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We investigate maximal tori in the Hochschild cohomology Lie algebra HH1(A) of a finite

dimensional algebra A, and their connection with the fundamental groups associated

to presentations of A. We prove that every maximal torus in HH1(A) arises as the

dual of some fundamental group of A, extending the work by Farkas, Green, and

Marcos; de la Peña and Saorín; and Le Meur. Combining this with known invariance

results for Hochschild cohomology, we deduce that (in rough terms) the largest rank

of a fundamental group of A is a derived invariant quantity, and among self-injective

algebras, an invariant under stable equivalences of Morita type. Using this we prove

that there are only finitely many monomial algebras in any derived equivalence class of

finite dimensional algebras; hitherto this was known only for very restricted classes of

monomial algebras.

Introduction

The first Hochschild cohomology Lie algebra HH1(A), along with all of the Lie theoretic

invariants that may derived from it, is an important object attached to any finite

dimensional algebra A, and this structure has been studied intensely in recent years; see

for example [2, 11, 21, 27, 42, 50, 53, 54]. In particular, the authors have been interested
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in properties such as solvability and nilpotence of HH1(A), for specific classes of

algebras. The notion of a maximal torus plays a fundamental role in the theory of Lie

algebras—for example, they are a key ingredient in the classification of semi-simple Lie

algebras in characteristic zero. In this work we improve our understanding of the Lie

structure of HH1(A) by classifying its maximal tori in terms of presentations of A.

Classically, the Lie bracket on HH1(A) has been used to understand the deforma-

tion theory of A, as part of the Gerstenhaber structure on HH∗(A). Within representation

theory, since this Lie algebra is a derived invariant of A—and, among self-injective

algebras, an invariant under stable equivalences of Morita type—its structure is often

used in classification problems. More recently, by studying the closely related algebraic

group of outer automorphisms of A, maximal tori have been used to impressive effect

to obtain complete combinatorial derived invariants for gentle algebras [7] and Brauer

graph algebras [1], and they have been used in modular representation theory of blocks

[38]. Beyond this, however, fine Lie theoretic properties of HH1(A) are not often used

in reverse, to help understand the original algebra A. This work contains a number of

results in this direction. In particular, we show that the structure of HH1(A) can be used

to deduce information about the shape of the Gabriel quiver of A (see Theorem C).

The second main pillar of this paper concerns the homotopy theory of bound

quivers. The fundamental group π1(Q, I) of a bound quiver (Q, I) was introduced in [44]

using the covering techniques developed in [15, 48]. Starting with an algebra A, one

obtains different groups π1(Q, I) if one varies the presentation A ∼= kQ/I. While this has

previously been considered a defect of the theory, our perspective is that one should

consider the moduli of all fundamental groups, much as one considers the moduli of all

tori in a Lie algebra. Indeed, our results show that tori in HH1(A) are intimately linked

with the fundamental groups of A.

A diagonalizable subalgebra of HH1(A) is by definition a subspace generated

by derivations that act simultaneously diagonalizably on A. These have been studied

in [25, 29, 39], and it is now well-known that they are connected with the spaces

Hom(π1(Q, I), k+) of additive characters on the fundamental groups of A. The next

result was proven by Farkas, Green, and Marcos under certain technical assumptions

[29, Theorem 3.2], and later proven for triangular algebras by Le Meur [39, Proposition

2.6]; our result applies to all finite dimensional algebras.

Theorem A. Let A be a finite dimensional algebra over a field k. Every maximal

diagonalizable subalgebra of HH1(A) is isomorphic to Hom(π1(Q, I), k+) for some

presentation A ∼= kQ/I.
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The isomorphisms appearing in the theorem are realized by concretely defined

maps Hom(π1(Q, I), k+) → HH1(A); for triangular algebras this map was introduced in

[5], and it was generalized to arbitrary finite dimensional algebras in [25].

At this point we involve some Lie theory, proving that the maximal diagonal

subalgebras of HH1(A) are exactly the maximal tori of HH1(A). With this in mind,

we define mt-rank(HH1(A)) to be the maximal dimension of a torus in HH1(A), and

we define π1-rank(A) to be the maximal dimension of a dual fundamental group

Hom(π1(Q, I), k+) for some (minimal) presentation of A. We immediately deduce the next

result.

Theorem B. For any finite dimensional k-algebra A we have

mt-rank(HH1(A)) = π1-rank(A).

The Lie-theoretic quantity on the left-hand-side is a derived invariant of A, and

so we deduce from this theorem that the combinatorial quantity on the right-hand-

side is a derived invariant of A. Similarly, among self-injective algebras, we deduce

that π1-rank(A) is an invariant under stable equivalences of Morita type. As a first

application of this idea we bound the maximal toral rank of HH1(A) in terms of the

first Betti number of the Gabriel quiver of A (i.e., the number of holes in the underlying

graph).

Theorem C. If A is a finite dimensional algebra over an algebraically closed field k,

with Gabriel quiver Q, then

mt-rank(HH1(A)) ≤ β1(Q).

If A is a monomial (or semimonomial) algebra then equality holds.

We note that lower bounds on the toral rank come from exhibiting tori, while

upper bounds are in general more difficult to come by. The fact that equality holds for

monomial algebras has a striking application.

Theorem D. If two finite dimensional monomial algebras (over any field) are derived

equivalent, then their Gabriel quivers contain the same number of arrows. Conse-

quently, there are only finitely many monomial algebras in any given derived equiva-

lence class.
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It was proven by Avella-Alaminos and Geiss that among gentle algebras the

number of arrows is a derived invariant [7, Proposition B]. We are not aware of any

other large classes of monomial algebras for which Theorem D was known, beyond the

obvious cases.

Theorem C also implies (and extends to semimonomial algebras) a result of

Bardzell and Marcos: if A = kQ/I is a finite dimensional monomial algebra for which

HH1(A) = 0, then Q is a tree [8, Theorem 2.2].

The semimonomial algebras appearing in Theorem B are defined in Section 1.

Examples occur frequently, including all commutative monomial algebras and all

quantum complete intersections (see Subsection 5.2). Many authors have studied the

Hochschild cohomology Lie algebra of quantum complete intersections, and calcula-

tions are notoriously complicated, with the structure depending finely on the quantum

parameters and exponents. It is therefore surprising that we are able to prove in all

cases that mt-rank(HH1(Aq)) is equal to the number of variables generating the quantum

complete intersection Aq (see Corollary 5.8). The picture in the modular representation

theory is very similar: we prove that if k is a field of characteristic p and G is a

p-group, then mt-rank(HH1(kG)) is equal to minimal number of generators for G (see

Proposition 5.12).

Another well-studied class of algebras we apply our results to are the simply

connected algebras, that is, triangular algebras for which the fundamental group of any

presentation is trivial.

Theorem E. If A is a simply connected finite dimensional algebra over an alge-

braically closed field, then HH1(A) is nilpotent.

One new insight in this paper is that we must consider non-admissible presen-

tations to prove Theorem A. When working in positive characteristic these presentations

are unavoidable because of the existence of derivations that do not preserve the radical

(see Example 4.6). Thus, our setup is necessarily more general than previous works

on the fundamental group; this has the benefit that we allow all finite dimensional

algebras directly, including non-basic algebras (see Example 1.3).

Outline

In Section 1 we recall the definition of the fundamental group of a bound quiver. In

Section 2 we discuss diagonalizable derivations and diagonalizable Lie algebras of

HH1(A). Section 3 summarises the Lie theory needed to discuss maximal tori in HH1(A).



