L)

Check for
updates

CASU: Compromise Avoidance via Secure Update
for Low-end Embedded Systems

Ivan De Oliveira Nunes
Rochester Institute of Technology

Youngil Kim

University of California Irvine

ABSTRACT

Guaranteeing runtime integrity of embedded system software is
an open problem. Trade-offs between security and other priorities
(e.g., cost or performance) are inherent, and resolving them is both
challenging and important. The proliferation of runtime attacks
that introduce malicious code (e.g., by injection) into embedded
devices has prompted a range of mitigation techniques. One popular
approach is Remote Attestation (RA), whereby a trusted entity
(verifier) checks the current software state of an untrusted remote
device (prover). RA yields a timely authenticated snapshot of prover
state that verifier uses to decide whether an attack occurred.
Current RA schemes require verifier to explicitly initiate RA,
based on some unclear criteria. Thus, in case of prover’s compro-
mise, verifier only learns about it late, upon the next RA instance.
While sufficient for compromise detection, some applications would
benefit from a more proactive, prevention-based approach. To this
end, we construct CASU: Compromise Avoidance via Secure Up-
dates. CASU is an inexpensive hardware/software co-design enforc-
ing: (i) runtime software immutability, thus precluding any illegal
software modification, and (ii) authenticated updates as the sole
means of modifying software. In CASU, a successful RA instance
serves as a proof of successful update, and continuous subsequent
software integrity is implicit, due to the runtime immutability guar-
antee. This obviates the need for RA in between software updates
and leads to unobtrusive integrity assurance with guarantees akin
to those of prior RA techniques, with better overall performance.

1 INTRODUCTION

Over the past two decades, Internet-of-Things (IoT) devices and
Cyber-Physical Systems (CPS) have become very popular. They
are deployed in many everyday settings, including both private

(e.g., homes, offices, and factories) and public (e.g., cultural, enter-
tainment, and transportation) spaces. They are also widely used

in farming, industrial, and vehicular automation. These devices

often collect sensitive information and perform safety-critical tasks.
Also, in many cases, they are both interconnected and connected

to the global Internet. They are usually implemented atop low-end

microcontroller units (MCUs) that have very stringent cost, size,
and energy constraints, and unlike their higher-end counterparts,
have no (or few) security features. It is thus not at all surprising

that these embedded devices (sensors, actuators, and hybrids) have

become attractive attack targets.

In particular, code injection attacks [1-4] represent a real and

prominent threat to low-end devices. Embedded systems software
is mostly written in C, C++, or Assembly — languages that are

This work is licensed under a Creative Commons Attribution International 4.0 License.
ICCAD 22, October 30-November 3, 2022, San Diego, CA, USA

© 2022 Copyright is held by the owner/author(s).

ACM ISBN 978-1-4503-9217-4/22/10.
https://doi.org/10.1145/3508352.3549450

Sashidhar Jakkamsetti

University of California Irvine

Gene Tsudik

University of California Irvine

very prone to errors. Code injection attacks exploit these errors to
cause buffer overflows and inject malicious code into the existing
software or somewhere else in the device memory.

Some previous results considered such attacks in low-end devices
and proposed security techniques such as Remote Attestation (RA)
[5-10], as well as proofs of remote software updates and memory
erasure [11-13]. RA aims to detect compromise by authenticated
measurement of the device’s current software state. However, it has
considerable runtime costs since it requires computing a crypto-
graphic function (usually, a Message Authentication Code (MAC))
over the entire software. A recent result, RATA [14], minimized
the cost of RA by measuring a constant-size memory region that
reflects the time of last software modification (legal or otherwise).
RATA achieved that by introducing a hardware security monitor
that securely logs each modification time to that region.

Regardless of their specifics, RA techniques only detect code
modifications after the fact. They cannot prevent them from tak-
ing place. Hence, there could be a sizeable window of time between
the initial compromise and the next RA instance when the compro-
mise would be detected.

To this end, the goal of this paper is to take a more proactive,
prevention-based approach to avoid potential compromise. It con-
structs CASU: Compromise Avoidance via Secure Update, which
consists of two main components. First is a simple hardware secu-
rity monitor that is formally verified. It performs two functions:
(1) blocks all modifications to the specific program memory region
where the software resides, and (2) prevents anything stored outside
that region from executing. It runs independently from (in parallel
with) the MCU core, without modifying the latter. This thwarts all
code injection attacks. However, it is unrealistic to prohibit all mod-
ifications to program memory, since genuine software updates need
to be installed during the device’s lifetime. Otherwise, the software
could be housed in ROM or the entire device would function as an
ASIC (Application Specific Integrated Circuit). Therefore, CASU
second component is a secure remote software update scheme.

The key benefit of CASU is maintaining constant software in-
tegrity without repeated RA measurements while allowing genuine
secure software updates. Specifically, it guarantees that, between
any two successive secure updates, device software is immutable.
However, the device liveness can be ascertained at any time by
repeating the latest update, which essentially represents RA.

The intended contributions of CASU are:
(1) A tiny formally verified hardware monitor that guarantees
benign (authorized) software immutability and prevents the
execution of any unauthorized code.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3508352.3549450&domain=pdf&date_stamp=2022-12-22

(2) A scheme to enable secure software updates when authorized
by a trusted 3rd party.

(3) An open-source CASU prototype built atop a commodity
low-end MCU to demonstrate its low cost and practicality.

2 PRELIMINARIES
2.1 Targeted Devices

This paper focuses on CPS/IoT sensors and actuators (or hybrids
thereof) with low computing power. These are some of the smallest
and weakest devices based on ultra-low-power single-core MCUs
with only a few KBytes of memory. Two prominent examples are
Atmel AVR ATmega [15] and TI MSP430[16], with 8- and 16-bit
CPUs respectively, typically running at 1-16MHz clock frequencies,
with ~ 64 KBytes of addressable memory. Figure 1 shows a typical
architecture of such an MCU. It includes a CPU core, a Direct
Memory Access (DMA) controller, and an interrupt control logic
connected to the memory via a bus. DMA is a hardware controller
that can read/write to memory in parallel with the core. Main
memory contains several regions: Interrupt Vector Table (IVT),
program memory (PMEM), read-only memory (ROM), data memory
(DMEM or RAM), and peripheral memory. IVT stores pointers to
the Interrupt Service Routines (ISRs), where the execution jumps
when an interrupt occurs; it also contains the Reset Vector pointer
from where the core starts to execute, after a reboot. Application
software is installed in PMEM and it uses DMEM for its stack and
heap. ROM contains the bootloader and/or any immutable software
hard-coded at manufacturing time.

