L)

Check for
updates

Balancing Security and Privacy in Genomic Range Queries

SEOYEON HWANG, ERCAN OZTURK, and GENE TSUDIK, University of California Irvine, USA

Exciting recent advances in genome sequencing, coupled with greatly reduced storage and computation costs,
make genomic testing increasingly accessible to individuals. Already today, one’s digitized DNA can be easily
obtained from a sequencing lab and later used to conduct numerous tests by engaging with a testing facility.
Due to the inherent sensitivity of genetic material and the often-proprietary nature of genomic tests, privacy
is a natural and crucial issue. While genomic privacy received a great deal of attention within and outside the
research community, genomic security has not been sufficiently studied. This is surprising since the usage of
fake or altered genomes can have grave consequences, such as erroneous drug prescriptions and genetic test
outcomes.

Unfortunately, in the genomic domain, privacy and security (as often happens) are at odds with each other.
In this article, we attempt to reconcile security with privacy in genomic testing by designing a novel technique
for a secure and private genomic range query protocol between a genomic testing facility and an individual
user. The proposed technique ensures authenticity and completeness of user-supplied genomic material while
maintaining its privacy by releasing only the minimum thereof. To confirm its broad usability, we show
how to apply the proposed technique to a previously proposed genomic private substring matching protocol.
Experiments show that the proposed technique offers good performance and is quite practical. Furthermore,
we generalize the genomic range query problem to sparse integer sets and discuss potential use cases.

CCS Concepts: « Security and privacy — Privacy-preserving protocols;

Additional Key Words and Phrases: Cryptographic protocols, genomic security, genomic privacy, range query,
range completeness, private substring matching

ACM Reference format:

Seoyeon Hwang, Ercan Ozturk, and Gene Tsudik. 2023. Balancing Security and Privacy in Genomic Range
Queries. ACM Trans. Priv. Sec. 26, 3, Article 23 (March 2023), 28 pages.

https://doi.org/10.1145/3575796

1 INTRODUCTION

Dramatic recent technical advances in DNA sequencing technology [42, 49, 63] and reduced se-
quencing costs paved the way for ubiquitous and affordable genomic testing. As a result, genomic
tests, such as paternity/parentage and pre-symptomatic disease diagnosis, that were used in the
past mainly by doctors and legal authorities are becoming available to the general public.

In a typical genomic testing scenario, a testing facility (“tester”), such as 23andMe [1] or CRI Ge-
netics [2], requests genomic data from an individual (“Alice”) regarding specific locations and/or

This is an extended version of [40] (WPES 2019).

This work was supported in part by funding from the UC Irvine CORCL award.

Authors’ address: S. Hwang, E. Ozturk, and G. Tsudik, University of California Irvine, Irvine, CA 92697; emails: {seoyhl,
ercano}@uci.edu, gts@ics.uci.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2471-2566/2023/03-ART23 $15.00

https://doi.org/10.1145/3575796

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 23. Publication date: March 2023.

https://orcid.org/0000-0001-7674-6763
https://orcid.org/0000-0002-8789-8372
https://orcid.org/0000-0002-8467-8614
https://doi.org/10.1145/3575796
mailto:permissions@acm.org
https://doi.org/10.1145/3575796
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3575796&domain=pdf&date_stamp=2023-03-13

23:2 S. Hwang et al.

ranges on the DNA of that individual. Alice naturally wants to reveal minimal genomic data, since
DNA—besides one’s own highly personal and sensitive material—includes significant information
about her past, current, and future relatives. The tester also needs to keep specifics (such as queried
locations) secret, due to the often-proprietary nature of these genomic tests. Consequently, ge-
nomic privacy has justifiably attracted lots of attention from the research community, and numer-
ous privacy techniques have been proposed [14, 15, 17, 19, 36, 37, 52, 67, 75].

On the other hand, genomic security, even though at least as important, received considerably
less attention than genomic privacy. In particular, the authenticity and integrity of genomic data
are often ignored or over-simplified, though they are crucial to accurate outcomes of genomic
tests. An erroneous (whether or not maliciously caused) genomic test result can have grave health
consequences when used for medical diagnoses or treatment. It could also involve social risks
when used for determining familial relationships or other non-health-related traits.

At the first glance, the genomic security problem seems simple and easily solvable with tra-
ditional cryptographic primitives, such as digital signatures. However, the main challenge stems
from conflicting requirements among the triad of security, privacy, and efficiency. For example,
a single signature on Alice’s whole genome provides security—specifically, authenticity and in-
tegrity. However, it requires Alice to send the entire genome to the tester (for signature verifica-
tion), which results in zero genomic privacy for Alice and incurs significant communication costs.
Another intuitive approach is to individually sign each smallest genomic unit (called a “base”) and
provide the tester with only those signed bases that are needed for a given test. This would of-
fer much better privacy for Alice and incur much lower communication overhead. However, it
is expensive to compute (at sequencing time) and requires the tester to verify potentially many
signatures.

As an alternative to the whole genome representation, other more compact DNA representa-
tions can be used. One such example called Single-Nucleotide Polymorphisms (SNPs)—one-
base genomic mutations—account for only about 0.1% of the entire genome. Therefore, they are
significantly more efficient to use to represent a genome. However, this increase in efficiency in-
troduces additional security problems. If we sign each SNP individually, since SNP locations are
not consecutive and their positions are unpredictable (sprinkled throughout the entire genome),
Alice could cheat by omitting signed SNPs from the requested range.! There are similar tradeoffs
for other candidate representations.

Inspired by these challenges, this work focused on reconciling genomic security, privacy, and ef-
ficiency. Genomic security requires authenticity, which comprises origin authentication, integrity,
and completeness. It aims to counter potentially malicious owners and/or outsiders tampering
with genomic data. Privacy (against malicious testers) demands flexibility and sufficiently fine
granularity controlled by the genome owner so as to reveal minimal information. At the same
time, efficiency motivates minimizing genomic data processing, which complicates both privacy
and security. After carefully examining security, privacy, and efficiency needs, we propose tech-
niques based on the combination of established cryptographic tools that achieve a good balance
for genomic testing. Anticipated contributions are as follows:

e We construct a secure and private range query technique that serves as a building block for
various protocols and genomic representations. Range queries allow us to perform efficient
genomic tests on various regions? that control similar functions.

1Of course, she cannot introduce fake SNPs.

2 Note: One example of such a region is the Major Histocompatibility Complex (MHC), a large locus on vertebrate DNA,
which consists of a set of genes coding for proteins responsible for detecting foreign molecules at the cellular level. MHC
ranges from 6p22.1 to 6p21.3 and consists of about four megabases; see Cytogenetic location [4]. Various SNPs in this

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 23. Publication date: March 2023.

Balancing Security and Privacy in Genomic Range Queries 23:3

e To demonstrate applicability of the proposed technique, we use it to improve both security
and performance of prior protocols for private genomic substring matching [37].

e We prototype proposed protocols and evaluate their performance. In the course of the eval-
uation, we investigate various optimizations and analyze the performance of two additively
homomorphic encryption schemes (ElGamal [41] and Paillier [69]) and two range-proof
schemes (signature based [28] and BulletProofs [27]).

o Finally, we generalize the problem setting to sparse integer sets and discuss applications of
the proposed schemes beyond genomics.

Organization: Section 2 provides an overview of the background, followed by Section 3 providing
our system and security models, as well as the range completeness problem. Our main contribution
is introduced in Section 4, followed by its application to the Size- and Position-Hiding Private
Substring Matching (SPH-PSM) [37] problem in Section 5. Sections 6 and 7 discuss the imple-
mentation and evaluation of the proposed construction as well as its application to SPH-PSM. Next,
Section 8 presents a generalized version of the problem with sparse integer sets and comments on
its security. Then, Section 9 reviews related work, followed by some limitations of this work and
future work in Section 10. Lastly, Section 11 concludes the article. All notation and acronyms used
in this article are summarized in Table 1.

2 PRELIMINARIES

This section provides an overview of background material on genomics and cryptographic tools
used in this work.

2.1 Genomics

The human genome is composed of around 3.2 billion® base pairs packed into 23 chromosomes
of different size [61]. Each base can be represented by four letters of the genetic code: [A]denine,
[Clytosine, [G]uanine, and [T]hymine, where [A] always bonds with [T] and [G] always bonds
with [C]. According to the Human Genome Project (HGP), only around 0.1% of base pairs differ
between individuals [9]. Although it is not yet possible to determine or predict exactly where
these differences occur, many types of genetic variations can be used to identify an individual and
determine one’s susceptibility to diseases and/or sensitivity to drugs. SNPs are the most common
type of genetic variation (a.k.a. mutations) among people, which represents a difference in a single
base, e.g., an [A] changes to a [C] or a [G]. A variation is classified as an SNP if over 1% of a
population does not carry the same nucleotide at a specific position in the DNA sequence [8].
Normally, an SNP data sequenced by, e.g., 23andMe [1], contains two base letters, one per each
chromosome. For example, let the genotype of an SNP among Alice’s DNA sequenced result be
“AG” at position 169. This means that “A” is on one strand of one chromosome and “G” is on one
strand of the other chromosome—naturally the opposite strands have paired “T” and “C,” respec-
tively, at position 169—and another person can have a different genotype at position 169, e.g., “CC.”
To represent the genotypes efficiently, we use an 8-bit* integer € [0, 15], instead of representing
all two-character combinations of {A,C,G,T}. Thus, we denote a base as (pos,[), where pos is a

region (e.g., rs9264942, rs4418214, rs2395029, and rs3131018) have been shown to protect against Human Im-
munodeficiency Virus (HIV) [74].

3There are around 6 billion base pairs in a diploid human genome, whereas the reference genome in the HGP contains only
around 3.2 billion base pairs. This is because most human cells contain 23 chromosomes in pairs (i.e., 46 chromosomes in
total), which are almost identical. Only one of each pair, 24 chromosomes in total—22 non-sex and 2 sex (X and Y)—can
represent the whole human genome information [11].

4 Although 4-bit is enough to represent all 16 combinations, we use the standard uint8 type to contain any inser-
tions/deletions in future work.

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 23. Publication date: March 2023.

23:4 S. Hwang et al.

Table 1. Notation and Acronyms

Notation Description

SL A sequencing lab converting analog genomic sample into its digital representation

T A tester that performs genomic tests on digitized genomes

Alice An individual requesting her digitized genome from SL and later interacts with T

Q =[a,b] T’s range query, where a and b are integer boundaries, 0 < a < b < N(= 3.2 * 10°)

Bioajice Alice’s (physical) DNA sample

Gatice = 191,92, ..., gn} | Alice’s whole genome represented as an ordered set of tuples of the formg; = (i,1;),i = 1,...,N,

where i is an integer position and [; is an integer in [0,15] representing a combination of two
base letters: {A, G, C, T} (e.g., 0 for “AA.” 1 for “AC,” etc.)

M={my,my,...,my} SNP representation of Alice’s genome, where n is the number of genetic variations. Denoted by
a tuple m; = (pos;, 1;),i =1,...,n, where M C Gajjce. Note that pos; < pos;.1 for Vi

Mo c M The subset of M including all Alice’s SNPs located in a queried range Q,
ie, Mo ={m; € M | a < pos; < b}, say {my1,. .., myy;) for some k, j

Sign(.), Verify(.) A secure digital signature scheme with signing and verification protocols

Com(x) A secure commitment scheme allowing zero-knowledge range proofs over x.
Equivalent to Com(x;s), where s is a random bit string used as a salt

NIZK(z : R(2)) A non-interactive zero-knowledge proof of knowledge of z such that R(z) holds. Denote proof
and verification protocol as NIZK_Prove(.) and NI1ZK_Verify(.), respectively

Enc(.), Dec(.) Encryption and decryption for an additively homomorphic encryption scheme, respectively

H(.) A cryptographically secure hash function

pkx, skx A pair of public key and private key of an entity X, respectively

non-negative integer < 3.2 x 10° representing the position of the base and [is a non-negative
integer € [0, 15] representing two base letters from each chromosome at that position.

Due to the relatively small volume of SNPs, a reference genome model that contains only the list
of mutations can be used to reduce storage and computation costs. Using a compact reference form,
such as the 1,000 Genomes Project variant call format,” the human genome can be represented
using only about 120 megabytes, while the entire (raw) representation takes up to 200 gigabytes.
In this article, we focus on these two representations: the whole genome and the compact SNP
based. We defer other genomic representation formats, e.g., Short Tandem Repeat (STR) and
Restriction Fragment Length Polymorphism (RFLP), to future work.

