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ABSTRACT

Quantum computing technology has grown rapidly in recent years,
with new technologies being explored, error rates being reduced,
and quantum processors’ qubit capacity growing. However, near-
term quantum algorithms are still unable to be induced without
compounding consequential levels of noise, leading to non-trivial
erroneous results. Quantum Error Correction (in-situ error mitiga-
tion) and Quantum Error Mitigation (post-induction error mitiga-
tion) are promising fields of research within the quantum algorithm
scene, aiming to alleviate quantum errors. IBM recently published
an article stating that Quantum Error Mitigation is the path to
quantum computing usefulness. A recent work, namely HAMMER,
demonstrated the existence of a latent structure regarding post-
circuit induction errors when mapping to the Hamming spectrum.
However, they assumed that errors occur solely in local clusters,
whereas we observe that at higher average Hamming distances this
structure falls away. In this work, we show that such a correlated
structure is not only local but extends certain non-local clustering
patterns which can be precisely described by a Poisson distribu-
tion model taking the input circuit, the device run time status (i.e.,
calibration statistics) and qubit topology into consideration. Using
this quantum error characterizing model, we developed an iterative
algorithm over the generated Bayesian network state-graph for
post-induction error mitigation. Thanks to more precise modeling
of the error distribution latent structure and the proposed iterative
method, our Q-Beep approach provides state of the art performance
and can boost circuit execution fidelity by up to 234.6% on Bernstein-
Vazirani circuits and on average 71.0% on QAOA solution quality,
using 16 practical IBMQ quantum processors. For other benchmarks
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such as those in QASMBench, a fidelity improvement of up to 17.8%
is attained. Q-Beep is a light-weight post-processing technique
that can be performed offline and remotely, making it a useful tool
for quantum vendors to adopt and provide more reliable circuit
induction results. Q-Beep is maintained at github.com/pnnl/qbeep
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1 INTRODUCTION

Quantum computing has drawn significant attention in recent years,
with quantum computers and quantum related technologies being
developed at unprecedented rates [4, 36, 39]. Quantum computing
typically involves restricting a quantum mechanical system to a
two-level system, and executing quantum operations on them to
perform gate based computation. Quantum computing is poised to
provide computational advantages that classical computing could
never feasibly attain, with applications in domains such as quantum
chemistry [9, 18, 28], machine learning [6, 43, 45], arithmetic [41],
optimizations [16, 17, 52], etc. Although algorithms that can provide
computational speedups have been theorized, the current state
of quantum computing suffers from substantial size and noise
problems, rendering the present near-term noisy intermediate scale
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Figure 1: (a) Example Hamming Spectrum where Q-BEEP is
able to capture latent error structure, whereas HAMMER can
not. (b) Quantum Error Mitigation for Bernstein Vazirani
(BV) using Q-BEEP. Raw data is unprocessed data from an 8
qubit BV on a real quantum processor. The orange bar is the
resultant probabilities through Q-BEEP. The green bar is the
ideal observable bit-string probabilities.

quantum (NISQ) processors being unable to offer computational
advantages.

Contemporary quantum computers have limited size, which
physically limits the number of qubits available to an algorithm
on a single quantum processor. Growing quantum processor sizes
and algorithmic approaches to tackling this problem are actively
being researched. Currently, the largest current quantum proces-
sor is IBM Osprey, comprising 433 qubits, and algorithmic scaling
methodologies are being researched such as CutQC [47] or EQC
[44], distributing one algorithm across multiple processors exploit-
ing parallelism.

With respect to noise, there are a multitude of noise factors that
impede sufficient performance on quantum processors. These noise
factors originate from imperfect operations performed on quan-
tum processors, state decay, spin-spin relaxation, state preparation
and measurement errors, etc [15, 34]. These errors result in the
bit-strings observed having a probability of being incorrect, and
consequently lead to the induction of an algorithm containing both
a mixture of correct and erroneous outputs. If the error rate is
non-trivial, useful information is difficult to extract, leading to use-
less results. To mitigate this noise, there are two major approaches:
quantum error correction (QEC) and quantum error mitigation (QEM).
With QEC being too expensive in the near term, and IBM stating
that QEM is the way to useful quantum computing [25], we focus
on QEM in this paper.

QEM suppress the errors through repeated experiments and
postprocessing of data. QEM algorithms are often based on struc-
tural indication such as symmetry [8], statistics [46] and machine
learning [26]. Each of these works is driven by the motivation to
understand and address the error structures observed across vari-
ous scenarios. Earlier this year, Tannu et al. presented HAMMER
[48], stating that the erroneous measurement results are are not
completely random; they observe that there exists a latent Ham-
ming spectrum structure around the true solution. This observation
motivates us to investigate the question:
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What is this latent Hamming spectrum structure is, and how
we can model this structure for Quantum Error Mitigation
(OEM)?

In this paper, we find that the latent structure does not only
follow the locality intuition, but can exhibit non-local clustering
patterns. After examining the Index of Dispersion, a metric that
measures the clustered nature of a dataset, across several observed
hamming spectrums and various distribution models, we found that
the Poisson distribution model is the most accurate in describing
the complex, non-local clustered patterns observed. Employing the
Poisson distribution structure, we propose a lambda estimation
model that takes into consideration the input circuit, the hardware
calibration statistics, and the qubit topology, to model the Hamming
spectral errors as a function of both transpiled circuit and device. We
propose an iterative graph-updating algorithm over the Bayesian
network state-graph generated from this model. Through the model
and the Bayesian approach, Q-BEEP can boost fidelity by up to
234.6% on a Bernstein-Vazirani (BV) circuit, or an 11.2X Probability-
of-Success Trials (PST)! improvement.

