], an explicit formula for the Laplace transform
(LT) of the stationary height distribution was obtained in [8] (for L = 1, and for some range
of parameters). Explicit Laplace inversion was performed shortly after in [9, 10] (see also
[11]). In [10] a rather simple and explicit characterization of the process h(x, ) — h(x, 0) was
obtained by two of the present authors. This characterization allowed in particular to predict the
stationary measures in the limit of the half-line, letting the size of the interval to infinity. This
large interval limit is actually quite non-trivial, but surprisingly, the limit of stationary measures
on [0, L] had been already studied in the mathematics literature [12], with completely different
motivations. This is why we refer below to the resulting processes on the half-line (i.e. the
non-Brownian stationary distribution for KPZ in a half-space) as Hariya—Yor processes.

Let us now describe in more details the question we address in this paper. While the steady-
state distribution of &(x, t) — h(0, f) for the KPZ equation on the half-line x > 0 is now clear,
it remains to understand the global height, that is the height at one point, for instance £(0, ?).
Apart from situations where the boundary is very attractive, already studied in [7], the height
grows at large time as /(0, 1) >~ vt + Y/ 3x, where Y is a random variable whose distribution
depends on some details of the initial condition 4(x, 0). For the KPZ equation on the full-line
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with a stationary, i.e. BM initial condition, y follows the Baik—Rains distribution [13-16].
It is universal over the KPZ class and, remarkably, was measured in recent experiments on
liquid crystals [17]. For the half-line, the corresponding question was addressed only recently,
but until now only for the special case mentioned above where the BM (with drift) is still the
stationary measure. The analog of the Baik—Rains distribution then depends on one boundary
parameter, we denote it FB"Ma and it was obtained in [18] (in the context of last-passage-
percolation, which is equivalent by universality) and in [6] directly for the KPZ equation for
a=0.

The aim of this paper is to obtain the analog of the Baik—Rains distribution for the KPZ
equation on the half-line starting from a stationary initial condition in the generic case, that
is for the Hariya—Yor initial conditions. We show in this paper that these Hariya—Yor pro-
cesses are integrable, in the sense that one can write down simple exact formulas for the mixed
exponential moments, using the framework of half-space Macdonald processes [19]. Through
the usual Hopf—Cole mapping h(x, t) = log Z(x, 1), the process Z(x, f) solves the multiplicative
noise stochastic heat equation (that is the partition function of a continuous Brownian directed
polymer in a random potential) and we compute explicitly all moments of Z(x, r) via a Bethe
ansatz type approach. Following a similar line as in [6] (and previous works including [20,
21]), we express the LT of Z(x, t) as Fredholm Pfaffians and determinants, which we analyze
asymptotically to obtain the limiting distribution of .

It is important to note that although our results are obtained from the large-scale analysis
of the KPZ equation, we expect that they hold universally for all half-space models in the
KPZ universality class. As an application, following a method introduced in [22] for full-space
models, we have obtained the two-time covariance of the KPZ height in a half-line geometry.
These results can also be translated in terms of the free energy of a directed polymer in the
presence of a wall.

Outline. In the following sections, we first review the stationary measures for the KPZ
equation on the half-line (section 1.2) and discuss the various distributions that arise for the
large time fluctuations of the height field (section 1.3). Our main new results are presented in
section 1.3.3. We then present an important application of the main results to the computation
of two-time covariance in half-space KPZ growth in section 1.4.

The remaining sections are devoted to details of the derivations. In section 2, we obtain the
moments and LT formulas characterizing the distribution of (0, f). We analyze the formulas
asymptotically in section 3 and obtain explicit formulas for the cumulative distribution function
(CDF) of the limiting distributions. We provide the details of computations of two-time covari-
ance in half-space KPZ growth in section 4. Finally, in appendix A, we extend the results of
our previous work [6] to provide an explicit formula for the CDF FB"mian when the boundary
parameter a # 0. In appendix B, we explain how to compute the distribution of A(x, 7) instead
of h(0, 1), when x is scaled of order />3, and the initial condition is a Hariya—Yor processes.

1.2. Half-space KPZ stationary measures

Let Z(x, t) denote the solution to the half-space stochastic heat equation
OZ(x,1) = 0uZ(x,0) + V20(x, DZ(x,1), (x> 0,1 > 0), (1)

with standard white noise 7, initial condition Zy(x) and boundary parameter A € R,
corresponding formally to

O Z(x, 1),y = AZ(0,1).
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Figure 1. Phase diagram of stationary measures for the KPZ equation in the half-space
R with boundary parameter u. The diagram means that if the initial condition 4(x, 0) has
drift —v at infinity, the height field should converge at large time under mild assumptions
to the stationary measure indicated in one of the three regions of the («, v) plane, namely
Ri={u>0,v>0}, R, ={u<0,u<v}and Ry = {u > v,v < 0}. Along the line
u + v = 0, the stationary measure is a BM with drift u = —v.

We will often denote the boundary parameter rather by the letter # where u = % + A. Then, we
will say that ,(x, f) = log Z(x, f) solves the KPZ equation on R

athu - ax;chu + (axhu)z + \/577 (2)

with boundary parameter u.
It was noticed in [6] that if the initial condition x — &, (x, 0) is distributed as

h,(x,0) = B(x) + ux 3)

that is a BM with drift u, then for all # > 0, the process x — h,(x, ) — h,(x,0) has the same
distribution, that is

ha(x, 1) — ha(0,8) 2 B(x) + ux. 4)

In other terms, the BM with drift « is a stationary distribution for the KPZ equation in a half-
space with boundary parameter u. In infinite volume (that is for dynamics on functions of R or
R ), there is no reason to expect that the stationary process is unique. Indeed, there exist other,
more complicated, stationary measures for the half-space KPZ equation, recently described in
[10], based on results for the stationary measure on an interval from [8] (see also [9, 11] for
an equivalent description of stationary measures on an interval). These additional stationary
measures depend on a parameter v, where —u is the drift of the process at infinity, and they arise
only when u > v,v < 0. It is convenient to represent them on the diagram of figure 1, which
explains which stationary processes arise in the large time limit, depending on the boundary
parameter « and the drift of the initial condition. They are defined in terms of a process that
we call the Hariya—Yor process, defined below and denoted HY,, ,,
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For u > v,v < 0 with u 4+ v > 0, we define the Hariya—Yor process, denoted? HY uo(x),
by

X
exp (HY,n(x)) = 1wy / dr e BIO+B0-B20 |y ) B2 (5)
0
where Bj,B, are independent standard BMs with drifts —v and v respectively, and
wiy,wy are independent inverse gamma random variables w; ~ Gamma '(u 4+ v) and
wy ~ Gamma ™~ '(u — v). We say that a random variable X follows the Gamma~!(#) distribu-
tion if 1/X is a gamma random variable with scale parameter 1 and shape parameter 6. In other
terms, X is a positive random variable with density ﬁ Tesox e/ Xd;".

In order to give a unified description of the stationary measures, is convenient to define, for
any u, v € R, a stationary initial condition 45, where

uv

HYuo(x) — HYV1u0(0), foru >0, v > 0, thatis(u,v) € Ry,
hya(x) = § B(x) 4 ux foru <0, v > u, thatis (u,v) € Ry, (6)
HYuo(x) — HY,0(0), foru > v, v <0, thatis (u,v) € R3.

Let us stress that while in the phase u > v, v < 0 the process £} (x) describes exactly the
spatial increments of HY, ,(x), it is defined differently in the other phases and this is why we
needed a new notation. We will use alternatively 25 (x) and H)/,,,(x) for the following reason:

u,v

K™ x) is the natural way to describe the stationary height field, in particular it is normalized so

u,v
that 255(0) = 0. The process HY,,(x), however, is not normalized but contains the appropriate
random shift that makes exact computations possible.

Remark 1.1. The Hariya—Yor process (5) is defined only when u > v, v < Owithu + v > 0.
It depends on a random variable w; ~ Gamma '(x + v), which explains the condition
u + v > 0. However,

B(x) = HYuw(x) = HYuw(0) = HY\uu(x) — log wy — log wy

depends only on w, ~ Gamma ' (u — v), and on two BMs B, B», hence it is well-defined for
any u > v,v < 0, without imposing the condition u + v > 0.

Remark 1.2. For any u > 0,

HYu—u(X) = HYu—u(0) = B(x) + ux, (N
where B(x) is a standard BM. This is a nontrivial result, discovered by Hariya and Yor in [12].
Remark 1.3. As v — u, itis easy to check that

HY () = HYup(0) = B(x) + ux. ®)

Remark 1.4. Our definition of H),,(x) may appear different from the process defined in
[10, equation (35)] but it is equal up to a shift by log(w;w,). Indeed, the process is defined in
[10] as

X

H(x) = BY(x) + B?(x) + log ( 14 Yo / e 23‘”@dz) : )
0

3 Our notations are different from [10], where a slightly different process was denoted HY, *(x)).
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where BV (x), B (x) are independent BMs with variance 1/2 and drifts 0 and v respectively.