2.2 Cryptographic Commitments

A commitment scheme is a cryptographic primitive that involves a prover and a verifier. The prover
first commits to a chosen (secret) value and reveals it later to the verifier. A commitment scheme
thus has two phases. In the first, commit, phase, the prover sends a message (commitment) to
the verifier committing to a secret value. The commitment must reveal no information about the
committed value; this is called the hiding property. In the second, reveal, phase, the prover sends
to the verifier a message (decommitment) that reveals the previously committed value. The verifier
validates the revealed value against the committed one. The former must uniquely match the latter;
this is called the binding property. We denote a commitment using Com(z;r), where Com is a
commitment scheme, z is the committed value, and r is a random bit-string, used as a salt.

In this article, we use two types of commitments: one based on the discrete logarithm problem
(DLP) and the other based on a strong cryptographic hash function. For DLP-based commitments,
we use the well-known Pedersen [71] and Fujisaki-Okamoto [44] commitment schemes.

A Pedersen commitment is defined in a subgroup of Z;,, where p is a large prime, albeit any
group where the DLP is hard can be used. Let G be the group of order p, generated by element
g, i.e., G = (g) with o(G) = p. Two non-identity elements, g and h, in G are used as public key,
where logyh is not known to either the prover or the verifier. To commit to a message z € Z, a

5See www.internationalgenome.org/wiki/Analysis/vcf4.0.

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 23. Publication date: March 2023.

www.internationalgenome.org/wiki/Analysis/vcf4.0

Balancing Security and Privacy in Genomic Range Queries 23:5

Pedersen commitment is computed as Com = Com(z;r) = g*h”, where r is a random number in
Z,. To decommit, later a prover reveals z and r and a verifier checks if indeed g*h” = Com.

A Fujisaki-Okamoto commitment is an extension of the Pedersen commitment to the RSA set-
ting. Instead of Z},, it uses Z},, where N = PQ and P, Q are distinct primes, such that P = 2p+1 and
O = 2q + 1, where p and q are also primes. Now, two generators g, and g, generate each group,
G, and Gy, of prime orders p and g, respectively; i.e., G, and G, are subgroups of Z*P and ZZ‘Q,
respectively. Generator g of the group G4 is computed using the Chinese Remainder Theorem,
such that g = g, (mod P) and g = g4 (mod Q). Then, h is computed by h = g* (mod N), where «
is uniformly chosen from Z;,, and (g, h) is set as the public key. To commit a message z € Zn;, the
Fujisaki-Okamoto commitment is computed by Com(z;r) = g*h” (mod N), where r is a random
number in Z7, with a security parameter A. Both Pederson and Fujisaki-Pkamoto commitment
schemes are statistically hiding and computationally binding.

Finally, the commitments based on secure cryptographic hash functions rely on the fact that
modern hash functions practically reveal no information about the value they hide if they are used
with a sufficiently long random salt. In addition, since secure cryptographic hash functions offer
weak and/or strong collision resistance properties, the commitments based on such functions are
binding. A commitment is of the form H(z||r), where H is a cryptographically secure hash function
(e.g., SHA2 [12]), z is the committed value, and r is a sufficiently long random bit-string.

2.3 Zero-Knowledge Range Proofs

A Zero-knowledge Range Proof (ZKRP) allows a prover to convince a verifier that a commit-
ted secret value is within a given range without revealing that value. The three standard zero-
knowledge proof (ZKP) properties, completeness, soundness, and zero-knowledge, also hold for
ZKRPs. That is, when the secret is in the given range, an honest prover can always convince an
honest verifier of the fact, which yields completeness. Meanwhile, no dishonest prover can convince
an honest verifier if the secret is not in the range, which yields soundness. Also, the verifier learns
nothing from the execution of the protocol about the secret value other than that it lies in the range,
which corresponds to zero-knowledge. Non-interactive Zero-knowledge Proofs (NIZKs) are a
class of ZKP that requires no interaction between the prover and the verifier. It is well known that
NIZK can be constructed from ZKP in a random oracle model using the Fiat-Shamir heuristic [43].

Boudot’s range proof [24] is the first practical construction of ZKRP proposed in 2001. It includes
two protocols: one for the extended range and the other for the exact range. In the first, for a
requested range [a, b], the prover shows that the secret integer v resides in [a — 6, b + 0], where
0 = 2/*"*1\b — g and t and [are security parameters, i.e., with the expansion rate® § = 26. In
the second protocol, the prover shows that v resides in the exact requested range, [a, b], i.e., with
d=1.

Following Boudot, there has been a long line of work on ZKRPs. As mentioned in survey pa-
pers [38, 65], ZKRP methods can be classified based on their main characteristics: (1) square de-
composition, (2) signature based, (3) multi-based decomposition, and (4) Bulletproofs.

Square decomposition constructions, such as [24, 46, 57], use the fact that any non-negative integer
can be represented by the sum of squares. Signature-based constructions [28] are generalized from a
zero-knowledge set membership test, by showing that the prover knows a signature on the secret,
among the entire set of signatures on integers in the given range. In multi-based decomposition
constructions [29, 58], the secret is decomposed by a u-ary (usually binary) representation and the

The expansion rate of a range proof allows for tolerance, defined as § = %, where [a, b] is the requested range and

[A, B] is a larger range including [a, b] wherein the prover shows the value resides. Note that if this rate is 1, the range
proof convinces a verifier that the value is exactly in the requested range [a, b].

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 23. Publication date: March 2023.

23:6 S. Hwang et al.

prover shows that each coefficient is 0 or 1, which proves that the secret value is in a given range.
Lastly, Bulletproofs [27] is a technique without a trusted setup phase, unlike other approaches. It
uses the binary representation of the secret value and inner product proofs, which lend themselves
to smaller proof sizes.

Any ZKRP protocol can be used in our construction. For example, we use Boudot’s range
proof [24] as the ZKRP of our main construction (Section 4) and Bulletproofs [27] in the extended
version (Section 5). We briefly summarize these protocols below.

Assume that the prover wants to show that a secret value v € [a,b] is in [a — 0, b + 6], where 0
is defined as above. To do so, the prover shows (1) v —a > —0 and (2) b — v > —0. To demonstrate
(1), the prover writes (v — a) as the sum of the greatest square less than v and a non-negative
number, i.e, v —a = vf + p, where v; := [Vo —a andp = (v —a) - v%. Next, the prover shows,
in zero-knowledge, that the commitment to v? hides a square and the commitment to p hides a
number with the absolute value less than 0, using the method in [30]. The same procedure is done
for (2), but with r{, ; such that r{ + r; = —r. As a result, the prover shows that v € [a — 0,b + 0],
where 0 = 21*1*1\b —a.

Showing that the secret value v is exactly in [a, b] is similar. However, it is now shown that
the expanded secret value lies in the expanded range of [a, b], which implies that v € [a, b]. More
specifically, the prover first expands v by computing v’ = v - 27, where T = 2(t + [+ 1) + |b — al.
Then it shows that v’ € [2Ta—0",2Tb+0’], where 6’ = 2!+/*T/24/b — g using the previous protocol
with expanded commitment Com(z; r)zT. Since 8’ < 27, the verifier is convinced that v’ €]27
a-2T,2Th+2T[& wvela—1,b+1[sothatv € [a,b]asv € Z.

With Bulletproofs [27], the prover performs ZKRP twice: once for v € [a,a + 2"] and then for
v € [b— 2" b], in order to show that v € [a,b]. To show that v € [0,2" — 1], the prover first
vectorizes v to n-bit value, vy = (vy,...,v,) € {0,1}". Then, for vg := vy — 1", the Hadamard
product of v, and vp is zero, i.e., v1, o vg = 0. To show these properties, the prover needs to show
that:

(1) the inner product (vr,2") = v, (2) (vr,vroy) =0, and (3) (vr —1" —ovg,y") = 0, for Yy € Z,.
These equalities can be combined into one, by the verifier choosing a random z € Z,, and prover
showing that

(vp—z-1"y" o (Vg +z-1") +22-2") = 22 - v + 8(y, 2), (1)
where §(y, z) = (z — z%) - (1", y") - Z23(1", 2"y € Zy. Also, to hide the information about vy and vp,
additional blinding terms s, sg € Z; are used, so that the prover sends [, r, and t instead, where:

1:=1(X)=v, —z-1"+s; - X,r:= r(X):y"O(vR+z-1”+sR~X)+zz-2”EZZ[X],
and t(X) = (I(X), r(X)) € Z,[X].

To convince the verifier that the constant term ty of t(X) =t + t; - X + t5 - X? becomes the right-
hand side of Equation (1), i.e., tp = v z? + &(y, z), the prover commits to the remaining coefficients,
ti,t € Zp; receives a random point x € Z, from the verifier; and replies the t(x) value to the
verifier. By checking all the commitments and values, the verifier is convinced that v € [0,2" —1].

2.4 Homomorphic Encryption

Homomorphic encryption (HE) is a special type of encryption that allows users to perform
certain arithmetic operations on encrypted data such that results are reflected in the plaintext.
If it supports both unlimited addition and multiplication of ciphertexts, the HE scheme is called
Fully Homomorphic Encryption (FHE). A scheme that supports a limited number of operations
of either type is called Somewhat Homomorphic Encryption (SWHE). Finally, a scheme that

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 23. Publication date: March 2023.

Balancing Security and Privacy in Genomic Range Queries 23:7

supports only one operation type (e.g., addition or multiplication) is called Partially Homomor-
phic Encryption (PHE). We use PHE in this work. (Typically, in terms of computation costs,
FHE > SWHE > PHE.)

There are many PHE schemes, e.g., [32-34, 41, 45, 53, 66, 68, 69, 73]. For example, the well-known
ElGamal encryption scheme [41] is a PHE that supports multiplication, as for any m;,my € (g)
and random rq, ra,

Enc(my) = Enc(mz) = (9", my » h™) x (g™, mp * h'™) = (¢"", my my + h™"") = Enc(myms).

Another variant of ElGamal [33] is additively homomorphic. In it, g™ instead of m is used as the
ciphertext. i.e.,

Enc(my) * Enc(mg) = (¢, g™ = h") % (¢", g™ * h") = (g"772, g™ "™ % h"""%) = Enc(my + my).

Another popular PHE is Paillier [69], which also supports addition. In it,

Enc(my) * Enc(my) = (g™ r" (mod n?)) = (g™ r) (mod n?)) = ¢™*™2(r + ;)" (mod n?)

= Enc(mi + my),

where ry, r, are randomly chosen elements in Z;,, for any my, my € Z,,. Although Paillier is widely
used, we show in Section 7 that the additively homomorphic ElIGamal (AH-ElGamal) scheme
is more efficient in our context. (This is mainly because we only need to check if the ciphertext is
the encryption of zero.)

3 SYSTEM AND SECURITY MODELS
3.1 System Model

The system model includes three types of entities: (1) individuals, (2) sequencing labs, and (3)
testers, where each entity’s role is as follows:

(1) Each individual provides his/her DNA sample to a sequencing lab.

(2) The sequencing lab is a service provider, certified by a trusted authority, that extracts and
generates the digitized genomic data from the received DNA sample, e.g., hospitals and
Direct-to-Consumer (DTC) service providers.

(3) The tester offers various genomic tests, e.g., paternity, pharmacogenetics, or cancer marker
screenings, which entail one or more queries for genomic data on some specific locations
required for a test. The exact locations for each test are certified by a trusted authority. Each
query represents a range Q = [a, b] with genomic (integer) positions a and b, which indicates
that the tester needs all genomic data in Q to perform the test.

We assume a global pre-existing Public Key Infrastructure (PKI) for establishing trust among
entities based on certified public keys. Although there would be a multitude of each entity type,
we assume (for the sake of clarity) only one individual (Alice), one sequencing lab (SL), and one
tester (T).

3.2 Security Model

We assume that SL and T are certified by a trusted authority and SL is fully trusted by both Alice
and T. Sequencing and preparing digitized genomic data by SL are performed offline. We assume
T is Honest but Curious (HbC): although it faithfully follows the protocol, it aims to learn more
information about Alice’s genome than is required for the test. The ranges queried by T are con-
sidered to be pre-approved by a trusted authority. For instance, the trusted authority provides T
a signed white-list of legitimate ranges or genome positions for all authorized genomic tests. For
this reason, Alice is willing to reveal the required genomic data to T for the given test.