5542 B. Briggs and L. Rubio y Degrassi

This section divides according to the characteristic of k: in characteristic zero we must

consider algebraic groups, while in positive characteristic we must consider restricted

Lie algebras. In Section 4 we prove Theorems A and B characterising maximal tori in

terms of the fundamental group. In Section 5 we apply our results to various families

of finite dimensional algebras including monomial algebras, commutative algebras,

quantum complete intersections, simply connected algebras, and Kronecker chains.

Here we prove Theorems C, D, and E and recover some known theorems along the way.

1 The Fundamental Group of a Bound Quiver

Let A be a finite dimensional algebra over an algebraically closed field k.

A quiver is a directed graph Q with a set Q0 of vertices and a set Q1 of arrows. A

presentation is a surjective k-algebra homomorphism ν : kQ → A from the path algebra

of a finite quiver Q. We will fix a complete set e1, ..., en of orthogonal idempotents for

A and assume all of our presentations induce a bijection between Q0 and {e1, ..., en}. We

do not assume that I = ker(ν) is an admissible ideal of kQ (see Remark 1.2), and we do

not assume that ei are primitive idempotents (see Example 1.3).

The elements of I are called relations, and a minimal relation in I is a nonzero

relation r = ∑s
i=1 aipi, where the pi are distinct paths in Q and ai ∈ k � {0}, such that

there is no proper nonempty subset T ⊂ {1, . . . , s} for which
∑

i∈T aipi ∈ I. Note that all

paths appearing in a minimal relation r automatically share the same source and target,

that is, are parallel.

If α ∈ Q1, then the formal inverse of α, denoted by α−1, is an arrow with source

and target equal to the target and the source of α, respectively. They assemble into a

quiver Q−1 with Q−1
0 = Q0 and Q−1

1 := {α−1|α ∈ Q1}. Then we can form the double quiver

Q where Q0 = Q0 and Q1 = Q1 ∪Q−1
1 . With this notation, a walk in Q is an oriented path

in Q.

Definition 1.1. To define the fundamental group, we first recall the homotopy

relation, which was introduced in [44]. By definition ∼I is the equivalence relation on

the set of walks in Q generated by:

(1) α−1α ∼I ei and αα−1 ∼I ej for any arrow α with source ei and target ej;

(2) if v ∼I v′ then also wvu ∼I wv′u, where w, v, v′ and u are walks such that

the concatenations wvu and wv′u are well-defined;

(3) u ∼I v if u and v are paths that occur with a nonzero coefficient in the same

minimal relation.
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Fixing one of the chosen idempotents ei, the set of ∼I-equivalence classes of

walks with source and target ei is denoted by π1(Q, I, ei). Concatenation of walks endows

this set with a group structure whose unit is the equivalence class of the trivial walk ei
[44]. The group π1(Q, I, ei) is called the fundamental group of (Q, I) based at ei.

If Q is connected, another choice of idempotent ei will yield an isomorphic

fundamental group, so we adopt the simplified notation π1(Q, I) = π1(Q, I, ei). If Q is

not connected, then following the convention in [25], the fundamental group π1(Q, I) is

the direct product of the fundamental groups of the quivers with relations obtained by

restricting to the connected components of Q.

The fundamental group π1(Q, I) does depend on the ideal I = ker(ν) and

therefore it is not an invariant of the isomorphism class of A = kQ/I; see for example

[39, Example 1.2].

Remark 1.2. To prove our main theorem it will be important to consider non-

admissible (but still minimal) presentations, such as kQ = k[x] → A = k[x]/(xp − 1)

when k has characteristic p. See Remark 2.8 and Example 4.6 for more detail. The usual

proof that π1(Q, I) is a group works verbatim in this context.

Example 1.3. Since we allow non-admissible presentations our algebras need not be

basic. For example, let G be a finite group, and let Q be the quiver with a single vertex

and with edges in bijection with the elements of G. Consider the natural presentation

ν : kQ → kG, with I = ker(ν). Then the group π1(Q, I) is canonically isomorphic to G.

Definition 1.4. We will write π1(Q, I)∨ = Hom(π1(Q, I), k+) for the group of additive

characters on π1(Q, I). This will play a central role below.

Remark 1.5. When X is a based, connected topological space, there is a Hurewicz

isomorphism π1(X)∨ ∼= H1(X; k) between the group of additive characters on the

fundamental group of X and the first singular cohomology of X. Thus π1(Q, I)∨ is

analogous to the first singular cohomology of (Q, I).

In fact, from (Q, I) one can produce a based space X such that π1(X) ∼= π1(Q, I);

see [19] and also [47].

In a similar vein, one can also view π1(Q, I)∨ as a generalization of graph

cohomology. Suppose that Q has n vertices and m edges and c connected components.
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The first Betti number of the underlying graph |Q| of Q is given by β1(|Q|) =
dimk H

1(|Q|; k) = m − n + c [26, Lemma 8.2]. Because of this, we adopt the notation

β1(Q) = m − n + c. Intuitively, β1(Q) is the number of holes in Q.

Definition 1.6. An ideal I in kQ is called semimonomial if, within anyminimal relation

r = ∑s
i=1 aipi, ai �= 0, each path pi contains exactly the same arrows, occurring the same

number of times (so the different pi are permutations of each other); see [32, Section 1].

Also see Subsection 5.2 for examples.

Lemma 1.7. For a bound quiver (Q, I) we have that

dimk π1(Q, I)∨ ≤ β1(Q).

Equality holds if I is a monomial ideal, and more generally if I is semimonomial.

Proof. Note that H1(|Q|;Z) is a free abelian group of rank β1(Q), and the abelianization

π1(Q, I)ab is a quotient of H1(|Q|;Z). Indeed, if one chooses loops �1, ..., �β1(Q) based at

ei representing the generators of H1(|Q|;Z) (i.e., a loop for each hole in |Q|), then by

conditions (1) and (2) in Definition 1.1 π1(Q, I)ab is generated by �1, ..., �β1(Q). It follows

that dimk π1(Q, I)∨ ≤ β1(Q).

In the case that I is monomial, condition (3) in Definition 1.1 does not identify

any walks, so the homotopy relation ∼I does not even depend on I, and H1(|Q|;Z) ∼=
π1(Q, I)ab. We denote by π1(Q, (0)) the fundamental group of a quiver without relations.

If I is semimonomial, then we claim that seminomial relations are zero in π1(Q, (0))ab =
H1(|Q|;Z). If p and q are paths in the semimonomial ideal I, then p and q are equal in

the free abelian group ZQ1 on the arrows. There is an injective map from H1(|Q|;Z) to

ZQ1, and therefore these semimonomial relations are zero in π1(Q, (0))ab. So again in

this case H1(|Q|;Z) ∼= π1(Q, I)ab. �

Remark 1.8. If k has characteristic zero then the proof of the lemma is reversible:

dimk π1(Q, I)∨ = β1(Q) if and only if I is semimonomial.

To obtain a converse in characteristic p, one could define I to be

p-semimonomial if for each path in a given minimal relation, each arrow occurs the

same number of times modulo p. Then in this context dimk π1(Q, I)∨ = β1(Q) if and only

if I is p-semimonomial.

Remark 1.9. While special presentations will produce interesting fundamental

groups, the fundamental group is very often trivial, because in a generic presentation
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the minimal relations will involve many terms. Le Meur [39] considers the relation

between all the different fundamental groups, along with some natural surjections

between them. It is proven in loc. cit. that for certain very specific classes of algebras

there is one fundamental group that surjects onto all others; see [39, Theorem 1]. In

general this is not the case.

