
OneQ: A Compilation Framework for Photonic One-Way
�antum Computation

Hezi Zhang
hezi@cs.ucsb.edu

University of California
Santa Barbara, USA

Anbang Wu
anbang@cs.ucsb.edu

University of California
Santa Barbara, USA

Yuke Wang
yuke_wang@cs.ucsb.edu
University of California
Santa Barbara, USA

Gushu Li
gushuli@ece.ucsb.edu
University of California
Santa Barbara, USA

Hassan Shapourian
hshapour@cisco.com
Cisco Quantum Lab

San Jose, USA

Alireza Shabani
ashabani@cisco.com
Cisco Quantum Lab
Sant Monica, USA

Yufei Ding
yufeiding@cs.ucsb.edu
University of California
Santa Barbara, USA

Abstract
In this paper, we propose OneQ, the �rst optimizing compilation
framework for one-way quantum computation towards realistic
photonic quantum architectures. Unlike previous compilation ef-
forts for solid-state qubit technologies, our innovative framework
addresses a unique set of challenges in photonic quantum comput-
ing. Speci�cally, this includes the dynamic generation of qubits over
time, the need to perform all computation through measurements
instead of relying on 1-qubit and 2-qubit gates, and the fact that
photons are instantaneously destroyed after measurements. As pio-
neers in this �eld, we demonstrate the vast optimization potential
of photonic one-way quantum computing, showcasing the remark-
able ability of OneQ to reduce computing resource requirements
by orders of magnitude.
CCS Concepts
• Computer systems organization ! Quantum computing; •
Software and its engineering ! Compilers.
Keywords
one-way quantum computing, measurement-based quantum com-
puting (MBQC), photonics, compiler

ACM Reference Format:
Hezi Zhang, AnbangWu, YukeWang, Gushu Li, Hassan Shapourian, Alireza
Shabani, and Yufei Ding. 2023. OneQ: A Compilation Framework for Pho-
tonic One-Way Quantum Computation. In Proceedings of the 50th Annual
International Symposium on Computer Architecture (ISCA ’23), June 17–
21, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3579371.3589047

ISCA ’23, June 17–21, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0095-8/23/06.
https://doi.org/10.1145/3579371.3589047

1 Introduction
Quantum computing (QC) is promising in providing signi�cant
speedup for many problems, such as large-number factorization [1],
unordered database search [2] and simulation in quantum chem-
istry [3, 4]. Tremendous progress has been made in hardware tech-
nologies for quantum computing, including superconducting [5],
ion trap [6], neutral atoms [7], and photonics [8], in both research
lab settings and industrial production levels. With no clear winner
among current platforms, it is expected that multiple technologies
will continue to evolve together to meet diverse mission needs and
application requirements.

In recent years, there has been a surge of interest in photonic
quantum computing [9, 10], mainly due to the unique advantages
of photonic qubits [11, 12], such as great scalability, long coherence
time and easy integration with quantum networks. This interest is
further fueled by the breakthroughs in photonic technologies [13,
14] and the successful demonstration of quantum supremacy on
photonic quantum computers [15–17]. Moreover, PsiQuantum [18–
20] recently announced the world’s �rst manufacturing milestone
for integrated quantum photonic chips, with quantum photonic and
electronic chips being manufactured using advanced semiconductor
tools.

However, photonic quantum computing also presents a unique
set of features that cannot be directly handled by conventional
programming and compiler frameworks [21, 22] for solid-state
qubits. First, unlike the permanent qubits in solid-state systems [5–
7], photonic qubits are �ying qubits at the speed of light, and are
generated dynamically over time. Second, in contrast to the solid-
state platforms which entangle qubits by multi-qubit gates such as
CNOT, entanglement between photonic qubits are more natively
performed by projective measurements onto entangled states, a pro-
cess referred to as fusion (e.g., simultaneous measurements in -- -
and // -bases project the qubits onto Bell states). Third, measure-
ments on photonic qubits, including single-qubit measurements
and fusions, instantaneously destroy the photons, meaning that
each photonic qubit can be measured or fused at most once and
cannot be reinitialized.

5IJT XPSL JT MJDFOTFE VOEFS B $SFBUJWF $PNNPOT "UUSJCVUJPO *OUFSOBUJPOBM ��� -JDFOTF�

https://doi.org/10.1145/3579371.3589047
https://doi.org/10.1145/3579371.3589047
https://doi.org/10.1145/3579371.3589047
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579371.3589047&domain=pdf&date_stamp=2023-06-17

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Hezi Zhang, et al.

