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We investigate maximal tori in the Hochschild cohomology Lie algebra HH! (A) of a finite
dimensional algebra A, and their connection with the fundamental groups associated
to presentations of A. We prove that every maximal torus in HH!(A) arises as the
dual of some fundamental group of A, extending the work by Farkas, Green, and
Marcos; de la Pefia and Saorin; and Le Meur. Combining this with known invariance
results for Hochschild cohomology, we deduce that (in rough terms) the largest rank
of a fundamental group of A is a derived invariant quantity, and among self-injective
algebras, an invariant under stable equivalences of Morita type. Using this we prove
that there are only finitely many monomial algebras in any derived equivalence class of
finite dimensional algebras; hitherto this was known only for very restricted classes of

monomial algebras.

Introduction

The first Hochschild cohomology Lie algebra HH!(A), along with all of the Lie theoretic
invariants that may derived from it, is an important object attached to any finite
dimensional algebra A, and this structure has been studied intensely in recent years; see

for example [2, 11, 21, 27, 42, 50, 53, 54]. In particular, the authors have been interested
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in properties such as solvability and nilpotence of HH!(A), for specific classes of
algebras. The notion of a maximal torus plays a fundamental role in the theory of Lie
algebras—for example, they are a key ingredient in the classification of semi-simple Lie
algebras in characteristic zero. In this work we improve our understanding of the Lie
structure of HH' (A) by classifying its maximal tori in terms of presentations of A.

Classically, the Lie bracket on HH!(A) has been used to understand the deforma-
tion theory of A, as part of the Gerstenhaber structure on HH*(A). Within representation
theory, since this Lie algebra is a derived invariant of A—and, among self-injective
algebras, an invariant under stable equivalences of Morita type—its structure is often
used in classification problems. More recently, by studying the closely related algebraic
group of outer automorphisms of A, maximal tori have been used to impressive effect
to obtain complete combinatorial derived invariants for gentle algebras [7] and Brauer
graph algebras [1], and they have been used in modular representation theory of blocks
[38]. Beyond this, however, fine Lie theoretic properties of HH!(A) are not often used
in reverse, to help understand the original algebra A. This work contains a number of
results in this direction. In particular, we show that the structure of HH!(4) can be used
to deduce information about the shape of the Gabriel quiver of A (see Theorem C).

The second main pillar of this paper concerns the homotopy theory of bound
quivers. The fundamental group 7;(Q,I) of a bound quiver (Q,I) was introduced in [44]
using the covering techniques developed in [15, 48]. Starting with an algebra A, one
obtains different groups 7, (Q,I) if one varies the presentation A = kQ/I. While this has
previously been considered a defect of the theory, our perspective is that one should
consider the moduli of all fundamental groups, much as one considers the moduli of all
tori in a Lie algebra. Indeed, our results show that tori in HH!(A) are intimately linked
with the fundamental groups of A.

A diagonalizable subalgebra of HH!(A) is by definition a subspace generated
by derivations that act simultaneously diagonalizably on A. These have been studied
in [25, 29, 39], and it is now well-known that they are connected with the spaces
Hom(m,(Q,I), k") of additive characters on the fundamental groups of A. The next
result was proven by Farkas, Green, and Marcos under certain technical assumptions
[29, Theorem 3.2], and later proven for triangular algebras by Le Meur [39, Proposition

2.6]; our result applies to all finite dimensional algebras.

Theorem A. Let A be a finite dimensional algebra over a field k. Every maximal
diagonalizable subalgebra of HH!(A) is isomorphic to Hom(m,(Q,I), k") for some
presentation A = kQ/I.
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The isomorphisms appearing in the theorem are realized by concretely defined
maps Hom(r,(Q,I),k*) — HH!(A); for triangular algebras this map was introduced in
[5], and it was generalized to arbitrary finite dimensional algebras in [25].

At this point we involve some Lie theory, proving that the maximal diagonal
subalgebras of HH!(A) are exactly the maximal tori of HH!(4). With this in mind,
we define mtrank(HH!(A)) to be the maximal dimension of a torus in HH!(A), and
we define 7;rank(4) to be the maximal dimension of a dual fundamental group
Hom(m,(Q,I), k") for some (minimal) presentation of A. We immediately deduce the next

result.
Theorem B. For any finite dimensional k-algebra A we have
mtrank(HH! (4)) = mrank(A).

The Lie-theoretic quantity on the left-hand-side is a derived invariant of A, and
so we deduce from this theorem that the combinatorial quantity on the right-hand-
side is a derived invariant of A. Similarly, among self-injective algebras, we deduce
that 7;rank(4) is an invariant under stable equivalences of Morita type. As a first
application of this idea we bound the maximal toral rank of HH!(A) in terms of the
first Betti number of the Gabriel quiver of A (i.e., the number of holes in the underlying

graph).

Theorem C. If A is a finite dimensional algebra over an algebraically closed field k,

with Gabriel quiver Q, then
mtrank(HH! (4)) < ,(Q).
If A is a monomial (or semimonomial) algebra then equality holds.

We note that lower bounds on the toral rank come from exhibiting tori, while
upper bounds are in general more difficult to come by. The fact that equality holds for

monomial algebras has a striking application.

Theorem D. If two finite dimensional monomial algebras (over any field) are derived
equivalent, then their Gabriel quivers contain the same number of arrows. Conse-
quently, there are only finitely many monomial algebras in any given derived equiva-

lence class.
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It was proven by Avella-Alaminos and Geiss that among gentle algebras the
number of arrows is a derived invariant [7, Proposition B]. We are not aware of any
other large classes of monomial algebras for which Theorem D was known, beyond the
obvious cases.

Theorem C also implies (and extends to semimonomial algebras) a result of
Bardzell and Marcos: if A = kQ/I is a finite dimensional monomial algebra for which
HH!(4) = 0, then Q is a tree [8, Theorem 2.2].

The semimonomial algebras appearing in Theorem B are defined in Section 1.
Examples occur frequently, including all commutative monomial algebras and all
quantum complete intersections (see Subsection 5.2). Many authors have studied the
Hochschild cohomology Lie algebra of quantum complete intersections, and calcula-
tions are notoriously complicated, with the structure depending finely on the quantum
parameters and exponents. It is therefore surprising that we are able to prove in all
cases that mtrank(HH! (Ay)) is equal to the number of variables generating the quantum
complete intersection A, (see Corollary 5.8). The picture in the modular representation
theory is very similar: we prove that if k is a field of characteristic p and G is a
p-group, then mtrank(HH!(kG)) is equal to minimal number of generators for G (see
Proposition 5.12).

Another well-studied class of algebras we apply our results to are the simply
connected algebras, that is, triangular algebras for which the fundamental group of any

presentation is trivial.

Theorem E. If A is a simply connected finite dimensional algebra over an alge-
braically closed field, then HH!(A) is nilpotent.

One new insight in this paper is that we must consider non-admissible presen-
tations to prove Theorem A. When working in positive characteristic these presentations
are unavoidable because of the existence of derivations that do not preserve the radical
(see Example 4.6). Thus, our setup is necessarily more general than previous works
on the fundamental group; this has the benefit that we allow all finite dimensional

algebras directly, including non-basic algebras (see Example 1.3).