2 The Hochschild Cohomology Lie Algebra

As before, let A be a finite dimensional algebra over an algebraically closed field k, with

a complete set of orthogonal idempotents e1, ..., en.

A derivation on A is a k-linear map f : A → A satisfying the Leibniz rule, that

is, f (ab) = f (a)b + af (b) for all a,b ∈ A. The space of derivations Der(A) on A is a Lie

algebra: if f and g are derivations on A, then so is [f , g] := f ◦ g− g ◦ f . The space Inn(A)

of inner derivations consists of those derivations of the form [c,−] : a 
→ ca−ac, for c ∈
A. Then Inn(A) is a Lie ideal in Der(A) and there is a canonical isomorphism

HH1(A) ∼= Der(A)/Inn(A),

which we take as our definition of the first Hochschild cohomology group ofA. A slightly

more efficient description of this group will be useful:

Definition 2.1. Let Der0(A) be the space of those k-linear derivations f such that

f (ei) = 0 for i = 1, ...,n, and let Inn0(A) = Der0(A) ∩ Inn(A). By [25, Proposition 1] there

is a canonical isomorphism

HH1(A) ∼= Der0(A)/Inn0(A).

Definition 2.2. An element f ∈ HH1(A) is called diagonalizable if it can be represented

by a derivation d ∈ Der(A), which acts diagonalizably onA, with respect to some k-linear

basis of A. More generally, we say that a subspace t ⊆ HH1(A) is diagonalizable if its

elements can be represented by derivations that are simultaneously diagonalizable on

A. Note that t is automatically a subalgebra of HH1(A) since [t, t] = 0. The maximal

diagonalizable subalgebras are by definition those diagonalizable subalgebras that are

maximal with respect to inclusion.
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Diagonalizable derivations were studied by Farkas, Green, and Marcos [29] and

by Le Meur [39]. Note that Le Meur assumes that diagonalizable derivations preserve

the radical, and we do not.

With some background in Lie theory one can characterize diagonalizable subal-

gebras intrinsically in terms of tori; see the next section for definitions (Definition 3.1

in characteristic zero and Definition 3.11 in positive characteristic). While the next

result uses standard theory, it is significant in this paper because it will imply derived

invariance (and invariance under stable equivalences of Morita type) for diagonalizable

subalgebras.

Proposition 2.3. The maximal tori of HH1(A) (or Der(A) or Der0(A)) are exactly the

maximal diagonalizable subalgebras of HH1(A) (or Der(A) or Der0(A), respectively).

Proof. We use results and notation from Section 3.

When k has characteristic zero we use the theory of algebraic groups. Let Aut(A)

be the algebraic group of k-linear automorphisms of A, and Aut0(A) be the closed

subgroup of those automorphisms that fix each idempotent ei. We apply Proposition

3.2 to the natural embeddings of Aut(A)◦ and Aut0(A)◦ into GL(A), and then we apply

Proposition 3.5 and Lemma 3.8 to deduce the desired statement for Der(A) = L(Aut(A))

and Der0(A) = L(Aut0(A)). After this, the statement for HH1(A) follows by applying

Proposition 3.3 to the surjection Aut(A)◦ → Out(A)◦, and then applying Proposition 3.5

with the isomorphism L(Out(A)) ∼= HH1(A) of [53, Théorème 1.2.1.1].

In positive characteristic we use the theory of restricted Lie algebras. For Der(A)

and Der0(A) the statement follows from Proposition 3.14 by embedding into gl(A).

Then for HH1(A) the statement follows from Proposition 3.15 applied to the surjection

Der(A) → HH1(A). �

Lemma 2.4. For every maximal torus t ⊆ HH1(A) there is a maximal torus t′ ⊆ Der0(A)

whose image under the surjection Der0(A) → HH1(A) is t.

Proof. The proof is very similar to that of Proposition 2.3: in characteristic zero we use

the surjection Aut0(A)◦ → Out(A)◦, and in positive characteristic we use the surjection

Der0(A) → HH1(A). �

Lemma 2.5. If t ⊆ HH1(A) is a diagonalizable subalgebra then, up to inner derivations,

the elements of t are simultaneously diagonalizable with respect to a basis of paths for

some (possibly non-admissible) presentation ν : kQ → A.
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Proof. It follows from Proposition 2.3 and Lemma 2.4 that t is the image of a

diagonalizable subalgebra t′ ⊆ Der0(A), so we may represent the elements of t by

derivations δ such that δ(ei) = 0 for all i = 1, ...,n, and all of which are diagonal with

respect to some basis B of A.

Firstly, by replacing B with a subset of {ejbei : b ∈ B, i, j = 1, ...,n}, we

can assume that each element of B satisfies ejbei �= 0 for a unique pair i, j. By

removing elements from {e1, ..., en} ∪ B, we can also assume that {e1, ..., en} ⊆ B. Now let

Q0 = {e1, ..., en} and let Q1 ⊆ B � {e1, ..., en} be a subset such that Q0 ∪ Q1 descends

to a basis of A/rad(A)2. The induced homomorphism ν : kQ → A is surjective modulo

rad(A)2, and since rad(A) is nilpotent it follows by induction that ν is surjective.

To end the proof, A admits a basis consisting of paths in the quiver Q, and

it follows from the Leibniz rule that each δ as above is diagonal with respect to this

basis. �

Definition 2.6. With Lemma 2.5 in mind, we say that a derivation δ ∈ Der(A) is

diagonal with respect to a presentation ν : kQ → A if δ(e) = 0 for each e ∈ ν(Q0) and

δ(a) ∈ ka for each a ∈ ν(Q1). Equivalently, δ is diagonal with respect to a basis of paths

induced by ν. We also define

tDerν = {
δ : A → A : δ is a derivation diagonal with respect to ν

}
,

and the image of tDerν in HH1(A) is denoted by tHH
ν .

Proposition 2.7. Every maximal torus of HH1(A) is of the form tHH
ν for some

presentation ν : kQ → A.

Proof. This follows from Proposition 2.3 and Lemma 2.5. �

Remark 2.8. The derivations in tDerν will preserve the radical of A if ν is an admissible

presentation, and conversely, for derivations preserving the radical, Lemma 2.5 can be

adapted to produce an admissible presentation. If k has characteristic zero then all

derivations preserve the radical [33, Theorem 4.2], so in this context we can restrict

to admissible presentations in all our theorems. In positive characteristic this is false

(see Example 4.6), so it will be important to consider non-admissible presentations.

Several authors have instead considered the subalgebra HH1
rad(A) of HH1(A) spanned by

derivations that do preserve the radical [27, 43].
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3 Maximal Tori

In this section we recall what we need to know about tori in Lie algebras in order

to complete the proof of Proposition 2.7. A satisfactory theory requires some extra

structure, which depends on the characteristic of the given field: in characteristic zero

we need an algebraic group whose tangent space at the identity is the given Lie algebra,

and in positive characteristic we need a restricted structure.

The reader may wish to only skim this section for the needed Lie algebra facts,

and can consult the given references for a fuller picture.

3.1 Tori in characteristic zero

For the rest of this subsection k is an algebraically closed field of characteristic zero

(the results here require this characteristic assumption). In this context, we introduce

tori through the theory of algebraic groups.

The algebraic group that we are most interested in is G = Out(A), the group

of outer automorphisms of a finite dimensional algebra A over k; see [35]. Note that

Out(A) is affine since it is a quotient of the affine algebraic group Aut(A) of all k-linear

automorphisms of A [36, Theorem 11.5].