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 23. Publication date: March 2023.

23:8 S. Hwang et al.

We assume that T does not trust Alice, since she might supply altered genomic data (whether
by modification or omission) in order to influence the outcome of a test. For correct test results, T
needs to ensure that all information Alice supplies is both authentic and complete. To this end, our
goal is a secure and private range query protocol, 7, between Alice and T. 7 takes T’s range
query Q and Alice’s set of SNPs M as inputs and outputs the response Mg to T, i.e., the set of all
SNPs in M located in Q. Concrete security goals are:

(1) Authenticity: All SNPs reported by Alice must be authentic; i.e., Alice cannot modify any

part of her digitized genome or introduce new parts without being detected.

(2) Completeness: All SNPs in Q should be reported; i.e., Alice should not omit any SNP in Q

from her reply to T’s query.

(3) Alice’s Privacy: T should not learn any information about Alice’s genome beyond SNPs

in Q.
Caveat: Nucleotides (individual bases) at different positions can be correlated. Some such cor-
relations are well known. Therefore, based on the specific mutations in a given range that Alice
reveals to T as part of a legitimate test, T could infer genomic information from other regions of
Alice’s genome. We believe that such side-channel inference is unavoidable and consider it out of
the scope of this work.

4 GENOMIC RANGE QUERY PROTOCOL

We now discuss several intuitive ways of supporting genomic range queries. Then, we describe
the proposed technique and analyze its security, privacy, and efficiency.

4.1 Intuitive Approaches

One trivial approach is to use Alice’s whole genome, G4j;ce, and let SL sign all g;’s at sequencing
time. When T asks for all mutations in Q, Alice provides all pairs within that range along with
their signatures. T can easily detect if anything is missing since it receives all g;’s. Inclusion of fake
bases is impossible, as Alice cannot forge SL’s signatures. This approach provides authenticity and
integrity, and leaks no information about bases outside the queried range. However, it has high
computation and storage costs because every single base in Q needs to be signed, sent, and verified.
To reduce costs, certain cryptographic methods, such as condensed and aggregated signatures, can
be employed, albeit the final cost would be still far from optimal. We refer to [25] for a detailed
discussion and comparison of such methods.

Another intuitive approach is to use Alice’s SNP-represented genome, M, and let SL sign all
m;’s at sequencing time. This would substantially reduce storage and computation costs due to the
relatively small volume of SNPs. However, it introduces the completeness problem, since nothing
prevents Alice from omitting some (or all) SNPs when she sends T the mutations and signatures
on Q. To prevent any omissions and ensure correct ordering of mutations, SL can sign tuples
consisting of two adjacent mutations sorted in ascending order, as suggested by [39]. However, this
entails revealing two tuples that contain mutations in positions immediately beyond both lower-
and upper-range boundaries, respectively. Due to the general sparsity of genomic mutations, this
could leak a substantial amount of sensitive information to T.

4.2 Proposed Approach

Assume that Alice gives her physical DNA sample (Bioj;ce) to SL to obtain a digital representation
of her genome in the form of SNPs. SL forms the SNP representation M = {my,m,,...,m,} by
comparing Alice’s genome to a reference genome, as discussed in Section 2.1. Now, SL adds two
special mutations, m(and m,1, to represent the lower and upper genome boundaries. At the end

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 23. Publication date: March 2023.

Balancing Security and Privacy in Genomic Range Queries 23:9

of the sequencing process, Alice receives the list:

~

M = {mO’ my, my,. .. ,mn,mrwl} = M U {mO’ mn+1}-

For the special sentinel mutations mg and my,1, positions pos, and pos,; are integers out of the

normal human genomic position range, i.e., posy = —00 < 0, pos,+1 = +00 > N, and the base letters
Iy and [,,11 are dummy letters of the same sizes.
Alice also receives the lists of signatures, I' = {yo,)1, ..., yn}, and salts, Salt, used to generate

these signatures. To show the ordering of mutations without revealing additional information on
boundary ones, SL signs the tuple of commitments for each adjacent mutation, instead of signing
each mutation, i.e., y; = Sign(sksy, Tup;), for Vi. Each tuple consists of four commitments for the
adjacent mutations and their positions:

Tup; = (Com(pos;; si,1), Com(m;; s; 2), Com(posii1;Sir1,1), Com(Mis1; Siv1,2))

for some commitment scheme Com and salts s; ; for the ith SNP and j = 1,2. The latter two
commitments for pos;;; and m;,; are reused in the next tuple, Tup;.;. This can be done in the
offline phase between SL and Alice.

In the online phase, Alice returns the mutations within the queried range Q, along with the
corresponding signatures and salts. She also generates two range proofs for the positions of the
first mutations outside the queried range: one for the mutation with the highest position below
the lower bound of Q and the other for the mutation with the lowest position above the upper
bound of Q. Alice sends these proofs and corresponding commitments of those positions. Denoting
all SNPs in Q as Mg = {myy1, . .., miy;}, Alice sends (Mo, Saltp,To, Cr, Ciyji1, 1, h) to T, where

Saltg = {Ska1s - -5 Skaj} = {(Ska1,15 Sk41,2)5 - -+ (k15 Sk, 2)
FQ = {Yk» Yk+17 D) yk+j}’
Cr = (Com(posk, sk, 1), Com(my, sk 2)),
Crrjr1 = (Com(posijr1s Sk+j+1,1)> Com(Misjr1, Skvje1,2))s
I < NIZKRP_Prove{(posk, sk.1) | Ck,1 = Com(posk, Sk,1) A posi < a}

h « NIZKRP_Prove{(posiyj+1,Sk+ji1,1) | Ckjr1,1 = Com(posgy 1, Skrji1,1) A POSksjr1 > b,

where [and h are the proofs for the non-interactive zero-knowledge proof of range proof
(NIZKRP). T reconstructs intermediate tuples using received mutations and salts, and boundary
tuples using received Cy and Ci 41, as follows:

Tup; := (Com(pos;; si,1), Com(m;; s 2), Com(posiy1; Siv1,1), Com(miy1;sive2))
fori=k+1,...,k+j—1,
Tupi = (Cx, Com(posg11; Sk+1,1), Com(Mies15 Sk+1,2)),
Tupisj = (Com(posij; Sk+j,1), Com(Mpyj; Sk+j 2)> Chajat)-
Then, T verifies the signatures using SL’s public key and NIZKRP proofs [, h with the bound-
aries of Q, a, and b; i.e., T sees if (1) Verify(pksy, Tupi,y;) = 1forali = k,....k + j; (2)
NIZKRP_Verify(Cy,1,I) = 1; and (3) NIZKRP_Verify(Ci4j+1,1, h) = 1, and it aborts if any of those

fails. Otherwise, it proceeds with the test using received M. Figures 1 and 2 show offline and
online phases, respectively. Communication and computation costs are reflected in Table 2.

4.3 Security Analysis
Assume a non-empty Mo = {mg41,...,m,;} for some non-negative integers k and j. T checks

the authenticity of m; € My by verifying the received signatures I'y = {yi}::,f using the

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 23. Publication date: March 2023.

23:10 S. Hwang et al.

Offline Phase of Secure & Private Genomic Range Query Protocol

SL Alice

M= {my,...mp} «— Seq(Bioajjce), where m; = (pos;,l;) Biogjice

M= MU {mg, mp41}, where mg = (—inf, B), mp41 = (+inf, B)
with —inf < 0,+inf > N, and a bogus letter B

Salt := {sg, ..., Sp+1}, where s; = (si1,i2) < $

I':={yo,... yn}, wherey; = Sig(sksr, Tup;),

Tup; = (Com(posi;si;1), Com(mi;siz), Com(posiii;si+1,1), Com(mit1;siv1,2))

M, Salt, T

Fig. 1. (Offline phase) digitizing Alice’s SNPs.

Online Phase of Secure & Private Genomic Range Query Protocol

Alice T

M = {mg,mps1}, Salt = {50, . Sns1 1T = {0, o Yn Q=1lab]

Choose Mg, Saltg,To, say Mg = {Mpy1, .o Mpyj}
Saltg = {Sk415 - Sk} andTQ = {yie, s Viewj }
Compute Cg, Cgyj41, where C; = (Ci1,Ci2),
Ci1 = Com(posi;si), Ciz = Com(mi;siz)
| & NIZKRP_Prove{ (pos, sk.1) | Cr = Com(p osg;sg1) A posg < a}
h NIZKRP_Prove{ (posky j+1, Skt j+1,1) | Chy j1 = COm(pOSky ji15 Skt ji1,1) A POSkj+1 > b}

Mg, Saltg, T, (Ck, Cije1)s LA k+j-1

i=k+1
Tupy = (C, Com(posi1: Sk+1,1), Com(Mpey1: Skee1,2))

Compute {Tup;} ,using Mg and Saltg, and

Tupgj = (Com(posi.ji Sk+j,1) Com (M i Sk 2)s Ceajat)
Check if :
1.Verify(pksy, Tup;,yi) = 1foralli=k,...k+j
2.NIZKRP_Verify(Cy,1) =1
3.NIZKRP_Verify(Cpyji1,h) = 1

Abort, if not. (Otherwise, perform testing)

Fig. 2. (Online phase) genomic range query between Alice and Tester (T).

reconstructed tuples {Tup; }f:]g . The links between two adjacent tuples prevent Alice from
excluding any mutations. Also, T ensures completeness by verifying the two NIZKRP proofs,
which shows that the commitments for the boundary positions hide the integers beyond the
queried range. This allows Alice to maintain the privacy of all mutations outside Q.

Now, suppose that Mg is empty; i.e., Alice has no SNPs within Q. Then, Alice sends one tuple
Tupy for some [, of the form (Com(pos;), Com(m;), Com(pos;+1), Com(m;1)) such that pos; < a and
pos;y1 > b and its signature y; to T. T verifies y;, which satisfies authenticity, and checks the ZKPs
that committed values are outside Q, ensuring completeness and Alice’s privacy.

One special case occurs when there are no mutations before position a and/or after position b.
The required range is large enough and it reveals all SNPs to conduct the test with mj = m(and/or
Mi4j+1 = Mpuy1. Since sentinel commitments are indistinguishable from other commitments, our
security goals are also achieved in this case. In summary:

Goal 1. Authenticity is based on the security of the underlying digital signature scheme used by
SL to sign tuples.

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 23. Publication date: March 2023.

Balancing Security and Privacy in Genomic Range Queries 23:11

Table 2. Communication and Computation Costs, Where n = (Number of Alice’s SNPs)
and j = (Number of Mutations in Q)

(From — To) Communication Cost

SL— Alice (n + 2) mutations, (n + 1) signatures, and 2(n + 1) salts

T — Alice two integers, a and b, denoting the range Q = [a, b]

Alice—» T J mutations, 2j salts, (j + 1) signatures, 4 commitments, 2 range proofs
Entity Computation Cost
SL (Offline) 2(n + 2) commitments, (n + 1) signatures
T 4j commitments, (j + 1) signature verifications, 2 range proof verifications
Alice 4 commitments, 2 range proof generations

Table 3. Comparisons of SPH-PSM Variants

Genomic Security | Privacy

Representation | (forT) | Alice | T
SPH-PSM [37] Whole X v v
S-SPH-PSM (§5.2) Whole v v v
ES-SPH-PSM (§5.3) SNP 4 v v
FES-SPH-PSM (§5.4) SNP v v A

v and X denotes supported and unsupported, respectively, and A denotes
degree of support can vary.

Goal 2. Completeness is achieved by sequential linking of elements, allowing T to detect any
omissions.

Goal 3. Alice’s Privacy holds due to the use of ZKP and the hiding property of commitments,
which reveals no information about either mutations’ positions or mutations outside Q.

5 OTHER APPLICATIONS

In this section, we show how to improve a private substring matching protocol for genomic data
using our technique. SPH-PSM [37] operates on encrypted bases and allows the genome owner
(Alice) to learn whether a test pattern (a list of contiguous bases on some specific locations required
for a given test) held by a tester (T) exists in her genome, while not revealing anything about their
inputs to each other. Though this protocol provides privacy for Alice’s genome and T’s pattern,
it guarantees neither authenticity nor integrity of Alice’s genome. Furthermore, SPH-PSM incurs
high communication and computational costs, since it requires Alice to encrypt her whole genome
and send the entire encrypted genome to T.