MCUs usually run software atop “bare metal” and execute in-

structions in place, i.e., directly from PMEM. They have neither
memory management units (MMUs) to support virtualization, nor
memory protection units (MPUs) for isolating memory regions.
Therefore, privilege levels and isolation regimes used in higher-end
devices and generic trusted execution environments (e.g., ARM
TrustZone [17] or Intel SGX [18]) are not viable.
NOTE: Our initial implementation of CASU uses MSP430 MCU, a
common platform for low-end embedded devices. One important
factor in this choice is the public availability of an open-source
MSP430 MCU design — OpenMSP430 [19]. Nonetheless, CASU is
readily applicable to other low-end MCUs of the same class.

2.2 Remote Attestation & VRASED

RA, mentioned above, allows a trusted entity (verifier = Vrf) to
remotely measure current memory contents (e.g., software) of an
untrusted embedded device (prover = Prv). RA is usually realized
as a simple challenge-response protocol:

(1) Vrf sends an RA request with a challenge (Chal) to Prv.

(2) Prv receives the request and computes an authenticate in-

tegrity check over its software memory region and Chal.
The memory region can be either pre-defined or explicitly
specified in the RA request.

(3) Prv returns the result to V'rf.

(4) Vrf verifies the result and decides if Prv is in a valid state.
Although several RA techniques for low-end devices have been
proposed, only very few offer any concrete (provable) security guar-
antees. The latter include SIMPLE[8], VRASED [7], and a variant

MCU Memory
Interrupt Control
Logic <::{>
t PMEM (FLASH)
CORE BUS

@H

DMEM (RAM)

Peripheral P

DMA
i

Figure 1: System architecture of a typical low-end MCU.

of SANCUS[6]. While SIMPLE, as its name suggests, is simple, it
is a purely software-based RA technique (meaning that no hard-
ware modifications are needed) that only protects against remote
attacks and does not support DMA. Whereas, SANCUS is a purely
hardware-based RA technique which, though very fast, incurs a
significant hardware cost over the baseline MCU.

VRASED [7] is a formally verified hybrid (hardware/software) RA
design comprising verified hardware and software sub-modules.
The software sub-module, which is immutable (stored in ROM),
implements the authenticated integrity function computed over
some “Attested Region” (AR) of Prv memory (usually in PMEM).
Meanwhile, its hardware component assures that its software coun-
terpart executes securely and that no function of the RA secret key
(K) is ever leaked. The authenticated integrity function is realized
with a formally verified HMAC implementation from the HACL*
cryptographic library [20] used to compute:

H = HMAC(KDF(XK, Chal), AR) 1)
where KDF(K, Chal) is a one-time key derived from the received
Chal and K using a key derivation function.
NOTE: CASU uses VRASED to verify the update request before it
installs the new software on the device. Specifically, CASU invokes
VRASED to compute equation 1 on the new software and checks
whether H matches an authentication token sent in the update re-
quest. Consequently, CASU update verification inherits the security
properties of VRASED.

2.3 Ttoctou Attacks & TocToU-Security

All RA techniques share a common limitation: they yield no infor-
mation about the state of Prv software during the time between
two consecutive RA instances. Consequently, it is impossible to
detect the past presence of transient malware that: (1) infected Prv,
(2) remained active for a while, and (3) at some later time erased
itself and restored Prv software to its “good” state. This holds as
long as (1)-(3) occur between two successive RA instances. This
attack type is referred to as Time-Of-Check Time-Of-Use (TOCTOU).

One recent technique, RATA [14], mitigates TOCTOU attacks with
a minimal additional hardware component that securely logs the
time of the last PMEM modification to a protected memory region
called Latest Modification Time (LMT) that can not be modified by

any software. LMT is then covered by the RA function. Therefore,
an RA response captures both the current software state of Prv
and the time of change to that state. Furthermore, RATA minimizes
the computational cost of RA for Prv, since, instead of attesting its
entire software, it suffices for Prv to attest just the LMT. This way,
instead of computing a MAC over the entire PMEM, Prv computes
it over a fixed-size (32-byte) LMT region.

NOTE: In this paper, unlike RATA, CASU actively prevents any
modification to PMEM at runtime, unless it is a securely and causally
authorized (by the trusted Vrf) software update.

3 CASU SCHEME & ASSUMPTIONS

3.1 Basics

Similar to the typical RA setting, CASU involves a low-end MCU
(Prv) and verifier (Vrf). The latter is a trusted higher-end device,
e.g, a laptop, a smartphone, a smart home gateway, or a device
manufacturer’s back-end server. ‘Vrf is responsible for initiating
each software update request, verifying whether the update was
successful, and keeping track of the latest successfully confirmed
software update. We assume a single Vrf for a given Prv. Also,
Prv and Vrf are assumed to share a master secret key (K) in-
stalled on Prv at manufacturing time. Our discussion focuses on
the symmetric key setting, which is more practical for low-end
MCUs. Nonetheless, the use of public-key cryptography is possi-
ble with some cosmetic changes to CASU, provided that Prv has
sufficient computing capabilities!.

3.2 Secure Update Overview

At the time of its initial deployment, Vrf is assumed to know the
software state (Syjq) of Prv. When Vrf later wishes to update
this software, it issues an update request, denoted by Updatevrf,
to Prv. This request carries the new software Spew and a fresh
authentication token ATok, based on Spew.

When Prv receives an Updatervrf, So1d invokes CASU, which
handles the update process in two steps: (1) Auth”" verifies that
ATok is a fresh and timely token that corresponds to Spew, and (2)
if the first step succeeds, Install”’" replaces S,;q with Spew and
generates an authenticated acknowledgment (AAck). At this point,
CASU terminates and control is given to Spew Which must send
AAck to Vrf.

Upon receiving AAck, Vrf executes the Verify """ procedure to
check whether the AAck is a valid confirmation for the outstanding
Update(V"f. If no AAck is received, or if AAck verification fails, Vrf
assumes a failed update. Figure 2 illustrates the interaction between
Vrf and Prv. Protocol details are described in Section 4 below.

Vrf

3.3 Adversary Model

We consider an adversary, Adyv, that controls the entire memory
state of Prv, including PMEM (flash) and DMEM (RAM). It can
attempt to write, read or execute any memory location. It can also
attempt to remotely launch code injection attacks to modify Prv
software. It may also divert the execution control-flow to ignore

!In case of MSP430, based on our experimental attempts, neither generating nor even
verifying public key signatures is viable.

Figure 2: CASU Secure Update Protocol.

update requests, as well as attempt to extract any Prv secrets or
forge update confirmations.

