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SOCIAL SCIENCES

How to make causal inferences using texts

Naoki Egami't, Christian J. Fong?t, Justin Grimmer®**t,

Margaret E. Roberts>°*t, Brandon M. Stewart” 3+t

Text as data techniques offer a great promise: the ability to inductively discover measures that are useful for testing
social science theories with large collections of text. Nearly all text-based causal inferences depend on a latent repre-
sentation of the text, but we show that estimating this latent representation from the data creates underacknowledged
risks: we may introduce an identification problem or overfit. To address these risks, we introduce a split-sample
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workflow for making rigorous causal inferences with discovered measures as treatments or outcomes. We then apply
it to estimate causal effects from an experiment on immigration attitudes and a study on bureaucratic responsiveness.

INTRODUCTION

Social scientists increasingly use text-based measures as dependent or
independent variables (I1-6). Texts are complex, high-dimensional
objects; thus, researchers must find simpler, lower-dimensional
representations for their texts to use them in scientific analyses.
This simplification can be intuitive and familiar. For example, we
might take a collection of emails and divide them into “spam” and
“not spam.” We call the function that maps the documents into
our measure of interest g. g acts as a codebook that tells us how
to compress our documents into categories, topics, or dimensions
of interest.

Researchers rarely know g before they have seen their data.
Instead, they discover it inductively from the data itself. This includes
hand-coding and supervised methods that start with predetermined
categories and discover a mapping from features of the texts to
those categories (7), clustering and topic models that discover an
organization of texts and then assign documents to those categories
(8), and factor analysis and item-response theory models that
embed texts into a low-dimensional space (9). The need to discover
and iteratively define measures and concepts from data is a funda-
mental component of social science research.

However, the iterative discovery process poses problems for
causal inference. Standard causal inference frameworks, such as
potential outcomes (10) and directed acyclic graphs (11), assume
that the treatment and outcome are known and do not depend on
the data. This produces well-defined causal estimands (12), but it
contrasts with text-based causal inferences, where researchers’ g and,
hence, the outcomes or treatments are often latent variables found
from the data. Thus, when causal inference methods, including ran-
domized experiments, are applied directly to text data, we suffer
from distinct methodological challenges.

We connect the text as data literature (13-15), with the growing
literature on causal inference in the social sciences (11, 16) using a
rigorous machine learning workflow for text-based causal inferences
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that focuses on the central role of discovery. Our workflow high-
lights an identification and estimation problem that arises from a
common source—using the same documents to both discover mea-
sures and estimate causal effects. By using the same documents to
discover g and estimate effects, the analyst creates a problem where
the categories obtained depend on the particular randomization.
Consequently, each randomization could create a different code-
book function g. Because this different codebook function could
contain categories with a different substantive interpretation or
even a different number of categories, it is impossible to compare
estimates across different randomizations. As a result, properties of
estimators, such as bias, variance, and consistency, are not defined
without further assumptions.

This problem is pervasive in the social sciences. Any time scholars
work with some latent representation of data—either as treatments
or outcomes—and then use those latent representations to make a
causal inference, this problem is present unless scholars make addi-
tional assumptions or use a research design to eliminate its influence.
Because of its pervasiveness, we call this problem the Fundamental
Problem of Causal Inference with Latent Variables (FPCILV).

Even if we dismiss, or assume away, the identification problem,
the complexity of text leads to an estimation problem when the
same data are used to both estimate the codebook function and
infer causal effects: overfitting. By using the same documents to dis-
cover and estimate effects, even well-intentioned analysts may mis-
take noise for a robust causal effect. The dangers of searching over g
is a more general version of the problem of researchers recoding
variables in an experiment to search for significance. This idea of
overfitting also formalizes the intuition that some analysts have that
latent-variable models are “baking in” an effect. Without using
sample splitting, text as data causal inference research designs are
exposed to a particularly dangerous kind of “fishing.” Not only can
researchers search over specifications to find statistically significant
results, without sample splitting they would also be able to alter the
definition of their independent and dependent variables in search
of whatever findings they wanted.

Identification and overfitting problems caused by FPCILV can
be addressed by using one dataset to discover the measures of interest
and another to estimate causal effects. That way, a different random-
ization of the test set would not change g. Fortunately, it is not
necessary to actually collect two separate datasets. Instead, researchers
can simply divide one dataset into a training set for discovering mea-
sures and a test set for estimating causal effects (17). The estimate in the
test set provides insight into what the results from a next experiment

10f13

€207 ‘0€ dunf uo AJISIOATU() UOOJULIJ J& SI0°00UdI0S MM //:sd)NY WOl papeo[umo(]


mailto:jgrimmer@stanford.edu
mailto:meroberts@ucsd.edu
mailto:bms4@princeton.edu

SCIENCE ADVANCES | RESEARCH ARTICLE

would be and, as we show below, resolves our identification and esti-
mation problems. Figure 1 summarizes the procedure we recommend,
and Supplement S4 provides a more detailed verbal description.

Of course, sample-splitting procedures are a fundamental and
regularly used component of machine learning research, particularly
for evaluating the performance of classifiers. Following a long tradi-
tion in statistics (18) and more recently in econometrics, it has been
used to improve causal inference (19-21). However, this tradition
has not engaged with the FPICLV or the overfitting problems that
emerge when inferring g from data and then applying it to learn
causal effects, so the value of sample-splitting to resolve these issues
has not yet been appreciated.

To introduce this procedure, our paper proceeds as follows. We
provide a definition of g and describe the central role it plays in text
analysis. We then discuss the core identification and estimation
concerns that complicate the use of g in a causal inference setting.
We explain why sample splitting solves this problem, how it works,
and the trade-offs in its use. We also defer discussion of prior work
under this section so that we can show how our work connects to a
long tradition of sample-splitting approaches in machine learning
and, more recently, in causal inference. Last, we illustrate our ap-
proach using applications in two settings: text as outcome and text
as treatment.

RESULTS

The central problems that we address stem from the need to com-
press text data to facilitate causal inference. The codebook function,
g compresses high-dimensional text to a low-dimensional measure
used for the treatment or outcome. In this section, we explain why g
is essential, how to obtain g, and how to evaluate candidate ¢’s.

Collect documents
and responses

l

Make train/test split

ACEIN

Training set
Test set
5 Discover g

!

Estimate effects

l

) Label g
l Validate g
Validate g l
l Replicate
Finalize g

l

Suggest next experiment

Fig. 1. Our procedure for text-based causal inferences with latent treatments
or outcomes.
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What is g and why do we need it?

Documents are high-dimensional, complicated, and sparse; hence,
text is typically not usable for social science inference in its raw
form. Fortunately, social scientists are often interested in some
emergent property of the text—such as the topic that is discussed,
the sentiment expressed, or the ideological position taken. The
result is that distinct blocks of text can convey similar topics or sen-
timent. Reducing the dimensions of the text allows us to group texts
and make inferences from our data.

