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ABSTRACT

Guaranteeing runtime integrity of embedded system software is

an open problem. Trade-offs between security and other priorities

(e.g., cost or performance) are inherent, and resolving them is both

challenging and important. The proliferation of runtime attacks

that introduce malicious code (e.g., by injection) into embedded

devices has prompted a range of mitigation techniques. One popular

approach is Remote Attestation (RA), whereby a trusted entity

(verifier) checks the current software state of an untrusted remote

device (prover). RA yields a timely authenticated snapshot of prover

state that verifier uses to decide whether an attack occurred.

Current RA schemes require verifier to explicitly initiate RA,

based on some unclear criteria. Thus, in case of prover’s compro-

mise, verifier only learns about it late, upon the next RA instance.

While sufficient for compromise detection, some applications would

benefit from a more proactive, prevention-based approach. To this

end, we construct CASU: Compromise Avoidance via Secure Up-

dates. CASU is an inexpensive hardware/software co-design enforc-

ing: (i) runtime software immutability, thus precluding any illegal

software modification, and (ii) authenticated updates as the sole

means of modifying software. In CASU, a successful RA instance

serves as a proof of successful update, and continuous subsequent

software integrity is implicit, due to the runtime immutability guar-

antee. This obviates the need for RA in between software updates

and leads to unobtrusive integrity assurance with guarantees akin

to those of prior RA techniques, with better overall performance.

1 INTRODUCTION

Over the past two decades, Internet-of-Things (IoT) devices and

Cyber-Physical Systems (CPS) have become very popular. They

are deployed in many everyday settings, including both private

(e.g., homes, offices, and factories) and public (e.g., cultural, enter-

tainment, and transportation) spaces. They are also widely used

in farming, industrial, and vehicular automation. These devices

often collect sensitive information and perform safety-critical tasks.

Also, in many cases, they are both interconnected and connected

to the global Internet. They are usually implemented atop low-end

microcontroller units (MCUs) that have very stringent cost, size,

and energy constraints, and unlike their higher-end counterparts,

have no (or few) security features. It is thus not at all surprising

that these embedded devices (sensors, actuators, and hybrids) have

become attractive attack targets.

In particular, code injection attacks [1–4] represent a real and

prominent threat to low-end devices. Embedded systems software

is mostly written in C, C++, or Assembly – languages that are

very prone to errors. Code injection attacks exploit these errors to

cause buffer overflows and inject malicious code into the existing

software or somewhere else in the device memory.

Some previous results considered such attacks in low-end devices

and proposed security techniques such as Remote Attestation (RA)

[5–10], as well as proofs of remote software updates and memory

erasure [11–13]. RA aims to detect compromise by authenticated

measurement of the device’s current software state. However, it has

considerable runtime costs since it requires computing a crypto-

graphic function (usually, a Message Authentication Code (MAC))

over the entire software. A recent result, RATA [14], minimized

the cost of RA by measuring a constant-size memory region that

reflects the time of last software modification (legal or otherwise).

RATA achieved that by introducing a hardware security monitor

that securely logs each modification time to that region.

Regardless of their specifics, RA techniques only detect code

modifications after the fact. They cannot prevent them from tak-

ing place. Hence, there could be a sizeable window of time between

the initial compromise and the next RA instance when the compro-

mise would be detected.

To this end, the goal of this paper is to take a more proactive,

prevention-based approach to avoid potential compromise. It con-

structs CASU: Compromise Avoidance via Secure Update, which

consists of two main components. First is a simple hardware secu-

rity monitor that is formally verified. It performs two functions:

(1) blocks all modifications to the specific program memory region

where the software resides, and (2) prevents anything stored outside

that region from executing. It runs independently from (in parallel

with) the MCU core, without modifying the latter. This thwarts all

code injection attacks. However, it is unrealistic to prohibit all mod-

ifications to programmemory, since genuine software updates need

to be installed during the device’s lifetime. Otherwise, the software

could be housed in ROM or the entire device would function as an

ASIC (Application Specific Integrated Circuit). Therefore, CASU

second component is a secure remote software update scheme.

The key benefit of CASU is maintaining constant software in-

tegrity without repeated RAmeasurements while allowing genuine

secure software updates. Specifically, it guarantees that, between

any two successive secure updates, device software is immutable.

However, the device liveness can be ascertained at any time by

repeating the latest update, which essentially represents RA.

The intended contributions of CASU are:

(1) A tiny formally verified hardware monitor that guarantees

benign (authorized) software immutability and prevents the

execution of any unauthorized code.
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(2) A scheme to enable secure software updateswhen authorized

by a trusted 3rd party.

(3) An open-source CASU prototype built atop a commodity

low-end MCU to demonstrate its low cost and practicality.