Furthermore, Adv can configure DMA controllers on Prv to
read/write to any part of the memory while bypassing the CPU. It
can induce interrupts in an attempt to pause the update procedure,
modify any part of the old or new software versions, or cause
inconsistencies or race conditions. It might also eavesdrop on, and
interfere, with network traffic between Vrf and Prv, in a typical
Dolev-Yao manner [21].

As common in most related work, physical attacks requiring
adversarial presence are considered out of scope. This includes
both non-invasive and invasive physical attacks. The former de-
scribes attacks whereby Adv physically reprograms Prv software
using direct/wired interfaces, such as USB/UART, SPI, or I12C. The
latter refers to inducing hardware faults, modifying code in ROM,
extracting secrets via physical side-channels, and tampering with
hardware. Protection against non-invasive attacks can be obtained
via well-known features, such as a secure boot. Whereas, protec-
tion against invasive attacks can be obtained via standard tamper-
resistant techniques [22].

4 CASU DESIGN

One of CASU main features is the prevention of all unauthorized
software modifications to Prv software. As mentioned earlier, the
former can be trivially achieved by making all Prv software read-
only, or by making #rv an ASIC. However, this precludes all benign
(authorized) updates. Therefore, it is essential to have a secure up-
date mechanism. The term “authorized" refers to software installed
on Prv physically at manufacture or deployment time, as well as
each subsequent version installed via update request by Vrf.

From Vrf perspective, CASU guarantees that, once installed,

authorized software on rv remains unchanged until the next Vrf-
initiated successful secure update. This is achieved via three fea-
tures:

(1) Authorized Software Immutability: Except via a secure up-
date (implemented within CASU trusted code), authorized
software cannot be modified.

(2) Unauthorized Software Execution Prevention: Only the mem-
ory containing the (immutable) authorized software is exe-
cutable.

(3) Secure Update: Vrf is the only entity that can authenticate
to Prv to install new software. After an update, the previous
version of the installed software is no longer authorized.

The first two features are realized by a hardware module, CASU-HW,
that runs in parallel with the CPU. It monitors a few CPU hardware

UNAUTHORIZED SOFTWARE EXECUTION PREVENTION TRUSTED EXECUTION
& ZONE
AUTHORIZED SOFTWARE IMMUTABLE ZONE
\s&an ¢ I
| | Uupdite R
EXEGLIE Request SECURE

—>

| RESET ﬁ Asumﬁ? |_ UPDATE
| - 7{ iy I — ==

=¥ : Violations to CASU
[]: CASU Trusted Component

Figure 3: CASU Software Execution Flow.

Figure 4: CASU System Architecture.

signals and triggers an MCU reset if any violation is detected. The
third feature is realized by a trusted code base (TCB), CASU-SW,
that extends VRASED to authenticate incoming update requests
containing new software to be installed (Snew) and an authorization
token (ATok) that must be issued by V'rf using the key K pre-shared
with CASU module within Prv. If ATok matches Spew, then CASU-
SW installs Spew on Prv and produces an authenticated AAck,
attesting to Vrf that a successful update occurred on Prv.

Figure 3 depicts CASU software execution flow. After each boot
or reset, it executes authorized software that was previously in-
stalled (either physically or via CASU Secure Update). In this state,
CASU-HW ensures software immutability and execution preven-
tion of anything else. However, when an update request is received,
CASU-SW must be invoked to securely apply the update and re-
configure CASU-HW to protect the memory region where Shew
is installed. Note that the update cannot be performed without
invoking CASU-SW due to the immutability guarantee.

Table 1 summarizes MCU hardware signals and memory regions
relevant to CASU. Figure 4 illustrates the CASU architecture: (1)
CASU-HW prevents modification of memory regions in gray and
prevents execution of all other memory, while (2) CASU-SW resides
in the ROM; it contains a bootloader and subroutines related to
secure update. We describe these features in detail in the rest of
this section.

Table 1: Notation Summary

Notation Description

pC Program Counter, points to the current instruction being executed
Wen 1-bit signal that indicates if MCU core is writing to memory
Dgaaar Memory address where the MCU core is currently accessing
DMA., 1-bit signal that indicates if DMA is active

DMA, 44 Memory address being accessed by DMA, when active

reset Signal that reboots the MCU when set to logic ‘1’

TCR Trusted Code Region, a fixed ROM region storing CASU-SW

ER Executable Region, a configurable memory region where authorized

software is stored; ER = [ERin, ERmax |, where ER,y,ip and
ER,; ax are the boundaries of ER

EP Executable Pointer, a fixed memory region storing current values
of ER,in and ER 0 x

bEP Buffer Executable Pointer, a fixed memory location used to save
the boundaries of the memory region storing new software Spew.-

ATR Fixed memory buffer from which Auth”™ reads ATok and also
where Install”™ outputs AAck

IVTR Reserved memory region for the MCU’s IVT

SF Fixed memory region where Status flag is stored; Status is used

by CASU-SW for consistency.

4.1 CASU-HW: Hardware Security Monitor

CASU-HW monitors PC, Wep, Dygdrs DMAen, DMA 444, to detect
illegal writes or execution. When a violation is detected, CASU-HW
activates the reset signal. To simplify notation when describing
CASU-HW properties, we define the following macro:
Mod_Mem(i) = (Wen A Dagar = i)V (DMAen A DMAggay = i)

i represents a memory address. Mod_Mem (i) is true whenever
the MCU core or the DMA is writing to i. When representing a write
within some contiguous memory region (with multiple addresses)
M = [Mmin, Mmax], we “abuse” the notation as Mod_Mem (M).
To denote that a write has occurred within one of the multiple
contiguous memory regions, e.g., when a write happens to some
address within M; or My, we say Mod_Mem (My, My).

4.1.1 Authorized Software Immutability. Software autho-
rized by CASU, including any ISRs, is located in the contiguous
memory segment ER. The pointer EP stores the boundaries that
define ER, i.e., ER;,in and ERy, q. CASU-HW monitors EP to locate
the currently authorized software and enforce its rules based on this
region. Write attempts to EP are also monitored and only allowed
when performed by CASU-SW, preventing malicious changes to
EP that could misconfigure the definition ER, leading CASU-HW
to enforce protections based on the incorrect region. ER is config-
urable to give CASU-SW flexibility to change the location and size
of authorized software, instead of fixing Spew to the same location
and size of S|4, as software versions vary in size. CASU-HW also
protects memory regions SF and IVTR. SF is used during a secure
update, described in Section 4.2. Since ISRs are a part of ER, IVT
must be protected to maintain the integrity of interrupt handling
during authorized software execution.

Incidentally, Authorized Software Immutability also prohibits
self-modifying code, i.e., code in ER writing to ER, to prevent code
injection attacks within ER.