Suppose we are interested in understanding how candidate biogra-
phies influence the popularity of a candidate (17). Each biography is
unique; thus, we cannot estimate the effect of any individual biography
on a candidate’s popularity. Instead, we are interested in some
latent property of the text’s effect on the popularity of the candidate,
such as occupational background. In this example, g might com-
press the text of the biography into an indicator of whether the can-
didate is a lawyer. The analyst might define g by hand-coding,
automatically from the text, by looking for the presence or absence
of the word “lawyer,” or by a group of words or phrases that convey
that someone has a legal background, such as “JD,” “attorney,” and
“law school.” Being a lawyer is just one latent feature in the text.
Different ¢’s might measure whether a candidate held prior office,
went to college, or served in the military. These examples all map
the text into binary categories, but g could also map into discrete
categories, proportions, or continuous variables (like ideal point
estimates).

Social scientists working on text as data have adopted this com-
pression approach, although the low-dimensional representation is
often only implicit (8, 9, 13). We can also think of g as the codebook
function because it plays the role of a codebook in a manual content
analysis, describing a procedure for organizing the researcher’s
texts in some systematic way. g is always implicitly present whenever
a set of documents is placed into a common set of categories or is
assigned a common set of properties. g takes on a central role be-
cause it connects the raw text to the underlying property that the
researcher cares about. Once a researcher decides on and estimates
& then text is usually ready to be used in statistical analysis.
Discovering g
While g is necessary to make causal inference, it is rarely known
exactly from a theory or prior research. Instead, g is typically devel-
oped through iteration between coding rules and the documents to
be coded. Even in manual content analysis (22), researchers typically
read at least a portion of the documents to write a codebook that
determines how coders should put documents into the categories of
interest. The process is even more explicitly data-driven in auto-
mated content analysis.

There are three strategies for learning g from the data. First, we
could read a sample of text. In manual content analysis, g often
relies on some familiarity with the text or reading a sample of docu-
ments to decide how the text should map into categories. Second,
we could use supervised learning, which is conceptually similar to
manual content analysis, to infer g from hand-coded or otherwise
labeled documents. Last, we could use unsupervised learning tech-
niques to discover a low-dimensional representation.

Portability of g

When we fit a g within a sample, it is a mapping from words and
features to labels. This might be extremely data specific, depending
on the particular syntax and content with a particular corpus. This
mapping, however, is intended to capture a more general concept or
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organization of the world. This organization, by construction, will exist
outside of any one dataset and can be used in many distinct settings.

The concepts that we discover are portable, although the code-
book function g will be corpus specific. When we are working
inductively, we tend to use g to generate ideas about the concep-
tualization that is useful for making inferences. Once we have this
concept, though, it is portable across different settings. The question
in these other settings is how to construct a g to map from the fea-
tures for that particular setting to the concept. In other words, we
need a corpus-specific mapping, g, that corresponds with the general
concept.

For example, consider a corpus of newspaper editorials. A re-
searcher might be interested in a codebook, g, that maps the texts of
the editorials to the concept of right-wing populism. If the editorials
came from the contemporary United States, the codebook would
probably look for features that expressed skepticism about immi-
gration, affinity for protectionism, and affection for Donald Trump.
To capture the same concept in the contemporary United Kingdom,
researchers should instead use a codebook that focuses more on a
distaste for the European Union. When the concept is captured
with different codebooks, researchers must be cautious about
making naive comparisons of g across corpora. For example, a 0.9 in
the United States means something different from a 0.9 in the United
Kingdom. Therefore, when considering portability and external
validity, researchers should focus on causal effects in terms of the
underlying concept rather than a specific function g itself. If a re-
searcher found that exposure to a populist editorial increases
support for defense spending in the United States, they could test
whether the relationship held in the United Kingdom as well. Here,
researchers can conduct sign generalization (whether the sign of
causal effects of exposure to right-wing populism is the same in the
two countries) rather than effect generalization (whether point esti-
mates are the same), which is a less relevant question because re-
quired codebook functions g are different.

The problem of causal inference with g

The codebook function, g, encodes the mapping between the ob-
served text and the low-dimensional representations we use to
make inferences. In this section, we explain how this compression
of information both facilitates and challenges causal inference with
text. We first place g in the traditional causal inference setting. We
then explain how the use of g leads to the FPCILV and overfitting.
Causal inference with g

To begin, we review potential outcomes notation and assumptions
used when there is no text or dimensionality reduction, and we
analyze a unidimensional treatment and outcome (16). Denote our
dependent variable for each uniti [i € (1,2, ..., N)] with Y}; the treat-
ment condition for unit i will be T;. We define the space of all
possible outcomes as Y and the space of all possible treatment
assignments as 7. When the treatment is binary, we refer to Y;(1) as
the potential outcome for unit i under treatment and Y;(0) as the
potential outcome under control. The individual causal effect (ICE)
for unit i is given by ICE; = Y;(1) — Y;(0). Our typical estimand is
some function of the ICEs, such as the average treatment effect
(ATE), E[Y{(1) - Y(0)].

To identify the ATE using a randomized experiment, we make
three key assumptions. First, we assume that the response depends
only on the assigned treatment, often called the stable unit treat-
ment value assumption (SUTVA). Specifically,

Egami et al., Sci. Adv. 8, eabg2652 (2022) 19 October 2022

Assumption 1 [SUTVA (23)]. For each individual i, we assume
that their response depends only on their assigned treatment status.

Second, we assume that our treatment is randomly assigned:

Assumption 2 (Ignorability). Yi(¢) IL T; for all t € 1. For each
individual, we assume that their potential outcomes are independent
of treatment assignment.

Third, we assume that every treatment has a chance of being seen:

Assumption 3 (Positivity). Pr(T =t) > 0 for all t € 1. We assume
that all treatments have some probability of being seen.

The second and third assumptions are guaranteed by proper
randomization of the experiment, whereas the first is generally
understood to mean that there is no interference between units and
no hidden values of treatment. For each observation, we observe
only a single potential outcome corresponding to the realized
treatment.

Building off this notation, we can introduce mathematical notation
to cover high-dimensional text and the low-dimensional representa-
tion of texts derived from g, which we will use for our inferences.
We start by extending our notation to cover multidimensional out-
comes, Y;, and multidimensional treatments, T;. We will suppose,
for now, that we have already determined g, the codebook function.
Recall that g is applicable regardless of whether the coding is done
by a machine learning algorithm, a team of research assistants, or an
expert with decades of experience.