2 PRELIMINARIES

2.1 Targeted Devices

This paper focuses on CPS/IoT sensors and actuators (or hybrids

thereof) with low computing power. These are some of the smallest

and weakest devices based on ultra-low-power single-core MCUs

with only a few KBytes of memory. Two prominent examples are

Atmel AVR ATmega [15] and TI MSP430[16], with 8- and 16-bit

CPUs respectively, typically running at 1-16MHz clock frequencies,

with ≈ 64 KBytes of addressable memory. Figure 1 shows a typical

architecture of such an MCU. It includes a CPU core, a Direct

Memory Access (DMA) controller, and an interrupt control logic

connected to the memory via a bus. DMA is a hardware controller

that can read/write to memory in parallel with the core. Main

memory contains several regions: Interrupt Vector Table (IVT),

programmemory (PMEM), read-only memory (ROM), data memory

(DMEM or RAM), and peripheral memory. IVT stores pointers to

the Interrupt Service Routines (ISRs), where the execution jumps

when an interrupt occurs; it also contains the Reset Vector pointer

from where the core starts to execute, after a reboot. Application

software is installed in PMEM and it uses DMEM for its stack and

heap. ROM contains the bootloader and/or any immutable software

hard-coded at manufacturing time.

MCUs usually run software atop “bare metal” and execute in-

structions in place, i.e., directly from PMEM. They have neither

memory management units (MMUs) to support virtualization, nor

memory protection units (MPUs) for isolating memory regions.

Therefore, privilege levels and isolation regimes used in higher-end

devices and generic trusted execution environments (e.g., ARM

TrustZone [17] or Intel SGX [18]) are not viable.

NOTE: Our initial implementation of CASU uses MSP430 MCU, a

common platform for low-end embedded devices. One important

factor in this choice is the public availability of an open-source

MSP430 MCU design – OpenMSP430 [19]. Nonetheless, CASU is

readily applicable to other low-end MCUs of the same class.

2.2 Remote Attestation & VRASED

RA, mentioned above, allows a trusted entity (verifier = Vrf) to

remotely measure current memory contents (e.g., software) of an

untrusted embedded device (prover = Prv). RA is usually realized

as a simple challenge-response protocol:

(1) Vrf sends an RA request with a challenge (Chal) to Prv.

(2) Prv receives the request and computes an authenticate in-

tegrity check over its software memory region and Chal.

The memory region can be either pre-defined or explicitly

specified in the RA request.

(3) Prv returns the result to Vrf.

(4) Vrf verifies the result and decides if Prv is in a valid state.

Although several RA techniques for low-end devices have been

proposed, only very few offer any concrete (provable) security guar-

antees. The latter include SIMPLE[8], VRASED [7], and a variant

Figure 1: System architecture of a typical low-end MCU.

of SANCUS[6]. While SIMPLE, as its name suggests, is simple, it

is a purely software-based RA technique (meaning that no hard-

ware modifications are needed) that only protects against remote

attacks and does not support DMA. Whereas, SANCUS is a purely

hardware-based RA technique which, though very fast, incurs a

significant hardware cost over the baseline MCU.

VRASED [7] is a formally verified hybrid (hardware/software)RA

design comprising verified hardware and software sub-modules.

The software sub-module, which is immutable (stored in ROM),

implements the authenticated integrity function computed over

some “Attested Region” (AR) of Prv memory (usually in PMEM).

Meanwhile, its hardware component assures that its software coun-

terpart executes securely and that no function of the RA secret key

(K) is ever leaked. The authenticated integrity function is realized

with a formally verified HMAC implementation from the HACL*

cryptographic library [20] used to compute:

H = HMAC(KDF (K, Chal), AR) (1)

whereKDF (K,Chal) is a one-time key derived from the received

Chal and K using a key derivation function.

NOTE: CASU uses VRASED to verify the update request before it

installs the new software on the device. Specifically, CASU invokes

VRASED to compute equation 1 on the new software and checks

whether H matches an authentication token sent in the update re-

quest. Consequently, CASU update verification inherits the security

properties of VRASED.

2.3 TOCTOU Attacks & TOCTOU-Security

All RA techniques share a common limitation: they yield no infor-

mation about the state of Prv software during the time between

two consecutive RA instances. Consequently, it is impossible to

detect the past presence of transient malware that: (1) infected Prv,

(2) remained active for a while, and (3) at some later time erased

itself and restored Prv software to its “good” state. This holds as

long as (1)-(3) occur between two successive RA instances. This

attack type is referred to as Time-Of-Check Time-Of-Use (TOCTOU).

One recent technique, RATA [14], mitigates TOCTOU attacks with

a minimal additional hardware component that securely logs the

time of the last PMEM modification to a protected memory region

called Latest Modification Time (LMT) that can not be modified by
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any software. LMT is then covered by the RA function. Therefore,

an RA response captures both the current software state of Prv

and the time of change to that state. Furthermore, RATA minimizes

the computational cost of RA for Prv, since, instead of attesting its

entire software, it suffices for Prv to attest just the LMT. This way,

instead of computing a MAC over the entire PMEM, Prv computes

it over a fixed-size (32-byte) LMT region.

NOTE: In this paper, unlike RATA, CASU actively prevents any

modification to PMEMat runtime, unless it is a securely and causally

authorized (by the trusted Vrf) software update.