4.1.2 Unauthorized Software Execution Prevention. Only
authorized software (located in ER) or CASU-SW (located in TCR)
are allowed to execute on Prv. Since ER is configurable via EP, after
a secure update, CASU-SW re-configures EP to allow execution
from the new ER location.

Authorized Software Immutability:
[Mod_Mem(ER, EP, SF,IVTR) A (PC ¢ TCR)] — reset (2)

Unauthorized Software Execution Prevention:

[(PC ¢ ER) A (PC ¢ TCR)] — reset (3)

Figure 5: CASU-HW Security Properties.

4.1.3 CASU-HW Properties Formally. Figure 5 formalizes
the aforementioned CASU-HW security properties using propor-
tional logic. Note that these properties must hold at all times. Equa-
tion 2 states that any modification to ER, EP, SF, and IVTR- when
a program other than CASU-SW (PC ¢ TCR) is executing — causes
areset. Equation 3 states that MCU cannot execute programs other
than those in ER and TCR. If PC points to any other memory loca-
tion, the MCU is reset.

4.2 CASU Secure Update

Recall (from Section 3.2) that CASU Secure Update implements:
(Update™" Verify V™) on Vf and (Auth”", Install”™) on Prv.
At a high level, there are two ways of implementing it on $rv.

(1) Download Spew to DMEM (RAM), i.e., the stack or heap of
the current software (Sy;4), and invoke Auth”™. If it suc-
ceeds, Install”"™ overwrites ER with Snew and updates EP.
This is problematic, because, if a reset occurs in the middle
of Install”™ execution, then ER containing Syjq would be
partially overwritten and Spew in the DMEM would be lost
as a consequence of the reset. This would leave Prv software
in a corrupted state.

(2) Download Spew to PMEM (flash) and invoke Auth®™. If
Auth”™ succeeds, Install”™ updates EP to the location
where Spew resides. This is generally safer since Spew and
Soid reside in two separate flash memory regions. If the in-
stallation is interrupted by a reset, CASU-SW can re-invoke
Install”™ to complete the installation. However, this re-
quires Prv PMEM to be sufficiently large to accommodate
both Snew and Syyq, i-e., at least double the size of ER. We
believe that this is a realistic assumption. The size of flash
memory on our targetted devices is at least 8K B, whereas
the typical binary size is usually under 2KB.

Construction 1 shows the whole scheme. Recall that CASU-SW is
immutable (being in ROM). Its functionality is described below.

4.2.1 Update%f. Secure update requires for any software Spew
to be installed on Prv to adhere to the following format Spey :=
(LSe 1V Spew [INS o IBINs, VTS,). whereLs . Vs . Ng,
is the Snew header consisting of its size, version number, and a ran-
dom nonce, respectively. BINg is the Spew binary in byte-code
that mandatorily includes a download and acknowledge subrou-
tine that accepts future update requests and replies acknowledg-
ment message back to Vrf. IVTg is the IVT of Speyw that needs
to be overwritten to IVTR region so that MCU knows where to
jump into the new software when an interrupt is triggered. Another
requirement is that Vg should always be greater than the version
number of the current (or old) software on Prv. This avoids replay

attacks that attempt to trick Prv into installing an old software
version that contains vulnerabilities. In case Vrf wishes to revert to
an older version (e.g., due to later-discovered bugs in Spew), it must
issue a brand new update request with the older-version software,
though with a new version number.

Vrf, by invoking Update%f, computes ATok using equation 4
and sends (Spew, ATok) to Prv.

422 Auth®™. When Prv receives Update(vrf with Spew and
ATok, the current download subroutine on S,4 in ER accepts and
downloads Spew to an available PMEM slot. It then writes the
pointers to Spew to bEP, buffer Executable Pointer, in PMEM, and
writes ATok to ATR. This download subroutine should not be a part
of CASU-SW, as exposing network interfaces directly to trusted
parts of the device is hazardous and may result in the exploitation of
unknown vulnerabilities in it, leading to key leakage. Hence, even
though ER is untrusted, it should be the one receiving the request,
because even if it fails to receive or chooses to not call Authpr",
then AAck is not generated/sent, which is a clear indication to Vrf
that the update was unsuccessful.

To securely verify that Spew is a valid software to be installed
on Prv, Auth”™ first checks whether the Vs, is greater than
the one of ER, i.e., Vgg. If the VS, 18 valid, it invokes VRASED as
a subroutine to compute o according to equation 5. If o matches
with ATok received from Vrf, then it outputs T (accept symbol)
and further invokes Install”™ to apply the update. Otherwise, it
outputs L (reject symbol) and returns to old software at ER without
computing any response to be sent back to V'rf.

Note that CASU-SW execution is guarded by CASU-HW (which
inherits VRASED hardware properties), i.e., any interrupts or DMA,
or any attempts to access the key or any confidential data that
CASU-SW generates, will be considered as a violation and an MCU
reset will be triggered immediately. Also note that if such an abrupt
reset occurs, MCU will return to the old software, and eventually
Vrf has to send a new update request. In this new request, Vrf
can use the same version number (but with a different nonce for
maintaining freshness) because the previous update was not applied,
and thus, the version number of the current software is still old.

4.2.3 TInstall”". Once Spey is authenticated, Install” " is in-
voked. This is the critical step of Secure Update. It is responsible
for updating the EP with bEP, IVTR with IVTg and comput-
ing authenticated acknowledgment AAck that is to be replied to
Vrf. As mentioned in Section 4.2.2, if a reset occurs during any
of these sub-steps, they have to be repeated from the beginning.
This is because, if EP is updated and IVTR is not, vulnerabilities
in old ISRs pointed to by the old IVT can be exploited by malware.
Furthermore, if EP and IVTR are updated, yet the computation of
AAck failed, Vrf assumes that the update failed and repeats the
update request with the same version number (since EP is updated
to the new software), and Auth?" will fail again. Therefore, all
three sub-steps must take place atomically. To this end, CASU-SW
uses a Status flag SF in PMEM, which it sets and unsets, before and
after the completion of Install”™ sub-steps, respectively.

To handle cases when a reset is triggered during Install”", the
Reset Vector in IVTR is programmed to start executing from CASU-
SW. This technique is analogous to having a bootloader. At boot

(1) Update%f(Snew) — ATok:

Vrf sends T to Prv for update.
(2) Auth”™(Sew, ATok) —>L /T:

Prv does the following:

(b) Computes o using equation 5.

(3) Install”™(Spew) — AAck:
Upon invocation by Auth”™
(a) Sets Status to1 and updates EP with values in bEP.
(b) Updates IVTR withIVTs, .

from Prv to Vrf.