We apply our corrective model to a diverse suite of applica-
tions. Our evaluation comprises analysis of Q-BEEP on (i) 1330
BV circuit inductions of width 5-15 qubits, across 8 different IBMQ
machines, (ii) a large subset of QASMBench results [30], comprising
224 circuits over 16 IBMQ machines containing algorithms such as
Quantum Fourier Transform, Quantum Linear Solver and a Quan-
tum Adder, improving the fidelity of past run circuits by up to
18.98%, and an average of 6.67%, and (iii) 340 Quantum Approximate
Optimization Algorithm (QAOA) solutions of varying p-values and
problem graphs, sourced from Google’s recent QAOA work [24],
attaining an average Cost Ratio® relative improvement of 1.71x com-
pared to prior un-optimised solutions. Across our evaluation we
provide consistent improvements, boosting domain-specific metrics
and global fidelities.

This work makes the following contributions:

e Theory: Q-BEEP presents a comprehensive examination of
the latent structure of quantum errors in the Hamming spec-
trum of both trapped ion and superconducting systems. The
study reveals the presence of non-local clustering patterns in
the errors, which can be characterized using a Poisson distri-
bution model. A novel method for characterizing these errors
is proposed, incorporating circuit, hardware, and runtime
features.

e Technique: Q-BEEP proposes an iterative Bayesian network
update methodology to correct quantum errors based on the
Hamming spectral errors predicted from the model. Given
raw circuit induction results from a quantum device, Q-BEEP
can adjust the bit-strings and their distribution to signifi-
cantly boost fidelity (by up to 234.6%) for general circuits
without domain-specific implications or constraints.

e Demonstration: Q-BEEP is comprehensively evaluated across
over 1894 circuits from a diverse set of problems on 16 IBMQ
NISQ devices, and provides state of the art performance
across all categories, including fidelity and PST for BV, and
CR for QAOA over prior art [48].

Probability-of-success trials is defined later in Section IV-B

2Cost Ratio is defined later in Section IV-C
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2 BACKGROUND

2.1 Near-Term Quantum Computing

In the present NISQ-era [39], quantum computers are prohibited by
their sizes, coherence times, gate fidelities, and a myriad of other
computationally prohibitive factors. Quantum computers within
the NISQ-era currently are dominated by two technologies, namely
trapped-ion [7] and superconducting [10]. Examples of these tech-
nologies are IonQ’s 5-qubit trapped ion quantum computer, and
IBM’s quantum computers ranging in processor size from 1 to 433
qubits [1]. Alternative technologies have been proposed and im-
plemented, such as liquid state nuclear magnetic resonance [51],
and free atom quantum devices [27]. Furthermore, with respect
to the high-level structure of quantum computers, notions of the
best structure continues to be researched. For example, the idea
of distributed quantum computing using inter-quantum processor
entanglement through inter-fridge [42] or intra-fridge [50] commu-
nication is becoming more prevalent with protocols for communi-
cation being investigated [23].

Gate based NISQ-era quantum computers are characterized by
their physical qubit number, the low-level instruction set or basis
gate set (e.g., CX for IBMQ), topology, and the runtime statistical
calibration data. These numerical statistical properties characterize
operation quality and are attained during benchmarking. Current
performance and system size is prohibitive to inducing any useful
algorithm attaining quantum supremacy. Attaining improvements
in system performance and size, quantum error correcting codes,
and improved quantum error mitigation techniques, are key to
traverse this NISQ-era for real quantum advantage [5].

2.2 Information Theory of Quantum
Computing

With quantum computers, a single algorithm induction results
in one discrete result per pass. However, quantum computing re-
sults can change per pass, with probabilities according to the pre-
measurement state. There is substantial variance in the world of
quantum algorithms with respect to the diversity in system outputs.
Certain algorithms aim to identify a unique output, such as the
Quantum Adder, Bernstein Vazirani algorithm, or the Grover Search
algorithm. Conversely, algorithms such as the Quantum Fourier
Transform, Quantum Approximate Optimization Algorithm, and
Quantum Phase Estimation showcase highly diverse outputs with
no dominant single bit-string. In-between these algorithms exist
algorithms that can contain multiple solutions comprising a subset
of the entire 2" solution space. The Shannon entropy theory can
be leveraged to characterize the diversity of an algorithm’s observ-
ables. Higher-entropy algorithms contain more diverse outputs,
while lower-entropy algorithms, indicates a sole fixed bit-string
output.

Hamming distance is a measure of similarity between two bi-
nary bit-strings, where the distance between them is described
by Ham(X,Y) = Ziig(x) |Xi; — Yi|. The Hamming distance is a
metric that calculates the number of differences between each cor-
responding bit in two bit-strings, thus providing a notion of distance
between solutions. Using Hamming distance, we can generate the
Hamming Spectrum, which represents a compact representation of
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the output probability distribution by bucketing each outcome into
Hamming bins defined by distinct Hamming distance.

Algorithm performance can be characterized through the use
of Fidelity. Fidelity is commonly used in quantum computing to
measure the distance between quantum states. Fidelity is computed
via F(p,0) = (37" \pici)?

With respect to the readout results on quantum computers, the
results of quantum computers are usually interpreted as a pairs of
bit-string to observation count. This high-level string representa-
tion of results inherently loses all spatial information within the
Hamming spectrum. To capture the spatial nature of results, State
Graphs, whereby each observation bit string represents a node in a
graph, can be adopted [48]. In this graph, vertices represent obser-
vations and the edges between them signify a connection between
the two observations. An example is presented in the Q-BEEP ar-
chitecture, Figure 5.