3 CASU SCHEME & ASSUMPTIONS

3.1 Basics

Similar to the typical RA setting, CASU involves a low-end MCU

(Prv) and verifier (Vrf). The latter is a trusted higher-end device,

e.g, a laptop, a smartphone, a smart home gateway, or a device

manufacturer’s back-end server. Vrf is responsible for initiating

each software update request, verifying whether the update was

successful, and keeping track of the latest successfully confirmed

software update. We assume a single Vrf for a given Prv. Also,

Prv and Vrf are assumed to share a master secret key (K) in-

stalled on Prv at manufacturing time. Our discussion focuses on

the symmetric key setting, which is more practical for low-end

MCUs. Nonetheless, the use of public-key cryptography is possi-

ble with some cosmetic changes to CASU, provided that Prv has

sufficient computing capabilities1.

3.2 Secure Update Overview

At the time of its initial deployment,Vrf is assumed to know the

software state (Sold) of Prv. When Vrf later wishes to update

this software, it issues an update request, denoted by UpdateVrf ,

to Prv. This request carries the new software Snew and a fresh

authentication token ATok, based on Snew.

When Prv receives an UpdateVrf , Sold invokes CASU, which

handles the update process in two steps: (1) AuthPrv verifies that

ATok is a fresh and timely token that corresponds to Snew, and (2)

if the first step succeeds, InstallPrv replaces Sold with Snew and

generates an authenticated acknowledgment (AAck). At this point,

CASU terminates and control is given to Snew which must send

AAck to Vrf.

Upon receiving AAck, Vrf executes the VerifyVrf procedure to

check whether the AAck is a valid confirmation for the outstanding

UpdateVrf . If no AAck is received, or if AAck verification fails,Vrf

assumes a failed update. Figure 2 illustrates the interaction between

Vrf and Prv. Protocol details are described in Section 4 below.

3.3 Adversary Model

We consider an adversary, Adv, that controls the entire memory

state of Prv, including PMEM (flash) and DMEM (RAM). It can

attempt to write, read or execute any memory location. It can also

attempt to remotely launch code injection attacks to modify Prv

software. It may also divert the execution control-flow to ignore

1In case of MSP430, based on our experimental attempts, neither generating nor even
verifying public key signatures is viable.

Figure 2: CASU Secure Update Protocol.

update requests, as well as attempt to extract any Prv secrets or

forge update confirmations.

Furthermore, Adv can configure DMA controllers on Prv to

read/write to any part of the memory while bypassing the CPU. It

can induce interrupts in an attempt to pause the update procedure,

modify any part of the old or new software versions, or cause

inconsistencies or race conditions. It might also eavesdrop on, and

interfere, with network traffic betweenVrf and Prv, in a typical

Dolev-Yao manner [21].

As common in most related work, physical attacks requiring

adversarial presence are considered out of scope. This includes

both non-invasive and invasive physical attacks. The former de-

scribes attacks whereby Adv physically reprograms Prv software

using direct/wired interfaces, such as USB/UART, SPI, or I2C. The

latter refers to inducing hardware faults, modifying code in ROM,

extracting secrets via physical side-channels, and tampering with

hardware. Protection against non-invasive attacks can be obtained

via well-known features, such as a secure boot. Whereas, protec-

tion against invasive attacks can be obtained via standard tamper-

resistant techniques [22].

4 CASU DESIGN

One of CASU main features is the prevention of all unauthorized

software modifications to Prv software. As mentioned earlier, the

former can be trivially achieved by making all Prv software read-

only, or by making Prv an ASIC. However, this precludes all benign

(authorized) updates. Therefore, it is essential to have a secure up-

date mechanism. The term “authorized" refers to software installed

on Prv physically at manufacture or deployment time, as well as

each subsequent version installed via update request by Vrf.

From Vrf perspective, CASU guarantees that, once installed,

authorized software on Prv remains unchanged until the nextVrf-

initiated successful secure update. This is achieved via three fea-

tures:

(1) Authorized Software Immutability: Except via a secure up-

date (implemented within CASU trusted code), authorized

software cannot be modified.

(2) Unauthorized Software Execution Prevention: Only the mem-

ory containing the (immutable) authorized software is exe-

cutable.

(3) Secure Update: Vrf is the only entity that can authenticate

to Prv to install new software. After an update, the previous

version of the installed software is no longer authorized.

The first two features are realized by a hardwaremodule,CASU-HW,

that runs in parallel with the CPU. It monitors a few CPU hardware
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Figure 3: CASU Software Execution Flow.

Figure 4: CASU System Architecture.

signals and triggers an MCU reset if any violation is detected. The

third feature is realized by a trusted code base (TCB), CASU-SW,

that extends VRASED to authenticate incoming update requests

containing new software to be installed (Snew) and an authorization

token (ATok) that must be issued byVrf using the keyK pre-shared

with CASU module within Prv. If ATok matches Snew, then CASU-

SW installs Snew on Prv and produces an authenticated AAck,

attesting to Vrf that a successful update occurred on Prv.