We denote our proposed protocols variants with the following acronyms: secure SPH-PSM
(§-SPH-PSM), efficient and secure SPH-PSM (ES-SPH-PSM), and flexible, efficient, and secure
SPH-PSM (FES-SPH-PSM), respectively. Table 3 provides a high-level comparison of these vari-
ants over SPH-PSM.

5.1 Size- and Position-hiding Private Substring Matching Protocol (SPH-PSM) [37]

First, Alice generates a public-private key-pair for an AHE scheme and encrypts each base of her
genome using the public key. T computes the additive inverse of each base in its specific test
pattern and encrypts each inverse using Alice’s public key.

In the online phase, Alice sends the entire encrypted genome to T. For each position where the
pattern locates, T homomorphically adds its encrypted pattern to Alice’s encrypted base. Then, T
adds the resulting values and returns the final (encrypted) sum to Alice. Alice decrypts received

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 23. Publication date: March 2023.

23:12 S. Hwang et al.

Offline Phase between SL and Alice

Common Input: H(-), Enc(-), Dec(-), PK = {pka, pksr }

SL Alice
Galice =191, .- gN} < Seq(Biogjice), where g; = (i,1;) Bioatice
E:={ey,....en}, where e; = Enc(pka, H(gi))

(G),E.,%

%= {01,....0N }, where o; = Sig(sksr, H(i||e;))

Fig. 3. Offline phase of secure SPH-PSM (S-PSH-PSM).

Online Phase between Alice and T

Common Input: H(-), Enc(+), Dec(-),PK = {pka, pksr}
Alice T
E={ey,...en},2 ={01,....0N } P = (po,...pm):apatterns.t. p; = (p+1i, l;»),
for some pandi =0,...,m
ep; = Enc(pka,—H(p;)),i=0,...m
(e1,01), ..., (en, oN))

If3ie{p,...p+m}st

Verify(pksr, H(ille;), 01)) # 1: Abort
res := Enc(pka,0)

fori=0,...,m:
J=p+i

res =res- (e; - ep;)

res =res”, wherer « $

If Dec(sk,res) = 0 : Output YES
Else: Output NO

Fig. 4. Online phase of secure SPH-PSM (S-SPH-PSM).

ciphertext using her private key and learns the test result. The decrypted result is 0 if Alice’s
genome matches the test pattern; it is a random value otherwise. During the whole process, T
does not learn any information on Alice’s genome or the test result.

5.2 Secure SPH-PSM (S-SPH-PSM)

In SPH-PSM, Alice can modify her digitized genome and influence the test result, since SPH-PSM
does not guarantee authenticity or integrity of Alice’s genome. To prevent this, we design secure
SPH-PSM (S-SPH-PSM) and let SL act as a certification authority for the genomic data.

When SL sequences Alice’s DNA sample (Biogj;ce), it encrypts the hash of each base using an
AHE scheme, under Alice’s public key.” Then, it signs the hash of each ciphertext—along with its
position—using its private key and sends the list of ciphertexts and corresponding signatures to
Alice.

The online phase is similar to SPH-PSM, except that T verifies the signatures and checks authen-
ticity and integrity of ciphertexts on the positions required for the test. Figures 3 and 4 show the
offline and online phases of S-SPH-PSM, respectively.

"The choice of this public key depends on who will learn the test result at the end of the protocol. For instance, for court-
mandated tests, the court’s public key can be used instead.

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 23. Publication date: March 2023.

Balancing Security and Privacy in Genomic Range Queries 23:13

Offline Phase between SL and Alice

Common Input: H(-), E(-), D(-), PK = {pka, pksr }
SL Alice

M= {mi,...mn} « Seq(Biogjjce), where m; = (pos;,1;) Bioatice

M= Mu {mg, mp41}, where posy < 0, posp1 > N
E :={eq,...,en4+1}, where e; = Enc(pka,H(m;))
Salt == {sg, ..., Sp+1}, wheres; < $
I :={y0,.... yn}, where y; = Sign(sksp,H(Tup;)),
Tup; = (Com(pos;;si), ei, Com(posit1;Si+1), €is1) (M), E, Salt,T

M= {mg, ...m))
where m := Dec(ska, e;) = (pos, I})
C:={co, .. cnu1},

where ¢; == Com(pos;;si),si € Salt

Fig. 5. Offline phase of efficient and secure SPH-PSM (ES-SPH-PSM) and flexible, efficient, and secure SPH-
PSM (FES-SPH-PSM).

S-SPH-PSM also ensures authenticity and completeness via signing of both ciphertext and its
position. T can detect omissions or rearrangements, as it verifies signatures for all consecutive
positions in the range. Also, to prevent accidental matches, we hash both the position and the base
letter when encrypting the bases, as in the AH-ElGamal-based protocol [37].

5.3 Efficient and Secure SPH-PSM (ES-SPH-PSM)

We design efficient and secure SPH-PSM protocol (ES-SPH-PSM) to improve efficiency. We use SNPs
instead of the whole genome representation and our techniques proposed in Section 4. Offline and
online phases of this protocol are given in Figures 5 and 6, respectively. In the former, we add spe-
cial sentinel SNPs and sign the tuples of adjacent bases, as in Section 4, whereas the tuple consists
of commitments of position and the ciphertext of each SNP instead. SL sends to Alice the encrypted
genomic data and signatures along with the salts used for the commitments. In the online phase, T
verifies “all” received tuples and computes multiple results for all possible starting positions. The
computational complexity of this approach is O(nm), where n is the size of Alice’s genome and m
is the number of bases in the pattern that T holds. This is because SNP positions are hidden, unlike
in the whole genome representation. (See unoptimized commented out pseudo-code in Figure 6.)

However, this computational cost can be significantly improved and reduced to O (n) with some
optimizations. First, T performs an initial calculation as before by matching the first m (encrypted)
SNPs with its m (encrypted) inverses of the pattern. T then keeps the sum of this operation in a
temporary result. Since most encrypted inverses and SNPs are reused in the next computation and
they are aggregated, using the temporary result helps reduce the computational cost. That is, the
next result is computed by subtracting the first encrypted SNP and adding the next encrypted SNP
to the previous result. For each computation, the temporary result is stored in the result list with
randomization. Whenever the pattern and Alice’s SNPs match, the aggregated result will be an
encrypted zero. When Alice receives randomly permuted results, she sees if any of the decrypted
results are zero (see Figure 6).

To maintain the size-hiding property, we add m additional results, encryption of random
values, so that the number of results is always n, independent of the pattern size. The pattern’s
position-hiding property still holds by randomly shuffling multiple results before they are sent
to Alice. For completeness, Alice can just reveal the boundary positions, posy and pos,i1. In
ES-SPH-PSM, we achieve orders of magnitude efficiency improvement with the same security
and privacy guarantees.

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 23. Publication date: March 2023.

23:14 S. Hwang et al.

Online Phase between Alice and T

Common Input: H(-), Enc(-), Dec(-), PK = {pka, pksr }

Alice T
M = {ma, e m;1+1 L Ci={cos . Cnt1 }s P = (po, ... pm): a pattern
E={eo,....ens1}.T = {yo, . yn} where p; = (pos;',llf’), fori=0,...m

epi = Enc(pka, —H(pi)),i =0,
E,C,T, posg, posn+1, 50> Sn+1

It Verify(pksy, (ci i, civ1, €ix1),¥i)) # 1
for any i : Abort
See if 1. Com(poso;sg) = co A posg < 0

and 2. Com(posn+1;Sn+1) = Cn+1 A posp+1 > N

/# Start of Subtring Matching * /

// Unoptimized

//fori=1,...n—m:

/| resj:=Enc(pka,0)

/] forj=0,...m:

/] rjeS k=it

I] resi=resi- (e -ep))

// Optimized

tmp_res := Enc(pk,0)

forj=0,...m:
tmp_res = tmp_res - (ej+1 - epj)

r1 « $,res; = (tmp_res)’1

fork=m+1,..,n—1:
tmp_res=tmp_res - ey - (€fe_pm) "
Tk—mt1 < $,7€Sg_me1 = (tmp_res) k—m+1

reSp—m+ls .- T€Sn — $

res res := m(resy, ..., resp), where 7 : arandom permutation

If 3i s.t. Dec(ska, res;) = 0 : Output YES
Else: Output NO

Fig. 6. Online phase of efficient and secure SPH-PSM (ES-SPH-PSM).

5.4 Flexible, Efficient, and Secure SPH-PSM (FES-SPH-PSM)

Genomic tests whose nature is known (e.g., immunity) often operate on a small range of the
genome and may be public. This allows efficiency gains by querying only the mutations located
in that small range. Our proposed techniques in Section 4 can be applied as in ES-SPH-PSM to
preserve security goals for Alice’s genome with adjustable privacy for the pattern. To keep the pat-
tern’s privacy (size- and position-hiding properties), a wider range including the required range
can be used. The offline phase of the FES-SPH-PSM protocol is the same as the one of ES-SPH-PSM,
so presented in Figure 5, and the online phase is in Figure 7. The two main differences are (1) T
now queries a range, and (2) Alice provides encrypted mutations only in that range with NIZKRP
proofs for boundary values.
Tables 4 and 5 show the computation and communication costs of each SPH-PSM variant.

5.5 Discussion

Different Test Result Learner. One may question the need for security in SPH-PSM since Alice
learns the test result. From a legal point of view, genomic data, as well as the result, have to be
authentic. To support such cases, SPH-PSM can be updated as follows: Alice’s role in the protocol

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 23. Publication date: March 2023.

Balancing Security and Privacy in Genomic Range Queries

23:15

Online Phase between Alice and T

Common Input: H(-), Enc(-), Dec(-), PK = {pka,p ks }
Alice

M= {mg, ...m} 1 }.C = {co, ... cns1)

E={eg,...ent1}.T ={yo, - yn}

Q =[a,b](or [A,B] 2 [a,b])

Choose all SNPs in Q, say Mg = {m;ﬂl, . m;<+j}

ie, posy. < a < posy,,, and pos;<+j <b< pos;ﬁj+1

and choose corresponding e;s, C;S, and)/;s

| « NIZKRP_Prove{ (posk, si) | cx = Com(posy;si) A posi <0}

h — NIZKRP_Prove{ (posg.j+1: Sk+j+1) | Chajr1 = C 0m(poSgy s Sk jr1) A POSktjr > N}

(es o CL+j+1)s (Csvnes Ck+j+1)s

(Vies oo Viewj) L

T
P = (pog, ..., pm): a pattern, where
’

pi = (pos;’,l]) and a < pos;’ < b
ep; = Enc(pka, —pi),i=0,...m

Check the followings and Abort, if not

LVerify(pksr, (ci.ei, civ1.eiv1),vi)) =1,
fori=k,...,k+j

2.NIZK_Verify(cg,l) =1

3.NIZK_Verify(cgy i1, h) =1

/ Start of Substring Matching in ES-SPH-PSM # /

Fig. 7. (Online phase) flexible, efficient and secure SPH-PSM (FES-SPH-PSM).

Table 4. Operation Complexity of Each SPH-PSM Variant

Offline

Online

SL Alice T Alice

T

SPH-PSM - N Enc m EncInv | 1 IsZero

1 Enc, MultConstant
2m MultCiphers

S-SPH-PSM N Enc, Hash, Sign - m EncInv | 1IsZero

m SigVerify, 2m MultCiphers,
1 MultConstant, 1 Enc

n+ 2 Enc,
ES-SPH-PSM | n + 2 Comm, n+ 2 Comm | mEnclnv | n/2 IsZero (on average)
n + 1 Hash, Sign

2 BoundaryCheck, CommCheck,

n + 1 Hash, SigVerify,

n Enc, n — m + 1 MultConstant

No opt: 2(n — m + 1) * m MultCiphers
Optimized: 3n — m MultCiphers

FES-SPH-PSM Same as ES-SHP-PSM 2 RangeProofGen
k/2 IsZero (on average)

ComputeBoundaryIndex, | k + 1 Hash, SigVerify,

2 RangeProof Verify,

k Enc, (k — m + 1) MultConstant
No opt.: 2(k — m + 1) * m MultCiphers
Optimized: 3k — m MultCiphers

Enc: encryption of a AHE, MultConstant: Enc(m)” = Enc(m * r), MultCiphers:

Enc(m;) * Enc(m;) = Enc(m; + my),

EncInv: Enc(m(™)) = Enc(-m), IsZero: check if the input ciphertext is encryption of zero or not, Hash: computation of
a cryptographic hash function, (Sign, SigVerify): a digital signature scheme, (Comm, CommCheck): a commitment
scheme, (RangeProofGen, RangeProof Verify): a NIZKRP, and (ComputeBoundaryIndex, BoundaryCheck): integer

comparison.

can be divided into two: genome owner (Alice) and test requester (e.g., court). Now, when SL
encrypts the mutations, it uses the public key of the latter. The rest of the protocol remains the
same, but T sends the encrypted result to the court, not to Alice. As a result, the court gets only the
(correct) Boolean result for the test, and also Alice keeps her privacy by not revealing the whole

genomic data either to T or to the court.