At programming level, measurement-based quantum computing
(MBQC) [23] has been suggested as a native programming para-
digm for photonic quantum computing, because it does not require
long-lasting qubits or quantum gates, but only one-time measure-
ments on qubits. Unlike the circuit model which initializes qubits
to a product state of all |0is and performs algorithms by a sequence
of gates that gradually creates entanglements, MBQC initializes
qubits to an entangled state and performs algorithms by a pattern of
single-qubit projective measurements (called measurement pattern)
that gradually consumes the entanglements. During the computa-
tion, each qubit is measured only once and is then free to detach
from the computing system or even disappear. This is whyMBQC is
also called “one-way” quantum computing (1WQC). In addition to
MBQC, another popular programming paradigm for photonic quan-
tum computing [15, 24] is the special-purpose model for Gaussian
boson sampling [25], but it is not a universal computing model like
MBQC and thus has restricted applications.

Yet few attempts have been made on the compilation side. While
previous work [23, 26–28] has shown that the utilization of a lattice-
like entangled state, i.e., a cluster state, can enable a basic interpreter
from the circuit model to MBQC by joining the measurement pat-
terns of individual gates on it, this approach is not e�cient for
scaling up on hardware. Practical photonic hardware scales up
by �rst generating small entangled states (called resource states)
and then combining them into larger entangled states through fu-
sions [29]. Attempting to generate a large cluster state on such
hardware would result in an unnecessarily signi�cant fusion over-
head, because a large amount of entanglements in the cluster state
is actually redundant for the computation, but only to keep the
lattice geometry. Instead of generating all entanglements of the
cluster states, it is more e�cient to only generate the entanglements
required by the computation. Theses required entanglements can
be represented by a non-lattice graph state, i.e. a generalized cluster
state with arbitrary graph geometry. However, as the geometry of
the graph state is irregular and varies depending on the speci�c pro-
gram to be executed, it is not yet known how to e�ciently map the
irregular graph geometry onto an MBQC machine while complying
with the hardware constraints.

In this paper, we investigate how to optimize the quantum pro-
gram compilation for a photonic MBQC machine. As the �rst step,
we abstract a extendable space-time coupling graph to formulate
the hardware model. This coupling graph represents the hardware
resources (e.g., resource state generators (RSG)) and constraints
(e.g., available photon routing) in a way that suits the subsequent
compilation designs. With this abstraction, we identify three key
challenges in compiling graph states onto the hardware model. First,
resource states are generated dynamically in layers over time by
limited number of RSGs and thus cannot be available simultane-
ously. Second, there is no direct correspondence between a graph
state node and a photonic qubit due to the lack of high-degree
qubits in the resource states. Third, there is a mismatch between
the irregular geometry of the graph state and the regular structure
of fusion supports represented by the coupling graph. Additionally,
for resource states of small size, there is a further constraint that
non-planar graphs cannot be accommodated by resource states
generated in the same layer since the number of possible fusions
on each resource state is too limited.

3KRWRQLF�2QH�:D\�4XDQWXP�&RPSXWLQJ�&RPSLODWLRQ�)ORZ

([LVWLQJ�)ORZ &RPSLODWLRQ�)ORZ�RI�2QH4

3DUWLWLRQ�	
6FKHGXOLQJ
�6HFWLRQ���

)XVLRQ�*UDSK
*HQHUDWLRQ
�6HFWLRQ���

0DSSLQJ�	
5RXWLQJ
�6HFWLRQ���

4XDQWXP
&LUFXLW

1DLYH�,QWHUSUHWHU

&OXVWHU�6WDWH

*UDSK�6WDWH

*UDSK�3ODQDUL]DWLRQ

Figure 1: Framework Overview.

To this end, we propose an optimizing compilation framework
consisting of three sequential stages (Figure 1), with each stage
handled by a key module of the framework. The Graph Partition
and Scheduling module (Section 4) partitions the graph state into
subgraphs and schedules them onto resource states generated at
di�erent times. It achieves a balance between reducing the wait
time of photons and increasing the potential e�ciency of mapping
by analyzing the dependencies among operations and considering
the overall geometry. The Fusion Graph Generationmodule (Sec-
tion 5) synthesizes the scheduled subgraphs by fusing low-degree
qubits in the resource states into high-degree nodes in the graph
and connecting them appropriately. The produced fusion strategy
is agnostic to the coupling constraints, and is represented by a
fusion graph. The Fusion Mapping and Routing module (Sec-
tion 6) tackles the coupling constraints by �nding an embedding
layout of the irregular fusion graph into the regular coupling graph.
Speci�cally, it makes the fusion graph compatible with the coupling
graph by extending and routing the edges of the fusion graph along
the edges of the coupling graph. By maximizing the compactness
of the layout, we can reduce the number of required fusions, thus
reducing the computation overhead and enhancing the overall �-
delity. Lastly, the additional constraint for small resource states
can be addressed by a planarity enforcement for all modules. With
these modules and optimizations, our framework maximizes the
utilization of computing resources and e�ciently accommodates
the irregularity and adaptivity of the graph states.