Figure 3 depicts CASU software execution flow. After each boot

or reset, it executes authorized software that was previously in-

stalled (either physically or via CASU Secure Update). In this state,

CASU-HW ensures software immutability and execution preven-

tion of anything else. However, when an update request is received,

CASU-SW must be invoked to securely apply the update and re-

configure CASU-HW to protect the memory region where Snew

is installed. Note that the update cannot be performed without

invoking CASU-SW due to the immutability guarantee.

Table 1 summarizes MCU hardware signals and memory regions

relevant to CASU. Figure 4 illustrates the CASU architecture: (1)

CASU-HW prevents modification of memory regions in gray and

prevents execution of all other memory, while (2) CASU-SW resides

in the ROM; it contains a bootloader and subroutines related to

secure update. We describe these features in detail in the rest of

this section.

Table 1: Notation Summary

Notation Description

PC Program Counter, points to the current instruction being executed

Wen 1-bit signal that indicates if MCU core is writing to memory

Daddr Memory address where the MCU core is currently accessing

DMAen 1-bit signal that indicates if DMA is active

DMAaddr Memory address being accessed by DMA, when active

r eset Signal that reboots the MCU when set to logic ‘1’

TCR Trusted Code Region, a fixed ROM region storing CASU-SW

ER Executable Region, a configurable memory regionwhere authorized
software is stored; ER = [ERmin, ERmax ], where ERmin and
ERmax are the boundaries of ER

EP Executable Pointer, a fixed memory region storing current values
of ERmin and ERmax

bEP Buffer Executable Pointer, a fixed memory location used to save
the boundaries of the memory region storing new software Snew .

ATR Fixed memory buffer from which AuthPrv reads ATok and also

where InstallPrv outputs AAck

IVT R Reserved memory region for the MCU’s IVT

SF Fixed memory region where Status flag is stored; Status is used
by CASU-SW for consistency.

4.1 CASU-HW: Hardware Security Monitor

CASU-HWmonitors PC ,Wen , Daddr , DMAen , DMAaddr to detect
illegal writes or execution. When a violation is detected, CASU-HW

activates the reset signal. To simplify notation when describing

CASU-HW properties, we define the following macro:

Mod_Mem(i) ≡ (Wen ∧ Daddr = i) ∨ (DMAen ∧ DMAaddr = i)

i represents a memory address.Mod_Mem (i) is true whenever
theMCU core or the DMA is writing to i . When representing a write

within some contiguous memory region (with multiple addresses)

M = [Mmin ,Mmax ], we “abuse” the notation as Mod_Mem (M).

To denote that a write has occurred within one of the multiple

contiguous memory regions, e.g., when a write happens to some

address withinM1 orM2, we sayMod_Mem (M1,M2).

4.1.1 Authorized Software Immutability. Software autho-

rized by CASU, including any ISRs, is located in the contiguous

memory segment ER. The pointer EP stores the boundaries that

define ER, i.e., ERmin and ERmax . CASU-HWmonitors EP to locate

the currently authorized software and enforce its rules based on this

region. Write attempts to EP are also monitored and only allowed

when performed by CASU-SW, preventing malicious changes to

EP that could misconfigure the definition ER, leading CASU-HW
to enforce protections based on the incorrect region. ER is config-

urable to give CASU-SW flexibility to change the location and size

of authorized software, instead of fixing Snew to the same location

and size of Sold, as software versions vary in size. CASU-HW also

protects memory regions SF and IVTR. SF is used during a secure

update, described in Section 4.2. Since ISRs are a part of ER, IVT
must be protected to maintain the integrity of interrupt handling

during authorized software execution.

Incidentally, Authorized Software Immutability also prohibits

self-modifying code, i.e., code in ER writing to ER, to prevent code

injection attacks within ER.

4.1.2 Unauthorized Software Execution Prevention. Only

authorized software (located in ER) or CASU-SW (located in TCR)
are allowed to execute on Prv. Since ER is configurable via EP , after
a secure update, CASU-SW re-configures EP to allow execution

from the new ER location.
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Authorized Software Immutability:

[Mod_Mem(ER, EP, SF , IVT R) ∧ (PC � TCR)] → r eset (2)

Unauthorized Software Execution Prevention:

[(PC � ER) ∧ (PC � TCR)] → r eset (3)

Figure 5: CASU-HW Security Properties.

4.1.3 CASU-HW Properties Formally. Figure 5 formalizes

the aforementioned CASU-HW security properties using propor-

tional logic. Note that these properties must hold at all times. Equa-

tion 2 states that any modification to ER, EP , SF , and IVTR– when

a program other than CASU-SW (PC � TCR) is executing – causes

a reset . Equation 3 states that MCU cannot execute programs other

than those in ER and TCR. If PC points to any other memory loca-

tion, the MCU is reset.

4.2 CASU Secure Update

Recall (from Section 3.2) that CASU Secure Update implements:

(UpdateVrf , VerifyVrf ) onVrf and (AuthPrv, InstallPrv) on Prv.

At a high level, there are two ways of implementing it on Prv.