Definition 3.1. An algebraic group T over k is called a torus if it is isomorphic as an

algebraic group to Dn(k), the group of invertible diagonal n×nmatrices over k, for some

n. If G is any algebraic group, then a torus in G is a closed algebraic subgroup T ⊆ G

which is (abstractly) a torus.

Proposition 3.2 ([45, Theorem 12.12]). Let T be a connected algebraic group over k,

and let φ : T → GLn(k) be any embedding into the group of invertible n × n matrices

over k. Then T is (abstractly) a torus if and only if φ(T) consists of simultaneously

diagonalizable matrices.

Proposition 3.3 ([45, Proposition 17.20]). Let φ : G → G′ be a surjective homomorphism

of connected algebraic groups over k.

• If T is a maximal torus of G, then φ(T) is a maximal torus of G′.
• If T ′ is a maximal torus of G′ and T is a maximal torus of φ−1(T ′), then T is

a maximal torus of G.
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We use the notation L(G) for the Lie algebra attached to an algebraic group G

over k; that is, the tangent space at the identity with bracket induced by differentiating

the commutator operation of G. See [45, Chapter 10] for more information. The connected

component of the identity of G will be denoted G◦, and we note that L(G◦) = L(G) by

definition. In the next definition, we use the fact that a closed algebraic subgroup T ⊆ G

induces an inclusion of Lie algebras L(T) ⊆ L(G).

Definition 3.4. Let g = L(G) be the Lie algebra of an algebraic group G over k. A Lie

subalgebra t ⊆ g is a torus if t = L(T) for some torus T ⊆ G.

Proposition 3.5. Let g = L(G) be the Lie algebra of a connected algebraic group G over

k. The assignment T 
→ L(T) induces a bijection between the maximal tori in G and the

maximal tori in g.

Proof. By [36, Theorem 13.1] the assignment H 
→ L(H) induces a bijection between

connected closed subgroups of G and Lie subalgebras of g of the form L(H). It restricts

to a bijection between tori by Definition 3.4, and since it is inclusion preserving, it

restricts further to a bijection between maximal tori. �

Definition 3.6. Let g = L(G) be the Lie algebra of an algebraic group G over k. The

maximal toral rank of g is

mt-rank(g) := max{dim t : t ⊆ g is a torus}.

Remark 3.7. Let T and T ′ be two maximal tori of G = Out(A)◦. Since all maximal tori

of G are conjugate by [45, Theorem 17.10], we obtain an automorphism of HH1(A), which

sends L(T) to L(T ′). In particular the dimensions of all maximal tori are the same.

Now we turn to the case when G = Aut(A).

Lemma 3.8. Let A be a finite dimensional algebra over k, and let B be a basis of A.

Then a closed connected algebraic subgroup T ⊆ Aut(A)◦ consists of automorphisms

diagonalizable with respect to B if and only if L(T) ⊆ Der(A) consists of derivations

diagonalizable with respect to B.

Proof. Let DB(A) be the closed subgroup of GL(A) consisting of all k-linear automor-

phisms of A (ignoring the algebra structure), which are diagonal with respect to B. A
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standard calculation shows that L(DB(A)) is the set of all k-linear endomorphisms of A

which are diagonal with respect to B. So we must show that T ⊆ DB(A) if and only if

L(T) ⊆ L(DB(A)), and this is part of [36, Theorem 12.5]. �

Remark 3.9. There has been recent interest in investigating when HH1(A) is a

solvable Lie algebra [27, 43, 50]. In characteristic zero the Lie algebra of a connected

algebraic group is solvable if and only if the connected algebraic group is solvable

[55, Proposition 2.7]; in particular Out(A)◦ is solvable if and only if HH1(A) = L(Out(A))

is solvable; see [53, Théorème 1.2.1.1] for this equality.

In the solvable context, by [45, Theorem 16.33], we have that HH1(A) decomposes

as a semidirect product t� n where t is a maximal torus and n is a nilpotent subalgebra

of HH1(A) (see also [55, Proposition 26.4.5]). Therefore, in characteristic zero we can

generalize [39, Proposition 2.7]: we obtain a semidirect product decomposition of

HH1(A) when the underling graph of the Gabriel quiver of A is simply directed [43,

50] or when A is a quantum complete intersection with quantum parameters qij �= 1 for

all i < j; see [50, Proposition 4.20]. Note that the Lie structure of HH1(A) can also be

non-solvable when A is a quantum complete intersection [50, Proposition 4.21].

3.2 Tori in positive characteristic

In this subsection we assume that k is an algebraically closed field of positive

characteristic p. For further background on restricted Lie algebras see [30, Chapter 2].

Definition 3.10. Let g be a Lie algebra over k. The adjoint representation of g is the

map Ad: g → Endk(g) defined by Ad(x)(y) = [x, y].

We say that g is a restricted Lie algebra if there is a map [p] : g → g, called the

p-power operation, such that:

• Ad(x[p])(y) = Ad(x)p(y)

• (λx)[p] = λpx[p]

• (x + y)[p] = x[p] + y[p] + ∑p−1
i=1

1
i si(x, y)

for all x, y ∈ g and λ ∈ k. Here, the element si(x, y) is the coefficient of ti−1 in

Adp−1(tx + y)(x) = [tx + y, . . . , [tx + y, x] . . . ].

Suppose (g1, [p]1) and (g2, [p]2) are two restricted Lie algebras over k. A homomorphism

of Lie algebras φ : g1 → g2 is called restricted if φ(x[p]1) = φ(x)[p]2 for every x ∈ g1. In
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particular, a subalgebra h ⊆ g is called a restricted subalgebra if x[p] ∈ h for every x ∈ h,

and a representation φ : g → gln(k) is called restricted if φ(x[p]) = φ(x)p for any x ∈ g.

An important example is the Lie algebra gln(k) of all n × n matrices over k; here

the p-power operation takes a matrix x to its pth power xp. If A is a finite dimensional

algebra over k, then the pth power of any derivation is again a derivation, and this

gives Der(A) the structure of a restricted Lie algebra. This passes to the quotient

Der(A)/Inn(A) to make HH1(A) a restricted Lie algebra as well, cf. [16].

Definition 3.11. Let g be a restricted Lie algebra over k. An element x ∈ g is called

semisimple if x it belongs to the restricted subalgebra generated by x[p]. We say x if

toral if it satisfies x[p] = x. A restricted subalgebra t ⊆ g is called torus if

• t is abelian

• x is semisimple for every x ∈ t

Definition 3.12. The maximal toral rank of a restricted Lie algebra g is

mt-rank(g) := max{dim t : t ⊆ g is a torus}.

In the literature mt-rank(g) is also denoted by MT(g) [52], by mt(g) [10], and by μ(g) [20].

Remark 3.13. Demuskin proved that if g is a restricted Lie algebra of Cartan type, then

all maximal tori of g have the same dimension [52, Sec. 7.5]. However, this is false for a

general restricted Lie algebra.

Proposition 3.14. Let g be a restricted Lie algebra over k, and let φ : g → gln(k) be any

faithful p-representation. Then a p-subalgebra t ⊆ g is a torus if and only if φ(t) consists

of simultaneously diagonalizable elements.

Proof. Since φ is injective, it follows from definition 3.11 that t ⊆ g is a torus if and

only if φ(t) ⊆ gln(k) is a torus. By [30, Proposition 3.3] a matrix x ∈ gln(k) is semisimple

in the restricted Lie algebra (gln(k),p) if and only if x is diagonalizable. Thus φ(t) is a

torus exactly when [φ(t),φ(t)] = 0 and each x ∈ φ(t) is diagonalizable. This in turn holds

if and only if the elements of φ(t) are simultaneously diagonalizable. �
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Proposition 3.15 ([30]). Let φ : g → g′ be a a surjective, restricted homomorphism of

finite dimensional restricted Lie algebras over k.