2.3 Quantum Errors and Error Mitigation

Quantum errors characterize one of the most prevalent issues in
the NISQ era. Inducing a quantum algorithm on a NISQ hardware
generates a mixture of both correct results, and errors. The ability
to discern between the two is extremely challenging. As algorithms
grow in complexity and size, the ability to successfully garner
information from output distributions becomes exceedingly more
crucial.

Predominantly, Quantum errors are characterized by low qubit
stability, operation infidelity, and state preparation and measure-
ment (SPAM) errors. Quantum systems exhibit decoherence, which
is the decay from a quantum state [/) to the ground state |0),
as well as spin-spin relaxation, which characterizes the loss of
phase-information in quantum systems. Gate infidelity and SPAM
errors are the quoted success rates for each operation. These prop-
erties limit the depth of quantum circuits without introducing cata-
strophic error.

Quantum error mitigation (QEM) approaches exist by means of
pre- and post-circuit operations. For example, transpilation opti-
mization can reduce global error rates through gate cancellation
[31]. Pre-circuit induction transpilation has proven to provide sub-
stantial reductions in circuit complexity, with other approaches
from the low level gate cancellation approach to dividing circuits
into subsections and approximating unitary operators for sub-
blocks [38]. These QEM techniques can provide relatively cheap
error mitigation, as they operate on the classical side of quantum
computing, and do not require tackling the systems’ 2" observables,
or any hardware architectural change.

Although algorithms and techniques continue to develop for
error mitigation, quantum computing hopes to develop larger sys-
tems with improved system-wide performance statistics such as
increasing T1/T2 times and improved gate fidelity. The combination
of algorithmic error mitigation, and correction, in conjunction with
improving quantum computer performance, allows for continued
increasing capabilities of quantum processors.

2.4 Quantum Error Structure

Demonstrated in HAMMER, errors in resultant bit string distribu-
tions exhibit a clustered structure in the Hamming spectrum. This
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is empirically demonstrated through the notion that the expected
Hamming distance of %, where n is the number of qubits in a system,
is greater than the observed expected Hamming distance for many
applications, hence indicating that errors are indeed clustered and
localised. They go on to exploit this structure to provide a quantum
error mitigating routine whereby the probabilities of each output
are modified according to a function correlated to the inverse Ham-
ming distance of other observed results. It is further demonstrated
how varying degrees of entanglement do not disrupt this Hamming
structure. As the fidelity of a system drops, the results approach
being predominantly noise, which exhibits the largest expected
Hamming distance of 5. Given HAMMER is state-of-the-art and
no alternative works are found, we target to compare directly with
HAMMER in our evaluation.

3 METHODOLOGY

In this section, we delve into the empirical discovery of the clus-
tered error structure in the Hamming spectrum, outline the design
process of Q-BEEP, discuss the structure of the Hamming spectrum
model, and explore the underlying motivation behind its corrective
algorithm. We demonstrate the Q-BEEP architecture in Figure 5.
Q-BEEP’s input comprises the induced circuit structure, backend
statistics, and results. These feed into Q-BEEP, whereby the cir-
cuit structure and backend statistics are used to estimate the latent
Hamming structure. This estimated structure is used in the iterative
state graph adjustment whereby errors are mitigated. Finally, an
error mitigated distribution is returned. The algorithm is outlined
in Algorithm 1.

3.1 Clustered Hamming Errors at a Distance

The structure of the Hamming spectrum described in HAMMER
[48] empirically shows that errors in this space are clustered locally,
due to the observation that the expected Hamming distance (EHD)
of the observables is generally less than an EHD of n/2.

We empirically discover that there exists a structure between
these two - namely, non-locally clustered Hamming errors. As
seen in Figure 2 we discover that there exists a large number of
cases between these two, whereby Hamming errors cluster at a
distance, empirically demonstrated in Figures 2 and 4. The exact
reasoning and intuition behind this latent structure is theoretically
challenging to analyze as quantum noise channels arise from mul-
tiple sources, some of which are unknown. Notably, we do not
observe this non-local clustering phenomena on noisy simulation
of 13-15 qubit systems simulating the Bernstein-Vazirani algorithm,
with system properties sourced from [2], indicating this phenom-
ena is not well modelled by current noise models. Much research
indicates that modeling non-Markovian noise in quantum systems
is a complex task, and our understanding of the complexity behind
how quantum systems behave is still lacking [14, 20, 54]. However,
this does not prevent us from empirically and statistically studying
and leveraging this real-world phenomenon. Our modelling of non-
local errors, coupled with the iterative Bayesian State Graph error
mitigation technique, represents a significant leap beyond HAM-
MER. Unlike HAMMER, Q-BEEP is equipped to tackle variability
in machine- and circuit-specific errors.

Stein, et al.

The idea of non-locally clustered Hamming errors is depicted
in Figure 3. Consider the unique ground truth output 1111. In
the HAMMER framework, it is expected that erroneous outputs
would have a higher probability of being bit-strings with a smaller
Hamming distance (e.g. 1110 with a Hamming distance of 1 and
a probability of 0.3) compared to those with a larger Hamming
distance (e.g. 1100 with a Hamming distance of 2 and a probabil-
ity of 0.2). However, our observations have shown that this local
clustering may not always hold true. As demonstrated in Figure
4, the results of more complex circuits with increased depth and
decreased system performance tend to lead to an increase in cluster
distance. For example, the erroneous output 9900 may occur more
frequently (e.g., with a probability of 0.4) than 1110 (e.g., with a
probability of 0.1).