Genomic Similarity Testing. In genomic tests, sometimes not

an exact match but a similarity

score needs to be calculated (e.g., some paternity tests). S-SPH-PSM in Section 5.2 can be modified

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 23. Publication date: March 2023.

23:16 S. Hwang et al.

Table 5. Data Transfer Complexity of Each SPH-PSM Variant

Offline Online
SL — Alice Alice — Tester Tester — Alice
SPH-PSM - N ciphertexts 1 ciphertext
S-SPH-PSM N ciphertexts, signatures | N ciphertexts, signatures Same as SPH-PSM
n + 2 ciphertext, commitments

n + 2 ciphertexts, salts

ES-SPH-PSM .
n + 1 signatures

n + 1 signatures n ciphertexts
2 positions (integers), salts

k + 2 ciphertexts, commitments
FES-SPH-PSM Same as ES-SPH-PSM k + 1 signatures k ciphertexts

2 range proofs

to support such tests by simply not aggregating the result in one ciphertext. Specifically, consider
two input genomes for the similarity test and one of the parties (Alice) learns the result. In
this case, both parties encrypt their genomes under Alice’s public key and send it to T, which
homomorphically adds received ciphertexts for each position, shuffles the order, and sends the
shuffled list to Alice. Alice checks for similarity by decrypting each entry and counting the
number of decrypted zeros.

6 IMPLEMENTATION

This section describes implementation details.

6.1 Genomic Range Query Protocol

For SL’s signatures, we use the Elliptic Curve Digital Signature Algorithm (ECDSA) with el-
liptic curve secp256r1, as its signatures are relatively short (512-bit), compared to other schemes
with the same security level (256 bits). For commitments, we use the Fujisaki-Okamoto (FO) com-
mitment scheme [44] that allows us to create Boudot’s range proofs [24]. Parameters used for these
commitments are s = 552, and, for range proofs, t = 128, I = 40. For mutation commitments, we
use a secure cryptographic hash function, SHA2-256 [12], with 128-bit salts. A tuple is computed as

[FO(posi, si,1), SHA2(m;, si,2), FO(posii1, Si+1,1), SHA2(miy1, Siz1,2))] (2)

with randomly generated salts s; ; in Z},, where N is a composite number with two 512-bit prime
factors, and 128-bit salts s; , for SHA2.

To implement the commitments and range proofs, we used the code from [10]. We also used the
Bouncy Castle [5] crypto library for cryptographic primitives, e.g., hash functions and signatures,
and Java’s SecureRandom class [7] for generating salts. The code for offline and online phases was
written in Java and was evaluated on a PC with an Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz chip
and 16GB of RAM.

6.2 SPH-PSM Variants

For the SPH-PSM variants, we use Pedersen commitments [71], the additively homomorphic vari-
ant of ElGamal [41] (AH-ElGamal), and Bulletproofs [27] for the NIZKRP in FES-SPH-PSM. The
structures of a tuple for ES-SPH-PSM and FES-SPH-PSM are similar to the tuple (2) in Section 6.1 of
the secure range query protocol, except FO is replaced with Pedersen commitments, while SHA2
commitments are replaced with encrypted bases. The same ECDSA setting is used for SL’s signa-
tures as in the previous section.

Our codebase is in Golang [3], evaluated on a server with 64 Intel(R) Xeon(R) CPUs E5-4610 v2
@ 2.30GHz and 128GB of RAM. We modified the official Golang implementation for ElGamal to
implement an AH-ElGamal. As in the previous section, we use the official Golang crypto library

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 23. Publication date: March 2023.

Balancing Security and Privacy in Genomic Range Queries 23:17

17500

15000

12500 -

10000

5000

2500

Verification Time in Milliseconds

T T T T T T
0 2000 4000 6000 8000 10000
Number of SNPs in range

Fig. 8. T’s verification time given the number of SNPs in the queried range.

for SHA256 and ECDSA with the curve secp256r1 for hashing and digital signatures, respectively;
we also use the range proof code from [10].

7 EVALUATION

This section evaluates the proposed construction. For the sake of reproducibility, all our implemen-
tation and evaluation results are publicly available at [13].

7.1 Synthetic Genomic Data Generation

For the experiments, we generated synthetic genomic data with 3 - 10 bases for the whole genome
and 3 - 10° bases for SNP representations. Each base pair is structured with a 32-bit integer to
represent its position and an 8-bit integer for a combination of two base letters. Eight-bit integers
are defined with alphabetical order of combinations, i.e, 0 = “AA” 1 = “AC,”..., 15 = “TT” For
the evaluation of Section 7.2, we used a single type of SNP (“AA”) since our measurements do not
depend on the specific SNP type. For SPH-PSM variants, we generated necessary genomic files
before each experiment and let each experiment read the required files during the evaluation. To
generate a synthetic genomic file, we input the total size of the data n; starting and ending positions,
s and e, of the pattern; and a Boolean variable isSNP to check if it is for SNP representation or the
whole genome representation. Note that which base letters are used does not affect the evaluation
result. For simplicity, we generate bases with “AA” for all other positions and bases with “TT” for
the positions in [s,e]. For T’s pattern (marked with n = 0), we generate bases with “TT” for the
positions in the range [s,e]. If isSNP is True, we generate bases for every 1,000 positions, whereas
we generate bases for all integers if it is False.

7.2 Secure Genomic Range Queries

We used 3 - 10° SNPs for the experiment. The entire offline phase, including commitments and
signature generations, took 4.2 hours on the aforementioned platform. We note that this process
can be easily parallelized. Times for individual operations are:

e Fujisaki-Okamoto commitment: 3.5 ms

e Boudot’s range proof: 47.7 ms for proof generation and 37 ms for validation

e SHA2 commitment: 0.3 ms (including salt creation) and 0.1 ms for validation
Salts can be alternatively (re-)generated using a seed and a Pseudorandom number generator
(PRNG), or HKDF [54], a simple key derivation function based on HMAC [20], to reduce the
storage cost. Verification cost incurred by T scales linearly with the number of SNPs in Q, while
verification cost of the range proof is dominated by signature verification, as shown in Figure 8.

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 23. Publication date: March 2023.

23:18 S. Hwang et al.

Computation Time for Each Operation
6655

BN ElGamal
60 B Paillier
23.8789
. Original
50 1 s Optimized
20
%
& 2532
9.38 5
o_nz'n.n) ﬂ.ﬂﬁl | 1.0865 L3824) 563
Enc EncInv MultCiphers MultConstant IsZero 0 ES-SPH-PSM FESrsP'HrPSM
Fig. 9. Computation time comparison between AH- Fig. 10. Total runtime comparison between
ElGamal and Paillier for operations in SPH-PSM vari- optimized vs. original ES-SPH-PSM and FES-

ants. Enc is encryption and EncInv is modular inversion SPH-PSM.
of encryption result. MultCiphers and MultConstant

are multiplication of a ciphertext with another cipher-

text and a constant, respectively. IsZero is used to check

whether a given ciphertext is an encryption of zero.

7.3 SPH-PSM Variants

To assess the computational efficiency of AH-ElGamal, we first compared it to Paillier [69], a well-
known additive PHE scheme, using its popular implementation [6]. Figure 9 shows the comparison
of AH-ElGamal and Paillier for each operation. Since we do not use the full decryption operation
and only check if a ciphertext is encryption of zero, results show that AH-ElGamal is significantly
more efficient for all operations used in SPH-PSM variants. Thus, we use AH-ElGamal for a homo-
morphic encryption scheme in the rest of the evaluation.

For individual operations, computation times averaged over 10 executions were as follows:

e Salt Generation: 2.7 s

e Hash Computations: 4.8 us for H(pos;, I;), 3.9 s for h2 := H(pos;, e;), and 10.4 us for h3 :=

H(Tup;)

e Digital Signature Generation: 91.1 ps for sigl := Sign(h2) and 70.2 us for sig2 := Sign(h3)

e Digital Signature Verification: 171.4 s for Verify(sigl) and 157.6 pus for Verify(sig2)

e Commitment Generation: 511.5 s

e Range Proof (for FES-SPH-PSM):
Bulletproofs [27]: 262.2 ms for proof generation and 168.0 ms for validation
Signature-based [28]: 1,324.6 ms for proof generation and 1,299.4 ms for validation

We use the most efficient range proof scheme, Bulletproofs, for NIZKRP in the rest of the
evaluation.

Next, we measured the effects of the optimization described in Section 5.3 for both ES-PSH-PSM
and FES-SPH-PSM. We used 10® bases for Alice’s genome and 107 bases for T’s pattern. Figure 10
shows that it lowers test completion times drastically, which confirms that even complex tests can
be performed fast using this optimization. It also shows that FES-SPH-PSM is much more efficient
than ES-SPH-PSM, i.e., when the location of the test pattern is public.

To measure the overhead of adding security to SPH-PSM, we compared computation costs of
SPH-PSM and S-SPH-PSM. We implemented the algorithm from [37] in GoLang and compared the
cost for offline phases. We compared only the offline phases because the online phases are almost
the same and the only difference—signature verifications—depends on the pattern size, which is

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 23. Publication date: March 2023.

Balancing Security and Privacy in Genomic Range Queries 23:19

Cost of Adding Security Online Phase Comparison

—— SPH-PSM _ | —— sPH-PSM
—+— S-SPH-PSM 7| —— S-SPH-PSM
—e— ES-SPH-PSM
—— FES-SPH-PSM

10% 15.0 4

z 10'4 =
o E 10.0
= s 75
100_
5.04
107! 4 257 —_—
T T T T T T 0.0 1
10! 10 10° 10 10° 100 20000 40000 60000 80000 100000
Bases Number of markers
Fig. 11. Offline computation cost comparison be- Fig. 12. Online phase comparison of SPH-PSM
tween SPH-PSM and S-SPH-PSM. variants.

relatively small to the whole genome size. Since these signing operations are independent, we use
multi-threading to parallelize them and reduce delay. Results in Figure 11 show that the overhead
of adding security is negligible compared to the cost of homomorphic encryption operations for
the whole genome.

For the online phase, we vary the number of markers and use the whole genome. Figure 12
shows the results: test completion time for S-SPH-PSM grows linearly with the number of markers
in Alice’s genome compared to SPH-PSM. This is because T verifies signatures within the range of
its markers. ES-SPH-PSM and FES-SPH-PSM benefit from the optimization and their runtimes are
comparable to that of SPH-PSM, even though they add security and reduce data transfer by three
orders of magnitude.

To show that proposed constructs can be parallelized, we implemented multi-threading for of-
fline and online phases of SPH-PSM variants. We believe that this is reasonable as a consumer-
facing sequencing lab would be equipped with high-end storage and computing devices capable
of handling massive amounts of genomic data. Figure 13 shows a comparison between single-
threading and multi-threading with the increasing number of bases for S-SPH-PSM and ES-SPH-
PSM. Since each signature generation and verification are independent, parallelization greatly low-
ers the computation time. Specifically, S-SPH-PSM offline and online phases using multi-threading
are 32 and 12 times faster, respectively, compared to using a single thread. Similarly, the offline
phase of ES-SPH-PSM is 32 times faster using multi-threading with over 107 bases. In contrast,
multi-threading only slightly improves the online phase of ES-SPH-PSM, since signature verifica-
tion is the only operation that can be parallelized.