We write the set of possible values for the mapped text as Z with
a subscript to indicate whether it is the dependent variable or treat-
ment. We denote the realized values of the low-dimensional repre-
sentation for unit i as z; [i € (1, ..., N)]. We suppose that when the
outcome is text g: Y — Zyand z; = g(Y;), and when the treatment is
text g:7 — Zp and z; = g(T;). The set Z is a lower-dimensional
representation of the text and can take on a variety of forms de-
pending on the study of interest. For example, if we are hand-coding
our documents into two mutually exclusive and exhaustive catego-
ries, then Z = {0,1}. If we are using a mixed-membership topic
model to measure the prevalence of K topics as our dependent variable,
then Z is a K — 1 dimensional simplex. In addition, if we are using
texts as a treatment, we might suppose that Z is the set of K binary
feature vectors, representing the presence or absence of an underly-
ing treatment (although our workflow is general, we prefer binary
treatments primarily for simplicity of functional form; see Supple-
ment S7 for more). There are numerous other types of g that we
might use—including latent scales, dictionary-based counts of terms,
or crowd-sourced measures of content. While we generally assume
that g substantially reduces dimensionality, the only requirement
for g is that it is a function.

We next use g to write our causal quantity of interest in terms of
the low-dimensional representation. To make this concrete, consider
a case where we have a binary nontext treatment and a text-based
outcome (we consider other causal estimands below). Suppose we
hand-code each document into one of K categories such that for unit
i, we can write the coded text under treatment as z;(1) = g(Y;(1)).
We can then define the ATE for category k to be

ATEx

E[g(Yi(1))k — g(Yi(0))«]

El23(1) ~234(0)] )

where z;x(1) and z;(0) indicate the values of the kth category, for
unit 7, under treatment and control, respectively.
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The problems: Identification and overfitting

Equation 1 supposes that we already have a g in hand. Whether by
reading or machine learning, g is often discovered by interacting
with some of the data. We denote the set of documents considered
in development of g as J and write gj to indicate the dependence of
gon the documents. Problems of identification and estimation arise
where the set of documents used to develop g, J, overlaps with the
set of documents used in estimation, which we will call I. There are
two broad concerns: an identification problem arising from FPCILV
and an estimation problem with overfitting.

If Assumption 1 (SUTVA) holds, then each observation’s re-
sponse does not depend on other units’ treatment status. However,
even when Assumption 1 holds, when we discover gj, the particular
randomization that we obtain will affect the gj that we estimate.
This dependence on a randomization occurs because the treatment
vector Ty—the treatment assignments for all documents J—affects
the g that we obtain. If we were to randomize again, we would obtain
a different Ty and therefore a different gy—a distinctively challenging
form of data-adaptive estimation as in Hubbard et al. (24). This
makes it impossible to compare the estimates across different ran-
domizations because the content or even the number of categories
might be different. Because the estimates cannot be compared, it is
impossible to even define the bias, variance, consistency, or other
properties of an estimator. Supplement S2 provides a formal defini-
tion of the FPCILV.

To see how the FPCILV works in practice, consider a stylized
experiment on four units with a dichotomous intervention (treatment/
control) and a text-based outcome. We might imagine potential
outcomes that have a simple relationship between treatment and
the text-based outcome such as the one shown in Table 1.

Using Table 1, we can imagine the properties of an estimator
applied to this text-based experiment as we rerandomize treatment
assignment. Suppose that for each randomization we choose a g that
measures each category we observe using an indicator variable and
then, given g, estimate the treatment effect. For example, consider if
we observe the treatment vector (1,1,0,0), we only observe two of
the four categories: morals and immigration. Accordingly, our
learned g consists of two indicator variables, one for morals and one
for immigration. We could randomize again and get assignments
(1,0,1,0), where we would observe all four categories resulting in
four indicator variables. Under the randomization (0,0,1,1) (i.e., the
sixth scenario in Table 1B), we are back to only two categories, taxes
and polarization, and, thus, only two indicator variables.

As we randomize, we estimate different ¢’s with different categories.
This lack of category stability complicates our ability to analyze our
estimators as we traditionally do, using a workflow based on re-
randomization. We take this category and classification stability for
granted in standard experiments because categories are defined and
fixed before the experiment. However, when we estimate categories
from data, the discovered g depends on the randomization and thus
induces dependence of a unit’s coded outcome on the treatment
assignments of other units. Even if we fix the categories, as we might
do with a supervised model, different randomizations may lead to
different rules for assigning documents to categories, leading to a
lack of classification stability. If, however, we fix g before estimating
the effects, the problem is resolved, and the properties of the estima-
tor are now well defined.

Even if we assume away the FPCILV, estimating ¢ means that
researchers might overfit: discover effects that are present in a par-
ticular sample but not in the population. The overfitting problem is

Table 1. A stylized experiment with text-based outcomes. (A) shows the potential outcomes for each unit under each treatment assignment. Treated units
talk about candidate morals and polarization and control units talk about taxes and immigration. In (B), T denotes a different treatment assignment vector
where two of four units are treated. Y denotes text-based observed outcomes under each treatment assignment. Mo, Im, Tx, and Po stand for candidate morals,

immigration, taxes, and polarization, respectively.

(A) Text-based potential outcomes

Potential outcome under treatment

Potential outcome under control

Person 1 Candidate morals Taxes
Person 2 Candidate morals Taxes
Person 3 Polarization Immigration
Person 4 Polarization Immigration
(B) Text-based observed outcomes under six different treatment assignments
T Y T Y T Y T Y T Y T Y

Person 1 1 Mo 1 Mo 1 Mo Tx Tx 0 Tx
Person 2 1 Mo 0 Tx 0 Tx 1 Mo 1 Mo 0 Tx
Person 3 0 Im 1 Po 0 Im 1 Po 0 Im 1 Po
Person 4 0 Im 0 Im 1 Po 0 Im 1 Po 1 Po
Number of 2 4 4 4 4 2

categories
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particularly acute when a researcher is fishing—searching over g’s
to obtain statistical significance or estimates that satisfy a related
criterion. However, overfitting can occur even if researchers are
conducting data analysis without ill intentions. Researchers necessarily
search over different g’s to find those that best meet the criteria of
interpretability, interest, fidelity, and tractability. Hand-coding re-
quires iteration to refine the codebook, supervised models to refine
the classifier, and unsupervised methods to adjust parameters and
examine different organizations.

Fishing and overfitting are a problem in all experimental de-
signs, not just those with text. The problem of respecifying g until
finding a statistically significant result is analogous to the problem of
researchers recoding variables or ignoring conditions in an experi-
ment, which can lead to false-positive results (25). The problem
with text-based inferences is heightened because texts are much
more flexible than other types of variables, creating a much wider
range of potential ¢’s. This wider range increases the risk of overfitting,
even among well-intentioned analysts. Overfitting is also likely in
texts because it is so easy to justify a particular g after the fact—the
human brain is well equipped to identify and justify a pattern in a
low-dimensional representation of text, even if that pattern emerges
merely out of randomness. This means that validation steps alone
may be an insufficient safeguard against overfitting, although texts
provide a rich set of material to validate the content.