Using the change of variables
B, + B> B, — By
2 b

B® —
2 b

B —

By, B, are two independent standard BMs of drifts —v and v respectively, and we have that, if
we identify 7,_, in (9) with 1/w, in (5), then

eHyu.U(X)
=", (10)
wiwy
so that
H(x) = HY,o(x) — log(w) — log(wy). (11)

Remark 1.5. The integral (5) is similar to the partition function of the semi-discrete
O’Connell-Yor polymer [23, 24] with two rows. Other O’Connell-Yor partition functions
decorated by inverse gamma variables appeared in the literature, [7, 16, 25], though the par-
tition function in (5) is different. In the limit # — oo, we recover exactly the O’Connell-Yor
partition function.

1.3. Limiting distribution for the KPZ height on a half-line

1.3.1. Droplet initial condition. For the droplet initial condition, i.e. e"*)— , ,5(x), and
boundary parameter u, a phase transition occurs based on the sign of u. We have

Fgse(s) foru > 0,

h,(0,0) + &
tl—i>IoIQIP <(t133+12 < s) = < Fgog(s) foru =0, (12)

0 foru < 0.
In the phase u < 0, the scaling and statistics are different: /,(0, ) ~ ¢ (%21 + uz) [26] and statis-
tics are Gaussian on the 7/2 scale (see [7, 27]). If we scale u close to the critical point as
u = ar~'/3, we have that

1—00 tl/3

hy1/3(0,0) + 5
llmIP) <M < S> — Fl(liroplet(s). (13)

The existence of a transition was anticipated in [26]. In the equivalent directed polymer
problem, it corresponds to a transition to polymers bound to the wall at x = 0 when u < 0
to unbound polymers when u > 0. The statistics occurring around the phase transition (12)
and the exact formula for FIPet were first discovered in [28, 29] in the context of asymp-
totic fluctuations of symmetrized last passage percolation models. For the KPZ equation, these
asymptotics were obtained in [30] for u = +o0, in [20] for u = 1/2,1in [31] for a = 0 (i.e. the

critical case, u = 0), and in [21, 27] in the general case. We have in particular Fgmp "t — Feok.

1.3.2. Brownian initial condition. For a Brownian initial condition 4,(x,0) = B(x) + ux,

where B(x) is a standard BM, which is stationary for any u € R, we have for u = ar~'/3
: hat*1/3 0,0+ ﬁ __ y-Brownian
tlg;}IP’ <t‘/3 <s ) =F, (5). (14)

6
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This statement and an exact formula for F° fr"“’“ian was obtained in [6] in the special case a = 0.
In the context of last-passage percolation, the analogous statement for any a € R was shown
earlier in [18]. We also provide in appendix A an alternative formula for FB"ma" hased on an
extension of our earlier result for a = 0 in [6] (the formula for FE"nian(s) appears in (133)).
It remains to be shown that the exact formulas from [32] and our formulas in [6] and appendix
A are equivalent. Note that in [18, 32], formulas were also obtained for the height distribution
and multipoint correlations at points away from the boundary.

According to the phase diagram of figure 1, in the bound phase, i.e. when u < 0, for any
initial condition with drift at infinity not exceeding —u, the spatial process h,(x, ) — h,(0, 1)
should converge, as ¢ goes to infinity, to a Brownian with drift #, hence the importance of this
case. Consequences about the geometry of the polymer and the distribution of the endpoint
were investigated in [7].

In the unbound phase u > 0 however, the stationary process obtained at large time is the
Hariya—Yor process HY,,,, when the drift of the initial condition is positive and equals —v > 0,
and HY, o when the drift is negative. Brownian stationary measures arise only whenu + v = 0,
see remark 1.2, which is a very special case. For droplet or flat initial condition for instance,
the stationary process observed at large times is the Hariya—Yor process H), 0. This makes
the study of fluctuations starting from the Hariya—Yor initial condition particularly important
in the unbound phase.

1.3.3. Main new result: Hariya—-Yor initial condition. 'We now focus on the regions R; and Rj.
We assume that the initial condition &,(x, f) = log Z(x, f) is given by h,(x,0) = HY,.,(x), for
u > v,v < 0 as defined in (5), under the additional technical assumption # + v > 0. We will
show that, for u = ar'/3,v = br /3, witha + b > 0,5 < 0

h,1300,0) + 5
lim P <M < s> = G (s), (15)

1—00 tl/3

where the CDF G (s) will be explicitly determined. An explicit formula for G} (s) is given
in (78). When a > O and b = 0, that is in the maximal current phase, the formula simplifies
and we obtain

2
o (s) = (Det(I+A ) (-a +s+2R+)>, (16)
where A, is an integral operator acting on IL%(0, +o0c) with kernel[\x(x, y) = ;\(s + x + y) where
~ 23
Ay = [ L AFE iy (17
2ira—z

where the contour is a vertical line with real part between 0 and a, and R™ is a scalar product
defined using quantum mechanical notations as (see section 3.2 for details)

Ay
1 +A,

R = (1] ). (18)

Remark 1.6. Asa — 400, we notice that G113 (s) — F§™"™" given in [6, equation (7.24)].
This limit is obvious from the formula but the reason is non-trivial, it can be seen as a conse-
quence of a surprising identity in distribution obtained in [6, sections 4.5 and 4.6], see more
details in remark 3.1. This identity in distribution itself comes from more general identities

7



J. Phys. A: Math. Theor. 55 (2022) 275004 G Barraquand et al

in distribution for the log-gamma polymer and half-space Macdonald processes found in [19,
propositions 2.6 and 8.1].

The distribution given by G b is not centered, unlike the Baik—Rains distribution or the
distribution FE™Mian byt this is an artefact due to our definition of the Hariya—Yor process.

Indeed, under the scaling u = at /3, v = br /3, lim,_,oe 7' A HY,,(0) D E.ip+ E, p, where
E,4p and E,_;, are independent exponent1a1 random variables with parameters a 4+ b. We can

construct a centered variable as follows: we may write that

h 130, ¢ 0,0)+ i
limH”( a1 (0.0 : r00+ 5 ) FHY(s), (19)
00 t /3
where F{'Y (s) is such that
E [FIY(s — Eaxp — Eap)] = Goy (s). (20)
More explicitly, this means that
o~ 5 5 oo ua SINH(DU) 1y
Gl =@~ b [ due w EEORN G ), @1
0

This can be inverted as

2a 1
Fap 9) = Gy 5) + DGy () 55 + 0/Gp (9) 5~ (22)
Equivalently, if we denote by Xa.» arandom variable with distribution G} and £, arandom
variable with distribution F!'Y, we have that (recall that we have assumed in this section that

b<0,a+b>0)
b+ Eavv + Eacp = Xap (23)

where £, ,, E,1, and E,_;, are independent. By stationarity, we can argue that [E [ga,,,] =0.
Indeed,

E [€as] = 1im "B [y 1500 = hy15(0,0) + 12]
' 1
Qi —1/3
= lim1 /0 (agﬂ«: [hy1/3(0,8) = hyy13(0,0)] + 12>d

The quantity inside the integral is independent of s, by stationarity, so it is a constant. This
1 /3 0,0)

constant is necessarily 0, otherwise we would have that lim,_,, Ly 150D #* = 12
Remark 1.7 In view of remark 1.2, we should obtain that as b — —a,
FHY(S) FBrowman(s) (24)

although this is not immediately apparent from our formulas.
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Figure 2. Definition of 33" as in (26) for various values of a, b. In a small portion of the
phase diagram below the line @ + b = 0, we are not able to characterize the distribution
of large time fluctuations.

1.3.4. Summary. The results presented above for the different phases of the diagram in
figure 1 can be summarized in a unified manner. We expect that for any a,b € R, scaling

u=ar '3, v =br '3, when one considers the initial condition A(x,0) = B52(x) defined in
(6), we have that
h 1500,0) + & .
timp (fa 20D ) g (25)
~m 173 a.

for some CDF F'. We have obtained (25) and determined a formula for F} in a number of
cases (see figure 2), in particular:

Fi(s) fora >0, b >0,
JBrownian fora <0, b > a,

Fis) =4 (26)
Fip(s) fora >b, b<0, a+b>0,

Ffmwnia“ fora >0, a+b=0,

where FEVM g defined in section 1.3.2 and FIY is defined in section 1.3.3. In the next
sections, we will denote by &, a random variable with distribution F3.

1.3.5. Away from the boundary. While we understand now the distribution and asymptotics of
h,(0, ) and we know as well the distribution of stationary spatial increments %, (x, t) — h,(0, 1),
we cannot immediately deduce the asymptotics of /,(x, ) for x > 0. This is due to the fact that
the random variables £,(0, f) and h,(x, ) — h,(0, f) are correlated in a very nontrivial way.

9
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However, the distribution of &,(x, f) can be computed explicitly, at least in the large time
limit, for the same initial condition as in the previous sections. When x = %2/3, we obtain

limP

1—00

hy 13 (PP% 0 + -
< ar—1/3 t1/3 12 gy — Ggg(y,x) (27)

The CDF is computed in appendix B and given in (191).