8 GENERALIZATION TO SPARSE INTEGERS

Although our primary application domain is genomics, the proposed technique applies to other
settings. For example, suppose that a forensics team, after obtaining a court order, wants to
examine an Internet Service Provider’s (ISP) log regarding a particular account’s activities for
a time period relevant to a cyberspace attack. This setting resembles genomic testing in terms
of security and privacy requirements as well as the sparsity of sensitive data. From the security
perspective, the forensics team needs to ensure that the log entries supplied by the ISP for the
period and account of interest are genuine (authentic) and complete. From the privacy perspective,
the ISP does not want to reveal any non-relevant log entries in order to protect its customers’
privacy and/or its own interests, whereas the relevant log entries (i.e., log entries corresponding
to the period and account of interest) are likely to be sparsely distributed within a very large
dataset.

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 23. Publication date: March 2023.

23:20 S. Hwang et al.

Offline Phase Online Phase
10" — SSPH-PSMomul —— S-SPH-PSM-mul
—— S-SPH-PSM-sin 10'{ —— S-SPH-PSM-sin
10°
10°
10?4
7 Z 107!
3 10 H
ES B
£ £ 102
£ 1004 o
10°%
107!
N
1072 10
10°°
10* 10° 10° 107 10% 107 10" 10° 10° 107 108 10°
#Bases #Bases
Offline Phase Online Phase
i
10" —— ESSPH-PSMomul 107y — B SPHPSMmul
—— ES-SPH-PSM-sin —— ES-SPH-PSM-sin
10° 10°
-
. 10 10t
Z H
2 2
Z10 &
£ £ 0
& =
107%
10-%
107t
1074

10* 10° 10° 107 10% 107 10* 10° 10° 107 108 107

Fig. 13. Comparison between multi-threaded and single-threaded results.

Similar situations might arise in the context of range queries over firewall logs or ticket trans-
action databases. The proposed technique can be adapted to address their security and privacy
challenges. In this section, we define a generalized version of the proposed scheme geared for
secure and private range queries over sparse integers.

8.1 Secure and Private Range Queries over Sparse Integers

Let D be a domain set of consecutive integers from A to B, i.e., D = [A, B] C Z, for some A, B € Z.
Though there are many ways to mathematically define a sparse set [22, 59, 80], informally, we call
a subset X of a set D sparse if % is small. Note that our approach also works for the improper
subset X, i.e., when X = D; however, it is more meaningful in terms of privacy if the subset X is
sparse in D.

We assume Alice and Bob act as a replier and a querier, respectively. Alice has a sparse subset
X of D = [A, B], with n integers, and Bob has a range query Q = [a,b] suchthat A<a <b < B
to receive all integers in X N Q; i.e., if Alice’s sparse set is X = {x1,x32, ..., X}, then Bob wants to
receive all x;s such thata < x; < b.

Definition 8.1. Let D = [A, B] C Z be a domain set of consecutive integers, for some A, B € Z.
The ideal functionality 7 of the protocol between Alice and Bob, on input X and Q, is

F:(X,0) = (Q.XNQ),
where X is a sparse subset of 9 and Q is a consecutive subset of D.

Security goals are the same as in Section 3: authenticity, completeness, and privacy:

(1) Authenticity. Alice cannot modify X after it is chosen and Bob can check if the integers
returned by Alice are the ones that Alice chose, i.e., authentic.

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 23. Publication date: March 2023.

Balancing Security and Privacy in Genomic Range Queries 23:21

|
T

Xk

| | |
T T T

]
T
Xk+1 o Xk+j b Xk+j+1

t
a
!

Requested range [a, b]

Fig. 14. Proving xj < a states x,,, for Yw < k is out of range. Similarly, proving xy ;1 > b states x,y, for
Vw > (k +j + 1) is out of range.

(2) Completeness. Bob should be convinced that the integers returned by Alice are complete,
i.e., are within Q without any omissions.
(3) Alice’s Privacy. Bob learns no information about the integers in X that are outside Q.

8.2 Construction and Its Security

We now describe a concrete construction that meets our stated goals. We assume a trusted offline
authority called Auth (as SL in Section 4) that facilitates trust among the protocol participants. The
offline phase is for Auth to authorize Alices’s sparse integer set X and the online phase where Alice
and Bob interact is for Bob to get integers in X N Q. Similar to Section 4, Auth first chooses two
additional integers outside of D to indicate the boundaries and random salts for commitments. It
then commits each element in X, makes adjacent commitments in a tuple, and signs those tuples.
Since only one commitment is required for each element, the overall size of salts being sent is
halved. In the online phase, Alice chooses the elements in Q and computes two commitments for
the sentinel values outside of Q and the two range proofs for them. Bob’s computation cost is also
reduced since the number of commitments is halved. As shown in Figure 14, NIZKRP steps for
checking x; < a and x,j.1 > b show that any integers (other than the returned ones) are out
of range, as integers are sorted before they are committed. Detailed offline and online phases are
described in Figures 15 and 16, respectively.

We now give a proof sketch of security and privacy for the proposed construction:

(1) Goal 1 is satisfied by the binding property of the commitment scheme, along with signatures
on the tuples containing two commitments of neighboring integers. Signatures on commit-
ments ensure that no element of X can be changed.

(2) Signatures on commitment tuples ensure that any inclusion or omission of elements is
detectable.

(3) Consider tuples outside Q = [a, b], i.e., {Com(xy), Com(xk+1)} and {Com(xy4;), Com(Xg4jr1)}
in Figure 14. Due to the hiding property of the commitment scheme, Bob learns no informa-
tion about either x; or x, ;.1 from Com(xy) and Com(xy,j41), respectively. Also, NIZKRP
guarantees that no information about x4 and xx, . is revealed other than the fact xx < a
and xg4j41 > b, respectively.

9 RELATED WORK

Privacy of genetic material and tests has attracted much attention, and numerous methods have
been proposed that are based on various cryptographic techniques. Genomic security, on the other
hand, remained in the background due to a (mistakenly) perceived lack of challenges. In this sec-
tion, we briefly go over the cryptographic privacy building blocks in the genomics domain and
then discuss related techniques for achieving data authenticity and integrity in the context of
range queries.

9.1 Genomic Privacy

Several recent survey papers [18, 23, 64, 76] overview recent advances in genomic privacy. In this
section, we list the techniques used in this domain and their related work. Secure multi-party

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 23. Publication date: March 2023.

23:22 S. Hwang et al.

Offline Phase of Secure & Private Range Query over Sparse Integers

Public: D = [A, B]
Auth Alice

X={x1,..xn} €D

Check if A < x; < xj41 < B, Vi : Abort if not

X = {x0, Xn+1} U X, where x0,Xn4+1 €ER Z
such that xg < AA xp41 > B

Salt == {sq, ..., Sp+1}, wheres; €ER Z

C= {C,’}i":'*ol,where C; == Com(xj;si)

Tup = {Tup;}y, where Tup; := (Ci, Cis1)

I ={yi}, wh i = Sig(sk JTup;
{Yl},:ng ere yj ig(skauth Tupi) X0, %ns1, Salt, T

Fig. 15. (Offline phase) authorizing Alice’s sparse integer set X from Auth.

Online Phase of Secure & Private Range Query over Sparse Integers

Public: D = [A, B]
Alice Bob

X = {xi)f”UI,Sall = {si};’:(,l,l" ={ritino Q=lablcD

=

Xo ={x; € X |a<xi<b)say XQ = {Xkea1s oo X j

Saltg = {s:}¥ andTo = {y;)<]
Cie = Com(x; k), Cpes j1 = COMAX jifes 13 jkes1)
| « NIZK_Prove{(xg,si) | Cx = Com(xp;sg) Axp < a}
h « NIZK_Prove{(xXjyji1,Sk+js1) | Chaje1 = Com(Xpey ju1 s Skajr1) A Xigje1 > b}
X0, Salto,To, Cy. Crs jsr. L h K

Compute {C,—}l:]gﬂ, st.C; = Com(xj;si),

where x; € Xp,s; € Saltg

See if :
1.Verify(pkaurn (Ci, Cis1),yi) = 1forall i
2.NIZK Verify(Cg,1) =1
3.NIZK Verif y(Crsjs1.h) =1

Abort,if not

Fig. 16. (Online phase) range query-response between Alice and Bob.

computation (MPC) allows two or more parties to jointly compute a function on their private
inputs without revealing any information, other than the output of the function. For example, [51]
utilizes oblivious transfer (OT) and oblivious circuit evaluation to compute the edit distance
and Smith-Waterman similarity score to measure the similarity between two DNA sequences. [19]
uses a variant of Private Set Intersection (PSI), PSI Cardinality, which reveals only the size of
the intersection over two input sets, for paternity tests by observing the sizes of DNA fragments
cut by restricting enzymes. It also shows how to use Authorized PSI for personalized medicine,
where an authority authorizes the markers to be checked in the DNA. [36] uses an Android
smartphone to store encrypted genomic data and PSI techniques to provide results of personal
medicine, paternity, and ancestry tests using the smartphone as the end-user computation device.
[81] utilizes secret-sharing-based MPC techniques to compute minor allele frequencies (MAFs)
and chi-squared statistics in the context of Genome-Wide Association Study computation and

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 23. Publication date: March 2023.

Balancing Security and Privacy in Genomic Range Queries 23:23

the Hamming distance between two genomic datasets. To improve the efficiency of edit distance
computation, [78] approximates the edit distance by compressing genome sequences to sets and
privately computing the set difference size (or the threshold of the set difference size) using
garbled circuit and OT techniques.

Homomorphic Encryption (HE) is another popular tool for privacy in genomic tests. For ex-
ample, [14] uses so-called Partial HE (see Section 2.4) and dynamic programming techniques to
compute the edit distance of two DNA sequences without revealing their sequences to each other,
which is later improved in [15]. Subsequently, [31] suggests a way to compute the edit distance on
encrypted genomic data using Somewhat HE (see Section 2.4). [52] constructs a secure genomic
data query architecture with third parties, where one party stores and computes encrypted ge-
nomic data—e.g., storage and processing unit (SPU)—while the other party manages the keys
used to encrypt and decrypt genomic data. It uses the additively homomorphic property of the
Paillier [69] cryptosystem to secure count query. Similarly, [16] suggests an architecture for dis-
ease susceptibility tests, with a third-party SPU. This technique utilizes Paillier Partial HE and
proxy re-encryption [21] so that only the two parties who receive the partial secret keys from
the patient can participate in the test; i.e., SPU homomorphically computes the test on the en-
crypted DNA and partially decrypts the result, such that the medical center can obtain the final
result by partial decryption of the message received from SPU. These ideas are further refined
in [17] and [35], which showed that [17] can be more efficiently implemented by using additively
homomorphic Elliptic Curve-based ElGamal and simpler encoding method of genomic data. [72]
presents a method to search encrypted biomedical data stored in the server using Bloom filters
and HE, so that the user can perform the search query to the server. [55] uses a ring-based FHE
scheme [60] to encrypt genomic data and demonstrates common genomic computations over en-
crypted data, e.g., Pearson Goodness-of-Fit test, the D" and r? measures of linkage disequilibrium,
the Estimation Maximization (EM) algorithm for haplotyping, and the Cochran-Armitage Test
for Trend. [82] and [77] also assume encrypted genomic data with an FHE [47] on an untrusted pub-
lic cloud. [82] focuses on the chi-square statistics and proposes two protocols for secure division
operation, while [77] suggests a framework for estimating the P-value of exact logistic regression
parameters over encrypted data. [48] shows how to construct an index tree of the genomic data
and send the index tree to the cloud server after encryption with Paillier; the server then traverses
the encrypted tree according to the encrypted query from a query initiator using secure function
evaluation via an interactive protocol using Yao’s garbled circuits [79].

9.2 Range Query Security

Range query completeness was explored in the context of outsourced databases where the data
owner assigns query handling to a cloud-based data publisher. The latter, if malicious, can reply to
a range query with incomplete and/or fake results. To counter such misbehavior, [50] focused on
minimizing privacy leakages on data attributes using data partitioning algorithms that are aware
of the distribution of query ranges. [70] developed methods based on continual linking of elements
and collision-resistant hash functions to prevent malicious actions. [56] used Merkle hash and B*
trees, as well as aggregated signatures, to provide authenticity and integrity (with less strict privacy
requirements than [70]) and improve efficiency in the dynamic database case.

Other cryptographic range query techniques incorporated so-called range proofs. Early exam-
ples of range proofs include [26, 30, 62]. [62] uses the bit-length of the committed value to prove
that the number is in the range [0, ok — 1], where k is the number of bits in that committed value.
[26] only proves that the committed value lies in a wider range: [—a, 2a], instead of [0, a]. [30]
convinces a verifier that the committed value lies in a range with the expansion rate of ot+l+l

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 23. Publication date: March 2023.