A train/test split procedure for valid causal

inference with text

To address the identification issues caused by the FPCILV and the
estimation challenges of overfitting, we must break the dependence
between the discovery of g and the estimation of the causal effect.
The most straightforward approach is to define g before looking at
the documents. Defining the categories beforehand, however, limits
our coding scheme, excluding information about the language used
in the experiment’s interventions or what units said in response to a
treatment. If we define our codebook before seeing text, we will miss
important concepts and have a poorer measure of key theoreti-
cal concepts.

We could also assume the problem away. Specifically, to elimi-
nate the FPCILYV, it is sufficient to assume that the codebook that
we obtain is invariant to randomization. Take, for example, the text
as outcome case; if the g we learned does not change over different
randomizations of the treatment, we do not have an FPCILV. We
define a formal version of this assumption in Supplement S2.

Our preferred procedure is to explicitly separate the creation of
g and the estimation of treatment effects. This procedure avoids the
FPCILV and provides a natural check against overfitting. To explicitly
separate the creation of the codebook and its application to estimate
effects, we randomly divide our data into a training set and a test set.
Specifically, we randomly create a set of units in a training set
denoted by the indices J and a nonoverlapping test set denoted by
the indices I. We use only the training set to estimate the g function
and then discard it. We then use the test set exclusively to estimate
the causal effect on the documents in I.

This division between the training and test set addresses both the
identification and estimation problems. It avoids the FPCILV in the
test set because the function g does not depend on the randomization
in the test set, so that each test set unit’s response depends only on
its assigned treatment status. There is still a dependence on the
training set observations and their treatment assignment. This,
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however, is analogous to the analyst shaping the object of inquiry or
creating a codebook after a pretest. With the FPCILV addressed, it
is now possible to define key properties of the estimator, like bias or
consistency.

The sample split also addresses the concerns about overfitting.
The analyst can explore in the training set as much as she likes, but,
because findings are verified in a test set that is only accessed once,
she is incentivized to find a robust underlying pattern. Patterns in
the training set that are due to idiosyncratic noise are highly unlikely
to also arise in the test set, which helps assure the analyst that
patterns that are confirmed by the separate test set will be replicable
in further experiments. By locking g into place in the training set,
the properties of the tests in the test set do not depend on the num-
ber of different ¢’s considered in the training set. In practice, we find
that splitting the sample ensures that we are able to consider several
models to find the g that best captures the data and aligns with our
theoretical quantity of interest without worrying about accidentally
p-hacking.

With the reason for sample splitting established, we first describe
our final estimands for the text as outcome and text as treatment
cases. We then describe the pragmatic steps we suggest to imple-
ment a train/test split. Then, we discuss the trade-offs in using a
split-sample approach. Having described our strategy, we connect
our approach to existing prior work before demonstrating how it
works in two different applications.

Text as outcome

In text as outcome, the particular g that the analyst chooses defines
the categories of the outcome from which the estimand will be defined.
Our goal is to obtain a consistent (and preferably unbiased) estima-
tor for the ATE (or other causal quantities of interest) assuming a
particular g. Using Assumptions 1 to 3, the following is a consist-
ent estimator

I(T; = 0)g3(Yy)
ia@ Yiel(Ti = 0)

o v (T = Dgp(Yi)
ATE=2, Yial(T; = 1)

Supplement S2 gives an identification proof. The proof relies on
the fact that g is fixed before documents I are examined, which
allows us to treat the mapped outcome gj(Yy) as an observed variable.
Text as treatment
Text may also be the treatment in an experiment (26, 27). For exam-
ple, we may ask individuals to read a candidate’s biography and
then evaluate how the candidate’s favorability on a scale of 0 to 100
(17). The treatment, T;, is the text description of the candidate
assigned to the respondents. The potential outcomes Y;(T;) describes
respondent i’s rating of the candidate under the treatment assigned
to respondent i.

While we could compare two completely separate candidate de-
scriptions as in A/B tests, social scientists are almost always interested
in how some underlying feature of a document affects responses.
That is, the researcher is interested in estimating how an aspect or
latent value of the text influences the outcome, as in Voelkel et al.
(27). For example, the researcher might be interested in whether
including military service in the description has an impact on the
respondents’ ratings of the candidate. Military service is a latent
variable—there are many ways that the text could describe military
service that all would count as the inclusion of military service and
many ways that the text could omit military service that all would
count as the absence of the latent variable. The researcher might

i€l
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assign 100 different candidate descriptions, some of which mention
the candidate’s military service and some of which do not. In
this case, the treatment of interest is Z; = g(T;) € {0,1}, which maps
the treatment text to an indicator variable that indicates whether
the text contains a description of the candidate’s military service.
To estimate the impact of a binary treatment, we could use the
estimator

IZi=1)Y: _
iel Yier1(Zi = 1)

17 = 0)Y;
iel Yier1(Zi = 0)

ATE =

where Z; = g(T)).

With text as treatment, we may be interested in more than just
one latent treatment. The presence of multiple latent treatments re-
quires different causal estimands and enables us to ask different
questions about how features of the text affect responses. For exam-
ple, we can learn the marginal effect of military service and how
military service interacts with other features of the candidate’s
background—such as occupation or family life. Typically with mul-
tidimensional treatments, we are interested in the effect of one
treatment holding all others constant. This complicates the use of
topic models that suppose Z is a simplex (all topic proportions are
nonnegative and sum to one) because there is no straightforward
way to change one topic holding others constant [see (17) and Sup-
plement S7]. Instead, we will work with g that compresses the text T
to a vector of K binary measured treatments Z € Z, where Z rep-
resents all 25 possible combinations of the measured treatments,
and Z has typical element Zj, indicating the kth treatment for ob-
servation i. We could also, of course, suppose that g maps T to a set
of continuous underlying treatments, but this requires additional
functional form assumptions. Fong and Grimmer (28) also suppose
that there are a series of unmeasured treatments B; € 3, which we
obtain by applying the function & to the texts so that h(T;) = B;.
Fong and Grimmer (28) then suppose that the combination of mea-
sured and unmeasured treatments captures all the relevant features
of the text or that Y,(T,) = Y,‘(g(T,‘), h(T,)) = Y,’(Z,’, B,)

If Z € {0,1}, then we can define the ATE as

ATE = Z E [Y,'(Z,‘ =1,Bi :l’)) —Y,‘(Ziz O,Biz b)]PT(BiZ b)
beB

If Z is higher-dimensional, we can generalize this estimand to be
the average marginal component effect.

To estimate the effect of measured latent treatments, we require
an additional assumption than in the text as outcome case. This is
because we are usually only able to randomize at the text level, but
we are interested in identifying the effect of latent treatments we
are unable to manipulate directly, raising the possibility that our
measured treatment of interest Z; could be confounded by B;.
Consequently, we need to make an additional assumption beyond
the three mentioned above [SUTVA, Ignorability and Positivity,
which, in the multidimensional case, generalizes to f{(Z;) > 0 for all
Z; € Range g(-)]. Specifically, Fong and Grimmer (28) show that
one of the following two assumptions is sufficient to identify the
ATE and to ensure that the difference in means estimator is a con-
sistent estimator.