(1) Download Snew to DMEM (RAM), i.e., the stack or heap of

the current software (Sold), and invoke AuthPrv. If it suc-

ceeds, InstallPrv overwrites ER with Snew and updates EP .
This is problematic, because, if a reset occurs in the middle

of InstallPrv execution, then ER containing Sold would be

partially overwritten and Snew in the DMEM would be lost

as a consequence of the reset. This would leave Prv software

in a corrupted state.

(2) Download Snew to PMEM (flash) and invoke AuthPrv. If

AuthPrv succeeds, InstallPrv updates EP to the location

where Snew resides. This is generally safer since Snew and

Sold reside in two separate flash memory regions. If the in-

stallation is interrupted by a reset, CASU-SW can re-invoke

InstallPrv to complete the installation. However, this re-

quires Prv PMEM to be sufficiently large to accommodate

both Snew and Sold, i.e., at least double the size of ER. We

believe that this is a realistic assumption. The size of flash

memory on our targetted devices is at least 8KB, whereas
the typical binary size is usually under 2KB.

Construction 1 shows the whole scheme. Recall that CASU-SW is

immutable (being in ROM). Its functionality is described below.

4.2.1 UpdateVrf
. Secure update requires for any softwareSnew

to be installed on Prv to adhere to the following format Snew :=

(LSnew
| |VSnew

| |NSnew
| |BINSnew

| |IVTSnew
), whereLSnew

,VSnew
,NSnew

is the Snew header consisting of its size, version number, and a ran-

dom nonce, respectively. BINSnew
is the Snew binary in byte-code

that mandatorily includes a download and acknowledge subrou-

tine that accepts future update requests and replies acknowledg-

ment message back to Vrf. IVTSnew
is the IVT of Snew that needs

to be overwritten to IVTR region so that MCU knows where to

jump into the new software when an interrupt is triggered. Another

requirement is thatVSnew
should always be greater than the version

number of the current (or old) software on Prv. This avoids replay

attacks that attempt to trick Prv into installing an old software

version that contains vulnerabilities. In caseVrf wishes to revert to

an older version (e.g., due to later-discovered bugs in Snew), it must

issue a brand new update request with the older-version software,

though with a new version number.

Vrf, by invoking UpdateVrf , computes ATok using equation 4

and sends (Snew,ATok) to Prv.

4.2.2 AuthPrv
. When Prv receives UpdateVrf with Snew and

ATok, the current download subroutine on Sold in ER accepts and

downloads Snew to an available PMEM slot. It then writes the

pointers to Snew to bEP , buffer Executable Pointer, in PMEM, and

writes ATok toATR. This download subroutine should not be a part

of CASU-SW, as exposing network interfaces directly to trusted

parts of the device is hazardous and may result in the exploitation of

unknown vulnerabilities in it, leading to key leakage. Hence, even

though ER is untrusted, it should be the one receiving the request,

because even if it fails to receive or chooses to not call AuthPrv,

then AAck is not generated/sent, which is a clear indication toVrf

that the update was unsuccessful.

To securely verify that Snew is a valid software to be installed

on Prv, AuthPrv first checks whether the VSnew
is greater than

the one of ER, i.e., VER . If the VSnew
is valid, it invokes VRASED as

a subroutine to compute σ according to equation 5. If σ matches

with ATok received from Vrf, then it outputs � (accept symbol)

and further invokes InstallPrv to apply the update. Otherwise, it

outputs ⊥ (reject symbol) and returns to old software at ER without

computing any response to be sent back to Vrf.

Note that CASU-SW execution is guarded by CASU-HW (which

inherits VRASED hardware properties), i.e., any interrupts or DMA,

or any attempts to access the key or any confidential data that

CASU-SW generates, will be considered as a violation and an MCU

reset will be triggered immediately. Also note that if such an abrupt

reset occurs, MCU will return to the old software, and eventually

Vrf has to send a new update request. In this new request, Vrf

can use the same version number (but with a different nonce for

maintaining freshness) because the previous update was not applied,

and thus, the version number of the current software is still old.

4.2.3 InstallPrv
. Once Snew is authenticated, InstallPrv is in-

voked. This is the critical step of Secure Update. It is responsible

for updating the EP with bEP , IVTR with IVTSnew
and comput-

ing authenticated acknowledgment AAck that is to be replied to

Vrf. As mentioned in Section 4.2.2, if a reset occurs during any

of these sub-steps, they have to be repeated from the beginning.

This is because, if EP is updated and IVTR is not, vulnerabilities

in old ISRs pointed to by the old IVT can be exploited by malware.

Furthermore, if EP and IVTR are updated, yet the computation of

AAck failed, Vrf assumes that the update failed and repeats the

update request with the same version number (since EP is updated

to the new software), and AuthPrv will fail again. Therefore, all

three sub-steps must take place atomically. To this end, CASU-SW

uses a Status flag SF in PMEM, which it sets and unsets, before and

after the completion of InstallPrv sub-steps, respectively.