Prv replies to Vrf with AAck indicating successful update.
(4) Verify V" (AAck) »L /T:

Upon receiving AAck from Prv, Vrf does the following:

(a) Computesy using the same equation 6.

(b) If y == AAck, outputs T; otherwise outputs L.

CONSTRUCTION 1. CASU Secure Update scheme defined by [Update™™, Auth”™, Install”™, VerifyV ™| is realized as follows:
- K is a symmetric key pre-shared between Vrf and Prv (protected by VRASED secure architecture);

Vrf generates a tuple T := (Snew, ATok), where Spew is the new software and ATok is the accompanying authentication token, as follows:

(a) Compiles and generates Snew:= (LS, ey |1 VSnew |/ NSnew | I/BINS on 1TV TS,y)» Where Ls, ., is Snew size, Vs, i Snew version number, Ns, .,
is a random nonce, BINg,,, 15 Snew binary, and IVTs, , is Snew IVT, to be placed in IVTR of Prv.

(b) Computes ATok using equation 4 with the second operand set to: 0||Snew, where "0’ is the direction indicator from Vrf to Prv.

ATok := HMAC(, 0] Snew) @)

Upon receiving a tuple T := (Spew, ATok) from Vrf, Snew is downloaded at memory region pointed to by bEP and ATok is written to ATR. Then
(@) If Vs,e, <= VER, output L and return to ER; otherwise, proceed to the next step.

o := HMAC(%K, 0||bEP) (5)
(c) If o == ATok, output T and invoke Installpw; otherwise, output L and return to ER, where the current software (Sy1q) resides.

, or at boot time, in case Status is equal to 1, Prv does the following:

¢) Computes AAck using equation 6 and stores it at AT R. In equation 6 the second operand is 1||Vg Ng, ., where '1’ is the direction indicator
p g q q P new new

AAck := HMAC(K, 1]|Vs, o | INSpen) (6)
(d) Sets Status to0 and jumps to new ER, which is pointed to by the new value in EP.

time, CASU-SW uses Status to determine whether a reset occurred
prior to the completion of Install”™_ If so, CASU-SW re-invokes
Install”™ from the beginning.

Finally, Install”™ computes AAck according to equation 6 and

writes it to ATR. After generating AAck, CASU-SW jumps to new
ER. Now, it is the responsibility of the acknowledge subroutine in
Shew to reply to Vrf with AAck.
Acknowledgment Receipt: There are two unlikely cases where
Vrf may not receive AAck, after being generated by Instal
Firstly, AAck sent by Prv being lost or corrupted in transit. In this
case, upon a time-out, Vrf re-sends Update(vrf. Since Install”™
stores AAck in a dedicated region of DMEM (ATR), download in ER
checks whether the update request has the same version number as
itself and directly replies AAck to “V'rf, instead of invoking Auth?’"v
again. Secondly, a reset occurring after a successful update and
before AAck is sent to Vrf. In that case, AAck is lost and, upon a
timeout, Vrf needs to send a new Update(vrf
number. The drawback of this approach is that the same update is
re-applied, wasting MCU clock cycles. However, the latter case is
very rare, and even if it occurs, CASU-SW only takes less than a
second to re-install Spey (see Section 6.2).

with a new version

Vrf can distinguish between these cases by first re-sending the
same Update "
likely lost due to a reset and V'rf must send a new Update

a new version number.

. If there is still no response, then AAck is most
Vrf with

IPrv.

There are other ways to mitigate the aforementioned AAck is-
sues. Rather than storing AAck in DMEM, it could be placed into a
reserved memory in PMEM to ensure its persistence even if a reset
occurs. Now, download can always reply with AAck whenever it
sees a duplicate request, thus eliminating the cost of re-update.
However, this approach requires an additional write to flash, which
may be undesirable. Alternatively, we can use a ‘Vrf-supplied times-
tamp instead of a nonce in Spew and modify Auth®™ to accept
duplicate requests with a more recent timestamp. This approach
does not require any reserved memory (not even in DMEM). How-
ever, it incurs runtime overhead every time Vrf issues a duplicate
request. Each aforementioned alternative has its own benefits and
drawbacks. We leave it up to Vrf to decide which is most suitable.

Note that none of the above can result in a DoS attack due to
multiple requests, because all Update(vrf-s originate from a legit
Vrf and are verified by Auth”™ . Moreover, download can check
the Spew header to check if the request was already seen, discard
the rest of the packets, and simply reply stored AAck to Vrf.

4.2.4 Verify(vrf. Finally, if all goes well, Vrf receives an AAck
and checks its validity verifies using equation 6. If either AAck is
invalid, or a time-out occurs, Vrf assumes that the update failed.

Figure 6 depicts the workflow of secure updates. When Prv
comes out of reset, it starts executing CASU-SW. CASU-SW first
checks whether Status is 1, it invokes Install”" to resume instal-
lation of already verified Spew located at bEP. Otherwise, it jumps

status =07
| Init | Execute
® __Execute
{ Baset ” Casusw ER
N|': continue j \ receive

NewER (8, AT0K) j
Acknowledge Download
New ER ER

update ER, EP,IVTR update bEP

| Install | - | Authenticate | "
———Yes— —No—

Secure | | CASU_SW | | CASU_SW |

Update ' authentication succeed?

Figure 6: Secue Update Workflow: blue and green boxes indi-
cate authorized and trusted execution routines, respectively.

Figure 7: FSM of CASU-HW Verified Hardware Module.

to Syiq in ER. Upon receiving Update(vrf, the download routine in

So1d accepts and downloads Spew to an available memory slot in
PMEM and stores this address in bEP. S|4 is free to complete its
pending tasks before invoking Auth”™ in CASU-SW. Once, it in-
vokes CASU-SW, atomic execution of Auth®™ and Install” ™ (if the
former succeeds) begins. During Install”™, if a violation is detected,
Prv resets and invokes CASU-SW with Status set to 1, thus in-
voking Install”’" again. After successful completion of Install”",
CASU-SW jumps to Spew in ER. Eventually, the acknowledge in
Shew replies AAck to Vrf, and continues with its normal execution.

5 IMPLEMENTATION
5.1 CASU-HW Verified Hardware Module

Figure 7 presents a hardware FSM formally verified to enforce both
properties of Figure 5. It is a Mealy FSM, where output is determined
by both the current state and current input. This FSM takes as input
the signals shown in Figure 4 and produces a single one-bit output
reset. If reset is 1, the MCU core immediately resets.

There are two states in the FSM: RESET and EXEC. In RESET,
reset is 1 and remains so until the FSM leaves that state; in other
cases reset is 0. After a reset, as soon as PC reaches 0 (execution is
ready to start), the FSM transitions to EXEC. While in EXEC, the
FSM constantly checks for: (1) modifications to ER, EP, SF, or IVTR,
and (2) execution attempts outside ER and TCR. In either case, the
FSM transitions to RESET.