We empirically evaluate this on a large corpus of 12 and 5 qubit
randomized benchmarking circuits using IBM’s superconducting
processors and IonQ’s 5-qubit trapped ion processor in Figure 4.
Prior to the RB circuit, we prepare a random binary state, as the
homogeneous "0" state is the ground state that is naturally decayed
to, and hence having a non-stable random state is better served for
demonstrating the Hamming structure. In Figure 4 , we compute
the EHD of each circuit’s real outputs, and compare them to the
circuits gate count. Circuit gate count directly relates to algorithm
complexity and depth, hence is a suited metric for evaluating a cir-
cuits high level complexity. We observe a continued linear increase
in the EHD of the circuit errors as circuit complexity increases on
both trapped ion and superconducting systems. In conjunction with
this observation, we use the metric Index of Dispersion (IoD) [11],
defined in Equation 1

2
1o0=2 1)
u

Whereby in Equation 1, 62 is the variance, and p is the mean. The
index of dispersion is a statistical metric relating to how clustered
a data set is. Increasing the index of dispersion indicates less clus-
tering behavior, and conversely a decreasing index of dispersion
indicates tighter clustering. Notably, an IoD of 1 indicates the data
set is best represented by a Poisson distribution, which we will later
find to best fit experimentally over a large suite of Hamming error
probability distributions for multiple algorithms. We compute the
ToD over each circuits Hamming spectrum, with a target bit string,
and observe and average IoD of 0.92, as demonstrated in Figure 4.

To ensure that this is not a single architecture specific phenom-
ena, we evaluate similar circuits on both trapped ion and supercon-
ducting architectures. On running 125 5-qubit randomized bench-
marking circuits on IonQ’s 5-qubit trapped ion processor, we com-
pute an average IoD of 1.003, as well as a strong positive linear
correlation with an R? value of 0.88. This evaluation provides em-
pirical evidence that the structure of Hamming errors continues to
be clustered for both superconducting and trapped-ion quantum
devices.

This set of observations in conjunction with one and other,
and the sample Bernstein-Vazirani results in Figure 2, empirically
demonstrate that there does indeed exist clustering at a distance.
If the mean Hamming distance continues to increase with circuit
complexity, and the results remain best modelled by a Poisson
distribution, the errors must remain clustered around the EHD.
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computed prior to the induction of BV circuits. Circuit qubit count labelled above subgraph, with Y-axis representing the
probability of bit-string with respective Hamming distance observation, and X-axis the respective Hamming-distance. Each

sub-graph is an independent experiment on an IBMQ device.
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Figure 3: Hamming spectrum error structure where the left
block shows the neighborhood structure in HAMMER, and
the right block shows the distant neighborhood structure
found by Q-BEEP, demonstrated in Figure 2.

Given our understanding of the clustered nature of Hamming
errors, the next step is to accurately model this non-local pattern
and determine the most probable Hamming distance at which the
clustering occurs. This information will be valuable in our efforts
to effectively mitigate these errors.

3.2 Modeling Hamming Spectral Errors

Having observed the existence of non-locality in the Hamming
structure of quantum algorithms, we aim to be able to correct these
errors. To correct these errors however, we require a model that
can estimate the post-induction Hamming error structure.

We investigate the Hamming spectrum structure of larger al-
gorithms, with varied degrees of entanglement, and evaluate our
Hamming structure predictive model on these problems. In doing
so, we analyze the Hamming Spectrum over 2750 circuits, com-
prising the Bernstein Vazirani algorithm, the ADDER algorithm,
and randomized benchmarking circuits sampled from the Clifford
group, with circuit sizes ranging from 4-15 qubits. For each of
these algorithms, there is a large diversity of extremely entangled
subroutines with full qubit-to-qubit communication required, to
nearest neighbor qubit communication. Each of these algorithms is
expected to output a unique bit-string. Hence, any output observed
on a real machine that is not the expected bit-string is an error,
and has a Hamming distance associated. Therefore, each solution
observed on a machine has a unique Hamming spectrum.

In conjunction with this experiment, we attempt to predict the
unique machine and circuit specific latent Hamming structure us-
ing a Poisson model, motivated by both the observed IoD prior, and
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that in Figure 6, the Maximum-Likelihood estimation Poisson dis-
tribution is the best performer. We model the Hamming spectrum
failures as independent probabilistic failure events on a quantum
processor, which are characterized by the processor calibration
state and circuit structure. The relatively stable mean rate (i.e., 1),
which describes the expected number of events occurring per time
period, can be characterized by Q-BEEPs characteristic modelling

Equation 2:

0, Ucount
)+ joi  (2)

“leircuit “leircuit

T1 )+nQ(1—e T2

A=ng(l-e
(i.7)

where f¢jrcyir is the end-to-end circuit time from the pulse sched-
uler level; o is the fidelity of each respective basis gate on the
processor; ng is the number of qubits; Ucount is each respective
gate count. The fidelity for each basis gate operation is reported by
QC providers through benchmarking, and the respective gate oper-
ation counts are post-transpilation to processor topology and basis
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gate set, accounting for topological constraints and gate decom-
position. In this way, we correlate a device’s statistical properties,
such as gate fidelities, gate times, qubit properties, etc., as well as
circuit properties, to the unique Hamming spectrum regarding a
specific circuit mapping to a particular device. Using this model,
we correlate as much prior information about an algorithm and its
structure to the possible post-induction Hamming structure. Con-
sequently, through Equation 2, a Poisson distribution can be setup
to model the post-induction Hamming structure of each observed
bit-string.

