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Abstract

Cover crops have been reported as one of the most effective practices to increase
soil organic carbon (SOC) for agroecosystems. Impacts of cover crops on SOC change
vary depending on soil properties, climate, and management practices, but it remains
unclear how these control factors affect SOC benefits from cover crops, as well as
which management practices can maximize SOC benefits. To address these questions,
we used an advanced process-based agroecosystem model, ecosys, to assess the
impacts of winter cover cropping on SOC accumulation under different environmental
and management conditions. We aimed to answer the following questions: (1) To what
extent do cover crops benefit SOC accumulation, and how do SOC benefits from
cover crops vary with different factors (i.e., initial soil properties, cover crop types,
climate during the cover crop growth period, and cover crop planting and terminating
time)? (2) How can we enhance SOC benefits from cover crops under different cover
crop management options? Specifically, we first calibrated and validated the ecosys
model at two long-term field experiment sites with SOC measurements in lllinois.
We then applied the ecosys model to six cover crop field experiment sites spanning
across lllinois to assess the impacts of different factors on SOC accumulation. Our
modeling results revealed the following findings: (1) Growing cover crops can bring
SOC benefits by 0.33+0.06 MgC ha™! year™ in six cover crop field experiment sites
across lllinois, and the SOC benefits are species specific to legume and non-legume
cover crops. (2) Initial SOC stocks and clay contents had overall small influences on
SOC benefits from cover crops. During the cover crop growth period (i.e., winter
and spring in the US Midwest), high temperature increased SOC benefits from cover
crops, while the impacts from larger precipitation on SOC benefits varied field by
field. (3) The SOC benefits from cover crops can be maximized by optimizing cover
crop management practices (e.g., selecting cover crop types and controlling cover
crop growth period) for the US Midwestern maize-soybean rotation system. Finally,
we discussed the economic and policy implications of adopting cover crops in the US
Midwest, including that current economic incentives to grow cover crops may not be
sufficient to cover costs. This study systematically assessed cover crop impacts for

SOC change in the US Midwest context, while also demonstrating that the ecosys
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1 | INTRODUCTION

Soil holds nearly 80% of the Earth's carbon in the terrestrial eco-
system (Ontl & Schulte, 2012), and agricultural lands have the larg-
est carbon storage among all the land use types (Lal, 2008). Soil
organic carbon (SOC), which is carbon stored as organic forms in
the soil, plays a critical role in various ecosystem processes, includ-
ing physical processes of maintaining soil physical structures and
soil water retention, and biochemical processes of supporting soil
microbe activities and soil fertility (Ontl & Schulte, 2012). Some
agricultural practices have the ability to sequester atmospheric
CO, into land and increase SOC, such as no-till, cover crop, and
biochar (Bai et al., 2019; Wang & Wang, 2019), and these prac-
tices have been recently named as climate-smart farming practices
due to their potential contribution in mitigating climate change
(Lipper et al., 2014). Among different climate-smart farming prac-
tices, planting cover crops has been seen as one of the most ef-
fective practices to increase SOC (Guenet et al., 2021; Poeplau &
Don, 2015; Zhang et al., 2022). In the US Midwest context, planting
cover crop means fitting a non-harvested crop during the winter
period between the two summer growing seasons, which is pre-
dominately a maize (Zea mays L.)-soybean (Glycine max L) rotation
system (Behnke & Villamil, 2019). Studies have found that planting
winter cover crops in the United States leads to SOC accumulation
and also brings a number of co-benefits, including reducing nitro-
gen leaching, slowing down soil erosion, and suppressing weeds
(Abdalla et al., 2019).

Reducing carbon emission and increasing soil carbon storage
through climate-smart farming practices has gained more traction
and momentum due to the urgent societal needs to combat climate
change and increasing investments from public and private sec-
tors (Oldfield et al., 2021, 2022; Smith et al., 2020). Targeting the
global warming below 2°C goal requires drastic change to reduce a
large amount of greenhouse gas (GHG) emissions, and agriculture
serves as an important sector to contribute to this goal (IPCC, 2014,
2019). Both government agencies and industries need to quantify
SOC benefits from climate-smart farming practices, among which
planting cover crops is one of the major practices to be applied.
Nevertheless, an accurate and cost-efficient SOC benefit quantifi-
cation method is still largely unavailable (Guan et al., 2021). How
successfully this need could be fulfilled, to a large extent, determines
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model, with rigorous validation using field experiment data, can be an effective tool
to guide the adaptive management of cover crops and quantify SOC benefits from
cover crops. The study thus provides practical tools and insights for practitioners
and policy-makers to design cover crop related government agricultural policies and

incentive programs for farmers and agri-food related industries.

cover crop, ecosys, management practices, process-based models, soil organic carbon (SOC),

the future adoption of cover crops and other climate-smart farming
practices.

Traditionally, researchers use soil sampling in paired field ex-
periments (i.e., with- and without-cover-crop conditions in adja-
cent fields) to quantify SOC benefits from cover crops (Poeplau &
Don, 2015). However, field experiments have spatial and temporal
limitations in determining the magnitude of cover crop impacts on
SOC. Specifically, most field studies of cover crops are site specific
and generally with a short time span (e.g., <5years), usually leading
to larger uncertainties in SOC measurements compared to SOC ben-
efits from cover crops (Maillard et al., 2017; Potash et al., 2022). As
mentioned above, using soil samplings to measure SOC benefits re-
quires both with- and without-cover-crop conditions. The without-
cover-crop conditions are also called “the baseline.” However, unlike
research fields that have paired plots including the baseline, in most
commercial cover crop fields, the baseline does not exist. To create
the baseline in SOC benefit quantification, farmers have to inten-
tionally manage the set-aside plots, which is neither practical nor
convenient. Thus, it is difficult to quantify SOC benefits directly at
commercial cover crop fields based on soil sampling.

To address the above issues from soil sampling, process-based
models provide an alternative approach to quantify carbon-related
benefits from practices, based on the following rationales (Peng
et al., 2020; Smith et al., 2020). First, process-based models have the
capability of simulating long-term practices in any field to quantify
the SOC benefits from cover crops. Second, process-based models
are readily able to quantify SOC benefits from cover crops as the dif-
ference of SOC changes between with- and without-cover-crop con-
ditions, even if without-cover-crop conditions are counterfactual.
These advancements of process-based models make them effective
tools in quantifying cover crop SOC benefits. However, it is import-
ant to be aware that unconstrained or uncalibrated models with de-
fault parameters usually lead to large uncertainties in the simulated
results (He et al., 2017; Peng et al., 2020). Thus, although process-
based models can be effective in quantifying carbon-related bene-
fits, they need to be carefully calibrated and validated with ground
truth data before being applied for quantification (Peng et al., 2020;
Smith et al., 2020).