Outline

In Section 1 we recall the definition of the fundamental group of a bound quiver. In
Section 2 we discuss diagonalizable derivations and diagonalizable Lie algebras of

HH!(A). Section 3 summarises the Lie theory needed to discuss maximal tori in HH! (A).
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This section divides according to the characteristic of k: in characteristic zero we must
consider algebraic groups, while in positive characteristic we must consider restricted
Lie algebras. In Section 4 we prove Theorems A and B characterising maximal tori in
terms of the fundamental group. In Section 5 we apply our results to various families
of finite dimensional algebras including monomial algebras, commutative algebras,
quantum complete intersections, simply connected algebras, and Kronecker chains.

Here we prove Theorems C, D, and E and recover some known theorems along the way.

1 The Fundamental Group of a Bound Quiver

Let A be a finite dimensional algebra over an algebraically closed field k.

A quiver is a directed graph Q with a set Q of vertices and a set Q, of arrows. A
presentation is a surjective k-algebra homomorphism v: kQ — A from the path algebra
of a finite quiver Q. We will fix a complete set e, ..., e, of orthogonal idempotents for
A and assume all of our presentations induce a bijection between Q, and {ey, ..., e, }. We
do not assume that I = ker(v) is an admissible ideal of kQ (see Remark 1.2), and we do
not assume that e; are primitive idempotents (see Example 1.3).

The elements of I are called relations, and a minimal relation in I is a nonzero
relation r = Y7, a;p;, where the p; are distinct paths in Q and a; € k ~ {0}, such that
there is no proper nonempty subset T C {1,...,s} for which >, ;a;p; € I. Note that all
paths appearing in a minimal relation r automatically share the same source and target,
that is, are parallel.

1 is an arrow with source

If « € Q, then the formal inverse of «, denoted by o~
and target equal to the target and the source of «, respectively. They assemble into a
quiver Q7! with Q;' = Q; and Q]! := {¢!|e € Q,}. Then we can form the double quiver
Q where Q, = Qq and Q, = Q; UQ; . With this notation, a walk in Q is an oriented path

in Q.

Definition 1.1. To define the fundamental group, we first recall the homotopy
relation, which was introduced in [44]. By definition ~; is the equivalence relation on
the set of walks in Q generated by:

1) o la ~ e; and a1

~ e; for any arrow o with source e; and target e;;

(2) if v ~; v/ then also wvu ~; wv'u, where w, v, v’ and u are walks such that
the concatenations wvu and wv’u are well-defined;

(3) u ~; vifuand v are paths that occur with a nonzero coefficient in the same

minimal relation.
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Fixing one of the chosen idempotents e;, the set of ~;-equivalence classes of
walks with source and target e; is denoted by 7, (Q, I, e;). Concatenation of walks endows
this set with a group structure whose unit is the equivalence class of the trivial walk e;
[44]. The group 7,(Q, I, ¢;) is called the fundamental group of (Q,I) based at e;.

If Q is connected, another choice of idempotent e; will yield an isomorphic
fundamental group, so we adopt the simplified notation 7,(Q,I) = 7,(Q,I,¢;). If Q is
not connected, then following the convention in [25], the fundamental group =;(Q,I) is
the direct product of the fundamental groups of the quivers with relations obtained by

restricting to the connected components of Q.

The fundamental group x,(Q,I) does depend on the ideal I = ker(v) and
therefore it is not an invariant of the isomorphism class of A = kQ/I; see for example
[39, Example 1.2].

Remark 1.2. To prove our main theorem it will be important to consider non-
admissible (but still minimal) presentations, such as kQ = k[x] - A = klx]/(xP — 1)
when k has characteristic p. See Remark 2.8 and Example 4.6 for more detail. The usual

proof that ;(Q,I) is a group works verbatim in this context.

Example 1.3. Since we allow non-admissible presentations our algebras need not be
basic. For example, let G be a finite group, and let Q be the quiver with a single vertex
and with edges in bijection with the elements of G. Consider the natural presentation

v: kQ — kG, with I = ker(v). Then the group x,(Q,I) is canonically isomorphic to G.

Definition 1.4. We will write 7;(Q,I)¥ = Hom(r,(Q,I), k") for the group of additive

characters on m; (Q, I). This will play a central role below.

Remark 1.5. When X is a based, connected topological space, there is a Hurewicz
isomorphism 7;(X)" = H(X;k) between the group of additive characters on the
fundamental group of X and the first singular cohomology of X. Thus =,(Q,I)" is
analogous to the first singular cohomology of (Q,I).

In fact, from (Q,I) one can produce a based space X such that 7;(X) = 7,(Q,I);

see [19] and also [47].

In a similar vein, one can also view m;(Q,I)” as a generalization of graph

cohomology. Suppose that Q has n vertices and m edges and ¢ connected components.
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The first Betti number of the underlying graph |Q| of Q is given by g,(|Q|) =
dim,, H'(]Q|;k) = m — n + c [26, Lemma 8.2]. Because of this, we adopt the notation
B1(Q) = m —n + c. Intuitively, B;(Q) is the number of holes in Q.

Definition 1.6. Anideal I in kQ is called semimonomial if, within any minimal relation
r=>73_,a;p; a; # 0, each path p; contains exactly the same arrows, occurring the same
number of times (so the different p; are permutations of each other); see [32, Section 1].

Also see Subsection 5.2 for examples.

Lemma 1.7. For a bound quiver (Q,I) we have that
dimy 7,(Q, )" < B,(Q).

Equality holds if I is a monomial ideal, and more generally if I is semimonomial.

Proof. Note that H,(|Q|; Z) is a free abelian group of rank 8, (Q), and the abelianization
711((2,1)ab is a quotient of H;(|Q[; Z). Indeed, if one chooses loops ¢, ...,Zﬂl(a) based at
e; representing the generators of H,(|Q|;Z) (i.e., a loop for each hole in |Q]), then by
conditions (1) and (2) in Definition 1.1 m; (O,I)ab is generated by ¢, ...,Eﬂl(a). It follows
that dim,, 7,(Q,1)¥ < ,(Q).

In the case that I is monomial, condition (3) in Definition 1.1 does not identify
any walks, so the homotopy relation ~; does not even depend on I, and H,(|Q|;Z) =
nl(O,I)ab. We denote by 7;(Q, (0)) the fundamental group of a quiver without relations.
If I is semimonomial, then we claim that seminomial relations are zero in 7, (Q, (0))2P =
H,(|Q|;Z). If p and q are paths in the semimonomial ideal I, then p and g are equal in
the free abelian group ZQ; on the arrows. There is an injective map from H, (|Q|; Z) to
72Q,, and therefore these semimonomial relations are zero in m;(Q, (0))ab. So again in
this case H,(|Q[; Z) = 7, (Q,)?®. [}

Remark 1.8. If k has characteristic zero then the proof of the lemma is reversible:
dim; 7, (Q,I)¥ = B,(Q) if and only if I is semimonomial.

To obtain a converse in characteristic p, one could define I to be
p-semimonomial if for each path in a given minimal relation, each arrow occurs the
same number of times modulo p. Then in this context dim; 7, (Q,I)" = ,(Q) if and only

if I is p-semimonomial.