We examine the accuracy of the (a) Q-BEEP predictive model,
which uses a Poisson distribution with an estimated rate parameter
(1) obtained through Equation 2. We compare it to several alterna-
tive distributions, including (b) a Uniform distribution, (c) a Bino-
mial distribution, (d) a Poisson distribution, and (¢) the HAMMER
weighting distribution [48]. To calculate the maximum likelihood
parameters for each of the parameterized probability distributions
(b), (c), and (d), we use the observed Hamming spectrum of the
algorithm from post-induction results. In contrast, HAMMER char-
acterizes the likelihood of bit-strings using a weighting function
instead of a distribution function. It is noteworthy that (a) Q-BEEP’s
distribution is computed prior to circuit induction, so it has no prior
knowledge of the actual output bit-strings, relying solely on circuit
structure and machine calibration statistics.

Our experimental results are demonstrated in Figure 6. We make
two key observations: (I) Compared to other distributions, the Pois-
son distribution with post-induction knowledge (i.e., purple curve)
fits the output distribution of Hamming errors quite well, with
a mean distance of merely 0.016. This well-fit distribution to all
results observed plays a key insight into Q-BEEP, as the Poisson
distribution is an inherently clustered distribution. The ability to
capture the clustered nature of Hamming spectrum errors both
from short & low entangled circuits to deep & high degree of entan-
glement circuits serves as substantial motivation that this clustered
Hamming spectrum error observation still exists for more complex
algorithms. However, despite the Hamming spectral errors still
remain clustered, the clustering is now at a distance from the true
solution. Alternative distributions such as Uniform, or Binomial
exhibit higher mean Hellinger distances of 0.210 and 0.401. (II)
Based on the fact that Poisson distribution exhibits the best fit, our
Q-BEEP approach of estimating the rate parameter A through Equa-
tion 2 without any post-induction knowledge (i.e., orange curve)
also demonstrates good performance, with an average distance
of 0.159, which provides strong motivation for the model in con-
junction with the low MLE Poisson average distance observation.
The below-uniform value indicates that we are indeed correctly
estimating the Hamming clusters, as an incorrect lambda will have
little to no overlap with the true solution, whereas the uniform dis-
tribution always has some overlap. For most of the time, Q-BEEP’s
pre-induction model exhibits better performance than all the other
non-Poisson models, including HAMMER.

In Figure 2, we showcase 8 circuits of varying depth and width.
We show the observed distribution, Q-BEEP distribution (Poisson
distribution with A obtained through Equation 2), and HAMMER’s
distribution. As can be seen, (I) with more qubits and more com-
plex circuits (starting from 8-qubits), the observed outputs in the
Hamming spectrum does not cluster locally at distance 0. Instead,
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Figure 6: Validation of Q-BEEP model against 4 alternative
probability distribution functions. Y-axis implies cumula-
tive probability distribution, and X-axis Hellinger distance.
Dotted vertical lines indicate average hellinger distance for
model. MLE distributions are computed using the true solu-
tion and observed results, hence are the best solutions these
distributions can attain. Q-BEEP is computed prior to circuit
induction.

under different scenarios, they cluster with different distance; (II)
HAMMER’s local clustering assumption prevents it from accurately
modeling the observed distribution in general. Their weighting
model lacks sufficient scope through the one-size-fits-all model and
cannot capture the latent Hamming spectrum structure of increas-
ingly larger and more complex circuits where the errors become
localized at a distance. (III) Q-BEEP can more precisely estimate
the Hamming spectrum of the output distribution by adopting the
Poisson distribution model, and evaluating the circuit structure,
the qubit topology, and the backend runtime statistics for the rate
parameter.

3.3 Bayesian Reclassification of Bit-strings

Having described the error model of Q-BEEP, we now move onto
motivating how we can correct and mitigate these errors. Note that
each observational output has a probability of being the correct
output, and a probability of being an incorrectly classified result.
The latter probability is characterised by the Bayesian inference
of the equation P(Class = BS — Actual|BS — Observed), where
we are trying to discover the probability of an observed bit-string
(BS) belonging to the correct solution of BS-Actual. Each observed
result has a probability of belonging to another class. We motivate
the utilization of the latent Hamming structure to re-frame this
model as P(Class = BS—Ham(n)|ObservedBS), where BS—Ham(n)
defines a bit-string of Hamming distance n from the observed bit-
string. Using Bayes theorem, we can reframe our problem through



ISCA 23, June 17-21, 2023, Orlando, FL, USA.

Equation 3:
P(BS — Ham(n)|ObservedBS) =
P(ObservedBS|BS — Ham(n))P(BS — Ham(n)) (3)
P(ObservedBS)

Observing a bit-string of Hamming distance n away from the
true solution can be seen as a P(Ham(n)) failure, which is the
same result generated from the Poisson model discussed. Using the
discussed circuit-hardware aware Poisson model as the model for
P(ObservedBS|BS — Ham(n)) = Poisson(A, n), and by making the
assumption that the observed probabilities of each bit-string are
unbiased estimators of the true underlying probability, we can claim
that the probability of each observed bit-string belongs to another
bit-string of Hamming distance n away, can be approximated by
Q-BEEP’s characteristic equation — Equation 4:

P(Class = BS — Ham(n)|ObservedBS) =
Poiss(Acircuit, n) P(BS-Ham(n)) (4)
P(Observed BS)

3.4 Q-BEEP Framework

We now introduce the Q-BEEP framework, which is a graph state
update algorithm for quantum error mitigation based on the Ham-
ming spectrum structure of errors observed in quantum computing.
Q-BEEP comprises a collection of observed bit-strings from the
quantum algorithm, the system, the algorithm circuit, the algorithm-
aware Hamming error model, and the iterative state-based update
technique to reclassify erroneous results to their corrected respec-
tive bit-strings.