Although cover crops could bring benefits to SOC, it is not well
understood how and to what extent different factors, such as ini-
tial soil properties, cover crop types, climate during the cover crop
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growth period, and cover crop planting and terminating time control
SOC benefits from cover crops. SOC benefits from cover crops vary
among different fields, which ranges from 0.1 to 1 MgC ha™ year‘1
based on earlier meta-studies and different factors lead to the vari-
ations (Abdalla et al., 2019; Blanco-Canqui et al., 2015; Jian, Du, &
Stewart, 2020; Poeplau & Don, 2015). Although studies show that
SOC decreases faster in soils with higher initial SOC stocks and
lower clay contents, it is not clear to what extent initial soil prop-
erties (e.g., SOC stock and clay content) affect SOC changing rates
and SOC benefits from cover crops (Poeplau & Don, 2015). The
impacts from precipitation and temperature during the cover crop
growth period on SOC benefits can be site specific and the under-
lying pathways remain unclear (Abdalla et al., 2019; Blanco-Canqui
et al., 2015; Jian, Du, & Stewart, 2020). In addition to the above en-
vironmental factors, cover crop planting and terminating time play
important roles in controlling SOC benefits from cover crops. Earlier
planting and later terminating can lead to larger cover crop biomass,
and thus leading to larger SOC benefits (Rosa et al., 2021). However,
it remains unclear how a longer cover crop growth period increases
SOC benefits quantitatively. With these issues unsolved, process-
based models, with right representatives of underlying processes
after calibration and validation, can be applied to address these
questions. Through sensitivity analysis, process-based models that
have sufficient sophistication in their processes also have the capa-
bility to reveal the impacts from different factors on SOC benefits
from cover crops.

In this study, we aim to quantify the SOC benefits from cover
crops under different conditions in climate and soil properties
through calibrating and validating a process-based model with field-
measured cover crop and SOC data. We also aim to reveal the path-
ways of how different controlling factors (i.e., initial soil properties,
cover crop types, climate during the cover crop growth period, and
cover crop planting and terminating time) affect the SOC benefits
from cover crops. Specifically, we first used two sites with long-
term SOC measurements to calibrate and validate the ecosys model.
One is the Morrow plots located in Champaign County, lllinois
with 100years of SOC measurements at 0-0.15 m depth (Aref &
Wander, 1997). The other is the Dixon Springs cover crop exper-
iment site located in Pope County, lllinois with 12years 0-0.75m
SOC measurements (Olson et al., 2010, 2014). Then, we used ecosys
to simulate SOC benefits from cover crops at six cover crop exper-
iment sites across lllinois, where we have previously validated the
performance of ecosys for the maize and soybean yield as well as
cover crop biomass (Qin et al., 2021). Finally, we synthesized the im-
pacts of different factors on SOC benefits. In this study, we aim to
answer two scientific questions: (1) To what extent do cover crops
benefit SOC accumulation, and how do SOC benefits from cover
crops vary with different controlling factors (i.e., initial soil prop-
erties, cover crop types, climate during the cover crop growth pe-
riod, and cover crop planting and terminating time)? (2) How can we
enhance SOC benefits from cover crops under different cover crop
management options (e.g., selecting cover crop types and controlling
cover crop growth period)?

2 | MATERIALS AND METHODS
2.1 | Definition of “SOC benefits from cover crops”

We define “SOC benefits from cover crops” as the difference of
SOC change between with- and without-cover-crop conditions.
In field experiments, “SOC benefits from cover crops” can be
measured as the differences in SOC change between paired plots.
Paired plots are usually neighboring plots that have similar soil
properties and identical management practices except for the
existence of cover crops. Thus, the differences in SOC change
between two plots are induced by the implementation of cover
crops. In models, two types of scenarios, including with- and
without-cover-crop conditions, are set up according to the field
management practices. “SOC benefits from cover crops” in models
are calculated as the differences in SOC change between two

scenarios.

2.2 | Ecosys model

The ecosys model is a sophisticated process-based model with
comprehensive biogeochemical process representations that
has been calibrated and validated at multiple sites with different
conditions in climate and soil properties (Grant, 2001; Grant
et al., 2001, 2020; Zhou et al., 2021). Ecosys is constructed from
various interacting processes representing carbon, nitrogen (N),
phosphorus (P), water, and energy cycles among plants, soil, and
atmosphere to simulate complex ecosystem behavior (Grant, 2001;
Grant et al., 2001, 2020; Zhou et al., 2021). Here we describe key
processes for photosynthesis and decomposition that govern the

dynamics of carbon cycle in plants and soil.

2.2.1 | Photosynthesis and autotrophic respiration

The ecosys model uses a multi-layer module to simulate the can-
opy photosynthesis, calculating the carbon assimilation for each
individual leaf under different light conditions. For each leaf, the
Farquhar model is used to calculate carbon assimilation for C3
crops. Ecosys also explicitly calculates mesophyll carbon fixation
and mesophyll-bundle sheath carbon transfer for C4 crops, which
is not included in the classic Farquhar model. The canopy stomatal
resistance and temperature are calculated by closing the energy
and water balances through the soil-root-canopy-atmosphere
using plant hydraulics (Grant et al., 2006, 2009). The final leaf CO,,
fixation is calculated from coupled solutions for diffusion driven
by CO, concentration gradients across leaf stomatal resistance
and for carboxylation driven by CO, concentration and irradiance.
Nonstructural carbon pools, which are the product of leaf CO,
fixation, are oxidized to meet autotrophic respiration (R,) require-
ments with constraints from O, uptake. Oxidized carbon is first
used to meet requirements for maintenance respiration (Ry,), then

QSUAIIT SuOWWo)) dANea1) a[qeardde oy £q PAUIIAOS a1 SI[INIE Y 9N JO SI[NI 10 A1eIqIT SuUI[uQ KI[IA\ UO (SUONIPUOD-PUR-SULId) /W0’ KA[IM” KIRIqI[our[uo//:sdny) Suonipuo)) pue swaf, Ay 23S *[£20z/90/0¢] uo Kreiqry auruQ Loip ‘uSreduwrey) eueqin 1y swour(y JO ANs1oAtun £q 7€991°qd8/1 111 01/10p/wod K3im’ K1exqraurjuo//:sdny woij papeopumo( ‘6 ‘€707 ‘98+7S9E T



QIN ET AL.

the excess oxidized carbon is used for growth respiration (RG) to
drive biosynthesis according to organ-specific growth efficien-
cies. Litterfall is simulated from remaining biomass subtracting re-
moved grain carbon after harvest and from biosynthesis products
which is caused by senescence when R, <R,,.

2.2.2 | Decomposition and heterotrophic
respiration (R,,) in ecosys

Ecosys simulates carbon transformations in the soil based on differ-
ent SOC pools (Figure 1). Plant litterfall and animal manure repre-
sent fresh organic carbon inputs of the model. Fresh organic carbon
is added to a litter pool of different complexes (i.e., carbohydrate,
protein, cellulose, and lignin) and then goes through decomposition
processes (Grant et al., 1993a, 1993b). Litter complexes could trans-
fer to the particulate organic carbon (POC) pool through fragmen-
tation (Grant et al., 2001). Dissolved organic carbon (DOC) pool in
ecosys is produced by hydrolysis of litter pools, POC, root exudates,
and mineral-associated microbial products. Ecosys simulates decom-
position of carbon through two types of microbes (i.e., aerobic and
anaerobic) by Michaelis-Menten kinetics. The decomposition rates
vary with microbes and organic complexes. In ecosys, upon microbial
mortality, some fraction of microbial carbon is recycled, some goes to
microbial residue, and the remaining become mineral-associated mi-
crobial product as a function of clay content. R, R,, and R in soils are
calculated in the same way that they are calculated in plants. Soil car-
bon is returned to the atmosphere as CO, through aerobic microbes
and as CH,, through anaerobic microbes, although CH, emission is a
very small fraction in the US Midwest maize-soybean rotation sys-
tems compared to other carbon fluxes (Omonode et al., 2007).