1.4. Two-time covariance

An interesting application of our results concerns the two-time covariance. For general initial
conditions, one can study the correlation of the KPZ height field at two different times, i.e.
the correlation of /(0,#) and h(0,7) (here we focus on the same space point). In the limit
where both times are large 1 < #; < ¢ with a fixed ratio 7 = ¢, /¢, this covariance becomes a
universal function C(7) of 7 € [0, 1], whose specific form depends only on the class of initial
condition (stationary, droplet, flat, etc...). This covariance, as well as the full two-time height
distribution, were studied for the full-space geometry [33—42] and measured in experiments
[43]. One defines for a general initial condition,

. 1
C(r) = lim 7 Cov(h(0, 17), 1(0, 7). (28)

The results of this paper allow to obtain some predictions for C(7) in the half-space geometry. In
particular we obtain C(7) for the stationary initial conditions for all 0 < 7 < 1, and for droplet
initial conditions for close times, i.e. 1 — 7 < 1. Of particular interest are the dimensionless
ratios
. Cov(h,(0, 17), hy(0, 7)) C(7)
=1 = , 29
on = M 0. mVarh, 0.0 71AC) 29
R(r) = lim Cov(h,(0, 17), hy(0, 1)) (1)
T7T)= 11 - B
t—+00 Var £,(0, t7) T23C(1)

(30)

which measure the overlap of the two polymer configurations (of lengths 7¢ and # respectively).
In particular a finite value of R(0), i.e. in the limit of infinitely separated times is a measure of
memory or ergodicity breaking [34, 36, 43].

Let us first consider the droplet initial condition, and start by recalling the result for the
full-space problem. For close times, i.e. in the limit 7 — 1, one expects that the height pro-
file reaches local stationarity at the intermediate time, which allows to compute the two-time
covariance. Indeed it was shown that [33]

CoP(7) = Var[€oue] — %Vaf[gBR](l -0+ oa -, (1)

where £y follows the GUE Tracy—Widom distribution and {zi denotes a random variable
following the Baik—Rains distribution [13]. We have Var[{gr] ~ 1.1504. In this paper we
extend the arguments of [33] to the half-line geometry. The results depend on the value of the
boundary parameter u. In the critical region (u close to zero) it is natural to scale the boundary
parameter u = at~1/3, and, as shown below, we obtain for the dropletinitial condition (centered
atx =0),as 17— 1,

CHPY(T) = Var [¢"P] — %Var [€00) 1 =P + 001 =), (32)

10
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where 8P denotes a random variable with distribution FIPt defined in (12), and &,
denotes a random variable with distribution Fy§ = F§™"™". The variance was computed in

[6], we have Var[€,,] ~ 1.649. In the particular case a = 0 the variable ggmp“"‘ has the GOE

Tracy Widom distribution and its variance is Var[ggmplet] ~ 1.6078. In the limit ¢ — +oc0 one

enters the unbound phase and £4°Pt has the GSE Tracy—Widom distribution [44] with variance
is Var[¢droPlet] ~ (0.5177.

Consider now stationary initial conditions. In that case one can compute C(7) for arbitrary
7 € [0, 1]. Let us recall the result in full-space, obtained in [33]. If the initial condition is given
by a standard BM, one obtains

1
() =3 (1 +72P (1 - 7)2/3) Var[&gr]. (33)
Note that it leads to the dimensionless ratio R(7) = %% T—>o% which shows a memory effect
at very separated times. We have extended the arguments of [33] to the half-line geometry.
The results depend on the value of the boundary and drift parameters u, v. Let us start with

the discussion of the critical region with u = ar~'/3, v = bt~ '/*. We find, for any a, b, starting
from the initial condition &%, 5 _, 5.

1
C(r) = 5 (Var(€us) + 7 Var(€, 1 12)

— (1= P Va0 /3)) : (34)

where £, a random variable with distribution F} defined in (26).

Remark 1.8. For 7 — 0 one finds R(0") = %XZZE";’;

Remark 1.9. Considerthe case @ = Oand b > 0.Forb > 0,¢,;, = £, by definition, and for
a=0,&0 = &p = EEOMman_ g0 that the dimensionless ratio defined in (29) is asymptotically

o(r) = —2:1 s (1R —a =), (35)

that is exactly the same as for the KPZ equation in full-space [33]. For general a, b this is not
the case however. Using remark 1.6, the same formula is true in the case a = 400, b > 0 (since

§+oo,0 — ggrownian).

Let us now discuss what happens for fixed u, v. There are three phases which are depicted
in figure 3 where the main results are summarized. The first phase is defined by u, v > 0 corre-
sponding by to taking the limit a, b — 400 in the previous discussion. We find that the two-time

covariance does not depend on u, v and is given by (35) (indeed, as explained in remark 1.9,

§+oo,+oo - ggrownian).

If u < 0 or v < 0, however, the scalings will be different with height fluctuations of order
1'/? instead of 1'/3. We define a variant of the coefficient C(7) by

C(r) = lim %ch(h,,(o, 17), ha(0, 1)). (36)

To discuss the phase u < 0 (with u < v), we consider the equivalent polymer picture. In
that phase, the polymer is bound to the wall (with Gaussian free energy fluctuations) so that

1
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v
drift

parameter R(7) = irs (1 FrE (1o T),‘,m)
“ R(r)=1 C(r) = Var[ghormian:2/3 p(7)
C(r) = —2ur
0 Z
u
boundary parameter
_Rlr) =1
C(r) = ~2vr

Figure 3. Phase diagram of two time covariances, for stationary initial condition /%
with fixed u, v.

Cov(h,(0,t7), h,(0,1)) ~ Var(h,(0,t7)) at large time, which is known [7, 27] to be asymptot-

ically equivalent to —2urr. This implies that C(7) = —2u7. The R ratio being now equal to
R(T) = T(g(?) one finds that it is equal to R(7) = 1 in that phase.

In the phase v < 0 (with v < u), the covariance will be determined by the initial condition,
which can be approximated at large scale by a BM with drift —v. The free energy equals

—+o00
1,(0,7) = log Z(0,1) = log ( / dx Z(x, 0|0, t)eh“(x’0)>
0

A~ max (log Z(x,0[0,1) + hy(x, O)) ) (37)

The optimal x = x,,x can be approximated by arg max {Z—i + vt} so that xp. ~ —2vt and

the fluctuations of the free energy log Z(x, 0|0, 7) are subdominant compared to fluctuations of
h(x,0). Thus, we again have that Cov(h,(0, 1), h,(0, 1)) ~ Var(h,(0, t7)) which is asymptot-
ically equivalent to the variance of the initial condition Var(h,(x, 0)) at the point x = —¢7v.
Since the initial condition can be approximated at large scale by a BM with drift —v, we find
that Cov(h,(0, t7), (0, f)) = —2vt7. This implies that C(1) = —2vr, and again the R ratio is

again equal to R(7) = T‘g(?) one finds that it is equal to R(7) = 1 in that phase.

1.5. Mathematical aspects

Let us stress a few points that deserve further consideration from a mathematical perspective.
First of all, outside of the Brownian phase (¢ < 0, a < b), the fact that the Hariya—Yor pro-
cesses defined in (6) are stationary for the half-space KPZ equation was discovered in [10].
These processes arose as L — +oo limits of stationary processes for the KPZ equation on
[0, L], for which formulas had been found in [8]. That the L — +oo limit of stationary pro-
cesses on [0, L] are stationary for the dynamics on R is a very reasonable hypothesis, but it
still needs to be formally proven mathematically.

The computation of limiting distributions obtained in this article rely on a combination of
physics and mathematics methods, but we focus in this article on physics results and do not
attempt to prove the results according to the standards of writing in the mathematics literature.
We refer to [6, section 2.4] where we had already discussed the interplay between these physics
and mathematics arguments, as well as the main challenges that would arise to turn these results

12
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into mathematical proofs. The results of [45, section 10] would likely be useful in order to prove
rigorously the Pfaffian formula for the generating series (51).

The results of section 1.4 also rely on a mixture of established facts, and assumptions based
on analogies with the full-space setting, about the universal processes describing the large time
fluctuations of A(x, ), starting from various initial conditions. It would be interesting to confirm
those assumptions by rigorous proofs.

2. Moment formula

2.1. Nested contour moment formula

In order to study this initial condition (5), we will first study formulas from the more general
initial condition

X
Zu,'l;l,'l;z(x) _ wl/ dt eB](t)+B2(x)fBz(t) + wlwzeBZ(X), (38)
0

where B, B, are independent standard BMs with drifts —v; and —v, respectively, and
wi,w, are independent inverse gamma random variables w; ~ Gamma '(x + v;) and
wy ~ Gamma ™! (u + v,). Equation (38) can be interpreted as a two-row O’Connell—Yor semi-
discrete polymer partition function with inverse gamma weights in the beginning of each row.
Eventually, we will let v; = —v; = v, s0 that 1og(Z,,, v, (X)) = HV,,(x).

Remark 2.1. Similar partition functions of O’Connell-Yor type polymers with inverse
gamma decorations have been considered earlier in [16, 25] in the context of full-space KPZ
growth and in [7] in the context of KPZ equation in a half-space.