Q-BEEP begins by modeling the Hamming spectrum of the algo-
rithm by requesting the quantum processor characterizing statistics
prior to analysis. This comprises error rates, qubit decoherence
times, and topological constraints. Alongside the transpiled circuit,
the Poisson parameter A is computed as described. Having gen-
erated the characterizing Poisson distribution of the circuit and
processor, we induce a circuit and map the observed probabilities
and bit-string counts to the vertices of a Bayesian network state
graph. The number of vertices in this graph is equal to or less than
the number of shots taken, N, on the quantum processor. Each
vertex is linked by the value of Poiss(A, k) where Poiss refers to the
poisson distribution, and k is the Hamming distance between the
two vertices, at most populating r edges. To ensure scalability, an
edge is established only if its weight surpasses a probability thresh-
old e, set to 0.05 in this work, providing a worst-case complexity
per update of O(Nr).

Having established the state graph representation with edges
and vertices populated, we perform state reclassification whereby
each node has a probability and observation count attached to it. For
every node in the graph, we iterate over each connected node and
compute the portion of observations from the prior node belonging
to the former node according to Equation 5:

Nodea_ops X WEdge(A—B) X Nodep_prop
Nodey_prop

(©)

nNA—B =

where in Equation 5, Obs refers to the observation count of the
node. Prob is the probability of the node. Edge weight is char-
acterized by Equation 4. Once each node has its outgoing flows
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computed and compared with the total incoming flow and the ob-
servation count of the node. In Q-BEEP, reclassification overflow
is implemented where we abide by the constraint Nodeyy fjo., +
Nodegps > Nodepy; fiov- If the total outflow is greater, then a
re-normalization process is applied where outflow is then updated

_ Nodeoutfiow
by Nodeoutfiow = Noder, 10w+ Nodeops

tion procedure is executed iteratively. A learning rate is included,
where a system-wide multiplication of the edge weights occurs per
iteration, which scales the amount of inter-node flow. To encourage
converging, and prohibit cycling between local nodes, a dampened
learning rate of 1/n is practiced, where n is the number of iterations.
Algorithm 1 shows the overall Q-BEEP algorithm. Within Algo-
rithm 1, initial parameters are set until the first for loop. Within
the first for loop, each graph vertex is generated with non-zero
probability. In this sense, the algorithm is scalable to the number
of observations taken on a quantum computer. From here, the rel-
evant edges are generated, and to maintain classical scalability,
only edges with a weight greater than € are generated. R is the ob-
served results.Each vertex V is iterated over in the graph G, with its
dVous(vy computed, which refers to the cumulative total outflow
of vertex V. Each node keeps track of the amount of incoming data
points dVj,(vy. Then from here, each node has its count updated
according to the in-flow and out-flow of the node, and is normal-
ized if needed. The algorithm is repeated n times, where in each
iteration the weights of the graph are scaled according to E X .

. This system reclassifica-

3.5 Q-BEEP Limitations

Q-BEEP attempts to predict and exploit the latent Hamming struc-
ture of errors observed on quantum computers. This requires the
errors to exhibit some structure. With respect to the predictability,
Q-BEEP uses a Poisson distribution modeling scheme to attempt to
predict the distance of errors from the real solution, and then recon-
struct the target output. When the prediction has unreliable access
to system-wide information, or the A-estimation is substantially
incorrect, Q-BEEP will struggle to perform error mitigation. This is
also shown in Figure 6, where Q-BEEP beats out uniform distribu-
tion until the 84th percentile. When Q-BEEP inaccurately estimates
the Poisson parameter, it can seek to correct from a pool that has
lower support. This can be thought of as two Poisson distributions
of substantially different As, which leads to low overlap, compared
to the uniform distribution, which always has some overlap. Finally,
it is required that the probability of the correct bit-string being
non-zero, as in the initialization phase, only vertices in the state
graph that have non-zero probabilities are generated. Hence, if the
true solution was never observed, it will not be correctly targeted
by Q-BEEP. Q-BEEP is scalable until algorithms become predom-
inantly noise, which is the case for most algorithms in the near
term. However, as hardware and software continue to improve, the
reach of Q-BEEP expands. Although Q-BEEP requires a base degree
of error structure, it can be used in conjunction with other error
mitigation techniques like Quancorde [40], which enhances the
baseline fidelity from a collection of ensembles, thereby amplifying
the benefits of Q-BEEP. Furthermore, adapting and analysing how
Q-BEEP interacts with QEC codes is an unexplored area, and is an
interesting direction to investigate. We set this as a future work.
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Algorithm 1 Q-BEEP

Require : Quantum Circuit, Backend, Results,n,n, €
QPUpe,t «<— Backend Properties
R < Results
G « Graph(V = Rbit—stringsa E = None)
A f(Circuit, QPUperf)
n <« Solve(Poisson(A,n) <€)
for BStr in R do
G(V = Bstr)[P] « P(Results = BStr)
G(V = BStr)[Count] < Count(Results = Bstr)
foriin [1,2,3..n] do
for HammingBStr in Ham(BStr,n) do
Init E(BStr, HammingBStr) in G
W(BStr.HammingBStr) = Poisson(A, n)
end for
end for
end for
for n do
E,=EXnp
for Vin G do
for E, (A-to-B) in V do

dVour(v) = AVour(v) + %[Bp[]m
end for
end for
for Vin dV do

if dVoy(v) > V[Count] + dV, then
dVOut(V) = V[Count] +dVy,
end if
V[Count] = V[Count] — dVoys(vy + dVin(v)
end for
end for

4 Q-BEEP EVALUATION

In the following section, we will walk through Q-BEEP’s evaluation
and comparison with the state of the art.