To assess the cover crop impacts on SOC, we consider a holistic
carbon balance of the agroecosystem for a certain period (e.g., mul-
tiple years). Specifically, cover crops not only add NPP (Net Primary
Production) of cover crops that leads to the increase in SOC, but also
affect other carbon fluxes relating to cash crops and the soil. Therefore,
to comprehensively assess the cover crop impacts on SOC, itis not only

necessary but a must to holistically assess the whole carbon balance of

ST w1

the agroecosystem, including cover crop carbon fluxes, cash crop car-
bon fluxes, and soil carbon fluxes. From a long-term perspective, SOC
change (A SOC) can be estimated by carbon input to the ecosystem less
the carbon output from the ecosystem (i.e., R,, carbon leaching and
CH, flux). Accordingly, we quantified the impacts from cover crops on
A SOC through each carbon flux in Equation (1):

ASOC =litterfall - Ry — CHg — Ciopching + €
=(NPP—harvest) R,y — CHy — Cieaching + € (1)
=(GPP—R, —harvest) — Ry — CH, — Cieaching + €

where litterfall represents fresh litter input to the soil (i.e., shoot and
root litterfall and root exudation); litterfall can be estimated by NPP
subtracting harvest; where NPP represents net primary production and
harvest represents harvested carbon biomass; NPP can be calculated
by GPP subtracting R,, where GPP represents gross primary produc-
tion and R, represents autotrophic respiration; R, represents hetero-
trophic respiration; CH,, represents CH, emission from the soil; Cieching
represents the leaching inorganic and organic carbon through surface
runoff and subsurface discharge, e represents other small carbon fluxes.

SOC change calculated from Equation (1) shall only be applied to
long-term estimations. In soil science, litterfall may not be defined
as SOC until the breakdown of large compounds. Therefore, ASOC
estimated from Equation (1) has larger seasonal variations due to the
inclusion of litterfall. This large variation results from the growth and
termination of the plants. Considering the long-term crop rotation
systems, we can assume that litterfall inputs are relatively steady
for each rotation. From a long time span (>5years), ASOC can be as-
sessed by Equation (1) with confidence once each term in the equa-
tion was validated. In addition, Equation (1) can be used to assess
the impacts from cover crops on each carbon flux that contributes
to SOC benefits.

2.3 | Study sites

Measurements from eight field experiment sites in Illinois were

used to calibrate and validate the ecosys model and to further
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assess the SOC benefits from cover crops (Figure 2). The Morrow
Plots (MR in Figure 2), located in central lllinois, are one of the old-
est research fields with continuous measurement of SOC for the
upper 0.15m (Bergh et al., 2022). The soil in the Morrow Plots is
a Flanagan silt loam (fine, smectitic, mesic Aquic Argiudoll). Long-
term SOC concentration data from 1913 to 2020 of continuous
maize rotations with different fertilization managements were
used to calibrate ecosys for monitoring long-term SOC change
(Aref & Wander, 1997). Two types of fertilizer management are
included in our study: (1) Manure applied annually for the whole
period, and (2) N fertilizer applied annually after manure annually
since 1967 (Morrow Plots Data Curation Working Group, 2022;
Nafziger & Dunker, 2011).

The cover crop experiment site (DSO2 in Figure 2) was estab-
lished from 2000 to 2012 on the Grantsburg silt loam soil (fine-silty,
mixed, mesic Typic Fragiudalf). Cereal rye and hairy vetch were
planted in the maize-soybean rotations with three types of tillage
application (i.e., no-till, moldboard plow, and chisel plow). SOC stock
was continuously measured to 0.75m depth during the experiment
period (Olson et al., 2010, 2014).

The other six cover crop sites across lllinois (i.e., MN, DK, UR,
BT, CA, and DS) were established from 2013 to 2018 and have
been validated with cash crop yield and cover crop biomass carbon
(Qin et al., 2021). These sites were planted with different rota-
tions of winter cover crops (Villamil & Nafziger, 2019). Specifically,
there were three rotation systems, including (1) without-cover-
crop (maize-soybean rotations), (2) non-legume-preceding-maize
(maize-annual ryegrass-soybean-annual ryegrass rotations), and
(3) legume-preceding-maize (maize-cereal rye-soybean-hairy
vetch rotations). These six cover crop sites were also used in fur-
ther sensitivity analysis to reveal the control factors of SOC ben-

efits from cover crops.

2.4 | Model setup and model calibration

241 | Model setup and data inputs

The model was set up according to field management records. For
the Morrow Plots, we ran the ecosys model for 125years from
1897 to 2021, with 1897-1912 as the model initialization period
and 1913-2020 as the analysis period. During the analysis period,
different fertilization rates were applied to the continuous maize
rotation systems according to the Morrow Plots records. The ini-
tial condition of soil for model input was from the Gridded Soil
Survey Geographic Database (gSSURGO) database, and initial
SOC (0-0.15m) at the Morrow Plots was from field measurements
(Aref & Wander, 1997). The climate data were from National
Centers for Environmental Information (NCEI) at daily time step
and from the North American Land Data Assimilation System 2
(NLDAS-2) at hourly time step for the period of 1913-1978 and
1978-2021, respectively (NASA, 2021; NOAA, 2022). Nitrogen
deposition took up a significant portion of total nitrogen input for
the system in the long-term simulations and the nitrogen deposi-
tion data were derived from the national atmospheric deposition
program (NADP, 2022).

For the DS02 site, the model was set up with 1984-1999 as
model initialization period and 2000-2012 as the analysis period.
Field management practices in the ecosys model were set up with
six scenarios following field records including with- and without-
cover-crop rotation systems under three types of tillage applications
(Table S1). For the six cover crop sites (MN, DK, UR, BT, CA, and DS),
we set up the model from 1987 to 2020 with 1987 to 2012 as model
initialization period and 2013-2020 as the analysis period with three
different rotation systems. The climate data for these sites were

from NLDAS-2 at hourly step and initial soil conditions were from

(a) (b) Mean annual precipitation in IL (mm) 1250 (¢) Mean annual temperture in IL (°C)
14
7] DK 1200 42 1 DK \
. .
46.0°N .
13
- A MN 1150
aon{ 8 . 4 ° 41
1100 2
420°N : AVET © © |
L =
B 1050
40.0°N ] : u
S = \CEESSY' P ) 39 1
1000
38.0°N
10
. - ; 38 Loso 38
95.0° W 90.0° W 0°W
9
502 L 900
! , ] 7 £
0 20 40 60 ) 100 ; . ; ; ; . . .
Plant area fraction of Corn & Soybean (%) -9 -90 -89 -88 = -91 -90 -89 -88

FIGURE 2 (a)Spatial distribution of plant fraction of maize and soybean in the US Midwest (USDA, NASS, 2021). (b) Mean annual
precipitation in lllinois, and the selected site locations. (c) Mean annual temperature in lllinois, and the selected site locations. Sites in blue color
are sites with SOC measurements and are used to calibrate and validate long-term SOC change; Sites in black color have cover crop trials and
are used to assess the impacts of different factors on SOC benefits from cover crops. [Colour figure can be viewed at wileyonlinelibrary.com]

A 6 °€T0T "98YTSIET

:sdny woiy

QSUAIIT suoWWo)) dANea1) a[qeardde oy £q PAUIIAOS a1 SI[INIE Y 2SN JO SI[NI 10] A1eIqIT SuUI[uUQ KI[IA\ UO (SUONIPUOD-PUR-SULId)/WIOd" KA[1m” KTRIqI[our[uo//:sd)y) SUONIPUO) puk SWI, A 23S *[£707/90/0¢] U0 A1eiqry auruQ A3Ip ‘uSteduwrey) eueqin 1y stour(y JO ANs1oATUN £q 7€991°q95/1 111 01/10p/WoY K[Im"


https://onlinelibrary.wiley.com/

QIN ET AL.

gSSURGO database with initial SOC concentration data from mea-

surements (0-0.75m for DS02 and 0-0.9 m for six cover crop sites).