• If t is a maximal torus of g, then φ(t) is a maximal torus of g′.
• If t′ is a maximal torus of g′ and t is a maximal torus of φ−1(t′), then t is a

maximal torus of g.

Later we will also discuss examples of p-nilpotent restricted Lie algebras:

Definition 3.16. A restricted Lie algebra g is p-nilpotent if every element x is

p-nilpotent, that is, if there exists an integer n such that x[p]
n = 0, for all x ∈ g.

4 Tori and the Fundamental Group

Let A be a finite dimensional k-algebra with a presentation ν : kQ → A, and write

I = ker(ν). Assume that Q is connected. Denote by e1, ..., en the vertices of Q, with e1
as our chosen base point, so that π1(Q, I) = π1(Q, I, e1) by definition. As above the group

of additive characters on π1(Q, I) will be written π1(Q, I)∨ = Hom(π1(Q, I), k+).

We start this section by recalling a construction from [5, 3.2]. We first need to

choose for each ei a walk wi from e1 to ei, with w1 being the trivial walk at e1, and we

write W = {wi} (in [29] these are called “parade data”). With this we define the map

θν,W : π1(Q, I)∨ −→ Der(A)

by the rule θν,W(f )(ν(p)) = f (w−1
j pwi)ν(p), where p is a path from ei to ej; see

[25, Section 3] for further details. According to [25, Corollary 3] the induced map

θν : π1(Q, I)∨ −→ HH1(A)

does not depend on W. If Q is not connected, then following the convention in

Definition 1.1, θν is the sum of the corresponding maps defined by restricting to each of

the connected components of Q.

The derivation θν,W(f ) is by definition diagonal with respect to the presentation

ν, and therefore the image of θν is a torus in HH1(A). The next result is a converse to this

fact.

Farkas, Green, and Marcos prove that certain diagonalizable derivations are

always in the image of some θν ; see [29, Theorem 3.2]. A similar result is proven by

de la Peña and Saorín [25, Lemma 3], but using a different definition of the fundamental
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group. In the case that A is a triangular algebra, that is, Q does not contain directed

cycles, Le Meur proves in [39, Proposition 2.6] that the map θν is surjective onto the

diagonalizable subalgebra tHH
ν of HH1(A). The following theorem generalizes these

results.

Theorem 4.1. Let A be a finite dimensional algebra over an algebraically closed field

k. Every maximal torus of HH1(A) is of the form im(θν) for some presentation ν : kQ → A.

Proof. If A splits into a direct product of connected algebras A1 × · · · × A�, then

HH1(A) = HH1(A1)×· · ·×HH1(A�), and θν respects this decomposition, so wemay assume

that Q is connected.

By Proposition 2.7 every maximal torus is of the form tHH
ν for some presentation

ν : kQ → A. Hence it suffices to show that im(θν) = tHH
ν . At the level of derivations, it is

clear that im(θν,W) ⊆ tDerν , and we must show conversely that tDerν ⊆ im(θν,W) + Inn(A).

For any diagonal derivation δ ∈ tDerν we will explicitly produce a map f : π1(Q, I) → k for

which θν,W(f ) = δ modulo Inn(A).

We first define f on the set of all walks as follows: let p be a walk involving

arrows α1, ...,αn and formal inverses of arrows β−1
1 , ...,β−1

m . Since δ is diagonal, there are

scalars a1, ...,as and b1, ..., bt such that δ(αi) = aiαi and δ(βj) = bjβj for each i and j. With

this setup we define

f (p) = a1 + · · · + as − b1 − · · · − bt.

For a trivial walk ei involving no arrows this means f (ei) = 0. We can think of f (p) as

the signed trace of δ on p.

Claim 1. f is well-defined on π1(Q, I).

We must check that f respects the homotopy equivalence relation that defines

π1(Q, I); this amounts to compatibility with the three conditions (1), (2), and (3) of

Definition 1.1.

The first two conditions are straightforward to check. In the notation of (1), we

have f (α−1α) = −f (α) + f (α) = 0 = f (ei) and f (αα−1) = f (α) − f (α) = 0 = f (ej) as

required. And in the notation of (2), if we assume f (v) = f (v′) then we have f (wvu) =
f (w) + f (v) + f (u) = f (w) + f (v′) + f (u) = f (wv′u) as required.

To check compatibility with (3), let r = ∑m
i=1 aipi be a minimal relation in I, with

all ai �= 0. Since pi ∼I pj for each pair of paths appearing in r, we must prove that f (pi) =
f (pj). Since δ is diagonal with respect to ν, there are scalars ci such that δ(pi) = cipi for
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each i, and from the definition of f we have f (pi) = ci. Hence we must show ci = cj for

each pair i, j. Assume towards a contradiction that this is not the case, and without loss

of generality say c1, ..., cm′ are all equal and cm′+1, ..., cm are all different from c1, for

some m′ < m. By Lagrange interpolation we can find a polynomial F(x) ∈ k[x] such that

F(ci) = 1 for i = 1, ...,m′ and F(ci) = 0 for i = m′ + 1, ...,m. Regarding δ as a derivation

on kQ that preserves I, it follows that δn(I) ⊆ I for all n ≥ 0. This implies that F(δ) is a

linear endomorphism of kQ such that F(δ)(I) ⊆ I. In particular, we have F(δ)(r) ∈ I and

F(δ)(r) = F(δ)
(∑

aipi

)
=

∑
aiF(ci)pi =

m′∑
k=1

aipi ∈ I.

But this means r is not a minimal relation, a contradiction.

This completes the proof that f descends to a well-defined homomorphism

π1(Q, I) → k+. It remains to show

Claim 2. θν,W(f ) = δ modulo an inner derivation.

Recall that we have fixed a set W = {wi} of walks wi from e1 to ei. Define eW =∑n
i=1 f (wi)ei. Then for any path p from ei to ej we have

θν,W(f )(p) = f (w−1
j pwi)p

= (−f (wj) + f (p) + f (wi))p

= δ(p) + f (wi)p − f (wj)p

= δ(p) − [eW ,p]

Hence we have θν,W(f ) = δ − [eW ,−]. �

Removing redundant generators from a presentation ν : kQ → A can only make

tHH
ν larger. So, in lieu of admissibility, we say ν is minimal if Q0 is a complete set of

primitive orthogonal idempotents for A and no proper subset of Q0 ∪ Q1 generates A. If

A is a basic split k-algebra then minimality implies that Q is isomorphic to the Gabriel

quiver of A.

The next proposition is well-known for admissible presentations; see

[29, Theorem 2.1] or [25, Corollary 3].

Proposition 4.2. If A is a split finite dimensional algebra and ν : kQ → A is a minimal

presentation with kernel I, then θν : π1(Q, I)∨ → HH1(A) is injective.
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Proof. This requires a close inspection of the proof of Theorem 4.1. In the notation

there, to a derivation δ ∈ tDerν was assigned a character f ∈ π1(Q, I)∨ using scalars a such

that δ(α) = aα for α ∈ Q1. We note that as long as α �= 0 in A this scalar a is unique,

so f is uniquely determined by the formula given in the proof of Theorem 4.1 and the

assignment δ 
→ f is a linear map τν : t
Der
ν → π1(Q, I)∨.