To handle cases when a reset is triggered during InstallPrv, the

Reset Vector in IVTR is programmed to start executing from CASU-

SW. This technique is analogous to having a bootloader. At boot
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Construction 1. CASU Secure Update scheme defined by [UpdateVrf, AuthPrv, InstallPrv, VerifyVrf ] is realized as follows:

– K is a symmetric key pre-shared between Vrf and Prv (protected by VRASED secure architecture);

(1) UpdateVrf (Snew) → ATok:

Vrf generates a tuple T := (Snew, ATok), where Snew is the new software and ATok is the accompanying authentication token, as follows:

(a) Compiles and generates Snew:= (LSnew | |VSnew | |NSnew | |BINSnew | |IVTSnew ), where LSnew is Snew size, VSnew is Snew version number, NSnew

is a random nonce, BINSnew is Snew binary, and IVTSnew is Snew IVT , to be placed in IVT R of Prv.

(b) Computes ATok using equation 4 with the second operand set to: 0 | |Snew, where ’0’ is the direction indicator from Vrf to Prv.

ATok := HMAC(K, 0 | |Snew) (4)

Vrf sends T to Prv for update.

(2) AuthPrv(Snew, ATok) →⊥ /�:

Upon receiving a tuple T := (Snew, ATok) from Vrf, Snew is downloaded at memory region pointed to by bEP and ATok is written to ATR . Then

Prv does the following:

(a) If VSnew <= VER , output ⊥ and return to ER ; otherwise, proceed to the next step.

(b) Computes σ using equation 5.

σ := HMAC(K, 0 | |bEP ) (5)

(c) If σ == ATok, output � and invoke InstallPrv; otherwise, output ⊥ and return to ER , where the current software (Sold) resides.

(3) InstallPrv(Snew) → AAck:

Upon invocation by AuthPrv, or at boot time, in case Status is equal to 1, Prv does the following:

(a) Sets Status to 1 and updates EP with values in bEP .

(b) Updates IVT R with IVTSnew .

(c) Computes AAck using equation 6 and stores it at ATR . In equation 6 the second operand is 1 | |VSnew | |NSnew , where ’1’ is the direction indicator

from Prv to Vrf.

AAck := HMAC(K, 1 | |VSnew | |NSnew ) (6)

(d) Sets Status to 0 and jumps to new ER , which is pointed to by the new value in EP .

Prv replies to Vrf with AAck indicating successful update.

(4) VerifyVrf (AAck) →⊥ /�:

Upon receiving AAck from Prv, Vrf does the following:

(a) Computes γ using the same equation 6.

(b) If γ == AAck, outputs �; otherwise outputs ⊥.

time, CASU-SW uses Status to determine whether a reset occurred

prior to the completion of InstallPrv. If so, CASU-SW re-invokes

InstallPrv from the beginning.

Finally, InstallPrv computes AAck according to equation 6 and

writes it to ATR. After generating AAck, CASU-SW jumps to new

ER. Now, it is the responsibility of the acknowledge subroutine in

Snew to reply to Vrf with AAck.

Acknowledgment Receipt: There are two unlikely cases where

Vrf may not receive AAck, after being generated by InstallPrv.

Firstly, AAck sent by Prv being lost or corrupted in transit. In this

case, upon a time-out, Vrf re-sends UpdateVrf . Since InstallPrv

stores AAck in a dedicated region of DMEM (ATR), download in ER
checks whether the update request has the same version number as

itself and directly replies AAck toVrf, instead of invokingAuthPrv

again. Secondly, a reset occurring after a successful update and

before AAck is sent to Vrf. In that case, AAck is lost and, upon a

timeout,Vrf needs to send a new UpdateVrf with a new version

number. The drawback of this approach is that the same update is

re-applied, wasting MCU clock cycles. However, the latter case is

very rare, and even if it occurs, CASU-SW only takes less than a

second to re-install Snew (see Section 6.2).

Vrf can distinguish between these cases by first re-sending the

same UpdateVrf . If there is still no response, then AAck is most

likely lost due to a reset andVrf must send a new UpdateVrf with

a new version number.

There are other ways to mitigate the aforementioned AAck is-

sues. Rather than storing AAck in DMEM, it could be placed into a

reserved memory in PMEM to ensure its persistence even if a reset

occurs. Now, download can always reply with AAck whenever it

sees a duplicate request, thus eliminating the cost of re-update.

However, this approach requires an additional write to flash, which

may be undesirable. Alternatively, we can use aVrf-supplied times-

tamp instead of a nonce in Snew and modify AuthPrv to accept

duplicate requests with a more recent timestamp. This approach

does not require any reserved memory (not even in DMEM). How-

ever, it incurs runtime overhead every time Vrf issues a duplicate

request. Each aforementioned alternative has its own benefits and

drawbacks. We leave it up to Vrf to decide which is most suitable.

Note that none of the above can result in a DoS attack due to

multiple requests, because all UpdateVrf-s originate from a legit

Vrf and are verified by AuthPrv. Moreover, download can check

the Snew header to check if the request was already seen, discard

the rest of the packets, and simply reply stored AAck to Vrf.