To summarize, our contributions in this paper are listed as below:

• We abstract a extendable space-time coupling graph to for-
mulate the hardware model of a realistic photonic MBQC
architecture.

• We identify three critical compilation challenges in the gap
betweenMBQC programs and realistic photonic MBQC hard-
ware, as well as an additional constraint in the cases of small
resource states.

• We propose an optimizing compilation framework to e�-
ciently deploy quantum programs onto the hardware, which
includes three key optimization modules to tackle the identi-
�ed challenges, along with a planarity enforcement process
to address the additional constraint.

• Our framework outperforms the basic MBQC interpreter by
orders of magnitude in terms of execution time and resource
consumption of the compiled program.

OneQ: A Compilation Framework for Photonic One-Way�antum Computation ISCA ’23, June 17–21, 2023, Orlando, FL, USA

2 Background and Related Work
2.1 MBQC on Photonic Platforms
Photonic qubits are an exceptional carrier of quantum information
and are well-suited for the one-way model of quantum comput-
ing [30, 31]. The feasibility of photonic one-way quantum comput-
ing has been shown by implementing various quantum algorithms
on photonic qubits in cluster states [32]. For example, Grover’s
algorithm was implemented on a 4-photon 4-qubit cluster state in
[33] with a �delity of 0.9, Deutsch-Jozsa algorithm was realized on
a six-qubit cluster state in [34] with a �delity of 0.96, and Simon’s
algorithm was performed on a �ve-qubit cluster state in [35] for
a period-�nding problem. Notably, rapid progress is being made
toward scaling up the photonic platform with integrated waveg-
uides and optical chips [36–42], and a fully recon�gurable optical
processor has been demonstrated in [43].

Practical photonic hardware is scaled up by generating small-size
resource states (e.g., three-qubit [29], four-qubit graph states [44])
and cascading them via fusion [45]. Fusion is a native operation in
linear optics that projects a two-qubit state to an entangled state
through joint measurements on the two qubits. For example, joint
measurements in XX- and ZZ-basis projects two-qubit states onto
Bell states. The joint measurements we use in this paper are in XZ-
and ZX-basis, which merge two graph states to another graph state.
As shown in Figure 2, the 3-qubit graph states �⌫⇠ and ⇡⇢� can
be merged into a 4-qubit graph state �⌫⇢� via a fusion on qubits⇠
and ⇡ . The cost of each fusion is losing the two measured photons
(qubit⇠ and ⇡ in Fig. 2). In general, the fusion between an<-qubit
graph state and an n-qubit graph state generates an (<+=�2)-qubit
graph state, which is larger than the original graph states when
<,= > 2.

$ % & ' () $ %)(

Figure 2: A fusion between graph states �⌫⇠ and ⇡⇢� . After
the fusion between⇠ and⇡ , qubit⇠ and⇡ vanish while qubit
�,⌫, ⇢ and � form a new graph state.

Despite facilitating scalability, fusions come with an overhead of
losing two qubits each time and are the lowest-�delity operations
in the computing process. As a result, reducing the number of
fusions is critical for reducing the required computing resources
and enhancing the overall �delity. Thus we consider it as one of
essential optimization goals in our compilation framework, which
is analogous to the goal of minimizing the number of CNOT gates
in compilers for the circuit model.

2.2 Programming Paradigm of MBQC
2.2.1 MBQC Basics MBQC is a universal but conceptually distinct
computational model from the circuit model, as computation in
MBQC is driven by single-qubit projective measurements instead
of 1-qubit and 2-qubit gates. The initial state used as the computing
resource in MBQC can be a graph state, which is an entangled state
of qubits located on a graph ⌧ = (+ , ⇢), formally de�ned as the

eigenstates of operator

B = -8
Ã
92=8

/ 9 , 88 2 +

where =8 is the set of neighboring qubits of 8 2 + . A graph state can
be generated by preparing all qubits in |+i and applying a CZ gate
on each pair of qubits connected by an edge 4 2 ⇢. Given this graph
state, computation can be driven by a pattern of Z-measurements
and equatorial measurements ⇢ (U), i.e., measurements on the X-Y
plane of Bloch sphere at an angle U . The graph ⌧ and the measure-
ment basis of each qubit together form a measurement pattern.