Remark 1.9. While special presentations will produce interesting fundamental

groups, the fundamental group is very often trivial, because in a generic presentation
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the minimal relations will involve many terms. Le Meur [39] considers the relation
between all the different fundamental groups, along with some natural surjections
between them. It is proven in loc. cit. that for certain very specific classes of algebras
there is one fundamental group that surjects onto all others; see [39, Theorem 1]. In

general this is not the case.

2 The Hochschild Cohomology Lie Algebra

As before, let A be a finite dimensional algebra over an algebraically closed field k, with
a complete set of orthogonal idempotents ey, ..., e,.

A derivation on A is a k-linear map f: A — A satisfying the Leibniz rule, that
is, f(ab) = f(a)b + af(b) for all a,b € A. The space of derivations Der(4) on A is a Lie
algebra: if f and g are derivations on A, then so is [f,g] := fog — gof. The space Inn(A)
of inner derivations consists of those derivations of the form [c, —]: a — ca —ac, for c €

A. Then Inn(A) is a Lie ideal in Der(A) and there is a canonical isomorphism

HH'(A) = Der(A)/Inn(A),

which we take as our definition of the first Hochschild cohomology group of A. A slightly

more efficient description of this group will be useful:

Definition 2.1. Let Dery(A) be the space of those k-linear derivations f such that
f(e,) =0fori=1,..,n, and let Inny(4) = Dery(4) N Inn(A). By [25, Proposition 1] there

is a canonical isomorphism

HH'(4) = Dery(A)/Inny(A).

Definition 2.2. An element f € HH!(A) is called diagonalizable if it can be represented
by a derivation d € Der(A), which acts diagonalizably on A, with respect to some k-linear
basis of A. More generally, we say that a subspace t C HH!(A) is diagonalizable if its
elements can be represented by derivations that are simultaneously diagonalizable on
A. Note that t is automatically a subalgebra of HH!(A) since [t,{] = 0. The maximal
diagonalizable subalgebras are by definition those diagonalizable subalgebras that are

maximal with respect to inclusion.
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Diagonalizable derivations were studied by Farkas, Green, and Marcos [29] and
by Le Meur [39]. Note that Le Meur assumes that diagonalizable derivations preserve
the radical, and we do not.

With some background in Lie theory one can characterize diagonalizable subal-
gebras intrinsically in terms of tori; see the next section for definitions (Definition 3.1
in characteristic zero and Definition 3.11 in positive characteristic). While the next
result uses standard theory, it is significant in this paper because it will imply derived
invariance (and invariance under stable equivalences of Morita type) for diagonalizable

subalgebras.

Proposition 2.3. The maximal tori of HH!(4) (or Der(4) or Dery(A)) are exactly the
maximal diagonalizable subalgebras of HH!(A) (or Der(A) or Dery(A), respectively).

Proof. We use results and notation from Section 3.

When k has characteristic zero we use the theory of algebraic groups. Let Aut(A)
be the algebraic group of k-linear automorphisms of A, and Auty(4) be the closed
subgroup of those automorphisms that fix each idempotent e;. We apply Proposition
3.2 to the natural embeddings of Aut(4)° and Aut,(4)° into GL(4), and then we apply
Proposition 3.5 and Lemma 3.8 to deduce the desired statement for Der(4) = £(Aut(4))
and Dery(A) = £(Auty(4)). After this, the statement for HH!(A) follows by applying
Proposition 3.3 to the surjection Aut(4)° — Out(A)°, and then applying Proposition 3.5
with the isomorphism £(Out(4)) = HH'(A) of [53, Théoréme 1.2.1.1].

In positive characteristic we use the theory of restricted Lie algebras. For Der(A)
and Dery(A) the statement follows from Proposition 3.14 by embedding into gl(A).
Then for HH!(A) the statement follows from Proposition 3.15 applied to the surjection
Der(A) — HH'(A). [ ]

Lemma 2.4. For every maximal torus t € HH!(A) there is a maximal torus ' C Dery(A)

whose image under the surjection Dery(4) — HH!(4) is t.

Proof. The proofis very similar to that of Proposition 2.3: in characteristic zero we use
the surjection Auty(4)° — Out(A4)°, and in positive characteristic we use the surjection
Dery(A) — HH!(4). [ ]

Lemma 2.5. IftC HH!(A) is a diagonalizable subalgebra then, up to inner derivations,
the elements of t are simultaneously diagonalizable with respect to a basis of paths for

some (possibly non-admissible) presentation v: kQ — A.
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Proof. It follows from Proposition 2.3 and Lemma 2.4 that t is the image of a
diagonalizable subalgebra ¢ C Dery(A), so we may represent the elements of t by
derivations § such that §(e;) = 0 for alli = 1,...,n, and all of which are diagonal with
respect to some basis B of A.

Firstly, by replacing B with a subset of {ejbe; : b € B, i,j = 1,..,n}, we
can assume that each element of B satisfies ebe; # 0 for a unique pair i,j. By
removing elements from {e,, ..., e,} U B, we can also assume that {e;, ...,e,} € B. Now let
Q, = {e;,...,e,} and let Q; S B~ {e;,...,e,} be a subset such that Q; U Q; descends
to a basis of A/rad(A)?. The induced homomorphism v: kQ — A is surjective modulo
rad(4)?, and since rad(A) is nilpotent it follows by induction that v is surjective.

To end the proof, A admits a basis consisting of paths in the quiver Q, and
it follows from the Leibniz rule that each § as above is diagonal with respect to this
basis. |

Definition 2.6. With Lemma 2.5 in mind, we say that a derivation § € Der(4) is
diagonal with respect to a presentation v: kQ — A if §(e) = 0 for each e € v(Q,) and
8(a) € ka for each a € v(Q;). Equivalently, § is diagonal with respect to a basis of paths

induced by v. We also define
er = {6: A— A : §1is a derivation diagonal with respect to v},

and the image of D¢ in HH!(A) is denoted by .

Proposition 2.7. Every maximal torus of HH!(A) is of the form ¢ for some

presentation v: kQ — A.
Proof. This follows from Proposition 2.3 and Lemma 2.5. |

Remark 2.8. The derivations in tD®" will preserve the radical of A4 if v is an admissible
presentation, and conversely, for derivations preserving the radical, Lemma 2.5 can be
adapted to produce an admissible presentation. If k has characteristic zero then all
derivations preserve the radical [33, Theorem 4.2], so in this context we can restrict
to admissible presentations in all our theorems. In positive characteristic this is false
(see Example 4.6), so it will be important to consider non-admissible presentations.
Several authors have instead considered the subalgebra HH%a q(4) of HH!(A) spanned by

derivations that do preserve the radical [27, 43].
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3 Maximal Tori

In this section we recall what we need to know about tori in Lie algebras in order
to complete the proof of Proposition 2.7. A satisfactory theory requires some extra
structure, which depends on the characteristic of the given field: in characteristic zero
we need an algebraic group whose tangent space at the identity is the given Lie algebra,
and in positive characteristic we need a restricted structure.

The reader may wish to only skim this section for the needed Lie algebra facts,

and can consult the given references for a fuller picture.

3.1 Tori in characteristic zero

For the rest of this subsection k is an algebraically closed field of characteristic zero
(the results here require this characteristic assumption). In this context, we introduce
tori through the theory of algebraic groups.