4.1 Q-BEEP Configuration and Evaluation

Since Q-BEEP adopts an iterative state update scheme, it requires a
prior parameter setup. For the parameter setup, we use a learning
rate of % where 7 is the iteration number, and our iterations are
set to 20 updates.

As for quantum computing resources, we use a total of 16 IBMQ
quantum processors, ranging in size from 5 qubits to 127 qubits.
IBMQ provides daily calibration statistics for the processor per-
formance. Furthermore, we use the Quantum Approximate Opti-
mization Algorithm (QAOA) data set [24] generated by Google on
the Sycamore processor — a 53 qubit superconducting system. Our
evaluation comprises 165 BV circuits transpiled to 8 IBMQ quantum
machines with varying topology, ranging in problem size from 5 to
15 qubits, 14 QASMBench circuits run on 16 IBMQ quantum ma-
chines [30], and 340 QAOA results [24]. We demonstrate consistent
improvements in both application specific metrics, and fidelity.
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4.2 Q-BEEP applied to Bernstein-Vazirani

We begin our evaluation with the Bernstein-Vazirani algorithm,
which is the primary algorithm that HAMMER benchmarks. Bernstein-
Vazirani is motivated to benchmark as it is a low entropy example,
with one expected output bit-string, and is easily scaled to more
qubits.

4.2.1 Evaluating BV Performance. BV is a quantum algorithm that
uncovers a hidden bit-string s from the function f(x) = s X x X
mod(2). The BV algorithm hopes to produce a single bit-string
output, which is the solution to the problem. Hence, when inducing
on near term hardware, which produces a mixture of both the
correct solution and noise, the strength of the inference can be
evaluated as Probability of Successful Trial (PST). This is the ratio
of correct observations to total observations, shown in Equation 6,
where ncorrectBitstring 15 the number of correct observations, and
NTrials 1S the number of shots.

PST = nCorrectBitstring/ NTrials (6)

Higher PST values indicate higher representation of correct bit-
strings, and the quality of a circuit induction can be related to
this ratio. Increasing this value is the goal of Q-BEEP. We further
illustrate the fidelity, which represents the distance between the
ideal and observed solutions, and the tracked fidelity of a small
subset of solutions over each iteration.

4.2.2  Bernstein-Vazirani Results. Demonstrated in Figure 7, a com-
prehensive evaluation of Q-BEEP is applied. In applying Q-BEEP
to 165 circuits on 8 machines, we demonstrate an average PST im-
provement of 1.77, with up to 11.20x improvement of PST. 14.0%
of Q-BEEP results in a reduction in PST, which is attributed to
incorrect lambda prediction. We motivate this through the notion
that of the 8 quantum machines, 75% percent of failures come from
4 machines. With respect to fidelity, we observe an average fidelity
gain of 25%, with a maximum fidelity gain of 234%. Q-BEEP is able
to operate on algorithms of limited fidelity, as seen in Figure 7-(c),
where Q-BEEP improved fidelity from 0.14 to 0.38. Notably, once
the state approximates the maximally mixed state, i.e., when fidelity
is minimized for an algorithm, there is no structure to exploit, and
hence statistical error mitigation will see little to no benefit. This
can be seen in Figure 7-(a), where a reduction in PST occurs.

4.3 Q-BEEP applied to QASMBench

QASMBench is a quantum benchmarking suite [30] comprising
a multitude of varying complexity algorithms. We benchmark Q-
BEEP on QASMBench to show Q-BEEP’s applicability to general-
ized algorithms of varying entropy.

4.3.1  Evaluating QASMBench Performance. QASMBench comprises
a multitude of diverse algorithms. The applications described com-
prise high level algorithms with non-singular desired bit-string
outputs. We use fidelity to compare the prior and post performance
of Q-BEEP applied to QASMBench.

4.3.2 QASMBench Results. We demonstrate the QASMBench re-
sults in Figures 8 and 9. In Figure 8, we observe that the Adder
algorithm attains the highest fidelity boost, with a maximum fi-
delity boost observed of 17.8% on IBM Washington. An average
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Figure 8: Q-BEEP performance when applied to 12 QASM-
Bench circuits over 16 IBMQ machines.

performance boost across all machines and algorithms of 6.67% is
observed, including algorithms such as Qrng and Qft. Qrng and
Qft are the only two algorithms that observe no performance gain,
which is attributed to the nature of these algorithms. Both Qft
and Qrng, when observed against the Pauli-Z measurement, will
generate equal superposition of all possible bit-strings. Hence, Q-
BEEP attempts to search for a latent Hamming structure around
predominant bit-strings, and with none to find, no gain is observed.
With respect to Figure 9, we demonstrate that Q-BEEP is not ma-
chine specific, and performs across the board, with each machine
evaluated demonstrating overall average fidelity improvements.
This observation of consistent improvement across all machines
of varying size and quality helps motivate that Q-BEEP is a gen-
eral solution, and can handle diverse sets of machine performance

statistics.
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Figure 9: Q-BEEP performance when applied to 16 quantum
machines over 12 QASMBench circuits.

4.4 Q-BEEP applied to QAOA

4.4.1 Evaluating QAOA Performance. The QAOA algorithm seeks
to optimize a quantum circuit such that the output state minimizes
a cost function. Here, we obtain and evaluate on the raw dataset
from Google [24]. For all problems within this data set, they aim to
minimize the expectation value of the cost function C. To evaluate
performance, they use the Cost Ratio. Cost Ratio is the ratio of C to
the minimum value of C, or Cpyj, which is defined in Equation 7:

CR = C/Cmin (7)

Due to the fact that all problems have a negative Cp;p, improving
algorithms increase their CR values. Therefore, to evaluate our
performance of Q-BEEP, we evaluate our relative performance,

CRo- .
CRimprovement = ﬁ, where CRq gggp is the CR post Q-BEEP
application, and CRpyio, is the CR attained in the paper. We note that
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frequent calibration data of Google’s 53-qubit Sycamore processor
is not publicly available. Hence, we use the published statistics.