4.2.4 VerifyVrf
. Finally, if all goes well, Vrf receives an AAck

and checks its validity verifies using equation 6. If either AAck is

invalid, or a time-out occurs, Vrf assumes that the update failed.

Figure 6 depicts the workflow of secure updates. When Prv

comes out of reset, it starts executing CASU-SW. CASU-SW first

checks whether Status is 1, it invokes InstallPrv to resume instal-

lation of already verified Snew located at bEP . Otherwise, it jumps
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Figure 6: Secue UpdateWorkflow: blue and green boxes indi-

cate authorized and trusted execution routines, respectively.

Figure 7: FSM of CASU-HW Verified Hardware Module.

to Sold in ER. Upon receiving UpdateVrf , the download routine in

Sold accepts and downloads Snew to an available memory slot in

PMEM and stores this address in bEP . Sold is free to complete its

pending tasks before invoking AuthPrv in CASU-SW. Once, it in-

vokesCASU-SW, atomic execution ofAuthPrv and InstallPrv (if the

former succeeds) begins. During InstallPrv, if a violation is detected,

Prv resets and invokes CASU-SW with Status set to 1, thus in-

voking InstallPrv again. After successful completion of InstallPrv,

CASU-SW jumps to Snew in ER. Eventually, the acknowledge in

Snew replies AAck toVrf, and continues with its normal execution.

5 IMPLEMENTATION

5.1 CASU-HW Verified Hardware Module

Figure 7 presents a hardware FSM formally verified to enforce both

properties of Figure 5. It is a Mealy FSM, where output is determined

by both the current state and current input. This FSM takes as input

the signals shown in Figure 4 and produces a single one-bit output

reset . If reset is 1, the MCU core immediately resets.

There are two states in the FSM: RESET and EXEC. In RESET,

reset is 1 and remains so until the FSM leaves that state; in other

cases reset is 0. After a reset, as soon as PC reaches 0 (execution is

ready to start), the FSM transitions to EXEC. While in EXEC, the

FSM constantly checks for: (1)modifications to ER, EP , SF , or IVTR,
and (2) execution attempts outside ER and TCR. In either case, the

FSM transitions to RESET.

We implement the FSM using Verilog HDL and automatically

translate it into Symbolic Model Verifier (SMV) language using

Verilog2SMV [23] tool. Finally, we use the NuSMV Model Checker

[24] to generate machine proofs showing that the FSM adheres to

the properties in Figure 5.

5.2 CASU-SW Secure Update Routine

CASU-SW implements subroutines casu_entry, casu_authenticate,
casu_install, and casu_exit.

casu_entry is the only legal entry point to CASU-SW; it is in-

voked at boot and during an update. Boot invocation is obtained

by setting the IVT reset vector to casu_entry. casu_entry takes
a boolean argument to test whether it was invoked at boot or by

ER for an update. In the former case, it checks Status to determine

whether to invoke casu_install in order to resume the unfinished

update from the last reset. Otherwise, it calls casu_exit, which
clears the MCU registers and jumps to the binary in ER. In the latter

case, it invokes casu_authenticate. casu_authenticate checks

for the validity of the version number of Snew at bEP and invokes

VRASED software to compute HMAC. If the measurement matches

ATok, casu_install is invoked; otherwise, it jumps to casu_exit.
Finally, casu_install updates EP , copies the new IVT to IVTR,
and computes and stores AAck at ATR. It also sets/unsets Status
to indicate the status of installation to casu_entry subroutine, in
case of a reset.

CASU-SW is implemented in C with a tiny TCB of ≈ 140 lines

of code. It uses VRASED software, which is implemented using a

formally verified cryptographic library, HACL* [20].

6 EVALUATION

AllCASU source code and hardware verification/proofs are publicly

available at [25]. CASU prototype is built on OpenMSP430 [19],

an open-source implementation of TI-MSP430 [16]. We use Xilinx

Vivado to synthesize an RTL description of CASU-HW and deploy

it on the Diligent Basys3 board featuring an Artix7 FPGA.

6.1 Hardware Overhead

Table 2 presents CASU hardware overhead compared to unmodified

OpenMSP430 and VRASED. Similar to prior work [5–7, 26], we

consider additional Look-Up Tables (LUTs) and registers. Compared

to VRASED, CASU only requires 3% (99) additional LUTs and 0.3%

(34) additional registers.

Verification Cost: CASU was verified using a Ubuntu 18.04 LTS

machine running 3.2GHz with 16GB of RAM. Table 2 shows ver-

ification time and memory. CASU requires 95 additional lines of

Verilog code to enforce properties in Figure 5. The verification cost

includes the verification of VRASED properties. The time to verify

the composite design is under a second and requires 148MB of

RAM.

Table 2: Hardware Overhead & Verification cost.