The algebraic group that we are most interested in is G = Out(4), the group
of outer automorphisms of a finite dimensional algebra A over k; see [35]. Note that
Out(4) is affine since it is a quotient of the affine algebraic group Aut(4) of all k-linear

automorphisms of A [36, Theorem 11.5].

Definition 3.1. An algebraic group T over k is called a torus if it is isomorphic as an
algebraic group to D,,(k), the group of invertible diagonal n x n matrices over k, for some
n. If G is any algebraic group, then a torus in G is a closed algebraic subgroup T C G

which is (abstractly) a torus.

Proposition 3.2 ([45, Theorem 12.12]). Let T be a connected algebraic group over k,
and let ¢: T — GL, (k) be any embedding into the group of invertible n x n matrices
over k. Then T is (abstractly) a torus if and only if ¢(T) consists of simultaneously

diagonalizable matrices.

Proposition 3.3 ([45, Proposition 17.20]). Let ¢: G — G’ be a surjective homomorphism

of connected algebraic groups over k.

e If T is a maximal torus of G, then ¢ (T) is a maximal torus of G'.
e If T' is a maximal torus of G’ and T is a maximal torus of ¢ 1(T”), then T is

a maximal torus of G.
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We use the notation £(G) for the Lie algebra attached to an algebraic group G
over k; that is, the tangent space at the identity with bracket induced by differentiating
the commutator operation of G. See [45, Chapter 10] for more information. The connected
component of the identity of G will be denoted G°, and we note that £(G°) = £(G) by
definition. In the next definition, we use the fact that a closed algebraic subgroup T C G

induces an inclusion of Lie algebras £(T) C £(G).

Definition 3.4. Let g = £(G) be the Lie algebra of an algebraic group G over k. A Lie

subalgebra t C g is a torus if t = £(T) for some torus T C G.

Proposition 3.5. Let g = £(G) be the Lie algebra of a connected algebraic group G over
k. The assignment T — £(T) induces a bijection between the maximal tori in G and the

maximal tori in g.

Proof. By [36, Theorem 13.1] the assignment H — £(H) induces a bijection between
connected closed subgroups of G and Lie subalgebras of g of the form £(H). It restricts
to a bijection between tori by Definition 3.4, and since it is inclusion preserving, it

restricts further to a bijection between maximal tori. |

Definition 3.6. Let g = £(G) be the Lie algebra of an algebraic group G over k. The

maximal toral rank of g is
mtrank(g) := max{dimt : t C gis a torus}.

Remark 3.7. Let T and T’ be two maximal tori of G = Out(4)°. Since all maximal tori
of G are conjugate by [45, Theorem 17.10], we obtain an automorphism of HH!(A4), which

sends £(T) to £(T”). In particular the dimensions of all maximal tori are the same.
Now we turn to the case when G = Aut(A).

Lemma 3.8. Let A be a finite dimensional algebra over k, and let B be a basis of A.
Then a closed connected algebraic subgroup T < Aut(A)° consists of automorphisms
diagonalizable with respect to B if and only if £(T) € Der(A) consists of derivations

diagonalizable with respect to B.

Proof. Let Dg(A) be the closed subgroup of GL(A) consisting of all k-linear automor-

phisms of A (ignoring the algebra structure), which are diagonal with respect to B. A
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standard calculation shows that £(Dyz(A)) is the set of all k-linear endomorphisms of A
which are diagonal with respect to 5. So we must show that T € Dg(A4) if and only if
£(T) € £(Dg(A)), and this is part of [36, Theorem 12.5]. |

Remark 3.9. There has been recent interest in investigating when HH!(A4) is a
solvable Lie algebra [27, 43, 50]. In characteristic zero the Lie algebra of a connected
algebraic group is solvable if and only if the connected algebraic group is solvable
[55, Proposition 2.7]; in particular Out(4)° is solvable if and only if HH! (4) = £(0ut(A4))
is solvable; see [63, Théoreme 1.2.1.1] for this equality.

In the solvable context, by [45, Theorem 16.33], we have that HH!(A) decomposes
as a semidirect product t x n where t is a maximal torus and n is a nilpotent subalgebra
of HH'(A) (see also [55, Proposition 26.4.5]). Therefore, in characteristic zero we can
generalize [39, Proposition 2.7]: we obtain a semidirect product decomposition of
HH!(A) when the underling graph of the Gabriel quiver of A is simply directed [43,
50] or when A is a quantum complete intersection with quantum parameters g;; # 1 for
all i < j; see [50, Proposition 4.20]. Note that the Lie structure of HH!(A) can also be

non-solvable when A is a quantum complete intersection [50, Proposition 4.21].

3.2 Tori in positive characteristic

In this subsection we assume that k is an algebraically closed field of positive

characteristic p. For further background on restricted Lie algebras see [30, Chapter 2].

Definition 3.10. Let g be a Lie algebra over k. The adjoint representation of g is the
map Ad: g — Endy(g) defined by Ad(x)(y) = [x, yl.

We say that g is a restricted Lie algebra if there is a map [p] : g — g, called the
p-power operation, such that:

o AdEPH(y) = Ad®)P(p)

o ()P = pxlPl

o P =xPl gl 3P s y)

for all x,y € g and A € k. Here, the element s;(x, y) is the coefficient of t=1in
AP Ytx+y)(x) =ltx+y,..., tx+y,x]...].

Suppose (g;,[pl;) and (g,, [pl,) are two restricted Lie algebras over k. A homomorphism

of Lie algebras ¢: g; — g, is called restricted if o (xPy = ¢ (x) P2 for every x € g;. In
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particular, a subalgebra h C g is called a restricted subalgebra if x'P! € § for every x € b,

and a representation ¢: g — gl, (k) is called restricted if ¢ (xPly = p(x)P for any x € g.

An important example is the Lie algebra gl,, (k) of all n x n matrices over k; here
the p-power operation takes a matrix x to its pth power xP. If A is a finite dimensional
algebra over k, then the pth power of any derivation is again a derivation, and this
gives Der(A) the structure of a restricted Lie algebra. This passes to the quotient
Der(A)/Inn(A) to make HH!(A) a restricted Lie algebra as well, cf. [16].

Definition 3.11. Let g be a restricted Lie algebra over k. An element x € g is called
semisimple if x it belongs to the restricted subalgebra generated by x'P!. We say x if

toral if it satisfies x'P! = x. A restricted subalgebra t C g is called torus if

e tis abelian

e xis semisimple for every x € t

Definition 3.12. The maximal toral rank of a restricted Lie algebra g is

mtrank(g) := max{dimt : t C gis a torus}.

In the literature mtrank(g) is also denoted by MT(g) [52], by mt(g) [10], and by wu(g) [20].

Remark 3.13. Demuskin proved that if g is a restricted Lie algebra of Cartan type, then
all maximal tori of g have the same dimension [52, Sec. 7.5]. However, this is false for a

general restricted Lie algebra.

Proposition 3.14. Let g be a restricted Lie algebra over k, and let ¢: g — gl,,(k) be any
faithful p-representation. Then a p-subalgebra t C g is a torus if and only if ¢ (t) consists

of simultaneously diagonalizable elements.