2.4.2 | Model calibration and validation

We calibrated and validated the ecosys model for the study sites
using field measurements (Table 1). The Morrow Plots have long-
term measurements of SOC concentrations for over a century, and
these data were used to calibrate and validate model performance
in simulating long-term SOC change. The SOC concentration meas-
urements were separated into validation dataset and calibration
dataset. We used the data from plots with manure applied annually
for the whole period for calibration, and the data from plots with N
fertilizer applied annually after manure annually since 1967 for vali-
dation. We calibrated two parameters, that is, “plant maturity group”
and “maximum kernel number,” for every 20years; this was done to
match the general increasing trend of the harvest index of maize for
the past century (Sinclair, 1998). “Plant maturity group” is a param-
eter that refers to the total number of leaf primordia (i.e., groups
of cells that develop into leaves) that differentiate into specific leaf
parts after seeding for annual crops, and “maximum kernel number”
is a parameter that represents the maximum number of grain ker-
nels per fruiting site, which depends on post-anthesis growth in the
ecosys model.

The measurements from the DSO2 site were used to calibrate
and validate ecosys simulation of SOC benefits from cover crops.
We calibrated the model with multi-year averaged cash crop yield
data, and then validated the model performance with SOC change
data for 0-0.75m. It is worth noting that ecosys does not require
users to calibrate its soil parameters, including soil physical and
biogeochemical processes whose parameterization has been
evaluated in many previous studies and have demonstrated very
consistent and good performances under various environmental
conditions (Grant et al., 2011, 2020; Zhou et al., 2021). For the
six cover crop sites (MN, DK, UR, BT, CA, and DS), maize and soy-
bean yield and cover crop biomass from 2013 to 2018 had been
calibrated with multi-year averaged cash crop yield and cover
crop biomass data, and then the model was validated with annual
crop yield and cover crop biomass data. Ecosys showed the capa-
bility to accurately simulate interannual variability in cover crop
growth as well as cash crop productivity (Qin et al., 2021). The
satisfactory validation performance of the ecosys model provides
confidence to use it for further assessments of SOC benefits from
cover crops.

It is worth noting that the soil decomposition process simulated
in ecosys is microbial-explicit, considering interactions between
heterotrophs and autotrophs regulate the soil carbon, nitrogen,
and redox dynamics. For the SOC calibration and validation, we
only calibrated plant-related parameters and kept the parameter-
ization of soil biogeochemistry that has been used in past studies
(Grant, 1997; Grant et al., 1993a, 1993b, 2020) involved in decom-
position processes.

TABLE 1 Model calibration and validation details.

Sites for calibration

Calibrated parameters

Validation

Calibration

Purpose of calibration and validation

ST i 7

Morrow plots (MR)

We calibrated the model with multi- We validated the model with SOC For maize: Plant maturity group;

To calibrate model performance

concentration data in plots with maximum kernel numbers (same

year averaged yield and SOC

for simulating long-term SOC

concentration

parameters every 20years for all

scenarios)

N fertilizer applied annually after
manure annually since 1967

concentration data in plots with

manure applied annually for the

whole period

Dixon Springs cover crop site

For maize and soybean: Plant maturity

We validated the model with measured

We calibrated the model with multi-

To calibrate model performance for

(DS02)

group; maximum kernel numbers

SOC change and SOC benefits

from cover crops

year averaged cash crop yield

simulating SOC benefits from

cover crops

MN,

Six cover crop sites in IL (

We validated the model with annual For maize and soybean: Plant maturity

We calibrated the model with multi-

To constrain the model with yield and

DK, UR, BT, CA, and DS)

group; climate zone. For cover
crops: Plant maturity group;

crop yield and cover crop biomass

(Qin et al., 2021)

year averaged cash crop yield and

biomass data at six cover crop sites

for further assessments

cover crop biomass (carbon input

the system)

climate zone (same parameters for
all the years and all scenarios for

each site)
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2.5 | Model sensitivity analysis to assess the
impacts of climate during the cover crop growth
period

We ran the ecosys model with different climate conditions dur-
ing the cover crop growth period to test climate impacts on SOC
benefits from cover crops. We applied change (i.e., -2°C, -1°C,
+1°C, +2°C) to hourly temperature from September 15 to next
year April 30 for the period of 2013-2020 for the six cover crop
sites in lllinois. Climate data inputs to drive the model for the re-
maining time of year (i.e., May 1-September 14) were not changed
and other management settings were based on the site-specific
practices as described above. Climate change factors were ap-
plied to two rotations including with- and without-cover-crop
conditions (i.e., maize-soybean rotations and maize-annual rye-
soybean-annual rye rotations). SOC benefits from cover crops
with each climate change factor were calculated as differences
of SOC change between with- and without-cover-crop conditions
accordingly. Similar to sensitivity analysis for temperature during
the cover crop growth period, we applied a multiplier (i.e., 0.75,
1.5) to hourly precipitation during the cover crop growth period
and used the same method to compare SOC benefits from cover
crops.

2.6 | Model sensitivity analysis to assess the
impacts of different planting and terminating time

We set up the ecosys model with different planting and termination
time at the MN site from 2013 to 2020. Specifically, we set up four
different cover crop planting dates (i.e., September 15, September
30, October 15, and October 30) and four different terminat-
ing dates (i.e., April 1, April 10, April 20, and April 30) in the eco-
sys model. Different planting and terminating time were applied to
maize-annual ryegrass-soybean-annual ryegrass rotations. Inputs
of climate and soil data and other management settings were based
on the field practices at the MN site.

3 | RESULTS

3.1 | Evaluate the ecosys model performance for
long-term SOC simulation

3.1.1 | Morrow plots

Ecosys performed well in simulating long-term SOC change at the
Morrow Plots (Figure 3a-c). We found that the ecosys model has
the ability to simulate long-term SOC change under different fer-
tilization practices by comparing the simulated and measured SOC
concentration. The differences in SOC change between two plots
were induced by different fertilization practices. From the field
measurements, we found that during 1913-1967, both plots exhibit

decreasing trends in SOC concentrations, but with more rapid de-

creases in plots with manure applied annually for the whole period.

3.1.2 | Dixon Springs (DS02)

In addition to the centennial changes in SOC at the Morrow Plots,
we also validated the ecosys model for its ability to simulate SOC
change (multi-year averaged) for the cover crop experimental site
at the DS02 site (Figure 3d). Simulation of SOC change at the DS02
site from 2000 to 2012 was validated under both with- and without-
cover-crop conditions. We found that cover crops could significantly
(at 95% confidence level) bring SOC benefits by 0.4 MgC ha™ year™
and 0.48 MgC ha™ year™ from ecosys simulations and field experi-
ments, respectively. The consistency between the ecosys simula-
tions and field-measured SOC change demonstrated that ecosys has
the ability to accurately simulate both SOC change and SOC benefits
from cover crops.