For x; > x; > ... > x; > 0, define f(t,X) = E[Z(x1,1)...Z(x;,t)] where we assume the
initial condition Z(x, 0) = Z,,,, ., (x). The function f(z, %) satisfies the following conditions
[20] (see also [46, 47]). It satisfies the heat equation

k
OfF 1) =Y 9, [t %), (39)

i=1

on the sector x| > x > ... > x; > 0, subject to the two-body boundary condition

(Ory =0 — 1) f I (40)
with a boundary condition at 0 given by
1
8xk —|(u— 3 f =0. 41)
x;;=0
k

The function f(z, X) must also satisfy the initial condition

k
| J C 0)] : (42)
i=1

Fix k> 1 and assume that u,v;,v; € R are such that v; — 3 >k—Lv, — 4 >k—1
(note that this hypothesis is necessary and it was missing in [6, claim 4.7]) and u + vy,

fEt=0)=E

13
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>1
% —Uu V2 — %
0 o1
e +iR rs+iR 1y +iR r +iR
Figure 4. The contours used in (43).
u + vy > k. The function
. ZkF(’Ul + ) dz; dzx
f(X,f\M,Ul,Uz)Zﬁ T/ 2in
(V1 +v2 — k) Jp qir 20T R AT
k
Za — 2 Za t 2 H Zi 1
a——lza+m—1-tz+u—3 @ —1/22 -2

i=1

[Z-Z—X'Z'
- i i 1, 43
122 ¢ “43)

where the contours (see figure 4) are chosen so that

1 1
min{vl—z,vz—z}>r1>r2+1>...,>rk+k—1

1
>max{k—l—u+§,k—l},

satisfies the equations (39)—(41) and the initial condition (42) with Zy(x) = Z,,,, ., (x) defined
in (38). Assuming that there is at most one solution to these equations, we obtain that for
xizxz..2x20utv >kutvy>kv—1/2>k—landv, —1/2>k—1,

E [Z(x1,1) ... Z(xx, 1)] = f(;,t\u,vl,vg), (44)

where f(X, t|u, vy, v,) is defined in (43).

Remark 2.2. When v; — +00 one has that Zy(x) — wjw, €#2®) and thus one recovers
the result (4.19) in [6], taking into account that wf = SR and w = L2t When
vy — 400 one has 1,Zy(x) — w; e?1™¥ and the same works.

Let us now explain why f(X, f|u, v1, v,) satisfies each of the equations (39)—(42) one by one
(except for (42), the arguments are based on [20, 48]).

The function Hf;l e’ i is a solution of (39) for any Z, so that by linearity, the function
S (X, tlu, v1,v,) is also a solution.

14
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w + 2

1/2—u Qs Ul+1/2

1/2

a4y + iR Ca, [w]

Figure 5. The contour C, [w] used in (145).

Let us apply the operator (Bxi — Oy, — 1) to f(X, tlu, v) and let us assume that x; = x;4;
for some i. The application of the operator brings a factor (—z;4-1 + z; — 1) inside the integrand
in (43). This extra factor cancels with the denominatorz, — z;, — 1 fora = i,b = i + 1, so that
there is no pole anymore at z;+; = z; — 1. Hence, we may deform the contour for z;1 to be the
same as the one for z;. Because of the factor z, — z;, fora = i,b = i + 1, the integrand is now
antisymmetric with respect to exchanging z; and z;+;, and since both variables are integrated
along the same contour, their integral is zero. We conclude that f(¥, f|u, v) satisfies (40).

Let as apply the operator (9y, — u + 1) to f(X, t|u,v). This brings an extra factor —z; —
u+ % to the integrand, which cancels the denominator z; + u — % already present in the
formula. After this cancellation, and if one assumes that x; = 0, then the integrand is antisym-
metric with respect to changing z; into —z;. Furthermore, the integrand has no pole anymore at
k= —(u— %) so that the contour of z; can be freely deformed to the left, regardless of the value
of u. Since v — % > k — 1, it is then always possible to shift the z; contour to the left so that
v—1>rn>n+1>...>n+k—2>max{k— 1,k—2— (u— 1)} and r, = 0. Now,
the integration contour for z; is symmetric with respect to changing z; into —z, and thus the
integral is zero. We conclude that f(¥, t|A, B) satisfies (41).

Let us assume that # = 0 and x; > x, > ... xx > 0. The formula agrees with moments of
20,0, (x) using a scaling limit of the half-space log-gamma polymer moment formula from
[19] (see [6, proposition 4.2]). More precisely, we take ovo = u, ay = vy, ap = vy andfori > 3,
o = % + /n and consider the log-gamma partition function Z(y/nx/2,2). The scaling limit
is explained in [6, section 4.3], see also [7, appendix C.3].

15
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2.2. Pfaffian formula

Let us define the two functions

2 2z Twu—2)T(w —2) T(v, —2)
& O Tur)TmtoTmT )m) *)

Then, foru — %, v — %, vy — % > k — 1, using the moment formula (44) and similar manip-
ulations as in [6, sections 4.4 and 4.7], based on [20, conjecture 5.2], we obtain the expression
for the moment of Z(0, ) as

I'(v; + v2) (—1)W dw;
]E[Z(O,t)k]:4kk!7k) Z L

T'(vy + vy — & mylmy! ... Jig 207
A=1"12"2
20(\) L) N
/ dwy) Pf[”" - uj] ( )H e+t
iR 2imw u; + uj j=1 efG(wj)

o (wj+1/2)x-1 T(—w; + DL(w; + A))
4wy, T(=w;—Aj+ Dl(w))

XF(u—F%—wj—)\])F(vl—t—z—w] MN)T (v + 3 —w;—\))
P(u—g+wj+ )T (v1— 5 +wj+X)T (v — 5 +w;+ ;)
I (u=dw) (o= )T = 3+ ) o

XF(u—F%—w,)F(vl—!— —wj)F(v2+2—w])

where (uy, ... S Uy = (—wy + %,wl — % + A, —We) + %,w[(,\) — % + )\4()\)) and the
sum runs over integer partitions A of k. This can be rewritten as

I'(vy + v2) (—D)'™ dw,

E[Z(0, )] = 4*k! - — [ —

(20,071 T'(vy +vy — k) Z mylmy! ... Jig 2im

Ak
A=1"12"2

/ dwiey Pf|:ui - Mj] M /St (w; + 1/2)/\_/—1
g 2im Ui+ u; =12 efG(w;) 4(wj)/\,-
o D)+ DIw; +4) @ (w; — 5 + X)) O (—w; + 3)

F(—’LUj — )\j + l)F(wJ) F(2’LUJ -1+ ZAJ)I‘(I - 2’[1)1) ’ (47)

We recognize the same formula as [6, claim 4.11, equation (4.35)] with the only difference
that the ratio €2(z) here should be replaced by

DA+1/2—-2)T(B+1/2-2)
TA+1/2+TB+1/2+2)

G(z) = I'(2z). (48)

2.3. Moment series in terms of a Fredholm Pfaffian

We will now write the moment generating function of Z(0, ). Let W be a inverse gamma random
variable with parameter v; + v,, independent from the initial condition and from the noise &.
We define, for ¢ > 0,

¢)=F [exp( e WZ(O, z))] (49)

16
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Ignoring the fact that the summation over k cannot be exchanged with the expectation due to
the divergence of moments, we will consider the following formal power series

(sset) )k
1+Z > [Whz(0, /], (50)

that we will again denote by g(<). This generating series was computed in [6, section 5], and
leads to the Fredholm Pfaffian formula [6, (5.16)] with the kernel [6, (2.12)]. Since our moment
formula has exactly the same form with a different choice of (2, we apply the same manipula-
tions (it suffices to replace 2(z) in the present paper by G(z) in [6]) and obtain the following

1!+
g(<>—1+z( )H/ L L) 51)

=1

This series is a Fredholm Pfaffian,

g)=E [exp (—g e WZ(0, z))} = PHJ — 0.K) 2. (52)

The kernel K is matrix valued and represented by a 2 x 2 block matrix with elements

N d’LU dZ w — rwfr’z+tu;3+23
Ky (r,r) = 3,
2 2im 2im w4z

dw dz w — sin(mrw) sin(mz)  _ ., _ .4 0 +3
Katrr) = [ Qe T I ¢
bor) 2im 2ir w4z T (53)
Kiy(r, 1) :/ e 11(71'2) e ST + ,
2 2im 2ir w + z

Ky (r, 1) = —Ko(r, 1),

where the dependence in parameters u, vy, v, only appears in the function €2(z) which was
defined in (45), and the contour C is an upwardly oriented vertical line parallel to the imaginary
axis with real part between 0 and min{u, v, v, 1 }. The function o is given by o (r) =
0 1
10 Ty
Asin [6, section 2.2.2] we may also rewrite g(<) as the square root of a Fredholm determinant
with a scalar kernel. We obtain

<
cte "

and the 2 x 2 symplectic kernel J is given by J(r, /) = (

() = [exp ( ce T WZ(0, z))] =PI — 0. K)o

= \/Det(l - kt,g)Lz(R+)’ oY

where the kernel K, is defined by

_ B dwdz SIN(T(Z = W) s eyt FE
Kioey) =20, / e C R LR 55

From the generating function g(<), one can compute the LT
E [exp ( elZZ(O t))}

17
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using [6, remark 5.1], or perform a analogue of Laplace inversion using [6, remark 5.2]. In the
sequel, we will only be interested in the large time limit, in which case, asymptotics can be
directly extracted from the asymptotics of g(s).