Proof. Since ¢ is injective, it follows from definition 3.11 that t C g is a torus if and
only if ¢(t) C gl,,(k) is a torus. By [30, Proposition 3.3] a matrix x € gl,(k) is semisimple
in the restricted Lie algebra (gl,,(k), p) if and only if x is diagonalizable. Thus ¢(t) is a
torus exactly when [¢ (t), »(¥)] = 0 and each x € ¢ (1) is diagonalizable. This in turn holds

if and only if the elements of ¢ (t) are simultaneously diagonalizable. |
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Proposition 3.15 ([30]). Let ¢: g — ¢ be a a surjective, restricted homomorphism of

finite dimensional restricted Lie algebras over k.

e If tis a maximal torus of g, then ¢(t) is a maximal torus of g'.
e If ¢ is a maximal torus of g’ and t is a maximal torus of ¢~ (¢), then tis a

maximal torus of g.

Later we will also discuss examples of p-nilpotent restricted Lie algebras:

Definition 3.16. A restricted Lie algebra g is p-nilpotent if every element x is

p-nilpotent, that is, if there exists an integer n such that xPI" — 0,forallx eg.

4 Tori and the Fundamental Group

Let A be a finite dimensional k-algebra with a presentation v: kQ — A, and write
I = ker(v). Assume that Q is connected. Denote by ey, ..., e, the vertices of Q, with e,
as our chosen base point, so that 7, (Q,I) = 7,(Q,I, e;) by definition. As above the group
of additive characters on 7, (Q,I) will be written =, (Q,I)¥ = Hom(x;(Q,I), k™).

We start this section by recalling a construction from [5, 3.2]. We first need to
choose for each e; a walk w; from e, to e;, with w, being the trivial walk at e,, and we

write W = {w;} (in [29] these are called “parade data”). With this we define the map
0, w: m(Q,I)" — Der(A)

by the rule 6, () (v(p)) = f(wjflpwi)v(p), where p is a path from e; to e; see
[25, Section 3] for further details. According to [25, Corollary 3] the induced map

6,: 1,(Q,I)Y — HH'(A)

does not depend on W. If Q is not connected, then following the convention in
Definition 1.1, 6, is the sum of the corresponding maps defined by restricting to each of
the connected components of Q.

The derivation 6, 1,(f) is by definition diagonal with respect to the presentation
v, and therefore the image of §, is a torus in HH!(A). The next result is a converse to this
fact.

Farkas, Green, and Marcos prove that certain diagonalizable derivations are
always in the image of some 6,; see [29, Theorem 3.2]. A similar result is proven by

de la Pefia and Saorin [25, Lemma 3], but using a different definition of the fundamental
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group. In the case that A is a triangular algebra, that is, Q does not contain directed
cycles, Le Meur proves in [39, Proposition 2.6] that the map 6, is surjective onto the
diagonalizable subalgebra tI' of HH!(A). The following theorem generalizes these

results.

Theorem 4.1. Let A be a finite dimensional algebra over an algebraically closed field

k. Every maximal torus of HH!(A) is of the form im(6,) for some presentation v: kQ — A.

Proof. If A splits into a direct product of connected algebras A; x --- x 4,, then
HH!(A) = HH!(A,)x---xHH!(4,), and 6, respects this decomposition, so we may assume
that Q is connected.

By Proposition 2.7 every maximal torus is of the form ¥ for some presentation
v: kQ — A. Hence it suffices to show that im(0,) = t{¥. At the level of derivations, it is
clear that im(9, 1) < tD°T and we must show conversely that tD¢F C im(6, ) + Inn(4).
For any diagonal derivation § € tD¢F we will explicitly produce a map f: 7;(Q,I) — k for
which 6, ,(f) = 6§ modulo Inn(4).

We first define f on the set of all walks as follows: let p be a walk involving
arrows oy, ..., «, and formal inverses of arrows ;‘31_1, ,3,711. Since § is diagonal, there are
scalars ay, ..., ag and by, ..., b, such that §(e;) = a;; and §(B;) = b;B; for each i and j. With

this setup we define
f(p):a1+.+as_b1_._bt_

For a trivial walk e; involving no arrows this means f(e;) = 0. We can think of f(p) as
the signed trace of § on p.
Claim 1. f is well-defined on 7, (Q, I).

We must check that f respects the homotopy equivalence relation that defines
7,(Q,I); this amounts to compatibility with the three conditions (1), (2), and (3) of
Definition 1.1.

The first two conditions are straightforward to check. In the notation of (1), we
have f(a'a) = —f(@) + f(@) = 0 = f(e) and f(aa™) = f(a) — f(@) = 0 = f(e)) as
required. And in the notation of (2), if we assume f(v) = f(v’) then we have f(wvu) =
fw) +f(W) +f(u) =f(w) + )+ f(u) = f(wv'u) as required.

To check compatibility with (3), let r = > | a;p; be a minimal relation in I, with
all a; # 0. Since p; ~; p; for each pair of paths appearing in r, we must prove that f(p;) =

f(p;). Since § is diagonal with respect to v, there are scalars ¢; such that §(p;) = ¢;p; for
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each 7, and from the definition of f we have f(p;) = ¢;. Hence we must show ¢; = ¢; for
each pair i,j. Assume towards a contradiction that this is not the case, and without loss
of generality say cy,...,c,, are all equal and ¢, ,,,...,cy,, are all different from c;, for
some m’ < m. By Lagrange interpolation we can find a polynomial F(x) € k[x] such that
F(c;) =1fori=1,..,m and F(c;) = 0 fori = m’ + 1, ..., m. Regarding § as a derivation
on kQ that preserves I, it follows that §"(I) C I for all n > 0. This implies that F(§) is a
linear endomorphism of kQ such that F(§)(I) C I. In particular, we have F(§)(r) € I and

FO)r) =F0) (X api) = D aFcop; = ap; el
k=1

But this means r is not a minimal relation, a contradiction.

This completes the proof that f descends to a well-defined homomorphism
7,(Q,I) — kT. It remains to show
Claim 2. 6, 1;,(f) = § modulo an inner derivation.

Recall that we have fixed a set W = {w;} of walks w; from e, to e;. Define e}, =

>, f(w;)e;. Then for any path p from e; to e; we have

0, w (D) = f(w; ' pwyp
= (—~f(wy +f(p) +f(wy))p
=48(p) +f(wyp — f(w)y)p

=45(p) — ey, pl
Hence we have 0, 1,,(f) = § — ey, —1. |

Removing redundant generators from a presentation v: kQ — A can only make
tIH larger. So, in lieu of admissibility, we say v is minimal if Q, is a complete set of
primitive orthogonal idempotents for A and no proper subset of Q, U Q; generates A. If
A is a basic split k-algebra then minimality implies that Q is isomorphic to the Gabriel
quiver of A.

The next proposition is well-known for admissible presentations; see
[29, Theorem 2.1] or [25, Corollary 3].

Proposition 4.2. If A is a split finite dimensional algebra and v: kQ — A is a minimal

presentation with kernel I, then 6, : 7,(Q,I)¥ — HH!(A) is injective.
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Proof. This requires a close inspection of the proof of Theorem 4.1. In the notation
there, to a derivation § € tD®" was assigned a character f € 7;(Q,I)" using scalars a such
that §(o) = ax for « € Q;. We note that as long as « # 0 in A this scalar a is unique,
so f is uniquely determined by the formula given in the proof of Theorem 4.1 and the
assignment § > f is a linear map 7,: t°°* — 7,(Q,1)".