3.2 | Quantify SOC benefits at six cover crop sites
(MN, DK, UR, BT, CA, and DS)

After careful calibration and validation of ecosys in simulating
SOC change and SOC benefits, we quantified SOC benefits from
cover crops at six cover crop sites (MN, DK, UR, BT, CA, and
DS) in lllinois. The ecosys simulation results showed that during
2013-2020, planting winter cover crops could bring SOC benefits
(multi-year averaged) by 0.33+0.06 MgC ha™! year™ (Figure 4).
Specifically, SOC benefits from cover crops are 0.38 +0.06 MgC
ha™! year™ and 0.28 +0.05 MgC ha™* year™* under non-legume-

preceding-maize and legume-preceding-maize conditions,
respectively.
3.3 | Cover crop impacts on carbon budget in the

central US Midwestern agroecosystems

The carbon budget of the six cover crop sites (MN, DK, UR, BT, CA,
and DS) under with- and without-cover-crop conditions demon-
strated that planting cover crops could benefit SOC by introducing
additional net carbon input to the systems (Figure 5). On average,
4.17 +0.37 MgC ha! year™ of grain carbon was harvested and re-
moved from the without-cover-crop conditions in the maize years
and 1.70+0.16 MgC ha™ year'1 in the soybean years, accounting for
alarge portion of the carbon output in the system. Cover crops could
increase carbon input by bringing additional biomass of 1.51+0.25
MgC ha™! year™® under the non-legume-preceding-maize condition,
and 0.94+0.27 MgC ha! year™ under the legume-preceding-maize
conditions.

However, SOC benefits from cover crops were much smaller
than cover crop biomass. Increased carbon input in the cover crop
systems was partially offset by increased carbon oxidation which
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FIGURE 3 (a) Ecosys simulated and field-measured SOC concentration in topsoil (0-0.15m) at the Morrow Plots in lllinois with continuous
maize rotations and different fertilization practices over the last century. Manure applied annually for the whole period: 4.5 Mg ha’lyear’1
of manure (45% carbon with C:N ratio of 30) from 1913 to 2020; N fertilizer applied annually after manure annually since 1967: 4.5 Mg
hatyear™ of manure (45% carbon with C:N ratio of 30) from 1913 to 1967; 336 kgNha*year™ from 1968 to 1998; 224 kgN ha™! year™

from 1999 to 2020 (Aref & Wander, 1997). The error bars represent the assumed uncertainty level of the measurements (assumed 10%
uncertainty). (b) Scatter plot of ecosys simulated and field-measured SOC concentration from 1913 to 2020 at the Morrow Plots for plots
with manure applied annually for the whole period (calibration dataset). (c) Scatter plot of ecosys simulated and field-measured SOC
concentration from 1913 to 2020 at the Morrow Plots for plots with N fertilizer applied annually after manure annually since 1967 (validation
dataset). (d) Ecosys simulated and field-measured SOC change (multi-year averaged) of 0-0.75m at the DS02 site from 2000 to 2012; The
error bars represent standard deviation among plots of different tillage practices. [Colour figure can be viewed at wileyonlinelibrary.com]

results in increased R,,. Meanwhile, the negative impacts of non- 3.4 | Factors that affect SOC benefits from

legume cover crops on maize yield also offset the SOC benefits
from cover crops. Therefore, increased R, and reduced maize yield
after non-legume cover crops could offset the SOC benefits from
cover crops. The impacts of different factors on SOC benefits are
discussed in the following sections.

cover crops

SOC benefits from cover crops vary among different sites and differ-
ent factors lead to these variations. We investigated four major fac-
tors that influence SOC change or SOC benefits from cover crops,
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FIGURE 4 Map of SOC concentration distribution in lllinois and ecosys simulated SOC stock (0-2m) at six cover crop sites (MN, DK, UR,
BT, CA, and DS) in lllinois from 2013 to 2020 with three rotation systems (1) without-cover-crop (maize-soybean rotations), (2) non-legume-
preceding-maize (maize-annual ryegrass-soybean-annual ryegrass rotations), and (3) legume-preceding-maize (maize-cereal rye-soybean-
hairy vetch rotations). The SOC stock in this figure excludes residue carbon pool. [Colour figure can be viewed at wileyonlinelibrary.com]

including (1) initial soil properties (e.g., SOC stock and clay content),
(2) cover crop types, (3) climate during the cover crop growth period,
and (4) cover crop planting and terminating time. Initial soil proper-
ties are important indicators for SOC change while the other three
factors can affect cover crop biomass that directly controls the SOC
benefits (see Section 3.4.1).

3.4.1 | Factor 1: Initial soil properties (e.g., SOC
stock and clay content)

We found that initial SOC stock and clay content play important roles
in quantifying SOC change. From the ecosys simulation, we found

that SOC change is negatively correlated with initial SOC stock
(Figure 6a) and positively correlated with clay content (Figure S1),
indicating that the decomposition rate is faster when the SOC stock
is larger, or clay content is lower. Soils with larger initial SOC nor-
mally contain larger microbe populations thereby increasing R,. For
the without-cover-crop conditions at our study sites, the fitted lin-
ear slope of the SOC benefits to cover crops with initial SOC stock
(Figure 6a) is -0.0023, indicating 0.23% of the initial SOC stock
(0-2 m) is lost as CO, annually in this system. As for soil clay con-
tents, earlier studies have shown that decomposition rates decrease
with higher clay contents, because clay mineral associations reduce
the physical accessibility and chemical availability of SOC to decom-
posers (Epstein et al., 2002).
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FIGURE 6 (a)Relation between ecosys simulated SOC change (0-2m, multi-year averaged) and initial SOC stock (0-2m) at six cover crop
sites (MN, DK, UR, BT, CA, and DS) in lllinois from 2013 to 2020. Each point represents one rotation at one site, the points with green color
represent non-legume-preceding-maize conditions, the points with blue color represent legume-preceding-maize conditions, and the points
with red color represent without-cover-crop conditions. (b) Relation between ecosys simulated SOC benefits from cover crops (multi-year
averaged) and initial SOC stock at six cover crop sites in lllinois from 2013 to 2020. [Colour figure can be viewed at wileyonlinelibrary.com]
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Meanwhile, we found that initial SOC stock and clay content are
not closely correlated with SOC benefits from cover crops. From
the simulation results (Figure 6b), we found that the impacts on
SOC benefits from initial SOC stock are not significant (r?<0.05).
Although initial SOC stocks and clay content are important indi-
cators for SOC change, they have relatively small impacts on SOC
benefits from cover crops. One possible reason is that larger initial
SOC stock under with- and without-cover-crop conditions both lead
to faster SOC loss with a similar magnitude, leading to the similar
relative difference of SOC change between conditions with different
initial SOC stocks (Zhou et al., 2023). Therefore, SOC benefits from
cover crops are much less sensitive than SOC change in response to
initial SOC stock.

3.4.2 | Factor 2: Cover crop types
From the model simulation, we found that SOC benefits from cover
crops are species specific. We found that SOC benefits are positively
correlated with cover crop biomass (combined above- and below-
ground biomass), since cover crops bring SOC benefits by adding ad-
ditional carbon to the system (Figure 7a). Our results showed that
non-legume-preceding-maize conditions have larger average SOC
benefits due to larger biomass of non-legume cover crops. Non-
legume cover crops can develop larger biomass during winters in the
US Midwest since they are more cold tolerant, leading to larger aver-
age SOC benefits than legume cover crops.