23:24 S. Hwang et al.

where t and [are security parameters. [24] proposes two efficient protocols for proving that the
committed value that is in [a, b] lies in [a — 6,b + 0], where 0 = 2!+1+1\[h — g and t and [are
security parameters. The second protocol (that uses Fujisaki-Okamoto commitments [44]) is the
one we used in this article; it has the expansion rate of 1. [28] proposes range proofs based on set
membership protocols by extending the u-ary notation and proving that the secret z € [0,u! — 1].

10 LIMITATIONS AND FUTURE WORK

In this work, we focused on genomic tests that reveal the genomic data in some queried range
and showed our proposed technique can be used for private substring matching-type tests where
genomic data can be encrypted under an additively homomorphic encryption scheme. However,
different types of genomic tests may require more operations other than addition, subtraction, and
constant multiplication that additively homomorphic encryption cannot support. We cannot avoid
using some SWHE or FHE in such cases to keep the privacy, sacrificing the performance, as some
previous work [31, 55, 77, 82] suggested.

We avoided going into discussions regarding low-level side channels in our work. For instance,
Alice can infer the size of the queried range from execution time when applying our technique
to SPH-PSM as in Section 5. However, this can be easily prevented in practice by letting T send
the replies after a fixed period of time instead of sending them right after the computation is
finished.

Lastly, we only consider the SNP for the efficient genomic representation; however, there are
multiple genomic representation formats such as STR and RFLP. Also, for the base letters, we
only consider well-sequenced genomic data without any gene duplications, insertions, deletions,
or lateral gene transfers that can commonly occur in genomic materials. Therefore, there is still
room for improving our proposed techniques and we consider these to be opportunities for future
work.

11 CONCLUSIONS

Genomic privacy has understandably attracted lots of attention due to the dire consequences of
possible leaks. Meanwhile, genomic security (authentication and integrity of genomic data) has
remained relatively obscure. This article motivated and constructed a technique for secure and
private genomic range queries. Its key properties are Authenticity of genomic material, Complete-
ness of mutations within a given range, and total Privacy as far as any genomic data outside a given
range.

To achieve these properties, we used techniques based on zero-knowledge range proofs to show
that a committed value (the position of a genomic mutation) is outside the queried range, digi-
tal signatures to prevent any alterations on genomic material, and linkage among two consecu-
tive mutations to preclude any omissions. To improve protocol efficiency, we carefully chose the
cryptographic primitives while keeping in mind both security and privacy requirements. We also
abstracted away from genomics and defined a more general problem of secure and private range
queries over sparse integers.

Although we focused on revealing plaintext SNPs within the queried range to a tester, the pro-
posed technique is equally applicable to encrypted genomes. Previous work that utilizes homo-
morphic encryption to offer SNP matches or weighted averaging without revealing the plaintext
SNPs (e.g., [16, 35, 52]) can directly apply our approach to support authenticity and completeness
of mutations within the queried range, while allowing the privacy of mutations. We showed, as an
example, that a private substring matching algorithm [37] can benefit from the proposed technique
in terms of better security and performance.

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 23. Publication date: March 2023.

Balancing Security and Privacy in Genomic Range Queries 23:25

ACKNOWLEDGMENTS

We sincerely thank anonymous reviewers for their valuable comments and suggestions.

REFERENCES

(1]
(2]
(3]
(4]

—
w

]
[6
7

—

(8]
(9]
[10]
(1]
[12]
[13]

[14]

[15]
[16]
[17]

[18]
[19]

[20]
[21]

[22]
[23]

[24]
[25]

[26]

23andMe. Retrieved January 24, 2022, from https://www.23andme.com/.

CRI Genetics. Retrieved January 24, 2022, from https://www.crigenetics.com/.

GO. Retrieved January 24, 2022, from https://golang.org/.

How do geneticists indicate the location of a gene? Retrieved January 24, 2022, from https://ghr.nlm.nih.gov/primer/
howgeneswork/genelocation.

The Legion of the Bouncy Castle. Retrieved January 24, 2022, from https://www.bouncycastle.org/.

Paillier. Retrieved January 24, 2022, from https://github.com/didiercrunch/paillier.

SecureRandom (Java Platform SE 8). Retrieved January 24, 2022, from https://docs.oracle.com/javase/8/docs/api/
java/security/SecureRandom.html.

SNP. Retrieved January 24, 2022, from https://www.nature.com/scitable/definition/snp-295/#:~:text=If%20more%
20than%201%25%200f,having%20more%20than%20one%20allele.

Whole Genome Association Studies. Retrieved January 24, 2022, from https://www.genome.gov/17516714/2006-
release-about-whole-genome-association-studies.

Zero-Knowledge Proofs. Retrieved January 24, 2022, from https://github.com/ing-bank/zkproofs.

National Research Council (US) Committee on Mapping and Sequencing the Human Genome. 1988. Mapping and
Sequencing the Human Genome. Washington, DC: National Academies Press (US), 1988. 2, Introduction. Retrieved
January 31, 2022, from https://www.ncbi.nlm.nih.gov/books/NBK218247/.

2012. Secure Hash Standard. FIPS PUB 180-4, Information Technology Laboratory, National Institute of Standards
and Technology, Gaithersburg, MD, 2012.

S. Hwang, E. Ozturk, and G. Tsudik. 2022. Source code for evaluation. https://github.com/sprout-uci/genomic-
security-journal-code.

Mikhail J. Atallah, Florian Kerschbaum, and Wenliang Du. 2003. Secure and private sequence comparisons. In Proceed-
ings of the 2003 ACM Workshop on Privacy in the Electronic Society (WPES’03), Association for Computing Machinery,
New York, NY, 39-44. https://doi.org/10.1145/1005140.1005147

Mikhail J. Atallah and Jiangtao Li. 2005. Secure outsourcing of sequence comparisons. International Journal of Infor-
mation Security 4, 4 (2005), 277-287. https://doi.org/10.1007/s10207-005-0070-3

Erman Ayday, Jean Louis Raisaro, and Jean-Pierre Hubaux. 2013. Privacy-enhancing technologies for medical tests
using genomic data. In Proceeding of the Network and Distributed System Security Symposium (NDSS’13).

Erman Ayday, Jean Louis Raisaro, Jean-Pierre Hubaux, and Jacques Rougemont. 2013. Protecting and evaluating
genomic privacy inmedical tests and personalized medicine. In Proceedings of the 12th ACM Workshop on Workshop
on Privacy in the Electronic Society (WPES’13), Association for Computing Machinery, New York, NY, 95-106. https:
//doi.org/10.1145/2517840.2517843

Abinaya B. and Santhi S. 2021. A survey on genomic data by privacy-preserving techniques perspective. Computa-
tional Biology and Chemistry 93 (2021), 107538.

Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik. 2011. Countering GATTACA:
Efficient and secure testing of fully-sequenced human genomes. In Proceedings of the 18th ACM Conference on
Computer and Communications Security (CCS’11), Association for Computing Machinery, New York, NY, 691-702.
https://doi.org/10.1145/2046707.2046785

Mihir Bellare, Ran Canetti, and Hugo Krawczyk. 1996. Keying hash functions for message authentication. In Advances
in Cryptology (CRYPTO’96), Neal Koblitz (Ed.). Springer, Berlin, 1-15.

Matt Blaze, Gerrit Bleumer, and Martin Strauss. 1998. Divertible protocols and atomic proxy cryptography. In Ad-
vances in Cryptology (EUROCRYPT 98), Kaisa Nyberg (Ed.). Springer, Berlin, 127-144.

Henry Blumberg. 1939. Exceptional sets. In Fundamenta Mathematicae. 3-32.

Luca Bonomi, Yingxiang Huang, and Lucila Ohno-Machado. 2020. Privacy challenges and research opportunities for
genomic data sharing. Nature Genetics 52, 7 (July 2020), 646—654.

Fabrice Boudot. 2000. Efficient proofs that a committed number lies in an interval. In International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 431-444.

Tatiana Bradley, Xuhua Ding, and Gene Tsudik. 2017. Genomic security (lest we forget). IEEE Security & Privacy 15,
5 (2017), 38-46.

Ernest F. Brickell, David Chaum, Ivan B. Damgérd, and Jeroen van de Graaf. 1987. Gradual and verifiable release of
a secret. In Conference on the Theory and Application of Cryptographic Techniques. Springer, 156-166.

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 23. Publication date: March 2023.

https://www.23andme.com/
https://www.crigenetics.com/
https://golang.org/
https://ghr.nlm.nih.gov/primer/howgeneswork/genelocation
https://www.bouncycastle.org/
https://github.com/didiercrunch/paillier
https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html
https://www.nature.com/scitable/definition/snp-295/#:~:text=If%20more%20than%201%25%20of,having%20more%20than%20one%20allele
https://www.genome.gov/17516714/2006-release-about-whole-genome-association-studies
https://github.com/ing-bank/zkproofs
https://www.ncbi.nlm.nih.gov/books/NBK218247/
https://github.com/sprout-uci/genomic-security-journal-code
https://doi.org/10.1145/1005140.1005147
https://doi.org/10.1007/s10207-005-0070-3
https://doi.org/10.1145/2517840.2517843
https://doi.org/10.1145/2046707.2046785

23:26 S. Hwang et al.

[27] Benedikt Biinz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell. 2018. Bulletproofs:
Short proofs for confidential transactions and more. In 2018 IEEE Symposium on Security and Privacy (SP’18). IEEE,
315-334.

[28] Jan Camenisch, Rafik Chaabouni, and Abhi Shelat. 2008. Efficient protocols for set membership and range proofs. In
Proceeding of the Advances in Cryptology-(ASITACRYPT 08), Josef Pieprzyk (Ed.). Springer, Berlin Heidelberg, 234-252.

[29] Sébastien Canard, Iwen Coisel, Amandine Jambert, and Jacques Traoré. 2014. New results for the practical use
of range proofs. In Public Key Infrastructures, Services and Applications, Sokratis Katsikas and Isaac Agudo (Eds.).
Springer, Berlin, 47-64.

[30] Agnes Hui Chan, Yair Frankel, and Yiannis Tsiounis. 1998. Easy come-easy go divisible cash. In Proceeding of the
Advances in Cryptology (EUROCRYPT 98, International Conference on the Theory and Application of Cryptographic
Techniques, Espoo, Finland, May 31-June 4, 1998, Proceeding), Lecture Notes in Computer Science, Springer, Vol. 1403,
561-575. DOI:10.1007/BFb0054154

[31] Jung Hee Cheon, Miran Kim, and Kristin Lauter. 2015. Homomorphic computation of edit distance. In Financial Cryp-
tography and Data Security, Michael Brenner, Nicolas Christin, Benjamin Johnson, and Kurt Rohloff (Eds.). Springer,
Berlin, 194-212.

[32] Josh Benaloh Clarkson. 1994. Dense probabilistic encryption. In Proceedings of the Workshop on Selected Areas of
Cryptography. 120-128.

[33] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. 1997. A secure and optimally efficient multi-authority
election scheme. In Advances in Cryptology (EUROCRYPT’97), Walter Fumy (Ed.). Springer, Berlin, 103-118.

[34] Ivan Damgard and Mads Jurik. 2001. A generalisation, a simplification and some applications of Paillier’s probabilistic
public-key system. In Public Key Cryptography, Kwangjo Kim (Ed.). Springer, Berlin, 119-136.

[35] George Danezis and Emiliano De Cristofaro. 2014. Fast and private genomic testing for disease susceptibility. In
Proceedings of the 13th Workshop on Privacy in the Electronic Society. ACM, 31-34.

[36] Emiliano De Cristofaro, Sky Faber, Paolo Gasti, and Gene Tsudik. 2012. Genodroid: Are privacy-preserving genomic
tests ready for prime time? In Proceedings of the 2012 ACM Workshop on Privacy in the Electronic Society. ACM, 97-108.

[37] Emiliano De Cristofaro, Sky Faber, and Gene Tsudik. 2013. Secure genomic testing with size-and position-hiding
private substring matching. In Proceedings of the 12th ACM Workshop on Workshop on Privacy in the Electronic Society.
107-118.