We need to explain why 7, descends to t{H, that is, why 7,(§) = 0 if § € Inn(4) N
tPeT Take x € A such that § = [x, —] is diagonal with respect to v. Since A is split we
may write x = x; + x,, with x in the linear span of Q, and x,, nilpotent. Then [x,,, —] is
both nilpotent and diagonalizable, so [x,,, —] = 0. Hence we may assume x = x, = > A;e;,
where e; € Qp. Now if a € Q,; is an arrow from e; to e;, then [x, al = (1; — A;)a. If we add
up these scalars (; — A;) along any walk with the same start and end point we will get
zero, and by definition this means 7, ([x, —]) = 0. This proves that we have a well-defined
map 7,: tHE — 7,(Q, D).

Finally, 6, is injective since it is inverse to t,. Indeed, we checked that 6,7, = id

in the proof of Theorem 4.1, and it is straightforward to check that 7,0, = id. u

Definition 4.3. For a finite dimensional connected k-algebra A, we set

mrank(A) = max{dim; 7, (Q,I)Y : A= kQ/Ia minimal presentation}.

If A is not connected, then it splits into a direct product of connected algebras

A=A, x---xA, and we set m;rank(4) = m;rank(4,) + - - - + m;rank(4,) by convention.

Note that in characteristic zero dim; 7, (Q,I)" is equal to the rank of the abelian-
ization nl(O,I)ab, and if k has positive characteristic p then instead dimm;(Q,I)"
is equal to ranknl(O,I)ab + p-ranknl(O,I)ab. Thus, in general, algebras of positive
characteristic will have larger 7, rank.

We have come to our main motivation for studying the fundamental group: even
though it depends on a presentation, we can use Theorem 4.1 to produce derived (and

stable) invariants by considering all presentations.

Corollary 4.4. For any finite dimensional algebra A over an algebraically closed field

k, we have

mtrank(HH! (4)) = mrank(A).
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In particular, 7;rank(A) is a derived invariant. Among algebras that are further assumed

self-injective, m;rank(A) is also invariant up to stable equivalence of Morita type.

Proof. Theorem 4.1 implies that mtrank(HH!(A)) is the maximum of dim; im(6,) over
all presentations v: kQ — A. By Proposition 4.2 the map 6, is injective for minimal
presentations. So the maximum of dim; im(6,) is equal to w;rank(A).

In characteristic zero, the derived invariance of mtrank(HH!(A)) follows
from the fact that Out(4)° is a derived invariant of A; see [35, Theorem 17] or
[49, Théoreme 4.2]. In positive characteristic, derived invariance follows from [16,
Corollary 2], since mtrank(HH!(4)) depends only on its restricted Lie algebra structure.

Similarly, among self-injective algebras, Out(4)° is invariant under stable
equivalences of Morita type [49, Théoréme 4.3], so mtrank(HH!(4)) = mtrank£(Out(4))
is as well in characteristic zero, and in positive characteristic the desired statement
follows from [16, Theorem 1]. [ |

Remark 4.5. In [23] an intrinsic version of the fundamental group is associated to a
basic algebra A. We have not investigated the relation between m;rank(4) as defined
in this paper and rank of the intrinsic fundamental group defined in [23]. However,
these two numbers do not coincide in general, since in the case of a Kronecker quiver, a
maximal fundamental group has rank 1 while the intrinsic fundamental group is trivial;

see [24, Proposition 36].

Example 4.6. Let k be a field of characteristic p and consider the algebra A = k[x]/(xP).
The Lie algebra HH! (A) was computed in [37]: it admits a basis {0,, x0,, ...,xp—lax} where
9, is the unique k-linear derivation such that 9, (x) = 1, and the Lie bracket and p-power
operation are

ifi=1

X0,

o, ¥l = (G —ixta, ()P =
0 otherwise.

This is known as the Jacobson-Witt Lie algebra; it is simple whenever p > 2 by
[37, Theorem 1]. Note that the derivation xd, is p-idempotent. More generally, an element
f=a+ax+-+ ap_lxp_l is a k-algebra generator for A exactly when a; # O,
in which case f' = 3,(f) is invertible, and we consider the corresponding derivation
faf = f(f")~19,. This derivation is p-idempotent since it sends f to f, and in particular

span{fd,} is a torus.
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Let Q be the quiver with one vertex and one arrow u, so that kQ = kl[u], and let
ve: kQ — A be the minimal presentation sending u to f. Note that these presentations

are non-admissible unless a; = 0. The kernel of Ve is If = (uP —ag), and one can compute

T (Q, L) =
Z/pZ aq # 0.
Regardless of a;, this means 711((2,If)v = k is one-dimensional, generated by a class
dual to the loop u. Finally, the definition of ¢, gives im(9, f) = spanf{f ), and we see
every nonzero torus is generated by some fdr, with almost all of them coming from

non-admissible presentations.

5 Applications

The first Hochschild cohomology group provides a bridge between finite dimen-
sional algebras and Lie algebras. In this section, we consider some families of finite
dimensional algebras and we ask some question on both sides of this bridge. As a
consequence, we obtain some well-known theorems and some new results that a priori
are not related with the Lie structure of the first Hochschild cohomology.

One natural question to ask is the following: what is the relation between
HH!(A) and the first Betti number g, (Q) of a finite dimensional algebra A with Gabriel

quiver Q?

Theorem 5.1. Let A be a finite dimensional algebra over an algebraically closed field

k, with Gabriel quiver Q, then

mtrank(HH' (4)) < ,(Q).

If A is a monomial (or semimonomial) algebra then equality holds.

Proof. Replacing A with its basic algebra, this follows from Lemma 1.7 and Corollary
4.4, |

Remark 5.2. In characteristic zero the converse of Theorem 5.1 holds, that is,
mtrank(HH!(4)) = B;(Q) if and only if A is semimonomial; see Remark 1.8. In positive

characteristic one can also obtain a perfect converse using p-semimonomial ideals,
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along the lines explained in Remark 1.8 (but we caution that when equality holds the
guaranteed p-semimonomial presentation may be non-admissible).
Compare this with [32, Theorem 1.2], which characterizes semimonomial alge-

bras A in terms of the rank of the algebraic group Aut(4)°.

Remark 5.3. Antipov and Zvonareva compute the rank of the maximal torus of Out(4)°
for any symmetric stably biserial algebra A in terms of the corresponding Brauer graph
[1, Theorem 1.1]. They use this to prove that Brauer graph algebras are closed under
derived equivalence [1, Corollary 1.3]. The rank they compute is less than the maximum
allowed in Theorem 5.1 by v — 1, where v is the number of vertices in the Brauer graph
of A.

5.1 Monomial and semimonomial algebras

Bardzell and Marcos proved that if A = kQ/I is a finite dimensional monomial algebra
such that HH!(4) = 0, then Q is a tree [8, Theorem 2.2]. As an application we recover

and generalize their result.

Corollary 5.4. Let A = kQ/I be a finite dimensional monomial (or semimonomial)
algebra. Then mtrank(HH'!(A)) = 0 if and only if Q is a tree.