3. Large time height distribution at x =0

3.1. Limiting distribution in terms of a Fredholm determinant

As we have found in [6], at large times,

/3 h,(0,1) + log W +
gle’) = ( e <s ). (56)
We will also rescale parameters as
u= at’1/3, v = bt’1/3, Uy = ct /3, 57

Under this scaling, log(W)/1'/? converges to an exponential distribution independent from
h,,-15(0,1), so that [22, equation (4.3)]

h, 130, + 55 ‘
AP (% < s) = (1 + %) lim g(e ™). (58)

To compute the limit of g(e"1/3‘), we use (55) with the scalings (w, z7) — t~ 1/3(w, 7). The kernel
t'/3f(t AP (xt'73, y1'/3) converges to K> (x + s,y + 5) where

ny dwdz w—z1 _ . wisd
K“"9(x,y) = //  Qiry www(@) e T (59)

where the contour I'y is an upwardly oriented vertical line with real part between 0 and
min{a, b, c} as previously, and

b+z
W(Z):cﬂ—z +zc+z' (60)
a—zb—zc—z
Thus, for any a, b,c > 0,
: h(0, 1) + =
G@P(g) = ;EJIPOOP (% < s) (61)
22 ©(a.b.c)
= (1455 ) /et — Ker) . (62)

L L we obtain that

b
where K“>) is defined in (59). Using the decomposition 3 .“ . = .\ — 5,

+
K@ (x,y) = / AANAPI (x + ) AP\ + y) — A(“b”)( )
0

+oo
X / ALy 1 N)dA, (63)
0

18
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where the function A% (x) is defined by

(a.b,c) dz el
AP (x) = i—w(z)e T, (64)
m

where the contour T'4 is a vertical line with real part between 0 and min{a, b, c}. Note that the
function A““* has exponential decay at +o0, that is for any d € (0, min{a, b, c}), there exist
C € R such that [A“?9(x)| < Ce . Let us introduce an operator Ay acting on LL2(0, +00)
with kernel

As(x,y) = A“P(x 4y +5), (65)

and an operator K“> acting on L2(0, +00) with kernel K{“*9(x,y) = K“>)(x + 5,y + 5).
For any s € R, and a, b, c > 0, we have [6, claim 7.1]

\/Det(I — Kby — (Det(l A,) + Det(l + A, )) (66)

where all operators act on (0, +-00). Hence one has

G (5) = ( bi ) (Det(I — Ay) + Det(I + As)) : (67)

In order to compute G(”’h"’)(s), we had assumed that a, b, c > 0. However, if we fix some
a > 0, we expect that the rhs of (61) is analytic in b and c¢ in the region {(b, ¢) € R%:b+c >
0,a+b > 0,a+ c > 0} (recall that when a + b < 0 or a + ¢ < 0, the initial condition would
not even be defined, and when b + ¢ < 0 we cannot compute the moments). In the sequel,
we implicitly extend the definition of G ‘)(s) by analyticity. To be more precise, G‘“?(s)
is defined in (67) in terms of the operator A, with kernel A@?" “)(x + y + s) where the func-
tion A9 is defined in (64). This function can be readily extended analytically to b < 0 (for
example). Indeed, the value when b < 0 can be expressed by first moving the integration con-
tour to the right of b, taking into account the associated residue, and finally setting b to the
desired negative value.

3.2. Stationary limitc — —b

Assume that @ > b, c,0. In this section we set ¢ = —b + € and let € go to 0 to obtain the
stationary limit. Let us rewrite

AP (x) = <“b“>(x)+zz—<h (xX) — hp(x)), (68)
where
AP (x) = / & e, (69)
/_\2171'

the contour being now a vertical line with real part between max{0, b, ¢} and a, and

a+b b3

hp(x) = b T obx, (70)

From now on, we use quantum mechanical notations with kets and bra. For functions
f.g € L?(0, +00), and an operator O on IL?(0, 4+00) acting with a kernel O(x, y), we denote by
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(f|Olg) the integral [, dx [,"dy f(x)O(x, y)g(y) and we denote by | f)(g| the operator act-
ing on L>(R ;) with kernel f(x)g(y). In particular, (1], |1) below corresponds to the constant
functions f(x) = 1,g(y) = 1.

We rewrite the kernel as

~ (b b
A ) = AL ) 4+ 25 ()] = L) {go) . (D
where
ful) = @SS e e gy = 72)

Here A(“>© (x) = A@bI(x 4+ 5), and we will also denote by the same symbol A“><) the operator
with kernel A“>9)(x + y). Then we have

Det (14 A1) = Det (1+A)

b b b 2
w (122 Y (15224, +a( 22 1 ). 73)
b—c b—rc b—c

where
Alab.o)

Log = (falgs) F <fa\ngﬁ>- (74)
Explicitly, we have

Ls = eﬁm% (a j‘_ 5F aR%, (o, ﬂ)) , (75)
where

" v AP
R (0. B) = (e |W|e 7, (76)

where the bracket notation denotes the two-sided LT and has the following definition: for any
operator O acting on L?(R ;) with kernel (u, v) — O(u, v) we have

<e_m|(’)\e_"3> = //2 dudve O, v)e . (77)
R
+

In the limit when ¢ — —b, we find, after simplifications using Mathematica, that

Jim F29(s5) = Gy (s)

- %ay (Det(l + A)0*(a,b,s) + Det(1 — A)Q (a, b, s)) ,

(78)
where A; is now an operator acting with kernel Ay(x, y) = A(s + x + y) with
~ d 2
Alx) = / e T St (79)
2imta—z
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where the contour is a vertical line with real part between 0 and a. We define

0*(a,b,s) = S*(a,b,s) + S*(a, —b, 5),

where
1 (a+ b)? 375
+ —— 12 2R+ _ 7b/3bs2R+ -1
S*t(a,b,s) 2(s b* + 2R " (b, b))+2b(a2_b2)e (2bR*(b,b) — 1)
a
T ®0
- 1 5 _ @b’ 33 by ny
S~ (a,b,s) = 5 (s—b*—2R (b,—b)) + @ =5 (bR (b,b)+ 1)
a
e &
and
+ — X AK —xf3
R (a, ) = (e le™"). (82)

1+ A,

3.3. Caseb=0,a>0

This case corresponds to the maximal current phase. Only the + term remains, as in [6]. In the
special case b = 0, we have the simplifications

0" (a,0,s) = % (=2 + as +2aR™(0,0)), (83)

0 (a,0,s) =0, (84)
so that

Gy (s) = 0O (Det(l + Ay) (—z +542R7(0, 0))) . (85)

Remark 3.1. Asa — +00, we recover FP"ia" studied in [6] (denoted simply F'in [6]). This
is due to a symmetry between boundary and initial condition parameters [6, section 4.6] (see
also [19, 49]). The law of A(0, ) for the half-line KPZ equation with Dirichlet boundary condi-
tion (that is a = 4-00) and with initial condition given by a O’Connell-Yor polymer partition
function, is the same as the law of 4(0, ) for the half-line KPZ equation with Robin boundary
condition and Brownian initial condition, for appropriately chosen parameters, see details in
[6, sections 4.5 and 4.6]. More generally, using the results of [6, Sections 4.6] we obtain that
lim, _, oo G = FBjownian,

21



J. Phys. A: Math. Theor. 55 (2022) 275004 G Barraquand et al

4. Two-time covariance

4.1. Full-space variational formulas

In full space one has, for the droplet initial condition """ = §y(x), at large time ¢,

t . . N X
hx0)+ 5 =~ P (A — 3, x= S (86)
For a Brownian IC one has
I3
h(x, 1)+ = 113 A (%), (87)

where the process A™ was introduced in [50], and can be characterized by the following
formula [51]: for any fixed X,

A (@) = max(V2B() + Ak = 3) — (8 = 7). (88)
y
Since the BM is stationary for the KPZ equation, (87) implies that, as processes in X,

AN (3) — A(0) L V2B(%). (89)
where B is a two-sided BM.

4.2. Half-space universal processes

In half-space, for droplet IC and boundary parameter u = ar~'/3

a, the solution 4, (x, t) behaves as

one has, for large ¢ and fixed

By a(x, 1) + é ~ B (AR) — 3D, k= ﬁ >0, (90)
where A,(%) is a half-space variant of the Airy, process, having explicit finite-dimensional
marginal distributions computed in [52] (this limiting process was obtained as a limit of a
model of last passage percolation in a half-space, but by universality, the same should arise as
a limit of the KPZ equation). More generally, for an initial condition hy(x) = h(x, 0), such that
the rescaled process

1
hy o) = lim 50) o1

exists, we expect that the solution #,(x, ) of the half-space KPZ equation with boundary
parameter u behaves asymptotically as

t
By 130.0) + 5 2 11 max (AP + AuG) =57} 92)

stat
u,v

For the stationary initial condition A(x, 0) = k%' (x), we similarly expect that for u = at~ 1/3

and v = bt~ /3, there exists a process A (%) such that at large ¢
h aen) + - = BANG), f= C >0 93)
at—1/3 ’ 12 - a,b > 2l2/3 = Y-
In particular, we have that
Sta d
A0 L, (94)
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In the case a + b =0 and a < 0,a < b, that is when the initial condition is Brownian this
process is defined and studied in [32]. We expect that

A0 = max {B6) + Au) = 37 95)
where the process A5 is defined as
. I
Bt (x) = lim —h™, ), (2rx). (96)
r—00 A/ T »

We may describe this process very explicitly using (6), even in cases where it is not Brownian.
Fora > b,b < 0, we have that

/’l:zzcaled()«?) — max {32(2)6), —E, ,+ n%(a)lx] {31(21) + Br(2x) — Bz(2t)}} > o7
1€[0,x

where By, B, are independent standard BMs with drifts —b and b respectively, and E,_; is an
independent exponential random variables with parameter a — b. Fora > 0,b > 0,

RIS () — max { B>(2x), —E, + max {B(2t) + B2(2x) — Bz(2l)}} , (98)
te|0x

where Bj, B, are independent standard BMs (without drift). In the limit ¢ — +o0 and b = 0,
this process has the same law as the maximum of two non intersecting Brownians [24]. For
a<b,a<0,

i d(x) = B(x) + ax, (99)

where B is a standard BM.
By stationarity, we have the equality in distribution of processes in the variable x:

Sta Sta (d) rescales
M) — ASH(0) = R (). (100)

4.3. Computation of two-time covariances

In this section we compute two-time covariances starting from various initial conditions. To
this purpose we adapt the argument from [33] to the half-space geometry. We also use similar
notations as in that paper. Let us use the notation, where ¢ is the late time and 7 the earlier
time, 0 < 7 < 1,

hy(0,17) + 45 .