SOC benefits per unit cover crop biomass also differ among
different cover crop species. For each rotation, we estimated SOC
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(b

benefits per unit cover crop biomass as the linear slope of the sim-
ulated SOC benefits to cover crop biomass (assuming no intercept).
The SOC benefits per unit cover crop biomass, that is, defined as
“biomass-to-SOC-benefit conversion rate” is 0.22 and 0.28 for non-
legume-preceding-maize and legume-preceding-maize conditions,
respectively (Figure 7a). Although non-legume cover crops have
larger SOC benefits, legume cover crops have larger biomass-to-SOC-
benefit conversion rates. The reason is that residues of non-legume
cover crops have larger C:N ratios than legume cover crops (Zhang
etal., 2022), which might lead to immobilization of N (Qin et al., 2021).
Insufficient N in the soil has negative impacts on maize growth, result-
ing in smaller maize productivity, which partially offsets the SOC ben-
efits from cover crops. Overall, we found that non-legume cover crops
contribute to larger SOC benefits in the US Midwest agroecosystems
unless larger biomass of legume cover crops is achieved.

Larger root: shoot ratio of cover crops increases SOC benefits
from cover crops from our simulation results. Cover crop biomass
comprises a significant portion of root biomass. Our results showed
that the cover crop root: shoot ratio, which is calculated as cover
crop root biomass carbon divided by cover crop shoot biomass car-
bon, varies from 0.15 to 0.55 at six cover crop sites from 2013 to
2020 (Figure S2). We found that the biomass-to-SOC-benefit con-
version rate is positively correlated with cover crop root: shoot ratio
(Figure 7b), indicating that if the cover crop biomass is allocated more
to belowground than aboveground, the SOC benefits could be larger.
The reason could be that belowground biomass is more stable than
aboveground biomass and has longer mean residence time of SOC
(Berhongaray et al., 2019; Lavallee et al., 2018). Therefore, larger SOC
benefits are achieved when cover crops develop more root biomass.
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FIGURE 7 (a)Relation between ecosys simulated SOC benefits from cover crops (multi-year averaged) and cover crop biomass (multi-year
averaged) at six cover crop sites in lllinois from 2013 to 2020. Each point represents one rotation at one site, the points with green color represent
non-legume-preceding-maize conditions, and the points with blue color represent legume-preceding-maize conditions. (b) Relation between ecosys
simulated biomass-to-SOC-benefit conversion rate (multi-year averaged) and cover crop root:shoot ratio (multi-year averaged) at six cover crop
sites in lllinois from 2013 to 2020. Each point represents one rotation at one site. [Colour figure can be viewed at wileyonlinelibrary.com]
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3.4.3 | Factor 3: Climate during the cover crop
growth period

We found that temperature and precipitation during the cover
crop growth period control cover crop growth and thereby affect
SOC benefits. Our sensitivity analysis using ecosys revealed the
impacts on carbon budgets from climate during the cover crop
growth period (Figure 8). Specifically, we found that warmer cover
crop growth period leads to larger cover crop biomass, and thus
leading to larger SOC benefits. Higher temperature during the
winter and early spring resulted in larger cover crop biomass, par-
tially offset by a larger R, due to stimulated microbe activities dur-
ing the same period (Figure 8a). Our results showed that warmer
winters overall have positive impacts on SOC benefits, indicating
that the increase in SOC decomposition rates (carbon output) does
not exceed the increase in cover crop productivity (carbon input).
Under the challenge of climate change, warmer winters could lead
to larger SOC benefits from cover crops. Specifically, our results
showed that SOC benefits from cover crops increase on average
by 0.05 MgC ha™ year™ for a 2°C air temperature increase in the

cover crop growth period.
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The influences of precipitation during the cover crop growth pe-
riod on SOC benefits from cover crops in our study sites were not sig-
nificant, which have the mean annual precipitation ranging from 910
to 1320 mm/year (Figure 8b). Through the sensitivity analysis for pre-
cipitation, we found that in lllinois sites the impacts on SOC benefits
from higher precipitation are not significant through a t-test (p<.01).
Larger precipitation during the cover crop growth period may reduce
cash crop NPP, because the larger precipitation leads to increased
soil moisture, which causes oxygen stress in the early growth stage
of cash crops. Higher precipitation also results in oxygen stress for
microbial decomposition and thereby reducing R,; from the simulation
results. In summary, combined effects from increased precipitation

during the cover crop growth period are complex and site specific.

3.4.4 | Factor 4: Cover crop planting date and
terminating time

Longer cover crop growth period can increase SOC benefits from
cover crops. We found that earlier planting and later terminating re-

sult in larger cover crop biomass, thus leading to larger SOC benefits
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FIGURE 9 Ecosys simulated SOC benefits from cover crops (multi-
year averaged) under non-legume-preceding-maize conditions from
2013 to 2020 with different cover crop planting and terminating time
at MN site. [Colour figure can be viewed at wileyonlinelibrary.com]

from cover crops. When the cover crop growth period is expanded by
50% from 5 to 7.5months, SOC benefits from cover crops increase
by 266% from 0.15 to 0.55 MgC ha™ yea\r’1 (Figure 9). Earlier plant-
ing and later terminating allow cover crops to achieve larger biomass,
which directly benefits SOC but has the risk of reducing maize yield
and maize residue (Qin et al., 2021). In addition to the competition for
resources (e.g., N, water, and oxygen), the allelopathy effects of win-
ter cover crops may also negatively affect cash crop growth (Koehler-
Cole et al., 2020). Allelopathy effects suggest that chemicals released
by cover crops into the soil may inhibit the growth of following cash
crops (Zhang et al., 2021), which could be another reason for the
trade-off between cover crop biomass and cash crop yield.

4 | DISCUSSION

4.1 | Comparing the simulated SOC benefits from
cover crops with prior studies

In this study, we used ecosys to quantify the SOC benefits from
cover crops after rigorous calibration and validation with various
long-term field experiment data. Validation of SOC data at the
Morrow Plots demonstrates the capability of the ecosys model
to capture long-term SOC change. Ecosys also performed well in
modeling SOC change in winter wheat rotations over 70years at
the Breton plots in Grant et al. (2020). Accurate modeling SOC
change in long-term agricultural systems builds the foundation
for further assessments for SOC benefits. Then the validation of
SOC change under with- and without-cover-crop conditions at the

DSO02 site assures the model capability in accurate quantification
of SOC benefits from cover crops. We found that ecosys simula-
tions not only match the SOC observations, but also reproduce
the responses of SOC change to environmental factors (i.e., ini-
tial soil conditions and climate during cover crop growth period),
which enables further assessment to optimize cover crop planting
strategies.

We also found from the field data that SOC concentrations of
surface soils decreased at the Morrow Plots over the last century,
especially for the first several decades after the start of cultivation.
Studies have now reached the consensus that intensive agriculture
increases the carbon release from soil to the atmosphere (Lal, 2002;
Miles & Brown, 2011), which stressed the need to incorporate con-
servative practices, such as cover crops, to slow down the SOC de-
creasing trends.