[38] Chunhua Deng, Jia Fan, Zhen Wang, Yili Luo, Yue Zheng, Yixin Li, and Jianwei Ding. 2019. A survey on range proof
and its applications on blockchain. In 2019 International Conference on Cyber-Enabled Distributed Computing and
Knowledge Discovery (CyberC’19). 1-8. https://doi.org/10.1109/CyberC.2019.00011

[39] Premkumar Devanbu, Michael Gertz, Charles Martel, and Stuart G. Stubblebine. 2003. Authentic data publication
over the Internet. Journal of Computer Security 11, 3 (2003), 291-314.

[40] Xuhua Ding, Ercan Ozturk, and Gene Tsudik. 2019. Balancing security and privacy in genomic range queries. In
Proceedings of the 18th ACM Workshop on Privacy in the Electronic Society (WPES’19). Association for Computing
Machinery, New York, NY, 106-110. https://doi.org/10.1145/3338498.3358652

[41] Taher ElGamal. 1985. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans-
actions on Information Theory 31, 4 (1985), 469-472.

[42] Yanxiao Feng, Yuechuan Zhang, Cuifeng Ying, Deqiang Wang, and Chunlei Du. 2015. Nanopore-based fourth-
generation DNA sequencing technology. Genomics, Proteomics & Bioinformatics 13, 1 (2015), 4-16.

[43] Amos Fiat and Adi Shamir. 1987. How to prove yourself: Practical solutions to identification and signature problems.

In Proceedings on Advances in Cryptology (CRYPTO’86). Springer-Verlag, Berlin, 186-194.

Eiichiro Fujisaki and Tatsuaki Okamoto. 1997. Statistical zero knowledge protocols to prove modular polynomial

relations. In Annual International Cryptology Conference. Springer, 16-30.

[45] Shafi Goldwasser and Silvio Micali. 1982. Probabilistic encryption & how to play mental poker keeping secret all par-
tial information. In Proceedings of the 14th Annual ACM Symposium on Theory of Computing (STOC’82). Association
for Computing Machinery, New York, NY, 365-377. https://doi.org/10.1145/800070.802212

[46] Jens Groth. 2005. Non-interactive zero-knowledge arguments for voting. In Applied Cryptography and Network Se-
curity, John Ioannidis, Angelos Keromytis, and Moti Yung (Eds.). Springer, Berlin, 467-482.

[47] Shai Halevi and Victor Shoup. An Implementation of homomorphic encryption. Retrieved January 31, 2022, from
https://github.com/shaih/HEIlib(2013).

[48] Mohammad Zahidul Hasan, Md Safiur Rahman Mahdi, Md Nazmus Sadat, and Noman Mohammed. 2018. Secure
count query on encrypted genomic data. Journal of Biomedical Informatics 81 (2018), 41-52.

[49] Stephanie J. Heerema and Cees Dekker. 2016. Graphene nanodevices for DNA sequencing. Nature Nanotechnology
11, 2 (2016), 127.

[50] Bijit Hore, Sharad Mehrotra, and Gene Tsudik. 2004. A privacy-preserving index for range queries. In Proceedings of
the 30th International Conference on Very Large Data Bases-Volume 30. VLDB Endowment, 720-731.

(44

[l

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 23. Publication date: March 2023.

https://doi.org/10.1007/BFb0054154
https://doi.org/10.1109/CyberC.2019.00011
https://doi.org/10.1145/3338498.3358652
https://doi.org/10.1145/800070.802212
https://github.com/shaih/HElib(2013)

Balancing Security and Privacy in Genomic Range Queries 23:27

[51]
[52]
[53]
[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]
[62]
[63]
[64]
[65]

[66]

[67]
[68]
[69]

[70]

[71]

[72]

[73]
[74]

[75]

Somesh Jha, Louis Kruger, and Vitaly Shmatikov. 2008. Towards practical privacy for genomic computation. In 2008
IEEE Symposium on Security and Privacy (SP’08). 216-230. https://doi.org/10.1109/SP.2008.34

Murat Kantarcioglu, Wei Jiang, Ying Liu, and Bradley Malin. 2008. A cryptographic approach to securely share and
query genomic sequences. IEEE Transactions on Information Technology in Biomedicine 12, 5 (2008), 606-617.
Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. 2007. Multi-bit cryptosystems based on lattice problems. In
International Workshop on Public Key Cryptography, 315-329. https://doi.org/10.1007/978-3-540-71677-8_21

Hugo Krawczyk. Cryptographic Extraction and Key Derivation: The HKDF Scheme. Cryptology ePrint Archive,
Report 2010/264, https://ia.cr/2010/264.

Kristin Lauter, Adriana Lopez-Alt, and Michael Naehrig. 2015. Private computation on encrypted genomic data. In
Progress in Cryptology (LATINCRYPT 14), Diego F. Aranha and Alfred Menezes (Eds.). Springer International Publish-
ing, Cham, 3-27.

Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin. 2006. Dynamic authenticated index structures
for outsourced databases. In Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data.
ACM, 121-132.

Helger Lipmaa. 2003. On diophantine complexity and statistical zero-knowledge arguments. In Advances in Cryptol-
ogy (ASIACRYPT’03), Chi-Sung Laih (Ed.). Springer, Berlin, 398-415.

Helger Lipmaa, N. Asokan, and Valtteri Niemi. 2001. Secure Vickrey Auctions without Threshold Trust. (2001). http://
eprint.iacr.org/2001/095. Published in Financial Cryptography 2002. helger@tcs.hut.fi 11810 received 13 Nov 2001,
last revised 3 May 2002.

Ie Lutsenko and I. V. Protasov. 2009. Sparse, thin and other subsets of groups. International Journal of Algebra and
Computation 19, 4 (2009), 491-510.

Adriana Lopez-Alt, Eran Tromer, and Vinod Vaikuntanathan. 2012. On-the-fly multiparty computation on the cloud
via multikey fully homomorphic encryption In. Proceedings of the Annual ACM Symposium on Theory of Computing.
https://doi.org/10.1145/2213977.2214086

Wojciech Makalowski. 2001. The human genome structure and organization. Acta Biochimica Polonica 48 (2001),
587-98.

Wenbo Mao. 1998. Guaranteed correct sharing of integer factorization with off-line shareholders. In International
Workshop on Public Key Cryptography. Springer, 60-71.

Elaine R. Mardis. 2011. A decade’s perspective on DNA sequencing technology. Nature 470, 7333 (2011), 198.
Abukari Mohammed Yakubu and Yi-Ping Phoebe Chen. 2019. Ensuring privacy and security of genomic data and
functionalities. Briefings in Bioinformatics 21, 2 (2019), 511-526. https://doi.org/10.1093/bib/bbz013 arXiv:https://
academic.oup.com/bib/article-pdf/21/2/511/33585094/bbz013.pdf.

Eduardo Morais, Tommy Koens, Cees Wijk, and Aleksei Koren. 2019. A Survey on Zero Knowledge Range Proofs
and Applications.

David Naccache and Jacques Stern. 1998. A new public key cryptosystem based on higher residues. In Proceedings of
the 5th ACM Conference on Computer and Communications Security (CCS’98). Association for Computing Machinery,
New York, NY, 59-66. https://doi.org/10.1145/288090.288106

Muhammad Naveed, Erman Ayday, Ellen W. Clayton, Jacques Fellay, Carl A. Gunter, Jean-Pierre Hubaux, Bradley A.
Malin, and XiaoFeng Wang. 2015. Privacy in the genomic era. ACM Computing Surveys (CSUR) 48, 1 (2015), 6.
Tatsuaki Okamoto and Shigenori Uchiyama. 1998. A new public-key cryptosystem as secure as factoring. In Advances
in Cryptology (EUROCRYPT98), Kaisa Nyberg (Ed.). Springer, Berlin, 308-318.

Pascal Paillier. 1999. Public-key cryptosystems based on composite degree residuosity classes. In International Con-
ference on the Theory and Applications of Cryptographic Techniques. Springer, 223-238.

HweeHwa Pang, Arpit Jain, Krithi Ramamritham, and Kian-Lee Tan. 2005. Verifying completeness of relational query
results in data publishing. In Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data.
ACM, 407-418.

Torben Pryds Pedersen. 1991. Non-interactive and information-theoretic secure verifiable secret sharing. In Annual
International Cryptology Conference. Springer, 129-140.

H. Perl, Y. Mohammed, M. Brenner, and M. Smith. 2012. Fast confidential search for bio-medical data using Bloom
filters and Homomorphic Cryptography. In 2012 IEEE 8th International Conference on E-Science (e-Science’12). IEEE
Computer Society, Los Alamitos, CA, 1-8. https://doi.org/10.1109/eScience.2012.6404484

R. L. Rivest, A. Shamir, and L. Adleman. 1978. A method for obtaining digital signatures and public-key cryptosystems.
Commun. ACM 21, 2 (Feb. 1978), 120-126. https://doi.org/10.1145/359340.359342

International HIV Controllers Study and others. 2010. The major genetic determinants of HIV-1 control affect HLA
class I peptide presentation. Science (New York, NY) 330, 6010 (2010), 1551.

Juan Ramoén Troncoso-Pastoriza, Stefan Katzenbeisser, and Mehmet Celik. 2007. Privacy preserving error resilient
DNA searching through oblivious automata. In Proceedings of the 14th ACM Conference on Computer and Communi-
cations Security. ACM, 519-528.

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 23. Publication date: March 2023.

https://doi.org/10.1109/SP.2008.34
https://doi.org/10.1007/978-3-540-71677-8_21
https://ia.cr/2010/264
http://eprint.iacr.org/2001/095
https://doi.org/10.1145/2213977.2214086
https://doi.org/10.1093/bib/bbz013
https://academic.oup.com/bib/article-pdf/21/2/511/33585094/bbz013.pdf
https://doi.org/10.1145/288090.288106
https://doi.org/10.1109/eScience.2012.6404484
https://doi.org/10.1145/359340.359342

23:28 S. Hwang et al.

[76] Zhiyu Wan, James W. Hazel, Ellen Wright Clayton, Yevgeniy Vorobeychik, Murat Kantarcioglu, and Bradley A. Malin.
2022. Sociotechnical safeguards for genomic data privacy. Nature Reviews Genetics 23, 7 (July 2022), 429-445.

[77] Shuang Wang, Yuchen Zhang, Wenrui Dai, Kristin Lauter, Miran Kim, Yuzhe Tang, Hongkai Xiong, and Xiaoqian
Jiang. 2015. HEALER: Homomorphic computation of ExAct logistic rEgRession for secure rare disease variants anal-
ysis in GWAS. Bioinformatics 32, 2 (2015), 211-218. https://doi.org/10.1093/bioinformatics/btv563

[78] Xiao Shaun Wang, Yan Huang, Yongan Zhao, Haixu Tang, XiaoFeng Wang, and Diyue Bu. 2015. Efficient genome-

wide, privacy-preserving similar patient query based on private edit distance. In Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications Security (CCS’15). Association for Computing Machinery, New York,

NY, 492-503. https://doi.org/10.1145/2810103.2813725

Andrew Chi-Chih Yao. 1986. How to generate and exchange secrets. In 27th Annual Symposium on Foundations of

Computer Science (SFCS’86). IEEE, 162-167.

Ludék Zajicek. 1983. Differentiability of the distance function and points of multi-valuedness of the metric projection

in Banach space. Czechoslovak Mathematical Journal 33, 2 (1983), 292-308. http://eudml.org/doc/13383.

Yihua Zhang, Marina Blanton, and Ghada Almashagbeh. 2015. Secure distributed genome analysis for GWAS and

sequence comparison computation. BMC Medical Informatics and Decision Making 15 (2015), S4. https://doi.org/10.

1186/1472-6947-15-55-54

Yuchen Zhang, Wenrui Dai, Xiaoqian Jiang, Hongkai Xiong, and Shuang Wang. 2015. FORESEE: Fully outsourced

secuRe gEnome study basEd on homomorphic encryption. BMC Medical Informatics and Decision Making 15 (2015),

S5. https://doi.org/10.1186/1472-6947-15-S5-S5

(79

—

(80

[t

(81

—

(82

—

Received 20 October 2021; revised 7 November 2022; accepted 28 November 2022

ACM Transactions on Privacy and Security, Vol. 26, No. 3, Article 23. Publication date: March 2023.

https://doi.org/10.1093/bioinformatics/btv563
https://doi.org/10.1145/2810103.2813725
http://eudml.org/doc/13383
https://doi.org/10.1186/1472-6947-15-S5-S4
https://doi.org/10.1186/1472-6947-15-S5-S5