We need to explain why τν descends to tHH
ν , that is, why τν(δ) = 0 if δ ∈ Inn(A) ∩

tDer. Take x ∈ A such that δ = [x,−] is diagonal with respect to ν. Since A is split we

may write x = xs + xn with xs in the linear span of Q0 and xn nilpotent. Then [xn,−] is

both nilpotent and diagonalizable, so [xn,−] = 0. Hence we may assume x = xs = ∑
λiei,

where ei ∈ Q0. Now if a ∈ Q1 is an arrow from ei to ej, then [x,a] = (λj − λi)a. If we add

up these scalars (λj − λi) along any walk with the same start and end point we will get

zero, and by definition this means τν([x,−]) = 0. This proves that we have a well-defined

map τν : t
HH
ν → π1(Q, I)∨.

Finally, θν is injective since it is inverse to τν . Indeed, we checked that θντν = id

in the proof of Theorem 4.1, and it is straightforward to check that τνθν = id. �

Definition 4.3. For a finite dimensional connected k-algebra A, we set

π1-rank(A) = max{dimk π1(Q, I)∨ : A ∼= kQ/Ia minimal presentation}.

If A is not connected, then it splits into a direct product of connected algebras

A = A1 × · · · × A� and we set π1-rank(A) = π1-rank(A1) + · · · + π1-rank(A�) by convention.

Note that in characteristic zero dimk π1(Q, I)∨ is equal to the rank of the abelian-

ization π1(Q, I)ab, and if k has positive characteristic p then instead dimk π1(Q, I)∨

is equal to rankπ1(Q, I)ab + p-rankπ1(Q, I)ab. Thus, in general, algebras of positive

characteristic will have larger π1-rank.

We have come to our main motivation for studying the fundamental group: even

though it depends on a presentation, we can use Theorem 4.1 to produce derived (and

stable) invariants by considering all presentations.

Corollary 4.4. For any finite dimensional algebra A over an algebraically closed field

k, we have

mt-rank(HH1(A)) = π1-rank(A).



5556 B. Briggs and L. Rubio y Degrassi

In particular, π1-rank(A) is a derived invariant. Among algebras that are further assumed

self-injective, π1-rank(A) is also invariant up to stable equivalence of Morita type.

Proof. Theorem 4.1 implies that mt-rank(HH1(A)) is the maximum of dimk im(θν) over

all presentations ν : kQ → A. By Proposition 4.2 the map θν is injective for minimal

presentations. So the maximum of dimk im(θν) is equal to π1-rank(A).

In characteristic zero, the derived invariance of mt-rank(HH1(A)) follows

from the fact that Out(A)◦ is a derived invariant of A; see [35, Theorem 17] or

[49, Théorème 4.2]. In positive characteristic, derived invariance follows from [16,

Corollary 2], since mt-rank(HH1(A)) depends only on its restricted Lie algebra structure.

Similarly, among self-injective algebras, Out(A)◦ is invariant under stable

equivalences of Morita type [49, Théorème 4.3], so mt-rank(HH1(A)) = mt-rankL(Out(A))

is as well in characteristic zero, and in positive characteristic the desired statement

follows from [16, Theorem 1]. �

Remark 4.5. In [23] an intrinsic version of the fundamental group is associated to a

basic algebra A. We have not investigated the relation between π1-rank(A) as defined

in this paper and rank of the intrinsic fundamental group defined in [23]. However,

these two numbers do not coincide in general, since in the case of a Kronecker quiver, a

maximal fundamental group has rank 1 while the intrinsic fundamental group is trivial;

see [24, Proposition 36].

Example 4.6. Let k be a field of characteristic p and consider the algebra A = k[x]/(xp).

The Lie algebra HH1(A) was computed in [37]: it admits a basis {∂x, x∂x, ..., x
p−1∂x} where

∂x is the unique k-linear derivation such that ∂x(x) = 1, and the Lie bracket and p-power

operation are

[xi∂x, x
j∂x] = (j − i)xi+j−1∂x, (xi∂x)

[p] =
⎧⎨
⎩
x∂x if i = 1

0 otherwise.

This is known as the Jacobson–Witt Lie algebra; it is simple whenever p > 2 by

[37, Theorem 1]. Note that the derivation x∂x is p-idempotent. More generally, an element

f = a0 + a1x + · · · + ap−1x
p−1 is a k-algebra generator for A exactly when a1 �= 0,

in which case f ′ = ∂x(f ) is invertible, and we consider the corresponding derivation

f ∂f = f (f ′)−1∂x. This derivation is p-idempotent since it sends f to f , and in particular

span{f ∂f } is a torus.
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Let Q be the quiver with one vertex and one arrow u, so that kQ = k[u], and let

νf : kQ → A be the minimal presentation sending u to f . Note that these presentations

are non-admissible unless a0 = 0. The kernel of νf is If = (up−ap
0), and one can compute

π1(Q, If ) =
⎧⎨
⎩
Z a0 = 0

Z/pZ a0 �= 0.

Regardless of a0, this means π1(Q, If )
∨ = k is one-dimensional, generated by a class

dual to the loop u. Finally, the definition of θνa
gives im(θνf

) = span{f ∂f }, and we see

every nonzero torus is generated by some f ∂f , with almost all of them coming from

non-admissible presentations.

5 Applications

The first Hochschild cohomology group provides a bridge between finite dimen-

sional algebras and Lie algebras. In this section, we consider some families of finite

dimensional algebras and we ask some question on both sides of this bridge. As a

consequence, we obtain some well-known theorems and some new results that a priori

are not related with the Lie structure of the first Hochschild cohomology.

One natural question to ask is the following: what is the relation between

HH1(A) and the first Betti number β1(Q) of a finite dimensional algebra A with Gabriel

quiver Q?

Theorem 5.1. Let A be a finite dimensional algebra over an algebraically closed field

k, with Gabriel quiver Q, then

mt-rank(HH1(A)) ≤ β1(Q).

If A is a monomial (or semimonomial) algebra then equality holds.

Proof. Replacing A with its basic algebra, this follows from Lemma 1.7 and Corollary

4.4. �

Remark 5.2. In characteristic zero the converse of Theorem 5.1 holds, that is,

mt-rank(HH1(A)) = β1(Q) if and only if A is semimonomial; see Remark 1.8. In positive

characteristic one can also obtain a perfect converse using p-semimonomial ideals,
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along the lines explained in Remark 1.8 (but we caution that when equality holds the

guaranteed p-semimonomial presentation may be non-admissible).

Compare this with [32, Theorem 1.2], which characterizes semimonomial alge-

bras A in terms of the rank of the algebraic group Aut(A)◦.

Remark 5.3. Antipov and Zvonareva compute the rank of the maximal torus of Out(A)◦

for any symmetric stably biserial algebra A in terms of the corresponding Brauer graph

[1, Theorem 1.1]. They use this to prove that Brauer graph algebras are closed under

derived equivalence [1, Corollary 1.3]. The rank they compute is less than the maximum

allowed in Theorem 5.1 by v − 1, where v is the number of vertices in the Brauer graph

of A.

5.1 Monomial and semimonomial algebras

Bardzell and Marcos proved that if A = kQ/I is a finite dimensional monomial algebra

such that HH1(A) = 0, then Q is a tree [8, Theorem 2.2]. As an application we recover

and generalize their result.

Corollary 5.4. Let A = kQ/I be a finite dimensional monomial (or semimonomial)

algebra. Then mt-rank(HH1(A)) = 0 if and only if Q is a tree.