Proof. The statement follows from Theorem 5.1 because 8,(Q) =0 if and only if Q is a
tree. |

To explain the hypothesis of the theorem: it is certainly true that if
HH!(A) = 0, then mtrank(HH!(4)) = 0. More generally mtrank(HH!(A)) vanishes
exactly when Out(A)° is unipotent in characteristic zero, and exactly when HH!(A) is
p-nilpotent in positive characteristic.

It was proven by Avella-Alaminos and Geiss that among gentle algebras the
number of arrows is a derived invariant [7, Proposition B]. Surprisingly, this can be

extended to all monomial algebras, and even all semimonomial algebras:

Theorem 5.5. Let k be a field, and let A be a finite dimensional split k-algebra that is
derived equivalent to a finite dimensional semimonomial k-algebra B. Then the Gabriel
quiver of A contains at least as many arrows as the Gabriel quiver of B. In particular, if
two finite dimensional semimonomial algebras are derived equivalent, then they have

the same number of arrows.
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Proof. Tensoring with an algebraic closure preserves derived equivalences and
preserves the number of arrows, so we may assume that k is algebraically closed.

By Theorem 5.1 and Corollary 4.4 we have

B,(Q,) > mtrank(HH!(A)) = mtrank(HH! (B)) = 5,(Qp),

where Q, and Qp are the Gabriel quivers of A and B respectively. The statement
now follows because the number of simple modules and the number of connected

components of the Gabriel quiver are both derived invariants. |
The following consequence is rather surprising:

Theorem 5.6. Let k be a field. There are only finitely many monomial algebras in each

derived equivalence class of finite dimensional k-algebras.

Proof. Within a given derived equivalence class, all monomial algebras have the same
number of vertices and arrows by Theorem 5.5, and therefore there are only finitely
many possible Gabriel quivers.

We need to show that there are finitely many possible derived equivalent
monomial ideals on a given quiver, and this is only an issue if there could be arbitrarily
long defining relations. If A is an algebra with a complete set of orthogonal idempotents
ey, ..., e,, then the number > dim; e;Ae; is a derived invariant of A4, since it is the trace
of the Cartan matrix of A, and the similarity class of the Cartan matrix is a derived
invariant (see the proof of [14, Proposition 1.5]). It follows from this that the lengths of
the defining relations of monomial algebras are uniformly bounded within any given

derived equivalence class. n

5.2 Commutative monomial algebras and and quantum complete intersections

Here we discuss two important classes of semimonomial algebras. The first example is

from commutative algebra.

Corollary 5.7. Let A = klxy,...,x,]/I be a finite dimensional commutative k-algebra.

Then mtrank(HH!(4)) < n and equality holds if I is a monomial ideal.

Proof. We present A using the quiver with a single vertex and loops xy,...,x,. The
kernel of this presentation is semimonomial if and only if I is monomial (in the

commutative sense), so the statement follows from Theorem 5.1. [ |
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One can establish a converse to Corollary 5.7, depending on the characteristic of
k, by using the observation from Remark 1.8.
For the next example fix a sequence m,,..., m, of positive integers and a

collection of elements g = {g;; € k* : 1 <i <j < n}. Then the algebra

is known as a quantum complete intersection. Many authors have studied the
Hochschild cohomology of quantum complete intersections; for example [11, 13, 28,
46]. In [50] the authors proved in many cases that the first Hochschild cohomology is
a solvable Lie algebra. In [17] the authors explain how to explicitly compute the Lie
algebra structure of the Hochschild cohomology for any number of variables. According
to [11, Theorem 1.1 (iii)], when k has characteristic p and n = 2 and g,, has order
dividing p — 1, we have mt—rank(HHl(Aq)) = 2 (in this context A, is the basic algebra of
a non-principal block of a finite group). We generalize this result to arbitrary quantum

complete intersections.

Corollary 5.8. Let A, be a quantum complete intersection with n variables. Then we
have mt—rank(HHl(Aq)) =n.

Proof. Since Aq is semi-monomial, the statement follows from Theorem 5.1. [ |

5.3 Simply connected algebras

Let A be a finite dimensional k-algebra over an algebraically closed field k. Let Q be the
Gabriel quiver of A. If the quiver Q is acyclic, then the algebra A is called triangular.
In [6], the authors define a simply connected algebra to be a triangular algebra with
no proper Galois covering, or equivalently, with trivial fundamental groups for every
admissible quiver presentation. We note that by [43, Lemma 2.6], if A is triangular then
all derivations preserve the radical of A, and so we may restrict attention to admissible
presentations (see Remark 2.8).

In [51], Skowronski asked for which triangular algebras A we have that A is
simply connected if and only if HH!(4) = 0. This problem has motivated several results:
see [4, 18, 40] for example. The following theorem has a corollary that constrains which

Lie algebras can be obtained as HH!(A) of a simply connected algebra A.
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Theorem 5.9. Let A be a finite dimensional algebra over an algebraically closed
field k.

e If k has characteristic zero, then Out(A)° is unipotent if and only if 7, (Q, )2
is finite for any minimal presentation A = kQ/I.
e If k has positive characteristic p, then HH!(A) is p-nilpotent if and only if

7,(Q, D finite and p-torsion free for any minimal presentation A = kQ/I.

Proof. We divide the proof depending of the characteristic of k.

We start with characteristic zero: if 7, (Q,I)ab is always finite, then by Theorem
4.1 all maximal tori of HH!(A) are zero. Therefore the maximal toral rank of Out(4)°
is zero. By [45, Theorem 20.1] we have that Out(A4)° is unipotent. Conversely, if Out(4)°
is unipotent then all tori of HH!(A) are zero. By the injectivity of ,, all duals of the
fundamental groups are zero, hence nl(O,I)“b is finite for any minimal presentation
A= ka/I.

If the field has positive characteristic and if 7,(Q,1)* ®, IF,, is zero for every
minimal presentation, then every torus is zero by Theorem 4.1. Hence there are no
semi-simple elements, since the one-dimensional Lie algebra spanned by a semi-simple
element is toral. By the Jordan-Chevalley-Seligman decomposition it follows that
every element is p-nilpotent, hence HH!(4) is p-nilpotent. Conversely, if HH!(4) is
p-nilpotent, then there are no semi-simple elements. By the injectivity of 6, the dual
of the fundamental group is trivial. Therefore nl(O,I)“b ®z, I, is zero for every minimal

quiver presentation. |

Corollary 5.10. If A is a simply connected finite dimensional algebra over an

algebraically closed field of any characteristic, then HH!(A) is nilpotent.

Proof. In characteristic zero, by the previous theorem it follows that Out(4)° is
unipotent, therefore Out(4)° is nilpotent by [45, Proposition 14.21], and HH!(A) is
nilpotent by [55, Corollary 24.5.13]. In positive characteristic the statement follows
from Engel’'s theorem that every p-nilpotent finite dimensional restricted Lie algebra

is nilpotent. |

Remark 5.11. In light of Theorem 5.9, one might approach Skowronski’'s question for
a specific family of algebras by first showing that A is simply connected if and only if
every maximal torus of HH!(A) is zero and then by showing that the last condition

is equivalent to HH!(A) = 0. The obstruction to the first step is in understanding
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the relation between the fundamental group and its abelianization. Note that for the
second step there might be shortcuts (an arrow parallel to a path that does not contain
the arrow) and multiple arrows, which might lead to outer derivations that are not

diagonalizable.