We implement the FSM using Verilog HDL and automatically
translate it into Symbolic Model Verifier (SMV) language using
Verilog2SMV [23] tool. Finally, we use the NuSMV Model Checker
[24] to generate machine proofs showing that the FSM adheres to
the properties in Figure 5.

5.2 CASU-SW Secure Update Routine

CASU-SWimplements subroutines casu_entry, casu_authenticate,

casu_install, and casu_exit.

casu_entry is the only legal entry point to CASU-SW; it is in-
voked at boot and during an update. Boot invocation is obtained
by setting the IVT reset vector to casu_entry. casu_entry takes
a boolean argument to test whether it was invoked at boot or by
ER for an update. In the former case, it checks Status to determine
whether to invoke casu_install in order to resume the unfinished
update from the last reset. Otherwise, it calls casu_exit, which
clears the MCU registers and jumps to the binary in ER. In the latter
case, it invokes casu_authenticate. casu_authenticate checks
for the validity of the version number of Spey at bEP and invokes
VRASED software to compute HMAC. If the measurement matches
ATok, casu_install is invoked; otherwise, it jumps to casu_exit.
Finally, casu_install updates EP, copies the new IVT to IVTR,
and computes and stores AAck at ATR. It also sets/unsets Status
to indicate the status of installation to casu_entry subroutine, in
case of a reset.

CASU-SWis implemented in C with a tiny TCB of ~ 140 lines
of code. It uses VRASED software, which is implemented using a
formally verified cryptographic library, HACL* [20].

6 EVALUATION

All CASU source code and hardware verification/proofs are publicly
available at [25]. CASU prototype is built on OpenMSP430 [19],
an open-source implementation of TI-MSP430 [16]. We use Xilinx
Vivado to synthesize an RTL description of CASU-HW and deploy
it on the Diligent Basys3 board featuring an Artix7 FPGA.

6.1 Hardware Overhead

Table 2 presents CASU hardware overhead compared to unmodified
OpenMSP430 and VRASED. Similar to prior work [5-7, 26], we
consider additional Look-Up Tables (LUTs) and registers. Compared
to VRASED, CASU only requires 3% (99) additional LUTs and 0.3%
(34) additional registers.

Verification Cost: CASU was verified using a Ubuntu 18.04 LTS
machine running 3.2GHz with 16GB of RAM. Table 2 shows ver-
ification time and memory. CASU requires 95 additional lines of
Verilog code to enforce properties in Figure 5. The verification cost
includes the verification of VRASED properties. The time to verify
the composite design is under a second and requires 148MB of
RAM.

Table 2: Hardware Overhead & Verification cost.

Architecture Hardware Veriﬁ_cation

LUTs Regs | LoC #(LTLs) Time(s) RAM (MB)
OpenMSP430 1859 692 - - - -
VRASED 1902 724 481 10 0.4 13.6
CASU (+VRASED) 1958 726 576 12 0.9 148

Comparison with Related Architectures: In Figure 8, we com-
pare CASU with other low-end MCU security architectures, in-
cluding VRASED [7], RATA [14], APEX [26], and PURE [11], which
provide RA-related services. However, recall that, unlike CASU, all
these other architectures are reactive. As a superset of VRASED,

5 &

S

=

% Additional LUTs
on s o w5 R

% Additional Registers

o N & o » 5

CASU VRASED RATA APEX PURE CASU VRASED RATA APEX PURE

(a) Additional HW overhead (%) in Num- (b) Additional HW overhead (%) in Num-
ber of Look-Up Tables ber of Registers

Figure 8: Hardware Overhead Comparison.

—e— Entire Secure Update
1801 —e— Authenticate Subroutine
| —e— Install Subroutine

Temperature
Sensor
(734 bytes)

Ultrasonic Ranger
(422 bytes

100 - Blinking LED
(250 bytes)

200 300 400 500 600 700 800
Binary size (in bytes)

Figure 9: Runtime of CASU-SW Secure Update

CASU naturally has a higher overhead. CASU and RATA have simi-
lar overheads, since both monitor memory modifications. Whereas
APEX and PURE enforce additional hardware properties for generat-
ing proofs of execution (APEX), and proofs of update, reset, erasure
(PURE); and thus, they have a higher overhead than CASU.

6.2 Runtime for Secure Updates

The runtime of CASU-SW was evaluated on three sample appli-
cations: (1) Blinking LED (250 bytes of binary size) - toggles an
LED every half a second, (2) Ultrasonic Ranger (422 bytes) - avail-
able at [27] - computes the distance of an obstacle from a mov-
ing object, and (3) Temperature Sensor (734 bytes) - available at
[28] - measures the temperature of a room. In each case, we mea-
sured execution time of casu_authenticate and casu_install
— the most time-consuming tasks dominated by HMAC compu-
tations. Results are shown in Figure 9. casu_install runtime is
constant because it updates fixed-size memory ranges (including EP,
IVTR, and SF) and computes HMAC on a fixed-size input. Whereas,
casu_authenticate scales linearly with Spew size, over which
HMAC is computed. The combined runtime for the worst case (tem-
perature sensor case with 734-byte binary) is ~ 200ms, which we
consider to be reasonable, considering that updates are infrequent.
Reserved Memory: CASU requires 32 bytes of reserved RAM for
ATR, 8 bytes of reserved PMEM for EP and bEP, and 1 byte of
PMEM for SF. In total, it consumes 41 bytes of additional storage.

7 RELATED WORK
Prior related work generally falls into two categories: passive and
active Roots-of-Trust (RoTs).

Passive RoTs aim to detect software compromise by producing
an unforgeable proof of Prv state to Vrf. In terms of functionality,

they implement the following services: (1) memory integrity verifi-
cation, i.e., RA [5-10, 29-36]; (2) verification of runtime properties,
including control-flow and data-flow attestation [26, 37-44]; and
(3) proofs of remote software update, erasure, and reset [11-13]. As
mentioned in Section 1, they are passive in nature and do not pre-
vent modifications. Whereas, CASU is active and, as such, ensures
software immutability except for authorized updates. However,
CASU is similar to these RA techniques with respect to updates.
Active RoTs proactively monitor Prv behavior to prevent (or mini-
mize the extent of) compromises. For example, [45-47] are architec-
tures that guarantee execution of critical tasks even when all other
software is compromised. Similarly, VERSA [48] guarantees sensor
data privacy for low-end MCUs by allowing only authorized soft-
ware to access and process sensed quantities. In contrast, CASU can
be viewed as an active RoT that focuses on software immutability,
prevention of illegal execution, and authorized updates.