SOC benefits from cover crops in the model simulations are also
compared with various meta-studies (Table 2). Average SOC bene-
fits from cover crops in the ecosys simulations averaged 0.33 MgC
hatyear™ and 0.40 MgC ha™ year™ for multiple types of cover crops
at six cover crop sites and for the DSO2 site, respectively. Overall,
our results of SOC benefits are consistent with results of meta-
studies, demonstrating the ecosys model as an effective tool in accu-
rately quantifying SOC benefits from cover crops at the field-scale
under different conditions in climate and soil properties. Meanwhile,
we found that SOC benefits from cover crops have a large variation
in meta-studies: the mean SOC benefits from cover crops reported
by Jian, Du, and Stewart (2020), Jian, Du, Reiter, and Stewart (2020)
and Abdalla et al. (2019) are twice as much as what was reported by
McClelland et al. (2021). One possible reason is the differences in
the depth of measurements included in the study. Surface soils and
subsurface soils have different responses after planting cover crops.
Our modeling results showed that surface SOC increases in with-
cover-crop conditions compared to without-cover-crop conditions
(Figure S3). However, in deeper soil layers (>0.3 m), we found that
the SOC stock decreases in with-cover-crop conditions compared to
without-cover-crop conditions (Figure S3). This pattern is consistent
with former studies (Jian, Du, Reiter, & Stewart, 2020; Jian, Du, &
Stewart, 2020; Tautges et al., 2019). Due to the opposite directions
of SOC benefits from cover crops in different soil layers, if measure-
ments are only conducted in surface layers, SOC benefits from cover
crops could be exaggerated. However, even taking account of differ-
ences in measurements, we could not neglect the large uncertain-
ties in SOC benefits from cover crops in current studies. This large
variation in different studies further stressed the need for accurate
quantification of field-scale SOC benefits from cover crops.

In addition to the SOC benefits, cover crops could also benefit
the soil environment from other perspectives. We found from the
simulations that microbial biomass carbon increased with cover
crops (Figure S4), which is consistent with former studies finding im-
provements in soil fertility (Alvarez et al., 2017; Fageria et al., 2005;
McDaniel et al., 2014). Studies also reported that cover crops could
reduce cash crop root disease, slow down soil erosion, and improve
soil physical properties (Abdalla et al., 2019; Alvarez et al., 2017; De
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TABLE 2 Comparison of ecosys simulated SOC sequestered by cover crops with meta-studies.

SOC benefits from cover

crops (MgC ha-1 year-1)

Source

Depth

Region

Number of studies Number of sites

Uncertainty

Mean

Poeplau and Don (2015)

Abdalla et al. (2019)

A mean soil depth of 0.22m

Worldwide
Worldwide
Worldwide

139
372

0.08 37

0.57

0.32

Meta-studies

Normalized to 0-0.3 m
Different depth

106
131

0.54
0.56

Jian, Du, Reiter, and Stewart (2020), Jian,

1195

Du, and Stewart (2020)

Mcclelland et al. (2021)

Different depth

Temperate latitude zone

181

40

0.21

SOC benefits from cover crops (MgC ha™ year™)

Depth Original field study

Uncertainty Region

Mean

Behnke and Villamil (2019)

Olson et al. (2014)

0-2m

Six sitesin IL

0.06?

0.33
0.4

Model simulation

0-0.75m

Dixon springs, IL

0.04°

dUncertainty is calculated as standard deviation among different rotations in different sites.

PUncertainty is calculated as standard deviation among plots with different tillage practices.
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Baets et al., 2011; Wen et al., 2017), which have not yet been ex-

plored by the ecosys model but are worth further studies.

4.2 | Mechanistic pathways of SOC benefits from
cover crops

SOC benefits from cover crops and SOC change are controlled by
four major controlling factors (Figure 10), including (1) initial soil
properties (e.g., SOC stock and clay content), (2) cover crop types,
(3) climate during the cover crop growth period, and (4) cover crop
planting and terminating time. Among these factors, initial soil prop-
erties have small influence on SOC benefits from cover crops but are
important indicators for SOC change. The other three factors (i.e.,
cover crop types, climate during the cover crop growth period and
cover crop planting and terminating time) control SOC benefits from
cover crops. Growing cover crops not only adds net carbon input
to the system, but also affects cash crop growth and soil microbe
activities (Kim et al., 2020).

Higher temperature during cover crop growth period, selecting
cold-tolerant cover crop species, earlier planting and later termi-
nating all contribute to larger cover crop biomass, thus leading to
larger SOC benefits from cover crops. We used the holistic carbon
budget of the farmland to analyze the impacts on SOC benefits
from different factors on their interactive controls and direct con-
trols (i.e., carbon input and carbon output). By taking into account
different carbon fluxes of the whole agroecosystem, we assessed
the impacts from cover crops on carbon cycle through carbon
fluxes from cover crops, cash crops, and the soil (i.e., R,;). Non-
legume cover crops that are more cold tolerant directly contribute
to larger cover crop biomass that increases SOC. Meanwhile, cover
crops with larger root biomass that have longer mean residence
time in the soil also result in larger SOC benefits due to smaller R,,.
As for climate, the increase in cover crop biomass outweighs the
increase in R, in response to increased temperature during cover
crop growth period. The impacts from precipitation during cover
crop growth period on SOC benefits are not significant in lllinois
study sites with wet springs due to combined effects on reduced
crop residue and reduced R,,. It is also worth noting that larger
precipitation can impact SOC benefits through two different path-
ways in dry sites elsewhere: (1) In contrast to wet conditions, in-
creased precipitation in dry sites can have positive impacts on cash
crop growth by alleviating water stress, thus leading to increased
cash crop residue as carbon input for SOC; (2) Wetter soil could
accelerate decomposition by increasing microbial activity (Kalbitz
et al., 2000), thus leading to increased R, that increases SOC loss.
Finally, earlier planting and later terminating increase cover crop
biomass that leads to larger SOC benefits from cover crops, al-
though there might be a trade-off between cover crop biomass
and cash crop yield (Qin et al., 2021). Overall, increasing carbon
input and reducing carbon output for the cover crop systems could
increase SOC benefits from cover crops and there are different
pathways to achieve that.
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4.3 | Management practices to maximize SOC
benefits from cover crops

We found that cover crops require proper management practices to
achieve larger SOC benefits and minimize potential risks. Our re-
sults showed that management practices (e.g., selecting cover crop
types and controlling cover crop growth period) are major control-
ling factors of SOC benefits from cover crops and cash crop produc-
tion, indicating that cover crop benefits could be maximized through
optimal management practices (Figure 10). Prior survey studies also
showed that larger net profits of cover crops are achieved by more
experienced farmers (Roesch-McNally et al., 2018), emphasizing the
importance of proper management practices for cover crops.
Selecting cover crop types and managing the cover crop growth
period are effective management practices, but the optimal practices
at field level requires further assessment. First, proper management
decisions of cover crops such as cover crop type selection are critical
to maximize SOC benefits and reduce cash crop yield reduction. For
instance, legume cover crops have a smaller negative impact on maize
yield than non-legume cover crops (Qin et al., 2021). However, legume
cover crops are more expensive to plant and less tolerant to cold cli-
mates (CTIC, 2017) and studies have found that legume cover crops
can increase N,O emission, which offsets the SOC benefits on GHG
emission reductions (Basche et al., 2014). Therefore, the suitability of
different types of cover crops can be site specific and requires fur-
ther assessments. Second, optimizing planting and terminating dates
are critical in cover crop management but there is a trade-off between

cover crop biomass and maize yield. Our modeling results found that
longer cover crop growth period increases SOC benefits but has larger
risks of cash crop yield reduction, which is consistent with earlier
studies (Alonso-Ayuso et al., 2018; Balkcom et al., 2015; Chatterjee
et al., 2020), suggesting from the SOC perspective, the increase in
cover crop biomass due to longer growth period exceeded the reduc-
tion in maize residue. However, due to the trade-offs between SOC
benefits from cover crops and cash crop yield, single metric evalua-
tions are not adequate to select proper cover crop type and optimize
cover crop planting and terminating dates. In short, the selection of
cover crop types and planting and terminating date should be deter-

mined with a comprehensive evaluation framework.