Assumption 4. (28) Either

1) The measured and unmeasured latent treatments are indepen-
dent Pr(Z;, B;) = Pr(Z;)Pr(B;) or
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2) The unmeasured treatments have no effect on the outcome:
E[Yi(Z; =z B;=b)] = E[Yi(Z; =z, B;=b")] for all z € {0,1} and all
b,b’ e B

Fong and Grimmer (28) show that Assumptions 4.1 and 4.2 are
analogous to assumptions made when doing standard observation-
al causal inference work. Assumption 4.1 implies that any omitted
unmeasured treatments are not systematically related to the mea-
sured treatments of interest and therefore cannot confound our esti-
mate. Assumption 4.2 implies that any unmeasured treatment cannot
affect the outcome, and as a result, it cannot confound our estimate.
Since the assumptions depend on the distribution of latent com-
ponents of the text in the population, they are not guaranteed by ran-
domization at the level of the complete texts. Fong and Grimmer
(28) provide a set of tools for diagnosing whether the assump-
tions hold for potentially confounding unmeasured treatments.
Procedure
In this section, we discuss the general procedure for implementing
the train/test split to estimate the above quantities of interest. This
procedure follows the schematic in Fig. 1. Considerations specific to
text-as-treatment or text-as-outcome are deferred to Supplements
S6 and S7.

Step 1: Splitting the sample. The first major choice that the analyst
faces is how to split the sample into two pieces: the training set and
the test set. A default recommendation is to split 50% of the docu-
ments in training and 50% in the test set. However, this depends on
how the researcher evaluates the trade-off between discovery of g
and testing. Additional documents in the training set enables learn-
ing a more complicated g or more precise coding rules. Additional
documents in the test set enable more precise estimation of the
treatment effect. While the test set should be representative of the
population that you want to make inference about, the training set
can draw on additional nonrepresentative documents as long as
they are similar enough to the test set to aid in learning a useful g.
Last, when taking the sample, the analyst can stratify on characteristics
of interest to ensure that the split has appropriate balance between
the training and test set on those characteristics.

Once the test set is decided, the single most important rule is that
the test set is used once, solely for estimation. If the analyst revises g
after looking at the test set data, she reintroduces the FPCILV and
risks overfitting. Test data must be set aside before any part of the
analysis: Even preliminary steps like preprocessing must not include
the test dataset. Third parties, such as survey firms and research
agencies, can be helpful in credibly setting the data aside.

Step 2: Discover g. We use the training set and text as data methods
to find a g that is interpretable, is of theoretical interest, has high
label fidelity, and is tractable. Here, we use the Structural Topic
Model (STM) and the Supervised Indian Buffet Process (sIBP), but
there are numerous other methods that are applicable.

Step 3: Validation in the training set. Validation is an important
part of the text analysis process, and researchers should apply the
normal process of validation to establish label fidelity. These valida-
tions are often application specific and draw on close reading of the
texts. These validations should be completed in the training set as
part of the process of discovering and labeling g before the test set is
opened. See Grimmer and Stewart (29) for more details on types of
validation and the STM package (30) for tools designed to assist
with validation.

During this step, we can refit g as often as it is useful for our
analysis. However, once applied to the test set, we cannot alter g
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further. Before fixing g, ensure that g is capturing the aspect of the
texts that you want to capture, assign labels, and then validate to
ensure that the conceptual gap between those labels and the repre-
sentation g produces is as small as possible. While validation ap-
proaches may vary—this necessarily involves reading documents
(15, 22, 29)—it is helpful to fix a set of human-assigned labels, ex-
ample documents, and automated keyword labels in advance to
avoid subtle influence from the test set.

In addition, while we focus on inference challenges with g, stan-
dard experimental challenges remain. We advise analysts to fix their
evaluation plans before looking at data in the test set. Here, we can
draw from the established literature on best practices in experi-
ments potentially including a pre-analysis plan (31). This can in-
clude multiple-testing and false-discovery rate corrections.

Step 4: Applying g and estimating causal effects. Mechanically,
applying g in the test set is straightforward and is essentially the pro-
cess of making a prediction for an unseen document. After calculating
the quantities gj(Yr), we can use standard estimators appropriate to
our estimand, such as the difference of means, to estimate the ATE. The
supplement describes how to apply g to test documents in both the
sIBP and the STM, which we cover in our examples.

Step 5: Validation in the test set. It is also necessary to ensure that
the model fits nearly as well on the test set as it did on the training
set. When both the training and test sets are random draws from the
same population, this will generally be true, but overfitting is still
possible, particularly with small sample sizes. The techniques used
to validate the original model can be used in the test set as well as
common measures of model fit such as log likelihood. Unlike the
validation in the training set, during the validation in the test set,
the analyst cannot return to make changes to the model. Nevertheless,
validation in the test set helps the analyst understand the substan-
tive meaning of what is being estimated and provides guidance for
future experiments. Formally, our estimand is defined in terms of
the empirically discovered g in the training set. However, invari-
ably, the analyst makes a broader argument indicated by the label.
Validation in the test set verifies that label fidelity holds and that g
represents the concept in the test set of documents.

Trade-offs

The train/test split addresses many of our concerns, but it is not
without cost. Efficiency loss is the biggest concern. In a 50/50 train-
test split, half the data are used in each phase of analysis, implying
that half the data are excluded from each step. At the outset, it is
difficult to assess how much data are necessary for either the train-
ing or the test set. The challenge in setting the size of the test set is
that the analyst does not yet know what the outcome (or treatment)
will be when the decision is made on the size of the split. The prob-
lem in setting the size of the training set is that we do not know the
power we need for discovery. Alternatively, we could focus first on
determining the power needed for estimation of an effect and then
allocate the remaining data for discovery. This can be effective, but
it requires that we are able to anticipate characteristics of a treat-
ment or outcome we have not yet discovered.

Another concern is conceptual: We may worry that the particu-
lar g, and perhaps even the ultimate conceptualization, might de-
pend on how the sample was originally split. While this is an
important issue, we note that it is a common feature across research:
Our ideas and views of the world will be informed by the order of
evidence that we encounter. Two different teams—or even the same
team on different days—might look at the same data and find different
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things of salience to measure. This does not invalidate any one read-
ing of the text, but it does require that analysts and readers keep in
mind that this is only one possible interpretation of the events in the
world. This is true even in classical nontext randomized experi-
ments. Consider a job training experiment where we could choose
to measure any of a wide variety of outcomes from employment,
wages, social connections, or even mental well-being. That one of
these outcomes shows no effect would not be to suggest that the job
training had no effect on the people involved, just that it did not
have an effect on that specific outcome. Furthermore, although two
teams might pick two different ways of measuring employment,
their findings are likely to coincide because they are looking at the
same underlying fact pattern.