Remote Over-the-Air (OTA) Updates support seamless delivery
of software updates for IoT devices. Notably, TUF [49] is an update
delivery framework resilient to key compromises. Uptane [50] ex-
tends TUF for supporting updates for vehicular ECUs. However,
both TUF and Uptane require relatively heavy cryptographic oper-
ations, unsuitable for CASU-targeted low-end devices. ASSURED
[13] extends TUF to provide a secure update framework for large-
scale IoT deployments. SCUBA [51] uses software-based attestation
to identify and patch infected software regions. However, due to
the timing assumptions of software-based attestation, it is unsuit-
able for remote IoT settings. PoSE [52] and AONT [53] use proofs
of secure erasure to wipe Prv to show that its memory is fully
erased and then install new software. However, these schemes are
not fault-tolerant and can not retain previous software, in case of
reset during erasure or new update installation. Also, an extensive
discussion of various software update schemes can be found in [54].
Formal Verification provides increased confidence about the cor-
rectness of security techniques’ implementations. In the space of
low-end MCUs, VRASED [7] and RATA [14] are formally verified
hybrid RA architectures, where the latter one detects TOCTOU at-
tacks. APEX [26] and PURE [11] offer formally verified proofs of
remote software execution, and proof of update, reset, and erasure.
Similarly, CASU offers a verified hardware module for authorized
software immutability and unauthorized execution prevention.

8 CONCLUSIONS

In this paper, we designed CASU, a prevention-based root-of-trust
architecture for low-end MCUs. CASU differs from prior work by
disallowing illegal software modifications rather than detecting
them. CASU also prevents execution of any unauthorized software
and supports secure software updates. CASU is prototyped on
OpenMSP430 and its hardware component is formally verified.
Experiments show that CASU incurs quite low overhead and is thus
suitable for resource-constrained low-end IoT devices. Its entire
implementation is publicly available at [25].

Acknowledgments The authors sincerely thank ICCAD’22 re-
viewers. This work was supported by funding from NSF Awards
SATC-1956393 and CICI-1840197, as well as a subcontract from
Peraton Labs. The first author was supported in part by a seed
grant from the ESL Global Cybersecurity Institute at RIT.

REFERENCES

(1]

[13]

[14]

=
)

[16

[17]

[18

[19]
[20]

[21

[22]

[23

[24]

[25]
[26]

A. Francillon and C. Castellucia, “Code injection attacks on harvard-architecture
devices,” in CCS ’08, 2008.

L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in memory,” in 2013
IEEE Symposium on Security and Privacy, pp. 48-62, IEEE, 2013.

C. Cowan, F. Wagle, C. Pu, S. Beattie, and J. Walpole, “Buffer overflows: Attacks
and defenses for the vulnerability of the decade,” in IEEE DISCEX, IEEE, 2000.
OWASP, “Owasp top ten.” https://owasp.org/www-project-top-ten/, 2021.

K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito, “SMART: Secure and minimal
architecture for (establishing dynamic) root of trust,” in NDSS, 2012.

J. Noorman, J. V. Bulck, J. T. Miihlberg, F. Piessens, P. Maene, B. Preneel, I. Ver-
bauwhede, J. Gétzfried, T. Miiller, and F. C. Freiling, “Sancus 2.0: A low-cost secu-
rity architecture for iot devices,” ACM Trans. Priv. Secur., vol. 20, no. 3, pp. 7:1-7:33,
2017.

L De Oliveira Nunes, K. Eldefrawy, N. Rattanavipanon, M. Steiner, and G. Tsudik,
“VRASED: A verified hardware/software co-design for remote attestation,” in
USENIX Security, 2019.

M. Ammar, B. Crispo, and G. Tsudik, “Simple: A remote attestation approach for
resource-constrained iot devices,” in 2020 ACM/IEEE 11th International Conference
on Cyber-Physical Systems (ICCPS), pp. 247258, IEEE, 2020.

F. Brasser, B. E. Mahjoub, A. Sadeghi, C. Wachsmann, and P. Koeberl, “Tytan:
tiny trust anchor for tiny devices,” in Proceedings of the 52nd Annual Design
Automation Conference, San Francisco, CA, USA, June 7-11, 2015, pp. 34:1-34:6,
ACM, 2015.

P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “TrustLite: A security
architecture for tiny embedded devices,” in EuroSys, 2014.

L. De Oliveira Nunes, K. Eldefrawy, N. Rattanavipanon, and G. Tsudik, “Pure:
Using verified remote attestation to obtain proofs of update, reset and erasure in
low-end embedded systems,” 2019.

M. Ammar and B. Crispo, “Verify&revive: Secure detection and recovery of com-
promised low-end embedded devices,” in Annual Computer Security Applications
Conference, pp. 717-732, 2020.

N. Asokan, T. Nyman, N. Rattanavipanon, A.-R. Sadeghi, and G. Tsudik, “AS-
SURED: Architecture for secure software update of realistic embedded devices,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 37, no. 11, 2018.

L. De Oliveira Nunes, S. Jakkamsetti, N. Rattanavipanon, and G. Tsudik, “On the
toctou problem in remote attestation,” CCS, 2021.

“Avr atmega 1284p 8-bit microcontroller.” http://ww1.microchip.com/downloads/
en/DeviceDoc/doc8059.pdf, 2009.

T. Instruments, “Msp430 ultra-low-power sensing & measurement mcus.” http://
www.ti.com/microcontrollers/msp430-ultra-low-power-mcus/overview.html.
Arm Ltd., “Arm TrustZone.” https://www.arm.com/products/security-on-arm/
trustzone, 2018.

Intel, “Intel Software Guard Extensions (Intel SGX).” https://software.intel.com/
en-us/sgx.

O. Girard, “openMSP430,” 2009.

J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche, “Hacl*: A
verified modern cryptographic library,” in CCS, 2017.

D. Dolev and A. Yao, “On the security of public key protocols,” IEEE Transactions
on Information Theory, 1983.

S. Ravi, A. Raghunathan, and S. Chakradhar, “Tamper resistance mechanisms for
secure embedded systems,” in VLSI Design, 2004.

A.Irfan, A. Cimatti, A. Griggio, M. Roveri, and R. Sebastiani, “Verilog2SMV: A tool
for word-level verification,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2016, 2016.

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella, “Nusmv 2: An opensource tool for symbolic model
checking,” in CAV, 2002.

“CASU source code”” https://github.com/sprout-uci/CASU, 2022.