Proof. The statement follows from Theorem 5.1 because β1(Q) = 0 if and only if Q is a

tree. �

To explain the hypothesis of the theorem: it is certainly true that if

HH1(A) = 0, then mt-rank(HH1(A)) = 0. More generally mt-rank(HH1(A)) vanishes

exactly when Out(A)◦ is unipotent in characteristic zero, and exactly when HH1(A) is

p-nilpotent in positive characteristic.

It was proven by Avella-Alaminos and Geiss that among gentle algebras the

number of arrows is a derived invariant [7, Proposition B]. Surprisingly, this can be

extended to all monomial algebras, and even all semimonomial algebras:

Theorem 5.5. Let k be a field, and let A be a finite dimensional split k-algebra that is

derived equivalent to a finite dimensional semimonomial k-algebra B. Then the Gabriel

quiver of A contains at least as many arrows as the Gabriel quiver of B. In particular, if

two finite dimensional semimonomial algebras are derived equivalent, then they have

the same number of arrows.
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Proof. Tensoring with an algebraic closure preserves derived equivalences and

preserves the number of arrows, so we may assume that k is algebraically closed.

By Theorem 5.1 and Corollary 4.4 we have

β1(QA) ≥ mt-rank(HH1(A)) = mt-rank(HH1(B)) = β1(QB),

where QA and QB are the Gabriel quivers of A and B respectively. The statement

now follows because the number of simple modules and the number of connected

components of the Gabriel quiver are both derived invariants. �

The following consequence is rather surprising:

Theorem 5.6. Let k be a field. There are only finitely many monomial algebras in each

derived equivalence class of finite dimensional k-algebras.

Proof. Within a given derived equivalence class, all monomial algebras have the same

number of vertices and arrows by Theorem 5.5, and therefore there are only finitely

many possible Gabriel quivers.

We need to show that there are finitely many possible derived equivalent

monomial ideals on a given quiver, and this is only an issue if there could be arbitrarily

long defining relations. If A is an algebra with a complete set of orthogonal idempotents

e1, ..., en, then the number
∑

dimk eiAei is a derived invariant of A, since it is the trace

of the Cartan matrix of A, and the similarity class of the Cartan matrix is a derived

invariant (see the proof of [14, Proposition 1.5]). It follows from this that the lengths of

the defining relations of monomial algebras are uniformly bounded within any given

derived equivalence class. �

5.2 Commutative monomial algebras and and quantum complete intersections

Here we discuss two important classes of semimonomial algebras. The first example is

from commutative algebra.

Corollary 5.7. Let A = k[x1, ..., xn]/I be a finite dimensional commutative k-algebra.

Then mt-rank(HH1(A)) ≤ n and equality holds if I is a monomial ideal.

Proof. We present A using the quiver with a single vertex and loops x1, ..., xn. The

kernel of this presentation is semimonomial if and only if I is monomial (in the

commutative sense), so the statement follows from Theorem 5.1. �
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One can establish a converse to Corollary 5.7, depending on the characteristic of

k, by using the observation from Remark 1.8.

For the next example fix a sequence m1, ...,mn of positive integers and a

collection of elements q = {qij ∈ k× : 1 ≤ i < j ≤ n}. Then the algebra

Aq = k〈x1, ..., xn〉/
(
xmi
i , xixj − qijxjxi

)

is known as a quantum complete intersection. Many authors have studied the

Hochschild cohomology of quantum complete intersections; for example [11, 13, 28,

46]. In [50] the authors proved in many cases that the first Hochschild cohomology is

a solvable Lie algebra. In [17] the authors explain how to explicitly compute the Lie

algebra structure of the Hochschild cohomology for any number of variables. According

to [11, Theorem 1.1 (iii)], when k has characteristic p and n = 2 and q12 has order

dividing p − 1, we have mt-rank(HH1(Aq)) = 2 (in this context Aq is the basic algebra of

a non-principal block of a finite group). We generalize this result to arbitrary quantum

complete intersections.

Corollary 5.8. Let Aq be a quantum complete intersection with n variables. Then we

have mt-rank(HH1(Aq)) = n.

Proof. Since Aq is semi-monomial, the statement follows from Theorem 5.1. �

5.3 Simply connected algebras

Let A be a finite dimensional k-algebra over an algebraically closed field k. Let Q be the

Gabriel quiver of A. If the quiver Q is acyclic, then the algebra A is called triangular.

In [6], the authors define a simply connected algebra to be a triangular algebra with

no proper Galois covering, or equivalently, with trivial fundamental groups for every

admissible quiver presentation. We note that by [43, Lemma 2.6], if A is triangular then

all derivations preserve the radical of A, and so we may restrict attention to admissible

presentations (see Remark 2.8).

In [51], Skowroński asked for which triangular algebras A we have that A is

simply connected if and only if HH1(A) = 0. This problem has motivated several results:

see [4, 18, 40] for example. The following theorem has a corollary that constrains which

Lie algebras can be obtained as HH1(A) of a simply connected algebra A.
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Theorem 5.9. Let A be a finite dimensional algebra over an algebraically closed

field k.

• If k has characteristic zero, then Out(A)◦ is unipotent if and only if π1(Q, I)ab

is finite for any minimal presentation A ∼= kQ/I.

• If k has positive characteristic p, then HH1(A) is p-nilpotent if and only if

π1(Q, I)ab finite and p-torsion free for any minimal presentation A ∼= kQ/I.

Proof. We divide the proof depending of the characteristic of k.

We start with characteristic zero: if π1(Q, I)ab is always finite, then by Theorem

4.1 all maximal tori of HH1(A) are zero. Therefore the maximal toral rank of Out(A)◦

is zero. By [45, Theorem 20.1] we have that Out(A)◦ is unipotent. Conversely, if Out(A)◦

is unipotent then all tori of HH1(A) are zero. By the injectivity of θν , all duals of the

fundamental groups are zero, hence π1(Q, I)ab is finite for any minimal presentation

A ∼= kQ/I.

If the field has positive characteristic and if π1(Q, I)ab ⊗
Z
Fp is zero for every

minimal presentation, then every torus is zero by Theorem 4.1. Hence there are no

semi-simple elements, since the one-dimensional Lie algebra spanned by a semi-simple

element is toral. By the Jordan–Chevalley–Seligman decomposition it follows that

every element is p-nilpotent, hence HH1(A) is p-nilpotent. Conversely, if HH1(A) is

p-nilpotent, then there are no semi-simple elements. By the injectivity of θν , the dual

of the fundamental group is trivial. Therefore π1(Q, I)ab ⊗
Z
Fp is zero for every minimal

quiver presentation. �

Corollary 5.10. If A is a simply connected finite dimensional algebra over an

algebraically closed field of any characteristic, then HH1(A) is nilpotent.

Proof. In characteristic zero, by the previous theorem it follows that Out(A)◦ is

unipotent, therefore Out(A)◦ is nilpotent by [45, Proposition 14.21], and HH1(A) is

nilpotent by [55, Corollary 24.5.13]. In positive characteristic the statement follows

from Engel’s theorem that every p-nilpotent finite dimensional restricted Lie algebra

is nilpotent. �

Remark 5.11. In light of Theorem 5.9, one might approach Skowroński’s question for

a specific family of algebras by first showing that A is simply connected if and only if

every maximal torus of HH1(A) is zero and then by showing that the last condition

is equivalent to HH1(A) = 0. The obstruction to the first step is in understanding



5562 B. Briggs and L. Rubio y Degrassi

the relation between the fundamental group and its abelianization. Note that for the

second step there might be shortcuts (an arrow parallel to a path that does not contain

the arrow) and multiple arrows, which might lead to outer derivations that are not

diagonalizable.