It is essential to ask how well g fits on test data, whether it
measures the concept it intends to well, and to explore whether
there are critical concepts emerging or missing from the analysis. It
is by validating g that we ensure that results we find will be con-
sistent with other measurements of the same concept. Just like
other approaches to research, as g’s are applied to different datasets
and interpreted by different researchers, our hope is that the
particular data we are using will matter less than the broader truth
the analysis reveals.

Prior work

Our central contribution is a rigorous machine learning workflow
that characterizes how to make causal inferences with texts and
identifies problems that arise when making those causal inferences
and the explanation of why sample splitting addresses these
challenges. Together, this serves as a unified guidebook for using
text and causal inference. Before Roberts et al. (32) and Fong and
Grimmer (17), there had been comparatively little work on causal
inference with latent variables. Lanza et al. (33) consider causal in-
ference for latent class models but do not give a formal statement of
identifying assumptions or acknowledge the set of concerns we identify
as the FPCILV. Volfovsky et al. (34) present a variety of estimands
and estimation strategies for causal effects where the dependent
variable is ordinal. They provide approaches based on both the
observed data and latent continuous outcomes. Volfovsky et al. (34)
express caution about the latent variable formulation due to identi-
fication concerns, and the subsequent literature (e.g., 35) has moved
away from it. Unfortunately, many of their strategies based directly
on the observed outcomes are unavailable in the much higher-
dimensional setting of text analysis. Following our posting of the
preprint version of this article in 2018, there has been a burst of
interest from the natural language processing community exploring
various components of causal inference with text classifiers and
language models (36-38).

Our proposed solution, sample splitting, has a long history in
machine learning. There has been a growing exploration of the use
of train/test splits in the social sciences as well as causal inference
(19, 21, 39). 1t is the natural solution to this class of problems, and
we certainly do not claim to be the first to introduce the idea of
train/test splits into the area. Our approach is mostly closely related
to prior work by Fafchamps and Labonne (20) and Anderson and
Magruder (39), which both advocate a form of split samples to aid
in discovery with standard regression analysis.

Our work is also part of a burgeoning literature on the use
of machine learning algorithms to enhance causal inference
(18, 19, 21, 40-43). Much of this work focuses on estimating causal
parameters on observed data and addressing a common set of concerns,
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such as estimation and inference in high-dimensional settings, regu-
larization bias, and overfitting. Our work complements this literature by
exploring the use of latent treatments and outcomes. Many pieces
in this area call for sample splits or cross-validation for estimation
and inference, providing additional justification for our preferred
approach [e.g., (21)]. In Supplement S3, we discuss the connection
between our work and related work using cross-validation.

Applications

Our preferred approach is sequential. We advocate a split-sample
design that allows for a discovery phase to precede the analysis
phase. We also explicitly plan to run experiments again, using each
analysis to inform future work. In this section, we demonstrate this
approach through two applications: one where text is the outcome
and one where text is the treatment. In each case, we explicitly
describe the discovery process. Although we use specific models to
facilitate discovery, STM for text as outcome and sIBP for text as
treatment, the process we describe here is general to any method for
discovering g from data.

Text as outcome: An experiment on immigration

To first demonstrate how to use text as a response in a causal inference
workflow, we apply the STM to open-ended responses from a survey
experiment on immigration (32). Specifically, we build on an experi-
ment first introduced in Cohen et al. (44) to assess how knowledge
about an individual’s criminal history affects respondent’s preference
for punishment and deportation. These experimental results contribute
to alarge literature about Americans’ preferences about immigrants
and immigration policy [see (45) for a review] and a literature on
the punishments people view as appropriate for crimes. Critically,
in both conditions of our experiment, an individual has broken the
same law, entering the country illegally, but differs solely on prior
criminal history. We therefore ask how someone’s past criminal be-
havior affects the public’s preference for future punishment and use the
open-ended responses to gather a stated reason for that preference.

We analyze three iterations of a similar experiment. With each
experiment, we chose g and estimated treatment effects using the
process described in Fig. 1. The first results are based on responses
initially using the data from Cohen et al. (44). We use this initial set
of responses to estimate an initial g and to provide baseline catego-
ries for the considerations respondents raise when explaining why
someone deserves punishment. In a second experiment, we build
on (44), but address issues in the wording of questions, expand the
set of respondents who are asked to provide an open-ended response,
and update the results with contemporary data. We then run a third
experiment because we found that our g performed poorly in the
test set of the second experiment. We also used that opportunity to
improve small features of the design of the experiment. We describe
each experiment in detail below.

We report the results of experiments 1 and 3 (rather than just 3)
in the supplement and provide the data for all three experiments in
our replication archive to be transparent about our research process,
something we suggest that researchers do to avoid selective reporting
based on an experiment’s results. The experimental results show that
there has been unexpected stability in the considerations Americans
raise when explaining their punishment preferences, although there
are some additional categories that emerge. There is also a consistent
inclination to punish individuals who have previously committed a
crime, although they committed the same crime as someone with-
out a criminal history.
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In each experiment, we used equal proportions of the sample in
the train and test sets. In each experiment, we fit several models in
the training set before choosing a single model that we then applied
to the test set.

For experiment 3, Table 2 shows the words with the highest
probability in each of the 11 topics. Topics range from advocating
for rehabilitation or assistance for remaining in the country to
suggesting that the person should receive maximal punishment.
Because of space constraints, we put additional details about the
other experiments in Supplement S8.

After discovering, labeling, and finalizing g in the training set,
we estimated the effect of treatment on the topics in the test set. In
Fig. 2, we show large impacts of treatment on topics. Treatment
(indicating that the person had a previous criminal history) increased
the amount of writing about maximal punishment, deportation,
and sending the person back to their country of origin. The control
group was more likely to advocate that the person should be able to
stay in the country or that the punishment should depend on the

Table 2. Topics and highest probability words for experiment 3.

Label Highest probability
words
Topic 1 Limited punishment with help legal, way, immigr,
to stay in country, complaints danger, peopl, allow,
about immigration system come, countri, can, enter
Topic 2 Deport deport, think, prison,
crime, alreadi, imprison,
illeg, sinc, serv, time
Topic 3 Deport because of money just, send, back, countri,
jail, come, prison, let,
harm, money
Topic 4 Depends on the circumstances  first, countri, time, came,
jail, man, think, reason,
govern, put
Topic 5 More information needed state, unit, prison, crime,
immigr, illeg, take,
crimin, simpli, put
Topic 6 Crime, small amount of jail time,  enter, countri, illeg,
then deportation person, jail, deport,
time, proper, imprison,
determin
Topic 7 Punish to full extent of the law crime, violent, person,
law, convict, commit,
deport, illeg, punish,
offend
Topic 8 Allow to stay, no prison, dont, crimin, think, tri,
rehabilitate, probably hes, offens, better,
another explanation case, know, make
Topic 9 No prison, deportation deport, prison, will,
person, countri, man,
illeg, serv, time, sentenc
Topic 10 Should be sent back sent, back, countri, prison,
home, think, pay,
origin, illeg, time
Topic 11 Repeat offender, danger to believ, countri, violat,

society offend, person, law,
deport, prison, citizen,

individu
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circumstances of the crime. We found qualitatively similar re-
sults in our other experiments (Supplement S8), although g is differ-
ent in both cases and the set of people who were asked to provide a
reason is different. In each case, the description of a criminal histo-
ry substantially increases the likelihood that the respondent advo-
cates for more severe punishment or deportation.