MBQC has a classical-quantum hybrid nature in that it relies on
a classical feed-forward to address the non-determinism of quan-
tum measurement. Speci�cally, the state of unmeasured qubits
are subjected to Pauli X- or Z-corrections according to the out-
comes of the measured qubits. In practice, this can be implemented
equivalently by adaptively adjusting the measurement bases of
the remaining qubits, such that all corrections can be postponed
to the end of the computation. As a result, these adaptive mea-
surements induce dependencies between measurements. In par-
ticular, an -B/ C -correction with B, C 2 {0, 1} can be postponed
by adjusting its measurement angle from U to (�1)BU + Cc , i.e.,
⇢ (U)-B/ C = ⇢ ((�1)BU +Cc). The dependencies in B and C are called
X- and Z-dependency respectively.

There is a straightforward translation [46] from a circuit in the
universal gate set {� (U),CZ} into a measurement pattern, because
a measurement ⇢ (U) yielding an outcome< 2 {0, 1} is equivalent
to a � (U) operator followed by a Z-measurement"I yielding the
same value, i.e., ⇢ (U) |k i !< corresponds to"I � (U) |k i !<,

� (U) =

1 eiU
1 �eiU

�

For example, Figure 3 shows the translation from 3(a) to 3(b), with
the measurement angles of qubits and the roles of being input or
output marked on each of them. The 3-degree node 0 in 3(b) cor-
responds to the qubit � with 3 CZ gates in 3(a), while nodes 11,12
correspond to single-qubit gates on qubit B (similarly for qubit C
and D). Dependencies between measurements are represented by di-
rected edges. For example, 11 ! 12 indicates that the measurement
basis of 12 may be adjusted according to the measurement outcome
of 11. This process can be rigorously described in ZX-calculus and
optimized by available tools such as PyZX [47].

D
LQ�RXW

LQ

RXW LQ

LQ

RXW

RXW

(a) (b)

Figure 3: Translation from a circuit (a) to a graph state (b),
with the measurement bases labeled on qubits. Qubits in (b)
with ‘in’, ‘out’ or ‘in/out’ are input or output qubits. Arrows on
the edges indicate the dependencies between measurements.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Hezi Zhang, et al.

2.2.2 MBQC Interpreter While there has not been a compiler for
practical MBQC machines, previous work on cluster states enables
a basic interpreter from the circuit model to MBQC, which we adopt
as the baseline approach in our evaluation.

Cluster states are universal for MBQC as it allows the imple-
mentation of a universal gate set, such as single-qubit gates along
with CNOT. In particular, an arbitrary single-qubit gate can be
implemented by a measurement pattern on a line of qubits in the
cluster state, such as the red circles in Figure 4(b), while a CNOT
gate can be implemented on two lines of qubits joined by a qubit
in between, such as the green circles in Figure 4(b). The - ,. labels
stand for X-, Y-basis, while b,[, Z stand for the angles of general
equatorial measurements. Measurements in bases except X, Y and Z
are adaptive measurements and can thus induce dependency. These
adaptive measurements only arise in the measurement patterns of
non-Cli�ord gates, meaning that all Cli�ord gates can be executed
simultaneously on the cluster state even if they are dependent in
the circuit model. For more details about measurement patterns of
di�erent gates, please refer to [23].

< < < < < < < <[
<

[[[[

< < < ; ; < ; ;[[
<

< < < < < <[[[[[[

<

[[[[

[,Q
SX

W

2
XWSXW

< ;

(a) (b)

Figure 4: From a circuit (a) to anMBQCmeasurement pattern
(b). Labels on the qubits stand for their measurement bases,
with - ,. standing for X-,Y-basis, and b,[, Z standing for the
angles of equatorial measurements. Shaded qubits are redun-
dant qubits which can be removed by Z-measurements.