4.4.2 QAOA Results. As demonstrated in Figure 10, Q-BEEP pro-
vides substantial improvements to QAOA. Q-BEEP provides a 94.1%
success rate in improving QAOA solutions, with an average im-
provement of 1.71x. Certain solutions were boosted up to a relative
CR improvement of 31.7Xx, which are not plotted in 10-(a) due to
scaling. 10-(b) demonstrates the overall shift in average perfor-
mance by applying Q-BEEP. The post-application orange line shifts
the S-curve of the cumulative distribution right, indicating the CR
value attained increases. Finally, we demonstrate in 10-(c) the Pois-
son parameter distribution. We see that the Poisson parameters for
these solutions lie in the 0-2 range, and distances up to 5 Hamming
distances per bit-string are evaluated.

5 DISCUSSION ON ENTROPY

We discuss entropy to help provide some insights with respect to
relating Q-BEEP and its capabilities to quantum algorithm entropy.
There exists high diversity in observable Shannon entropy for quan-
tum algorithms, for example the Bernstein Vazirani has an ideal
entropy of 0.0 [35], whereas Quantum Random Number generators
[30] have a maximum entropy, with all outputs being equally likely.
With quantum algorithm graph states, higher entropy’s lead to a
more balanced P value across each node within Q-BEEP’s state
graph. For corrective analysis on post-induction state graphs, this
creates difficulty in discerning between results that are errors and
have an underlying contribution to the distribution. This can be
attributed to the ratio of 1;—‘; in Q-BEEP, which requires node prob-
ability imbalance across the state graph to make changes to the
distribution, and to correct errors.

As demonstrated in Figure 11 we compute the entropy of each
expected output distribution from QASMBench, and compare it to
the performance gain. We observe a strong inverse linear correla-
tion between the correcting ability of Q-BEEP and an algorithm’s
expected information entropy, with an R? value of -0.82. Therefore,
based on this evaluation, we expect Q-BEEP to have better perfor-
mance when applied to algorithms that have predominant outputs,
and not equal probability highly diverse algorithms.

6 RELATED WORK

Reducing quantum errors is crucial to the success of quantum com-
puting. The field of handling quantum errors within the system and
architecture community is rapidly growing with two predominant
techniques: quantum error correction (QEC) and quantum error
mitigation (QEM).

Quantum error correction currently is predominantly focused
on building surface codes [13, 19, 22, 32]. Surface codes employ
the idea of a logical qubit, which is comprised of multiple phys-
ical qubits, all of which are responsible for correcting quantum
errors. Surface codes utilize ancilla qubits entangled which are
measured during circuit induction, and error correcting operations
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are applied to the logical qubit such that the error is corrected
. However, surface codes require errors to be corrected at a rate
faster than they are generated. Wu et al. [53] describes a procedure
for stitching surface codes to near term superconducting quantum
computers, which tackles the mapping problem of syndrome and
ancilla qubits to superconducting devices based on degrees of con-
nectivity. LILIPUT [12] proposes a lightweight lookup table for
syndrome error correction, motivated by the need for live rapid
syndrome error correction. QULATIS [49] discusses a syndrome de-
coder design capable of operating within a cryogenic environment,
due to the expected operating conditions of fault tolerant quantum
computing.

Quantum Error Mitigation comprises pre and post circuit in-
duction error mitigation techniques [3, 26, 29, 33, 37]. Pre-circuit
induction is predominantly characterised through transpiler im-
provements. Due to the fact that quantum errors are generated via
increasing circuit depth and gate counts, therefore optimizing to
minimize these features is advantageous to system performance.
Gushu et al. [31] discusses a transpilation technique comprising
graph search techniques and an optimization function. Application
specific transpiation techniques [3, 21, 29] seek to apply gate mini-
mization and cancellation techniques by exploiting domain specific
knowledge. For example, 2QAN [29] is a transpilation technique
applied to 2-local Hamiltonian simulation that operates by exploit-
ing the sequencing invariance of the Hamiltonian term operators,
and hence attempts to place operations that can be cancelled and
optimized closer to each other. As for post-circuit induction quan-
tum error mitigation techniques, Zheng et al. [55] uses a Bayesian
inference algorithm to identify posterior distributions to mitigate
post-induction errors. Patel et. al. [37] uses the reversibility of quan-
tum circuits to mitigate post-induction errors via reversed circuit
re-induction. Hamming spectrum error mitigation is dominated by
HAMMER [48], which is a pioneering work in combining the struc-
ture of errors in quantum computers along side a reclassification
protocol to boost circuit fidelities.

7 CONCLUSION

In this paper, we present Q-BEEP, a system comprising a character-
izing Hamming spectrum model, capable of modeling both localized
and distant clustered Hamming errors. Q-BEEP uses this model and
an iterative approach over a Bayesian network to perform highly
performant quantum error mitigation. Q-BEEP is comprehensively
evaluated on BV, QASMBench, and QAOA, gaining up to 234.6% fi-
delity improvements. Q-BEEP provides more insights into the latent
Hamming error structure, and generate a lightweight offline QEM
model that requires no modification to the circuit or the machine.
Q-BEEP motivates further research in the Hamming spectral quan-
tum error mitigation domain, with potential further investigation
into a better A estimation function or better Hamming spectrum
characterization equations.
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