Architecture
Hardware Verification

LUTs Regs LoC #(LTLs) Time (s) RAM (MB)

OpenMSP430 1859 692 - - - -
VRASED 1902 724 481 10 0.4 13.6
CASU (+VRASED) 1958 726 576 12 0.9 148

Comparison with Related Architectures: In Figure 8, we com-

pare CASU with other low-end MCU security architectures, in-

cluding VRASED [7], RATA [14], APEX [26], and PURE [11], which

provide RA-related services. However, recall that, unlike CASU, all

these other architectures are reactive. As a superset of VRASED,
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(a) Additional HW overhead (%) in Num-
ber of Look-Up Tables

(b) Additional HW overhead (%) in Num-
ber of Registers

Figure 8: Hardware Overhead Comparison.

Figure 9: Runtime of CASU-SW Secure Update

CASU naturally has a higher overhead. CASU and RATA have simi-

lar overheads, since both monitor memory modifications. Whereas

APEX and PURE enforce additional hardware properties for generat-

ing proofs of execution (APEX), and proofs of update, reset, erasure

(PURE); and thus, they have a higher overhead than CASU.

6.2 Runtime for Secure Updates

The runtime of CASU-SW was evaluated on three sample appli-

cations: (1) Blinking LED (250 bytes of binary size) - toggles an

LED every half a second, (2) Ultrasonic Ranger (422 bytes) - avail-

able at [27] - computes the distance of an obstacle from a mov-

ing object, and (3) Temperature Sensor (734 bytes) - available at

[28] - measures the temperature of a room. In each case, we mea-

sured execution time of casu_authenticate and casu_install
– the most time-consuming tasks dominated by HMAC compu-

tations. Results are shown in Figure 9. casu_install runtime is

constant because it updates fixed-sizememory ranges (including EP ,
IVTR, and SF ) and computes HMAC on a fixed-size input. Whereas,

casu_authenticate scales linearly with Snew size, over which

HMAC is computed. The combined runtime for the worst case (tem-

perature sensor case with 734-byte binary) is ≈ 200ms , which we

consider to be reasonable, considering that updates are infrequent.

Reserved Memory: CASU requires 32 bytes of reserved RAM for

ATR, 8 bytes of reserved PMEM for EP and bEP , and 1 byte of

PMEM for SF . In total, it consumes 41 bytes of additional storage.

7 RELATED WORK

Prior related work generally falls into two categories: passive and

active Roots-of-Trust (RoTs).

Passive RoTs aim to detect software compromise by producing

an unforgeable proof of Prv state to Vrf. In terms of functionality,

they implement the following services: (1) memory integrity verifi-

cation, i.e., RA [5–10, 29–36]; (2) verification of runtime properties,

including control-flow and data-flow attestation [26, 37–44]; and

(3) proofs of remote software update, erasure, and reset [11–13]. As

mentioned in Section 1, they are passive in nature and do not pre-

vent modifications. Whereas, CASU is active and, as such, ensures

software immutability except for authorized updates. However,

CASU is similar to these RA techniques with respect to updates.

Active RoTs proactively monitor Prv behavior to prevent (or mini-

mize the extent of) compromises. For example, [45–47] are architec-

tures that guarantee execution of critical tasks even when all other

software is compromised. Similarly, VERSA [48] guarantees sensor

data privacy for low-end MCUs by allowing only authorized soft-

ware to access and process sensed quantities. In contrast, CASU can

be viewed as an active RoT that focuses on software immutability,

prevention of illegal execution, and authorized updates.

Remote Over-the-Air (OTA) Updates support seamless delivery

of software updates for IoT devices. Notably, TUF [49] is an update

delivery framework resilient to key compromises. Uptane [50] ex-

tends TUF for supporting updates for vehicular ECUs. However,

both TUF and Uptane require relatively heavy cryptographic oper-

ations, unsuitable for CASU-targeted low-end devices. ASSURED

[13] extends TUF to provide a secure update framework for large-

scale IoT deployments. SCUBA [51] uses software-based attestation

to identify and patch infected software regions. However, due to

the timing assumptions of software-based attestation, it is unsuit-

able for remote IoT settings. PoSE [52] and AONT [53] use proofs

of secure erasure to wipe Prv to show that its memory is fully

erased and then install new software. However, these schemes are

not fault-tolerant and can not retain previous software, in case of

reset during erasure or new update installation. Also, an extensive

discussion of various software update schemes can be found in [54].

Formal Verification provides increased confidence about the cor-

rectness of security techniques’ implementations. In the space of

low-end MCUs, VRASED [7] and RATA [14] are formally verified

hybrid RA architectures, where the latter one detects TOCTOU at-

tacks. APEX [26] and PURE [11] offer formally verified proofs of

remote software execution, and proof of update, reset, and erasure.

Similarly, CASU offers a verified hardware module for authorized

software immutability and unauthorized execution prevention.

8 CONCLUSIONS

In this paper, we designed CASU, a prevention-based root-of-trust

architecture for low-end MCUs. CASU differs from prior work by

disallowing illegal software modifications rather than detecting

them. CASU also prevents execution of any unauthorized software

and supports secure software updates. CASU is prototyped on

OpenMSP430 and its hardware component is formally verified.

Experiments show that CASU incurs quite low overhead and is thus

suitable for resource-constrained low-end IoT devices. Its entire

implementation is publicly available at [25].
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