C(r) = ll_igcl Cov (Xi(7), X(1)), Xi(T) = 73 (101)
We will use the formula
Cov (Xi(7), X(1)) = %Var [ (D] + %Var [X(T)] — %Var (A1) — X(T)]. (102)
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4.3.1. Stationary Hariya—Yor initial condition. Here we relate the two-time covariance of the
scaled KPZ height field with stationary initial condition to the variance of the random variable
&, studied in this paper of CDF denoted F', defined in (26).

For the moment we focus on the regions in the regions R; and Rs, that is u > v,v < 0.
Assume that we start from the initial condition A(x,0) = hf}?} (x). Recall that by stationarity,
E [X,(7)] = 0, so that we have

1
C(r) = tlim 3 (Var X,(1) 4+ Var X,(1) — E [(X(1) — X(7)*]) - (103)
—500
Scaling u, v as u = at'/3, v = bt"'/3, we have, by replacing t — 7t and a — ar'/3, b — br'/3
in (93) that the height field at the earlier time satisfies

X
e T = 0 A () oy

This field can then be used as an initial condition for the evolution from time 77 to time 7. Using
formula (92) with r — (1 — 7)1, a = a(1 — 7)'/3 and y = W it leads to the variational
T

23(1
formula, where we denote 7 =

-7
(1) =~ (1 — 7)1/3ma5<{ 1/3,43?/%1/2( )+Aa(1 L) — } (105)

where the processes A% and A , 1 are independent, because they describe the
arl /3 br1/3 a(l—m)!/

growth over two disjoint time intervals. Thus, using (104) with x = 0, X;(1) — X(7) has

asymptotically the same distribution as

(1— 7')1/3 1?35( {721/3 ( ;?}/3 prl/3 (A ) A al1/3 brl/3 (0))

+ A @) =3} (106)
Using (100) and (95), we obtain that (106) has the same distribution as
(1—7)3 r?fé({ l/3hre<c731e271/3(A 2/35 + A @) _5}2} _ (107)
Now, we use the fact that the process A°*¥*¢ satisfies the scaling property
T, a0 La ), (108)
so that using (92),
A0 = 2L =) P max (RS L0+ A (0 - 2

(d)
== T)1/3£a(177)1/3,b(17‘r)1/3'
where in the last formula we used (95) and (94). Finally, we obtain that using (93) and (103)
_ 1 2/3
C(r) = 5 Var(&yp) + 777 Var(, 173 ,1/3)

—(1 - 7')2/3 Val‘(fa(l_7)1/3’,)(1_7_)1/3)) . (109)
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4.3.2. Droplet initial condition. Now we consider the solution &, of the half-space KPZ
equation with boundary parameter u and droplet initial condition at the origin. At large time,
the height field should converge locally to one of the invariant distributions. The limiting dis-
tribution depends on the boundary parameter, «, and the drift of the initial condition, according
to the diagram in [7, figure 2]. In the case of the droplet initial condition, the drift parameter
v = +00, so the height field converges to the invariant process HY, o, see [10, figure 2]. More
precisely, for x in a domain of order 1, and u > 0,

Tim (6,1 = 10,0 @ HY o) = HY 0 0). (110)
When u < 0,

Tim i, (x, 1) =y (0,1) D B(x) + ux. (111)
Hence, for any u,

Tim (e, 1) = B0, 0 € B (o). (112)

On the other hand, we also know by (90) that on the scale /3, if u = ar~'/3 the height field
converges to 4,, that is

Tim 72527, 0) = 7 (0,0 @1 (A(E) — A0) - #2). (113)

We expect that (112) and (113) match when x = 23123 goes to infinity and X goes to zero. This
implies that, for x going to zero,

lim PR, 252 € A, (8) — AR (114)

11— 00
In other terms, for x going to zero and any fixed a € R,
R (%) o2 A (%) — A(0). (115)

Scalinguas u = ar~'/3, we obtain, by replacing r — 7tand @ — a7'/? in (90), that the height

field at the earlier time satisfies for large 7

Tt N 1/3 X . x2
h13(x, T + = (11) (AaT1/3 <Z(Tt)2/3> 4(Tt)4/3> . (116)

This field can then be used as an initial condition for the evolution from time 77 to time ¢. Using

formula (92) with t — (1 — 7)t, a = a(1 — 7)'/? and y = sy it leads to the variational
formula, where we denote 7 = lz—T
(1) = (1= )"/ max {%1/%4”1/3 (%*My) I Ay () — yz} : (117)
$>

where the processes A, 13 and .Zla(l_T)m are independent, because they describe the growth
over two disjoint time intervals. Thus, using (116) with x = 0, &;(1) — &} (7) has asymptoti-
cally the same distribution as
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(=" max {77 (A, ua (F7275) = Aua ) = 774752

>0
+ Ay @) =5} (118)

In the limit 1 — 7 < 1, the argument 72/ 3% is small and one can use (115) and the scale
invariance property (108) leading to

(1) = () = (1 =)' max {hsed s &)+ Ay = 5

~ (1 — 7')1/3561(177_)1/3,0

where in the last formula we used (95) and (94). So that, the formula (102) yields, for any
aceRand 7T — 1,

C(1) = %Var [A,(0)] + %#“ Var [A,1/3(0)]

1
= 5= PPVar (6] + 00 = 7). (119)

Since this formula is valid only in the limit 7 — 1, we may simplify it using Var[ga(l gl =
Var[&0] + O((1 — 7)!/3) and Var [ A, 1/3(0)] = Var[.A,(0)] + O(1 — 7), so that

C() = Var[A,(0)] — %(1 — 13 Var [&,] +O(1 — 1), (120)

thus we obtain (32) as announced.
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Appendix A. Brownian case

In [6], we computed only the function F2"1ia(s) when a = 0. We show in this section that very
similar arguments as those already developed in [6] also yields an expression for FErownian(g)
for any a € R. We start from

Ft};,rownian(s) — lim F(a’b)(s), (121)
b——a
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where F\“Y)(s) was given in [6, (7.11)] as

Oy
a+b

FeD (g) = % ( 1+ ) (Det(l — Ay) + Det(I + AS)) ) (122)

We will follow the same notations as in [6] (up to minor changes). The operator A; acts
L2(0, +00) with kernel

Ag(x,y) = A“D(x +y +5), (123)
where the function A““?(x) is defined by

&aﬁ-zb-ﬁ‘Zefszré
2ita—zb—z

A@D) () = , (124)

and the contour is a vertical line with real part between 0 and min{a, b}. Moving the contour
to the right, we obtained in [6] that

AP = A0 + 22D ) o, (125)

with 71(x) = be=*+5"/3 Letting b = —a + €, we have

Ea—!—zb%—ze_mﬂsﬁ

A(“”’)(x) - 2ira—zb —z

—+o0
= Ai(x) + 2¢ / d\ cosh(ay)Ai(\ + y) + O(€). (126)

Note A.1. [ corrected that formula where in the integral over z, the contour passes to the
right of a, b. We also introduce the operator A acting on 1L.>(0, +-00) with kernel

Ax,y) = A4+ x + ).

A, is a rank-2 perturbation of Ay, in the sense that
. ~ b
As(x,y) = As(x,y) + 2ZJ_r—b(b|fza()€)><fb(y)| — alfa() (faO)D. (127)

. 3 , . . .
with fp(x) = gl /6=bs/2=bx Using the matrix determinant lemma, we have

5 < b b
Det(I F Ay) = Det(I F Ay) ((1 :!:2ba+b1b,h> (1 iZa;il )

a— —p
a+b 2
+ 4ab Ih,ala,b N (128)
a—>b
where
A,
Lo = (folfs) £ (fal-—=1f5)- (129)
I FA;

27



J. Phys. A: Math. Theor. 55 (2022) 275004

G Barraquand et al

The scalar products are evaluated as

1
= St 25
<fa|f5> ot B e
and
AS o3 1’3 atf As .
(ful == | f) = €55 0 375 (0% o),

Putting all this into Mathematica, we find that
Det( — A,) + Det(I + A,)

is of order €. Hence, dividing by € and using (121) and (122),
owni 1
Ff){)wman(s) = 58‘ (Det([ — AIS)S; + Det([ + AIY)S;'_)

where Aig denotes the operator with kernel Ai(x +y + ),

i i sinh (1a (a* — 3s
S, =e¢" TR, ,+e7 “R,,—2R,_,+ 5 El ) _ a’+s,
& e sinh (a (a® — 3s
SE=e"" SR, ,+e7 “RI,+2R  — G i ) _ a+s
and
Al

Riz= (e e ™).