In Fig. 1, we recommend concluding experiments with sugges-
tions for further experimentation, and we do so here. Future iterations
of the experiment could explore two features of the treatment. First,
we have only provided information about one type of crime. It would
be revealing to know how individuals respond to crimes of differing
severity. Second, we could use our existing design to estimate hetero-
geneous treatment effects, which would be particularly interesting
in light of contemporary debates about how to handle undocumented
immigration in the United States.

Text as treatment: CFPB

We turn next to apply our workflow to text-based treatments. We
examine the features of a complaint that cause the Consumer
Financial Protection Bureau (CFPB) to reach a timely resolution of
the issue.

Our goal is to discover the treatments and estimate their effect
on the probability of a response. We discover g using the sIBP
developed for this setting in Fong and Grimmer (17) and imple-
mented in the texteffect package in R (46). The model learns a set of
latent binary features that are predictive of both the text and the
outcome. To do this, we first randomly divide the data, placing 10%
in the training set and 90% of the data in the test set. We place more
data in the test set because our large sample (~11K) provides ample
opportunity to discover the latent treatments in the training set and
to provide greater power when estimating effects in the test set. In

Limited punishment .
with help to stay in ;
country, complaints about ,
immigration system -
Deport ——e——
Deport because of money —0—'
Depends on the .
circumstances !
More infgrrr_lation _nee(_jed, '
if violent imprison :
Crime, small amount .
of jail time, then —e——
deportation ,
E Punish to full extent of
E the law
Allow to stay, no prison, .
rehabilitate, probably ——eo—— '
another explanation H
No prison, deportation —e——
Should be sent back —:—0—
Repeat offender, danger :
to society '
T T T T T T T
-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

Treatment — Control

Fig. 2. Test set results for immigration experiment 3. Point estimates and 95% confidence intervals.
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the training set, we apply the sIBP to the text of the complaints and
whether there was a timely response. We use an extensive search to
determine the number of features to include and the particular model
run to use. Materials and Methods provides more details on the sIBP.

Once we have fit the model in the training set, we use it to infer
the treatments in the test set. Table 3 provides the inferred latent
treatments from the CFPB complaint data. The Automatic Keywords
are the words with the largest values in the estimated latent factors
for each treatment, and the manual keyword is a phrase that we
assign to each category after assessing the categories. Using these
features, we can then infer their presence or absence in the treated
documents and then estimate their effect. To do this, we use the
regression procedure from Fong and Grimmer (17) and then use a
bootstrap to capture uncertainty from estimation.

Figure 3 shows the effects of each latent feature on the probability
of a timely response. The black dots are point estimates, and the
lines are 95% confidence intervals. Figure 3 reveals that when con-
sumers focus on the specific banking activities of home mortgages
(treatment 1), credit scores (treatment 3), and personal banking
(treatment 5), the probability of a prompt response increases. In

]
Table 3. CFPB latent treatments

No. Automatic keywords Manual keyword

1 mortgage, loan, payments,
modification, foreclosure, property

Mortgage

4 XXXX, XXXX_XXXX, letter, request,

Detailed
documents, time
5 account, payment, xxxx, balance, Credit card
credit, card
0.03-

0.02- i

-0.01-

Effect on Pr(timely response)

-0.02-

Fig. 3. The effect of complaint features on a prompt response.
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contrast, the CFPB is much less successful at obtaining prompt
responses given the narration of the event (treatment 2) or detailed
documentation (treatment 4). Presumably, the former sorts of com-
plaints trigger programmatic considerations that can be resolved by
reference to the relevant policy, while the latter must be dealt with
by banks on a case-by-case basis and therefore require more time.
If we were to run a further iteration of the CFBP analysis, we would
proceed on two fronts. First, there is a constant stream of data
arriving at the CFPB. We could use our existing g to reestimate the
treatment effects to see whether there are temporal trends. We could
also estimate a different g to assess whether categories emerge over time.
Second, we could design experiments to address concerns about de-
mographic differences. For example, we could partner with individuals
who are planning to write complaints to see how their language,
independent of their personal characteristics, affects the response.

DISCUSSION
Text is inherently high-dimensional. This complexity makes it
difficult to work with text as an intervention or an outcome without
some simplifying low-dimensional representation. There are a whole
host of methods in the text as data toolkit for learning undiscovered,
insightful representations of text data. Unfortunately, while these low-
dimensional representations make text comprehensible at scale, they
also make causal inference with text difficult to do well, even within
an experimental context. When we discover the mapping between the
data and the quantities of interest, the process of discovery under-
mines the researcher’s ability to make credible causal inference.
Here, we have introduced a rigorous machine learning workflow
for causal inference with text, identified problems that emerge when
using text data for causal inference, and then described a procedure
to resolve those problems. In this conceptual framework, we have
clarified the central role of g, the codebook function, in making the
link between the high-dimensional text and our low-dimensional
representation of the treatment or outcome. In doing so, we clarify
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two threats to causal inference: the FPCILV—an identification
issue—and overfitting—an estimation issue. We demonstrate that
both the identification and estimation concerns can be addressed
with a simple split of the dataset into a training set used for discovery
of g and a test set used for estimation of the causal effect. More
broadly, we advocate for research designs that allow for sequential
experiments that explicitly set aside research degrees of freedom for
discovery of interesting measures, while rigorously testing relation-
ships within experiments once these measures are defined explicitly.

Our workflow unifies the text as data literature with the tradi-
tional approaches to causal inference. We have considered the text
as treatment and text as outcome, and in the future, we hope to
address the setting where text is both treatment and outcome. In
related work, Roberts et al. (47) introduce techniques for matching
on text to adjust for confounders, and recent papers (48, 49) consid-
er other text-based confounding approaches. There is much more
work to be done to explore other causal designs, causal effects in
conversations (50), optimally setting training/test splits, and in-
creasing the efficiency of discovery methods so that they can work
on even smaller datasets.