L. De Oliveira Nunes, K. Eldefrawy, N. Rattanavipanon, and G. Tsudik, “APEX: A
verified architecture for proofs of execution on remote devices under full software
compromise,” in 29th USENIX Security Symposium (USENIX Security 20), (Boston,
MA), USENIX Association, Aug. 2020.

“Ultrasonic ranger code”” https://github.com/Seeed-Studio/LaunchPad_Kit/tree/
master/Grove_Modules/ultrasonic_ranger.

“Temperature sensor code”” https://github.com/Seeed- Studio/LaunchPad_Kit/
tree/master/Grove_Modules/temp_humi_sensor.

Trusted Computing Group., “Trusted platform module (tpm),” 2017.

R. Kennell and L. H. Jamieson, “Establishing the genuinity of remote computer
systems,” in USENIX Security Symposium, 2003.

A. Seshadri, A. Perrig, L. Van Doorn, and P. Khosla, “SWATT: Software-based
attestation for embedded devices,” in IEEE Symposium on Research in Security
and Privacy (S&P), (Oakland, California, USA), pp. 272-282, IEEE, 2004.

(32]

(33]
(34]

(35]

[36

[37

[38

[39

[40]

[42]

[43]

[44]

[45]

[46]

[47

(48]

[49

o
=

[51

(52

(53]

A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla, “Pioneer:
Verifying code integrity and enforcing untampered code execution on legacy

systems,” in ACM SOSP, 2005.
A. Seshadri, M. Luk, and A. Perrig, “SAKE: Software attestation for key establish-

ment in sensor networks,” in DCOSS, 2008.

R. W. Gardner, S. Garera, and A. D. Rubin, “Detecting code alteration by creating
a temporary memory bottleneck,” IEEE TIFS, 2009.

J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki, “Flicker: An
execution infrastructure for tcb minimization,” in Proceedings of the 3rd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2008, pp. 315-328,
2008.

D. Schellekens, B. Wyseur, and B. Preneel, “Remote attestation on legacy operating
systems with trusted platform modules,” Science of Computer Programming, vol. 74,
no. 1, pp. 13 - 22, 2008.

G. Dessouky, T. Abera, A. Ibrahim, and A.-R. Sadeghi, “Litehax: lightweight
hardware-assisted attestation of program execution,” in 2018 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD), pp. 1-8, IEEE, 2018.

T. Abera, N. Asokan, L. Davi, J. Ekberg, T. Nyman, A. Paverd, A. Sadeghi, and
G. Tsudik, “C-FLAT: control-flow attestation for embedded systems software,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, October 24-28, 2016 (E. R. Weippl, S. Katzenbeisser,
C. Kruegel, A. C. Myers, and S. Halevi, eds.), pp. 743-754, ACM, 2016.

G. Dessouky, S. Zeitouni, T. Nyman, A. Paverd, L. Davi, P. Koeberl, N. Asokan,
and A.-R. Sadeghi, “Lo-fat: Low-overhead control flow attestation in hardware,”
in Proceedings of the 54th Annual Design Automation Conference 2017, p. 24, ACM,
2017.

S. Zeitouni, G. Dessouky, O. Arias, D. Sullivan, A. Ibrahim, Y. Jin, and A.-R.
Sadeghi, “Atrium: Runtime attestation resilient under memory attacks,” in Pro-
ceedings of the 36th International Conference on Computer-Aided Design, pp. 384—
391, IEEE Press, 2017.

Z.Sun, B. Feng, L. Lu, and S. Jha, “Oat: Attesting operation integrity of embedded
devices,” in 2020 IEEE Symposium on Security and Privacy (SP), pp. 1433-1449,
IEEE, 2020.

L. De Oliveria Nunes, S. Jakkamsetti, and G. Tsudik, “Tiny-CFA: Minimalistic
control-flow attestation using verified proofs of execution,” in Design, Automation
and Test in Europe Conference (DATE), 2021.

L. De Oliveira Nunes, S. Jakkamsetti, and G. Tsudik, “Dialed: Data integrity
attestation for low-end embedded devices,” 2021.

M. Geden and K. Rasmussen, “Hardware-assisted remote runtime attestation
for critical embedded systems,” in 2019 17th International Conference on Privacy,
Security and Trust (PST), pp. 1-10, IEEE, 2019.

M. Xu, M. Huber, Z. Sun, P. England, M. Peinado, S. Lee, A. Marochko, D. Mattoon,
R. Spiger, and S. Thom, “Dominance as a new trusted computing primitive for
the internet of things,” in 2019 IEEE Symposium on Security and Privacy, SP 2019,
San Francisco, CA, USA, May 19-23, 2019, pp. 1415-1430, IEEE, 2019.

M. Huber, S. Hristozov, S. Ott, V. Sarafov, and M. Peinado, “The lazarus effect:
Healing compromised devices in the internet of small things,” in ASIA CCS °20:
The 15th ACM Asia Conference on Computer and Communications Security, Taipei,
Taiwan, October 5-9, 2020 (H. Sun, S. Shieh, G. Gu, and G. Ateniese, eds.), pp. 6-19,
ACM, 2020.

E. Aliaj, I. De Oliveira Nunes, and G. Tsudik, “GAROTA: generalized active
root-of-trust architecture,” CoRR, vol. abs/2102.07014, 2021.

L. De Oliveira Nunes, S. Hwang, S. Jakkamsetti, and G. Tsudik, “Privacy-from-
birth: Protecting sensed data from malicious sensors with VERSA,” CoRR,
vol. abs/2205.02963, 2022.

J. Samuel, N. Mathewson, J. Cappos, and R. Dingledine, “Survivable key compro-
mise in software update systems,” in Proceedings of the 17th ACM Conference on
Computer and Communications Security, p. 61-72, Association for Computing
Machinery, 2010.

T. Karthik, A. Brown, S. Awwad, D. McCoy, R. Bielawski, C. Mott, S. Lauzon,
A. Weimerskirch, and J. Cappos, “Uptane: Securing software updates for au-
tomobiles,” in International Conference on Embedded Security in Car, pp. 1-11,
2016.

A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla, “Scuba: Secure
code update by attestation in sensor networks,” in In Proceedings of the 5th ACM
workshop on Wireless security (WiSe '06), p. 85-94, 2006.

D. Perito and G. Tsudik, “Secure code update for embedded devices via proofs of
secure erasure..” in ESORICS, 2010.

G. O. Karame and W. Li, “Secure erasure and code update in legacy sensors,” in
Trust and Trustworthy Computing, pp. 283-299, Springer International Publishing,
2015.

K. Zandberg, K. Schleiser, F. Acosta, H. Tschofenig, and E. Baccelli, “Secure
firmware updates for constrained iot devices using open standards: A reality
check,” IEEE Access, pp. 71907-71920, 2019.