I F Aig

(130)

(131)

(132)

(133)

(134)

(135)

(136)

We may check that fora = 0, S, = 0and S(;r = 4R(')Ir + 2s, so that we recover exactly the result

from [6]. Using the Sherman—Morrison formula, we have that

Det(I F Ai; F |Aige ) (e
et(l F Aiy F |Aige ™) (e |):|:1.

RT, =
ap =T Det(/ F Ai)

(137)

so that FBrovnian can be written in terms of Fredholm determinants and simple functions, and
could be evaluated numerically (to compute the Fredholm determinants of rank one pertur-
bation of Ai,, one may need to conjugate the kernel so that all kernels involved are decaying

at infinity).

Appendix B. Limiting one-point distribution away from the wall at x > 0

In this appendix we study the distribution of the height i(x, f) at x > 0.

28



J. Phys. A: Math. Theor. 55 (2022) 275004 G Barraquand et al

B.1. Moment formula

We start from the moment formula (44), that is

T dz dz,
E[Z(X, t)k] — sz i .. / i
Loy +v2 = k) Jyy 4ir 207 r+iR 21T 1<a<b<k
y Fa B g
Za — b — 1
. . (138)
Za T 2 i
F@) =
1<aH<b<kZa+Zb — liI;[lZi+M— 1/2 (v — 1/2)2_Z1'2
1 2

IZI- —ZiX

>< e —
(2 —1/2)* =z
We use [20, proposition 5.1] specializing to a function F(7) which is symmetric in its

arguments
dz / dz Za —
— .. — ——F(Z
/r1+i1R 2im reHiR 2 H Za—z— 1 ©

o 207
+iR 1<a<b<k

1 dw, d’w[(,\)
Y —/ 7/ 1) peg
;ml()\)'mz(k)' - Jap+HiR 2im ap+iR 2im

| “©)
X | — Fw,w +1,...,w + X = 1,...,w(N),wy
l:wi'i‘)\i_wj:li’j_l ( 1, W) 1 1 (), Wiy

+ 1wy + Ay — 1) (139)

For the last equation to be valid, the function F need to be holomorphic in each variable in the
region spanned by the contour deformation, that is, it needs to be holomorphic in the whole
region between r; + iR and r; + iR. This will be the case if we choose u — % > ry and rp >
max{0, —v; + 3, —v, + 1} on the left-hand side, so that we may take the contour in the right-
hand side such that v; — k + 1 > a,, > max{1/2 — u,0} (one can simply take a,, = r).

B.2. Laplace transform formula

We can evaluate the function F into strings using the same manipulations as in section 2.2, and
using the identity

Aﬁuﬁl wy+wy+a+b _ T'(wy+w, — DD (wy +wr + A1 +X—1) (140)
720 b0 wyt+w,+a+b—1 T(u+w+XN—DT(w +wy+ M —1)
and
H wtat+b 2T ()T 2w + \) — 1). 1an)
0<a<h<,\_12w +a+b—-1 T(w+N'Cuw+A-1)
‘We obtain
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ZkF(Ul + v7) 1 dw,
E[Z(x, )] = k! —...
e N n— ;ml(x)!mz(x)! N / g 20T / .

2N )

dw
X 2‘/?(A) Det[ \ ]
17 Wi+ Ai = Wil g3
etG('IUj"r)\j)_%('Iilj-‘r)\j)Z“l‘%()\j“ru'j) ) 2-AT (2(’[0/ + )\j) _ 1)

X X X
etG(u:j)—'ju,']z.-&-'ju,rj e F(ij + >\j — 1)

Xﬁ(wj+)\j—l/2) H

0w =112 i

F(wi+wj—I)F(wi+wj+)\i+)\j—1)

X , 142
F(wi+wj+)\,-—l)I‘(wi+wj+)\j—l) ( )
where
. Fvi—g9 T, —2) 1
= . 143
() Ly +2) T, +2) T(u+2) (143)
The contour for the variables w; has to be chosen so that
max{1/2 —u,1/2} <a, <v—1/2—X\+1 (144)

forany \; and v = vy, v,, and the moment formula was valid foru + v > kand v — % >k—1,

which implies thatu + v > \j,v — % > \; — 1 so that one can always find a,, satisfying (144).
Summing to obtain the generating function, and using Mellin—Barnes the Mellin—Barnes
integral representation, we obtain

E {exp (—§ e WZ(x, f))}

_ *i -1 / du, / duy ds, / dsi o
—0 g' ap+iR 2i7T o ap+iR 2i7T Caslwi] 2i7T o Caglwy] 2i7T

_xg2 Cws
1 l l etG(s.,)—%sj—i-%(sj—u,/) - S
X — -
elGwj)=3w; sin(m(s; — w;))

gen
Si = Wilij=132
s — 1/ 1 T(2s,—1) T (w;+w;—1)T (s;+5;— 1)
- 11 L (145)
n(wj—l/Z)j:lF(wj+sj—l)l F(si+wj—1)F(wi+sj—1)

<i<j<t

The contour C, [w] (depicted on figure 5) is formed by two semi-infinite rays going to oo in
the direction 47 /3, starting from the horizontal axis at the point a, and the union of negatively
oriented circles around the poles at w + 1, w + 2, ... when these lie to the left of the semi-
infinite rays. The infinite part of the contour is oriented from bottom to top.

The real numbers a; and a, has to be chosen so that (recall that after the analytic
continuation, R[A\] = R[s — w] = a; — a,,)
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aw < ag<ay—+1, max{1/2—u,1/2,1/2—v} <a,, a,<v +1/2,
u—+v >ag—a, — 1.
(146)
Note that the condition a; < a,, + 1 is not really needed since we have added the small circles
to the contour for s;. Additionally, we need to chose a, > 1/2, so that I'(2s — 1) has no poles on

the right of contours. One also needs to discuss the convergence of the w integral. A sufficient
condition for the integrals over w; to be convergent is that a,, — 1/2 < x/2.

B.3. Pfaffian formula in the large time limit

We now consider the large time limit, and the critical region, hence we rescale

U= at’1/3, v = bt’1/3, Uy = ct’1/3, (147)
1 1
wi— P s o+ P (148)
x=1P% ¢ =exp(—yt'/?). (149)
Defining the rational function
(b +2)(c+2)
=@+ ——=, 150
1) = @+ = (150)

the right-hand side becomes

E [exp (—c et WZ(x, t))}
+o0 Vi
=Z(_1)/ duy / duy [ dsi / a5t e
=0 i ay+iR 2im o ay+iR 2im Cas 2im o Cas 2im

1 ¢ ! s w N 2
x |: ] Hexp<§]_?j_E(Sj_wj)_y(sj_wj)>

Si— Wil j=132

i

W Siwpms) Loy (i wps & w)
S;— wj 77(’(1)j) 2sjl<i<j§£(wi + IUj)(S,' =+ Sj)

(151)

The contour C,, is now formed by two semi-infinite rays going to oo in the direction £7/3,
starting from the horizontal axis at the point a; (without additional small circles). The values
of a,,, a; now satisfy

max{—a, —b, —¢,0} < a,, < a; < min{b, c}, (152)

which can be happen only when b, ¢ > 0 and a + b,a + ¢ > 0. Note that the condition that
ay, ag are positive is important because of the denominators (w; + w;) and (s; + s,), and also

the pole at s = 0. Now, the condition for the convergence of the integrals over w; is that a,, < 3.
Observe that we may write
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(s; + w;)(s; + w) Ik
H(Sj+wl) H (wl+w1)(S,+s,)Det{ wj]

1<i<j<L i,j=1

|
::“

Sp + w; H(Si - Sj)(_wi + wj)(si + ’LUj)(—’LU,' — Sj)
P ST Wi (wi = w))(si 4 s)(si — w—wi + )

u—uj
b
Ui+ uj

(153)

A

J

where i = (51, —wy, 2, —Wa, . . ., 57, —wy). We recognize Schur’s Pfaffian formula, so that we
obtain

E [exp (—g e WZ(x, z))]

B § (—1)1/ dw, / dw, [ ds s e
- g' ap—+iR Ziﬂ' Y ap—+iR 2i7T Cas Ziﬂ' o Cas Ziﬂ'

2w 0 exp f—“—f—i(sz—w) V(s w))
{ul uj] <3 e L)) (154)
Ui+ u; b=t (sj—w;)(2s)) n(w;)
This corresponds to
E [exp (—g e WZ(x, z))] = P/ — Kli204m0) (155)
+o00 (_1)[
=> dri... [ drePE[K(r, r,)] , (156)
E' R R i,j=1
=0 + +

where, after a change of variables w — —w in the integrals, we may define the kernel by

Ky (r, r)—/ T dﬂz—we; 8 E @2 wd)— (e
17T C

Vimztw
77(2)77(w) (157a)
Kip(r, ) :/ / dwz —w e§+%f5<4 —w)=(r+y)z— (" +yyw
’ Cas 24T J —a 4iR itz 4w
(2)
m, (157b)
Ko (r,r') = / dZ dweizw R e S Rt
—ay+iR 217T —ayp+iR 2iTz+w
1
X —— 157
n(—2n(—w) (157¢)
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We now shift the contour for —a,, + iR to the right of 0. In K, we can deform the contours
without crossing any pole. In K»,, we do cross a pole and have to take into account the residue.