4.4 | Economic and policy implication of adopting
cover crops in the central Midwest

To design the optimal management of planting cover crops, one should
take full consideration of both scientific and economic factors, such
as cover crop planting/seed cost, yield impacts on cash crop and cash
crop price, carbon credit payments, government cost-share and other
assistance payment, and co-benefits of cover crops. Such efforts re-
quire field-level assessments with the combination of economic anal-
ysis and ecosystem models. Based on recent meta-studies (Table 2),
we found that compensation for carbon credits alone may not exceed
cover crop costs under current carbon credit prices in voluntary mar-
kets. Average cost of planting cover crops is estimated to be around
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$35-45/acre/year in the US Midwest (Plastina et al., 2018). Financial
incentives for growing cover crops are from two channels at this mo-
ment: direct subsidy from the government's cost-sharing program, and
carbon credit payments from voluntary markets. The former is the
dominant channel and two main federal programs that subsidize cover
crop adoption are Environmental Quality Incentives Program (EQIP)
and Conservation Stewardship Program (CSP). However, only 27% of
approved applications for EQIP received funding in fiscal year 2020
(Congressional Research Service (CRS), 2022). For most small- and
middle-sized farmers who usually cannot get access to professional
guidance in preparing application documents to government grants,
the complicated application procedures of EQIP and CSF cause sig-
nificant hurdles. The newly introduced Pandemic Cover Crop Program
(PCCP) s the only federal-level cover crop supporting program that has
a simple enrollment procedure. However, PCCP only offers a $5/acre/
year discount on growers' crop insurance premium, which is too small
compared to the cost of planting cover crops.

Consequently, adopting cover crops is not yet an economically
sound move for most growers in the central Midwest. Taking lllinois
as an example, a typical lllinois grower who does not enroll in EQIP
or CSP, could only expect to receive a $5/acre/year discount on his
crop insurance premium (lllinois Department of Agriculture, 2022)
and $10-28/acre/year based on California carbon price
(Worldbank, 2022) from selling carbon credits on voluntary markets
assuming there is a buyer who want to purchase it (Table S2). Thus,
at this stage, financial incentives in lllinois for cover crops are not
large enough to cover the planting costs. The net benefits of cover
crops could be even smaller if taking into account possible negative
yield impacts on cash crop, cost for MRV (Monitoring, Reporting and
Verification), and reserved credits by registries for potential GHG
reduction reversal (Bellassen et al., 2015). Therefore, the adoption
rate of cover crop is not expected to increase unless carbon credit
price in voluntary markets rises significantly, or government signifi-
cantly increases economic incentives and technical assistance, or
environmental co-benefits of cover crops (e.g., N leaching reduction,
weed suppression and soil erosion reduction) could be monetized.
In other US states that succeed in promoting cover crops, such as
Maryland, governments offer cost-sharing subsidies to cover crops
up to $75/acre (Maryland Department of Agriculture, 2022), which
is sufficient for farmers to plant cover crops in most cases. As a con-
sequence, Maryland has a high cover crop adoption rate of 33% in
2017, much larger than the general adoption rate of 5% in the central
Midwest (USDA NASS, 2019). Therefore, more interventions from
the government and society are urgently needed for promoting the

adoption of cover crops in the central Midwest.

4.5 | Limitation and implication of data
requirements for cover crop modeling study

Accurate quantification of SOC change and SOC benefits from cover
crops are the key to assess cover crop adoption and guide invest-
ment for sustainable agriculture. With more government investment

ST i v

on climate-smart agriculture (Lipper et al., 2014; Paustian et al., 2016;
USDA Press, 2022) and increased private sector's engagement from
the agricultural supply chain for low carbon farming and emerging
carbon markets (Bossio et al., 2020), such a need for more accurate
outcome quantification of conservation practices becomes even more
urgent than ever. Rigorous calibration and validation are required for
any process-based model before their use to quantify SOC benefits
and reliable field data are a prerequisite for that. We highlight the
importance of measuring belowground biomass in cover crop stud-
ies. However, currently there is a scarcity in high-quality field data for
studying cover crop systems, as belowground biomass is seldom meas-
ured (Austin et al., 2017). Our results show that larger belowground
biomass increases SOC benefits but has a large variation among
site-years (Figure 7b and Figure S2). Even though we calibrated and
validated cover crop aboveground biomass, the uncertainties in cover
crop biomass and SOC benefits are non-negligible, stressing the need
for measurements of belowground biomass. Knowing the influence of
belowground-aboveground allocation helps design and select better
cover crops. Models could be further improved in belowground mech-
anisms if additional belowground ground truth data is available.

Field measurements of soil carbon in cover crop studies should also
be conducted to a deeper depth with longer time span. The SOC mea-
surements in most cover crop studies are limited to 0.15-0.30m depth
(Jian, Du, Reiter, & Stewart, 2020; Jian, Du, & Stewart, 2020; McClelland
et al., 2021). Our modeling results also showed that surface SOC and
deep layer SOC have opposite responses to cover crops (Figure S3), urg-
ing the need for field experiments with SOC stock measured to at least
0.6 m. Soil sampling in paired fields with a deep depth reveals the true
SOC benefits from cover crops and avoids risks of exaggerated SOC
benefits. Meanwhile, long-term field experiments (>5years) for cover
crops are also of scarcity (Jian, Du, Reiter, & Stewart, 2020; Jian, Du, &
Stewart, 2020). By modeling long-term cover crop growth, we found
that SOC benefits from cover crops (excludes residue carbon) can ac-
cumulate if cover crops are continuously planted (Figure S5). However,
if cover crop adoption terminated (i.e., followed by winter fallow), SOC
benefits from cover crops may start to decay while the maximum SOC
benefits are reached within 2 years after the termination of cover crops
(Figure S5). We thus suggest having more long-term cover crop experi-
ments that have soil measurements to a deep depth, and these experi-
ment data can help us to improve the ecosys model in simulating cover
crop SOC benefits and further guide field management.

5 | CONCLUSION

In this study, we used ecosys to quantify SOC benefits from cover
crops in maize-soybean rotations in the central US Midwestern
agroecosystems. After rigorous calibration and validation of eco-
sys in simulating SOC change with field-measured data, we as-
sessed SOC benefits from cover crops under different conditions
in climate, soil properties, and management practices. We found
from the simulations that cover crops could bring SOC ben-
efits to lllinois cropping systems of 0.38+0.06 MgC ha™ year™
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in non-legume-preceding-maize conditions and 0.28 +0.05 MgC
ha™ year™ in legume-preceding-maize conditions, respectively. Our
study revealed that different factors control SOC change and SOC
benefits from cover crops, including initial soil properties, cover crop
types, climate during the cover crop growth period, and cover crop
planting and terminating time. Specifically, large initial SOC and low
clay content lead to fast SOC loss but their impacts on SOC ben-
efits are not significant. As for cover crop types, non-legume cover
crops have larger SOC benefits but smaller biomass-to-SOC-benefit
conversion rates compared to legume cover crops in the central
US Midwest. We also found that larger cover crop root biomass in-
creases SOC benefits. Warmer cover crop growth period also leads
to larger SOC benefits from cover crops while the impacts on SOC
benefits from precipitation during the cover crop growth period
are site specific. To maximize SOC benefits and minimize potential
risks, cover crops need to be well managed. Selecting proper cover
crop types and controlling cover crop planting and terminating time
are effective ways to achieve that. Field-level cover crop suitability
assessments are needed to best guide cover crop management for

growers.
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