5.4 Group algebras

In the setting of Example 1.3, when ν : kQ/I ∼= kG is a group algebra and π1(Q, I) ∼= G,

the map θν : π1(Q, I)∨ → HH1(kG) coincides with the well-known embedding H1(G,k) →
HH1(kG) of group cohomology into Hochschild cohomology. It follows that the toral rank

of HH1(kG) is always at least dimkH
1(G,k).

We note that group algebras of p-groups have the opposite behaviour of simply

connected algebras. In [12, Proposition 10.7] the authors prove that HH1(kP) is never

nilpotent if kP is the group algebra of a p-group P. Combining this with Corollary 5.10,

it follows that p-groups are never simply connected. We complement this with the

following statement.

Proposition 5.12. Let P be a p-group, and k an algebraically closed field of character-

istic p. Then mt-rank(HH1(kP)) is the minimal number of generators of P.

Proof. The Gabriel quiver is a single vertex with n loops, where n is equal to

dimkH
1(G,k) = p-rank(G/
(G)), which is the minimal number of generators of P. Hence

mt-rank(HH1(kP)) ≤ n by Theorem 5.1. Conversely, using Example 1.3 and Corollary 4.4,

mt-rank(HH1(kP)) ≥ dimkHom(G,k+) = dimkH
1(G,k) = n. �

As a consequence we have that if B is a block of a finite group with defect

group P, then in many cases mt-rank(HH1(B)) = mt-rank(HH1(kP)). This is true if P

is cyclic, or if B is nilpotent, or if B is a block with normal abelian defect group

P ∼= Z/pn1Z × · · · × Z/pnrZ, abelian inertial quotient and up to isomorphism a unique

simple module. The equality for the first case holds since the block is derived equivalent

to a symmetric Nakayama algebra and for the second case since nilpotent blocks are

Morita equivalent to the group algebra of their defect groups. For the last family of

algebras, by Theorem 1.1 in [34] we have that the basic algebra of B is isomorphic

to a quantum complete intersection. By Corollary 5.8 and Proposition 5.12 we have

mt-rank(HH1(B)) = mt-rank(HH1(kP)).

This is related with the following open question: let G be a finite group and

assume the characteristic of the field k divides the order of G. What is the (restricted)
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Lie algebra structure of HH1(kG)? Using the classification of finite simple groups, it is

known that HH1(kG) �= 0. Related with this question, Linckelmann asked in [41] if the

first Hochschild cohomology group of every non-semisimple block of a group algebra is

nonzero.

5.5 Kronecker chains and Beilinson algebras

In this section we compute the dual fundamental groups for two families of finite

dimensional algebras, which have a similar behaviour: quotients of path algebras of

Kronecker chains by standard relations, and Beilinson algebras.

Let A be a non-wild finite dimensional algebra. Kronecker chains were intro-

duced in [27] to express HH1
rad(A), the Lie subalgebra of HH1(A) consisting of outer

derivations that preserve the radical, as a direct sum r ⊕ sl2(k)⊕m, where r is solvable

and m is the number of equivalence classes of maximal Kronecker chains with standard

relations embedded in A.

Definition 5.13 ([27, Definition 5.1]). Let A = kQ/I be an admissible presentation. A

Kronecker chain C in A is sequence of pairs of arrows (a1, b1), . . . , (an, bn) in Q, with

each pair (ai, bi) having the same source and target, and with the target of ai equal to

the source of ai−1 for i = 1, ...,n − 1. We say C has standard relations if J = kC ∩ I is

generated by:

• aiai+1 = 0, bibi+1 = 0 and aibi+1 + biai+1 = 0 for i = 1, ...,n − 1;

• if the source of a1 is the target of an then also ana1 = 0, bnb1 = 0 and

anb1 + bna1 = 0.

Example 5.14. Let C be a Kronecker chain with standard relations embedded in a non-

wild algebra A. By [27, Lemma 5.2] C is either a Dynkin quiver of type An with doubled

arrows, or an extended Dynkin quiver of type Ãn with doubled arrows, or a double loop

L2. In these cases we compute π1(C, J)ab using the homology of the following complex

X∗

where P := {(p,q) | p,q appear together in a minimal relation}. The differentials are

defined as δ0(a) = source(a) − target(a) and δ1((p,q)) = p̄ − q̄, where p̄ = ∑
ai for a

path p = a1 . . .an. If C is of type An with double arrows, then ker(δ0) = ⊕
Z(li) where

li = ai − bi, and im(δ1) = ⊕
Z(li − li+1). Hence H1(X∗) ∼= Z and the dimension of π1(C, J)∨
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is 1. If the Kronecker chain is of type Ãn, then similarly H1(X∗) ∼= Z
2 and the dimension

of π1(C, J)∨ is 2. Finally, if Kronecker chain has only one vertex and two loops, then

H1(X∗) ∼= Z⊕Z/2Z. In this last case, if the field k has characteristic 2, then π1(C, J)∨ has

dimension 2, otherwise π1(C, J)∨ has dimension 1.

Example 5.15. Let � be the exterior algebra over a field. The Beilinson algebra b(�)

appeared for the first time in Beilinson’s paper [9] on the bounded derived category of

projective spaces (see [22] for the general notion of Beilinson algebra b(A) of a graded

algebra A). The authors of [56] compute the dimension of the Hochschild cohomology of

b(�). The Beilinson algebra has a presentation b(�) = kQ/I where

and I = (
xt,ixt+1,j − xt,jxt+1,i : t = 0, . . . ,n − 2 i, j = 0, . . . ,n

)
.

In order to compute π1(Q, I)ab, we generalize the calculations for the Kronecker chain of

type An. It is easy to show that ker(δ0) = ⊕
Z(lt,i) where lt,i = xt,i − xt,i+1 and im(δ1) =⊕

Z(lt,i − lt,i+1). Therefore H1(X∗) = ⊕n−1
i=0 Z(l0,i). Hence π1(Q, I)ab ∼= Z

n. Consequently,

π1(Q, I)∨ has dimension n.

5.6 Reduced universal enveloping algebras

There is an interesting relation between the representation theory of a finite dimen-

sional algebras A and certain quotients of the enveloping algebra of HH1(A), namely the

χ-reduced universal enveloping algebras.

Let χ be a character of a restricted Lie algebra g. We denote by u(g,χ) the

χ-reduced universal enveloping algebra (see [52, section 3.1] or [10]), which is the

universal enveloping algebra U(g) factored by the ideal generated by the elements

xp−x[p]−χ(x)p ·1 for all x ∈ g. Note that mt-rank(g) plays an important role in bounding

the number of nonisomorphic simple u(g,χ)-modules. More precisely:

Conjecture 5.16 ([10, Conjecture 3.4]). Let g be an arbitrary restricted Lie algebra, and

let χ be a character of g. Then there are at most pmt-rank(g) nonisomorphic simple u(g,χ)-

modules.
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For the families of restricted Lie algebras for which the conjecture has been

verified (e.g., sl2, Witt, Jacobson–Witt, and solvable Lie algebras [10]), we can deduce

from Theorem 5.1 that the number of nonisomorphic simple u(HH1(A),χ)-modules is

bounded by β(QA). These families of Lie algebras have been studied in various articles,

for example [27, 42, 43, 50]. In particular, if A is a semimonomial algebra such that

HH1(A) is a solvable Lie algebra, then the projective cover of the trivial irreducible

module of HH1(A) is induced from the one dimensional trivial module of a maximal

torus (see [31]) and by Theorem 5.1 we have pβ(QA) = pmt-rankHH1(A).
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