- 3 u/‘ X
Ki(r, 1) = / Yir dw < LT S @)t (7w
17T Cay

2im Z+w
(z)n(w) (1582
dw Z—w 13 w % 2 2
K — e T+ 3@ )=+
()= / i L 2t
()
T (158b)
Ko (r, r) = / dﬂz_ w e; uT %( —Z—wd)—(ry)—( +nw
2177 Cas 2Qimz +w
= —0) 158¢
77(—1)77(—w) ( )
dz 20—y Z
2 et 158d
/cas 2ir 22 (158d)

The kernel has a particular structure. Define an operator D such that for a function f written as

dz - . _,
ﬂw:/‘?ﬁuxz, (159)
Cax 17T
then
dz ~ -~ e
Df(r)= [ ==D@f(2)e ", (160)
Cay 20T

where

b = 2ze;‘Zz 2|1 1 (161)

VETEp 2 T ¢ a—z a+z|’

We have that

(K K\ [ Ki —K DT
k= (K21 Kzz) B <_DK11 DK,;DT +DE> (162)
where ¢ is an operator with kernel (r, ') = §(r — r/). In other terms, ¢ is the identity operator,
i.e. & = I. The operator DT acts on the left, i.e. (f|DT|g) = [;~dr Df(r)g(r).

B.4. From Fredholm Pfaffians to Fredholm determinants with scalar kernels

Consider operators B, D, ¢ : L>(R,) — L>(R.). The operator D acts by multiplication in
Fourier space (as in (160)) and the operator ¢ is such that de has an anti-symmetric kernel.
Recall the expression of the symplectic matrix

0 1
1= (0 5): (163
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We can then perform the manipulations (similarly to [53])
iy | B -BD" 1\ _pe(, [ 0][B  -BDT]Y
—DB DBDT + De o 0 D||—-B BDT +¢
B —BDT 1 0
= et <I+ {—B BDT+J / {0 DD

BDT  BD
= Det <1+ [_BDT_E _BDD. (164)

Summing the first line to the second one and subtracting the second column to the first one,
we obtain

BDT BD B(DT — D) BD
Det(l—&-{_BDT_6 —BD]) =Det<l+{ ( e ) 0])
= Det(I + B(DT — D) + BDs¢)
= Det(I + (DT — D)B + DeB) . (165)

To go from the first line with a matrix-valued kernel to the second line with a scalar kernel,
we used a Schur’s complement formula. To go from the second line to the third one we used
Det(I + MN) = Det(I + NM).

For our specific kernel K in (162), we choose B = K;; and ¢ = I, so that we obtain the
simple formula

Pf(J — K) = \/Det(I + DTK,;) = \/Det(I + K;,DT), (166)

where now K| DT is a scalar kernel, acting on L2(0, 4+00). Explicitly, we have

dz dwz—w 3_ w3 _ 5.2 2 N\ N
(Ki,D™)(r, 1) = _/ > > eT T T 2w )=(r+y)z—(/ +yw
Coy 2T Je, 21T 2+ W

7(z)
72@7(_1”) (167)
with the rational factors
_ (b +2)(c+2)
n(z)—(a+z)(b_z)(c_z) (168)

B.5. Stationary limit

As in (62) we want to calculate

Gop (0, %) 1= lim (1 L O ) v/Det(I + K DT). (169)
c——

b+c

in order to obtain the cumulative distribution of the height at large time for a stationary initial
condition with parameters a, b.

For now ay in (167) satisfies 0 < ay < a, b, c. To be able to perform the limit ¢ — —b we
move ¢ across the contours for w, z. It gives two additional residue terms and no double
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residue.Define

3 ~
fo(r) = (a+ o)F! exp (% - %cz — (r+y)c>. (170)
dw w X 2 (b + w)
Y =y Tt — . 171
g+(r) /Ca.y i exp( 3 + kel (r+y)w> b —wa—w) (171)
and
dz 2 I, 1(b+2)(a+2)
_(r)= — T - 172
g—(r) ¢, 2im eXP<3 52 (r+y)2> P (172)
so that
b+c
—Res— (KuDT) = | — f+()g+(r"),  —Resy—c (KnDT)
(173)
Hence we may write
T / / b+c / /
(KuD") (r,r) = L(r,r) + b— e (f+(g+ () +cf- (Mg (), (174)
or in the operator formalism
T b+c
(KuDT) = Lt g (If ) g| +elg-)(/-1). (175)
where
L(r, 7)) = / dw z — e§+§7§ 2 —w?) =)= +y)w
Cas 2im Cas 2imz+w
()
— 176
Zan—w) (e
with both contours going between {0, ¢} and {a, b}. Thus, we have
Det (I + K;1DT) = Det(I + L)Det
b+c b+c
4 — <8+| |f+) < fol—1f+)
b— 1 +L 1 + L
X b1 b . (177)
_ 1 _
- <g+\1+ng> + < \1+ng>
Letting € = b + ¢, we will write upon expanding in €
(177) ~ Det(I + Ly + €X)(Co + Cie + Ca€°) (178)

and show that Cy = C; = 0, so that
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Z(y X) = hm ( ) vDet(I + K 1DT) = 0y+/Det(I + Ly)C>. (179)
Let us calculate some inner products explicitly and expand in € each term in (177)
e One has
b lb+catc 25,
e3c e 180
<f S Ry A —— (180)

This scalar product is defined only for ¢ > 0 but we will consider the analytic continuation
to —bh < ¢ < 0.

e One has

b +c b +c c f + c —vc/ dZ ﬁ—izz—wl (b —|—z)(a—|—z)
_ 5 I ——————————
b_cc<f—|g—> b—ca_ct cuszme z(b—2)(z+c)

:—1+6<bx+y+l—b2— ! >+; L 53

2b a+b a+b
dz 23 :2 1 (b+2)0(a+2)
X | ——e¥ 2v Mo T 181
/me : (b2 (181)
where we have moved the contour to z > b and taken the residue, which for c = —b has a
pole. The remaining integral has no singularity at c = —b.
e One has
b+c b+ dw i
7775 —yc —+7w —yw
b <g+\f+> - (a +o)e / i
b+ w)
(b —w)a —w)(w + c)
1 1 —b B i
=1 —— +—— b B
“(y % bh-a (J”“)) ¢
dw wd | 3 2 | b + w
X [ ——e3tawyw_ T 7 182
/ 2ir © (@ — w)(w — by (182)
e One has
b+C<g+‘ b+C/ 1 “ + w —y1n+———z -z
b — 2im Cas 2171' w + Z
b b ) 1
b+wb+a+2)1 (183)
(b—w)a—w)b—2)z
Let
L(r,r) = lim L(r, )
/ dw z - e§+“T*2(4 —u) ==y G F 2 (184)
2ir | 2imz 4+ w 272(a — w)’
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where the contours pass between 0 and a. We can see that LY can be bounded, for any M > 0,
as |Lo(r, )| < Ce M= for some constant C. Let us also define

b X
L) = m fa(r) = (@F b exp <—? T +y>b) . (185)

We compute now the inner products in (177). Since the functions g™ and g~ decay exponen-
tially fast at infinity, we simply have

T el ) = ol e
bh— g+1+L 2bg+1+L

)+ o(e). (186)

To compute the remaining inner products, we use the decomposition

1_1L
1+L 1+L°

e One has
b+c €a— b 24 | € 0 0

e One has

b 1 1 1
+CC<f—|g—>=—1+e<bx+y+—b2 )

b—c I+L 2b a+b
e 1 SN C BN dz 2 1.
e —5 +507+yb P e e ¢
T2a1b° /2me
b+t € L
4 _ , 188
T+ U e ) o0 (188)
where the contour passes to the right of b.
e One has
b+c 1 1 a—>b
=1 —b(b
- <g+\1+L<f+\ +6<y T +x)> 5

3 -
% e*%*%szryb dw u +2u —yw
217r
b+w

0
x (a—w)w—by 2b<g+\H_L0|f ) +o(e), (189)

where the contour passes to the right of b and to the left of a.

Hence our final result is that for the initial condition h(x,0) = HY,.(x), where
u=at"Bv= bt_1/3, witha+b > 0,b <0

limP

1—00

hy1s(PP%, 1) + 5 .
( e <y ) = Gl 0n . (190)
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The CDF of the solution with Hariya-Yor initial condition is

G (v, %) = 0y\/DetI + Ly)Det(M), (191)
where M is the 2 by 2 matrix
My M
M = s 192
<M21 Mzz) (192)
with
M=y g+ ot b0~ (gl
=Y 5y Ty, X g+1+L0
a—>b ,ﬁ,ib2+,b/dw w E.,2 b+w
T 267ty — 3 taw W—’ 193
T 2in (@ — w)w — by (193
la-b —3040 4
— 3 ) 194
12 4ba+be < ‘1+L0|f+> (194)
1 1
M>, 1
1= 5y 8l 8, (195)
1 1 1 Lo
My, = bx — b —— 4+ =(f° _
n=brtyt o, b 2V lTTmle
B i
N 5 -
48 ERLI A ﬁ 2 32, (b+2a+2) (196)
2(a+ D) 2im 2(z — b)?

We recall that Ly is defined in (184), % in (185), g* in (171) and (172). Although this result
is fully explicit, it is quite involved and it remains to be studied how the various known limits
can be obtained from it.
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