While our argument has principally been about the analysis of
text data, our work has implications for any latent representation of
a treatment or outcome used when making a causal inference. This
could include latent measures common in social science, such as
measures of democracy (e.g. polity), voting behavior (e.g. ideal
points), and forms of manual content analysis. Any time a process
of discovery is necessary, we should be concerned if the discovery is
completed on the same units where the effect is estimated. In certain
circumstances, this process will be unavoidable. Polity scores were
developed by looking at the full population of world democracies;
thus, there is no test set we can access, but we argue that the train/
test split should be considered in the context of the development of
future measures that require a low-dimensional representation of
high-dimensional data.

What do our findings mean for existing applied work (text and
otherwise)? The FPCILV and overfitting raise considerable risks to
replicability, but it does not mean that any work not using a train/test
split is invalid. However, as estimands based on latent constructs
become more common in the social sciences, we hope to see an
increased use of the train/test split and the development of creative
methodologies to enhance the process of discovery.

MATERIALS AND METHODS

Text as outcome: An experiment on immigration

Experiment 1

As a starting point, we conduct an analysis of the experimental
results reported in (44). The survey experiment was administered in
the context of a larger study of public perceptions of the criminal
justice system. The survey was conducted in 2000 by telephone
random-digit dial and includes 1300 respondents. More details
about the survey are available in Cohen et al. (51).

In the experiment, respondents were given two scenarios of a
criminal offense. In both the treatment and control conditions, the
same crime was committed: illegal entry to the United States. In the
treatment condition, respondents were told that the person had
previously committed a violent crime and had been deported. In the
control condition, respondents were told that the person had never
been imprisoned before.
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The treatment condition prompt was as follows:

“A 28-year-old single man, a citizen of another country, was
convicted of illegally entering the United States. Prior to this
offense, he had served two previous prison sentences each
more than a year. One of these previous sentences was for a
violent crime and he had been deported back to his home
country.”

In the control condition, respondents were told the following:

“A 28-year-old single man, a citizen of another country,
was convicted of illegally entering the United States. Prior to
this offense, he had never been imprisoned before.”

Respondents were then asked a closed-ended question about
whether the person should go to jail. If they responded that the person
should not go to jail, they were asked to respond to an open-ended
question, “Why?” The key inferential goal of the initial study was to
determine whether a respondent believed a person should be de-
ported, jailed, or given some other punishment.

Experiment 2

After analyzing the results of experiment 1, we ran a second experi-
ment using the same treatment and control conditions but with
slight design differences to build upon and improve the original
experimental protocol. First, all respondents were asked the open-
ended question, not just those who advocated for not sending the
individual to jail. Second, we redesigned the survey to avoid order
effects. Third, we asked a more specific open-ended question. We
still asked “Should this offender be sent to prison?” (responses: yes,
no, and do not know) but followed by asking “Why or why not?
Please describe in at least two sentences what actions if any the
U.S. government should take with respect to this person and why?”
Per our Institutional Review Board, we added the statement “(Please
do not include any identifying information such as your name or other
information about you in this open-ended response.)” Experiment 2
was run on Mechanical Turk (MTurk) between 30 June 2017 and
16 July 2017 with 1299 respondents.

Experiment 3

We expected experiment 2 to be our last experiment, but we en-
countered a design problem. After we estimated g in the training set
using STM and fit it to the test data, we realized that some of our
topic labels were inaccurate. In particular, we had attempted to label
topics using three predetermined categories: prison, deport, and
allow to stay. However, the data in the test set suggested some addi-
tional categories. We could not simply relabel the topics in the test
set because this would nullify the value of the train/test split. In-
stead, we decided to run an additional experiment. We also took
the opportunity to make a few design changes. We had previous-
ly included an attention check, which appeared after the treatment
question. We moved the attention check to before the treatment.
We also had not previously used the MTurk qualification enforcing
the location to be in the United States, although we did in experiment
3. Last, we blocked workers who had taken the survey in experiment
2 using the MTurkR package (52). We include the data from
experiment 2 in our replication package but, because of poor topic
labels, only present results from experiments 1 and 3 in the paper.

Experiment 3 was run on MTurk on 10 September 2017 with
1094 respondents. To avoid labeling mistakes, two members of our
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team labeled the topics independently using the training data and
then compared labels with one another to create a final set of con-
gruent labels before applying the g to the test set.

Text as treatment: The CFPB

The CFPB is a product of Dodd-Frank legislation and is (in part)
charged with offering protections to consumers. The CFPB solicits
complaints from consumers across a variety of financial products
and then addresses those complaints. It also has the power to secure
payments for consumers from companies, impose fines on firms
found to have acted illegally, or both.

The CFPB is particularly compelling for our analysis because it
provides a massive database on the text of the complaint from the
consumer and how the company responded. If the person filing the
complaint consents, the CFPB posts the text of the complaint in
their database, along with a variety of other data about the nature of
the complaint. For example, one person filed a complaint stating that

“the service representative was harsh and not listening to
my questions. Attempting to collect on a debt I thought was
in a grace period ... They were aggressive and unwilling to
hear it.”

and asked for remedy. The CFPB also records whether a business
offers a timely response once the CFPB raises the complaint to the
business. In total, we use a collection of 113,424 total complaints
downloaded from the CFPB’s public website. Since we circulated
the first draft of this paper in 2018, we have been pleased to see other
researchers adopt this application as a test case for their own ap-
proaches to causal inference with texts.

The texts are not randomly assigned to the CFPB, but we view
the use of CFPB data as still useful for demonstrating our workflow.
Much of the information available to bureaucrats at the CFPB will
be available in the complaint because of the way complaints are re-
corded in the CFPB data. To be clear, for the effect of the text to be
identified, we would need to assume that the texts provide all the
information for the outcome and that any remaining information is
orthogonal to the latent features of the text. We view the example
of the CFPB as useful because it provides us a clear way to think
through how this assumption could be violated. If there are other
nontextual factors that correlate with the text content, then our
estimated treatment effects will be biased. For example, if working
with the CFPB directly to resolve the complaint were important and
individuals who submitted certain kinds of complaints were less
well equipped to assist the CFPB, then we would be concerned
about whether selection on observables holds, or there could be
demographic factors that confound the analysis. For example,
minorities may receive a slower response from CFPB bureaucrats
or a more adversarial response from financial institutions (53), and
minorities may be more likely to write about particular topics. While
this is certainly plausible, many of the effects that we estimate of the
text are large, so they would be difficult to explain solely through
this confounding. Furthermore, Fong and Grimmer (28) demon-
strate how to adjust for both text- and nontext-based confounders,
such as the content of complaints or who submitted the complaint.

We use the sIBP to discover treatments in our corpus. The
sIBP is a nonparametric Bayesian method; on the basis of a user-set
hyperparameter, it estimates the number of features to include in
the model, although the number estimated from a nonparametric
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method rarely corresponds to the optimal number for a particular
application. To select a final model, we then evaluate the candidate
model fits using a model fit statistic introduced in Fong and
Grimmer (17). The train/test split ensures that we can refit the
model several times, estimating the features that provide the best
substantive insights.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abg2652
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