5.4 Group algebras

In the setting of Example 1.3, when v: kQ/I = kG is a group algebra and 7;(Q,I) = G,
the map 6,: 7,(Q,I)¥ — HH! (kG) coincides with the well-known embedding H! (G, k) —
HH! (kG) of group cohomology into Hochschild cohomology. It follows that the toral rank
of HH! (kG) is always at least dim; H!(G, k).

We note that group algebras of p-groups have the opposite behaviour of simply
connected algebras. In [12, Proposition 10.7] the authors prove that HH!(kP) is never
nilpotent if kP is the group algebra of a p-group P. Combining this with Corollary 5.10,
it follows that p-groups are never simply connected. We complement this with the

following statement.

Proposition 5.12. Let P be a p-group, and k an algebraically closed field of character-

istic p. Then mtrank(HH! (kP)) is the minimal number of generators of P.

Proof. The Gabriel quiver is a single vertex with n loops, where n is equal to
dimy H'(G, k) = prank(G/®(G)), which is the minimal number of generators of P. Hence
mtrank(HH! (kP)) < n by Theorem 5.1. Conversely, using Example 1.3 and Corollary 4.4,
mtrank(HH! (kP)) > dim;, Hom(G, k*) = dim; H!(G, k) = n. [ ]

As a consequence we have that if B is a block of a finite group with defect
group P, then in many cases mtrank(HH!(B)) = mtrank(HH!(kP)). This is true if P
is cyclic, or if B is nilpotent, or if B is a block with normal abelian defect group
P=Z/pMZ x --- x Z/p™Z, abelian inertial quotient and up to isomorphism a unique
simple module. The equality for the first case holds since the block is derived equivalent
to a symmetric Nakayama algebra and for the second case since nilpotent blocks are
Morita equivalent to the group algebra of their defect groups. For the last family of
algebras, by Theorem 1.1 in [34] we have that the basic algebra of B is isomorphic
to a quantum complete intersection. By Corollary 5.8 and Proposition 5.12 we have
mtrank(HH! (B)) = mtrank(HH! (kP)).

This is related with the following open question: let G be a finite group and
assume the characteristic of the field k divides the order of G. What is the (restricted)
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Lie algebra structure of HH! (kG)? Using the classification of finite simple groups, it is
known that HH!(kG) # 0. Related with this question, Linckelmann asked in [41] if the
first Hochschild cohomology group of every non-semisimple block of a group algebra is

nonzero.

5.5 Kronecker chains and Beilinson algebras

In this section we compute the dual fundamental groups for two families of finite
dimensional algebras, which have a similar behaviour: quotients of path algebras of
Kronecker chains by standard relations, and Beilinson algebras.

Let A be a non-wild finite dimensional algebra. Kronecker chains were intro-
duced in [27] to express HH%ad(A), the Lie subalgebra of HH!(A) consisting of outer
derivations that preserve the radical, as a direct sum v & sl,(k)®™, where v is solvable
and m is the number of equivalence classes of maximal Kronecker chains with standard

relations embedded in A.

Definition 5.13 ([27, Definition 5.1]). Let A = kQ/I be an admissible presentation. A
Kronecker chain C in A is sequence of pairs of arrows (a,,b,),...,(a,, b,) in Q, with
each pair (a;, b;) having the same source and target, and with the target of a; equal to
the source of a; | fori = 1,...,n — 1. We say C has standard relations if J = kCN1I is

generated by:

e aa;,,=0,bb;,=0anda;b;,; +ba; , =0fori=1,.,n-1;
e if the source of a; is the target of a, then also a,a;, = 0, b,b; = 0 and

Example 5.14. Let C be a Kronecker chain with standard relations embedded in a non-
wild algebra A. By [27, Lemma 5.2] C is either a Dynkin quiver of type 4,, with doubled
arrows, or an extended Dynkin quiver of type Zn with doubled arrows, or a double loop
L,. In these cases we compute 7, (C,J)?° using the homology of the following complex
X

*

ZCy “__ zp,

where P := {(p,q) | p,q appear together in a minimal relation}. The differentials are
defined as §y(a) = source(a) — target(a) and 8'((p,q)) = p — @, where p = > a; for a
pathp = a,...a,. If C is of type A, with double arrows, then ker(§;) = € Z(l;) where
l; =a; —b;, and im(8,) = P Z(; — ;). Hence H, (X,) = Z and the dimension of 7, (C,J)"
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is 1. If the Kronecker chain is of type an then similarly H,(X,) = Z? and the dimension
of 7(C,J)V is 2. Finally, if Kronecker chain has only one vertex and two loops, then
H,(X,) = Z&Z/2Z. In this last case, if the field k has characteristic 2, then =, (C,J)" has

dimension 2, otherwise 7, (C,J)" has dimension 1.

Example 5.15. Let A be the exterior algebra over a field. The Beilinson algebra b(A)
appeared for the first time in Beilinson's paper [9] on the bounded derived category of
projective spaces (see [22] for the general notion of Beilinson algebra b(A) of a graded
algebra A). The authors of [56] compute the dimension of the Hochschild cohomology of
b(A). The Beilinson algebra has a presentation b(A) = kQ/I where

Q=0 1 : 2 n—1 n
Xo,n X1,n Xn—1n
and 1= (x;;X; 1, — Xy X414 0 t=0,...,m=2 i,j=0,...,n).

In order to compute 7;(Q, I yab we generalize the calculations for the Kronecker chain of
type A, . It is easy to show that ker(6;) = @ Z(l;;) where l,; = x,; — x;;,; and im(§;) =
EBZ(ZM- — ;i y1). Therefore H, (X,) = @?:_01 Z(ly ;). Hence 711(O,I)a]D = 7Z". Consequently,

71(Q,I)" has dimension n.

5.6 Reduced universal enveloping algebras

There is an interesting relation between the representation theory of a finite dimen-
sional algebras A and certain quotients of the enveloping algebra of HH!(4), namely the
x -reduced universal enveloping algebras.

Let x be a character of a restricted Lie algebra g. We denote by u(g, x) the
x-reduced universal enveloping algebra (see [52, section 3.1] or [10]), which is the
universal enveloping algebra U(g) factored by the ideal generated by the elements
xP —xP! — y (x)P .1 for all x € g. Note that mtrank(g) plays an important role in bounding

the number of nonisomorphic simple u(g, x)-modules. More precisely:

Conjecture 5.16 ([10, Conjecture 3.4]). Let g be an arbitrary restricted Lie algebra, and
let x be a character of g. Then there are at most p™t*22k(®) pnonisomorphic simple u(g, x)-

modules.
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For the families of restricted Lie algebras for which the conjecture has been
verified (e.g., sl,, Witt, Jacobson-Witt, and solvable Lie algebras [10]), we can deduce
from Theorem 5.1 that the number of nonisomorphic simple u(HH!(A), x)-modules is
bounded by 8(Q,). These families of Lie algebras have been studied in various articles,
for example [27, 42, 43, 50]. In particular, if A is a semimonomial algebra such that
HH!(A) is a solvable Lie algebra, then the projective cover of the trivial irreducible

module of HH!(A) is induced from the one dimensional trivial module of a maximal

torus (see [31]) and by Theorem 5.1 we have p#(Qa) = pmirankHH' (4)
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