A basic interpreter from the circuit model to MBQC can be
constructed by simply joining the inputs and outputs of measure-
ment patterns of those gates according to their positions in the
circuit, as shown in Figure 4. Those measurement patterns can
be aligned up by inserting identity gates, implemented by two
adjacent X-measurements (or three adjacent Y-measurements), as
shown by the yellow ‘wires’ in Figure 4(b). The qubits not used by
measurement patterns of any gates are redundant to the compu-
tation, and can be removed by measurements in Z-basis (shaded
qubits in Figure 4(b)). Similar to the circuit model compilation [48],
CNOT gates on non-neighboring qubit strips can be implemented
by inserting measurement patterns of SWAP gates whenever nec-
essary. In this way, we can implement any quantum circuit in an
MBQC manner. This interpreter greatly simpli�es the mapping
from qubits and gates in the circuit to the measurements on the
cluster state. However, this approach is ine�cient in the utilization
of computing resources. Speci�cally, it makes many qubits redun-
dant for computation and consumes their entanglements trivially
by Z-measurements, without any regard for the huge overhead of
generating those redundant entanglements on a practical MBQC
machine.

3 Problem Formulation
3.1 Hardware Abstraction
Photonic hardware for one-way quantum computing involves three
key stages: generation, routing, and measurement. In the �rst stage,
an array of resource state generators (RSG) periodically produces
copies of resource states, with the period referred to as a clock
cycle. In the second stage, routers channel the resource states to
di�erent measurement locations using spatial and temporal routing.
Spatial routing allows fusions between resource states generated
by di�erent RSGs, while temporal routing allows fusions between
resource states generated at di�erent times using delay lines, which
can delay the arrivals of photons at the measurement devices for
some clock cycles. In the third stage, computation is performed by
measuring photons in a predetermined pattern, with the outcomes
fed into a classical computer to determine the bases of subsequent
measurements.

It can be seen that photonic hardware has distinct features that
set it apart from solid-state hardware. Speci�cally, photonic qubits
are continuously generated over time and consumed by measure-
ments. The use of identical resource states simpli�es hardware
manufacture and enhances e�ciency, but they are typically in a
small size [29, 44] and the number of resources states generated
in each clock cycle is limited by the number of RSGs. Moreover,
photonic hardware features two types of connections: spatial and
temporal, both of which support fusions but are subject to di�erent
constraints. For example, spatial routing may only occur between
resource states generated by neighboring RSGs, while temporal
routing may only occur between resource states generated by the
same RSG within a limited delay time.

(a) (b)

Figure 5: 3D structure of hardware connectivity (a) and its
extendable space-time coupling graph (b). The physical layer
C1 in (b) is �ipped in the horizontal direction so that the phys-
ical layers C0, C1 and C2 and the their temporal connections in
red form an extended physical layer. To keep the �gure clear,
other temporal connections are omitted in (b).

To capture these features, we formulate a hardware model ab-
straction called the extendable space-time coupling graph, as illus-
trated in Figure 5. Each node in the coupling graph represents a
resource state generated by the RSG in the corresponding location,
with resource states in di�erent layers generated at di�erent times.
Each edge of the coupling graph represents a support for possible
fusion operations. There are three levels of coupling, which we
describe in detail below.

OneQ: A Compilation Framework for Photonic One-Way�antum Computation ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Coupling in the resource state The �rst level of coupling
comes from entanglements of qubits in the same resource state.
These entanglements are generated directly by the RSGs and do
not require fusion operations. As a result, this level of coupling is
implicit in Figure 5.

Coupling within physical layers The second level of coupling
comes from the resource states generated within the same clock
cycle, which together form a layer of qubits referred to as a physical
layer. As shown in Figure 5, the nodes in the physical layer at C0 (or
C1, C2) are connected into a 2D lattice structure. Such connections
within a clock cycle represent the spatial connections, which allows
a resource state to conduct a fusion with resource states generated
at the same time by its neighboring RSGs.

Coupling across physical layers The third level of coupling
is that a resource state can make a fusion with another resource
state generated in a di�erent clock cycle by the same RSG, up to
the limit of the delay time, as shown by the red and grey vertical
lines in Figure 5(a). Note that we should avoid using too long-range
temporal connections because photons su�er more from the loss
error as they stay longer in the delay lines.

In the coupling graph, the physical layers are extendable by
combining consecutive physical layers and keeping their tempo-
ral connections at boundary. For example, in Figure 5, the three
physical layers (5(a)) generated at time C0, C1 and C2 can form an
extended physical layer by keeping their spatial connections and
the temporal connections in red (5(b)), with physical layer C1 being
�ipped in the G direction. Temporal connections other than the red
ones are ignored in this extension and thus are not explicitly shown
in Figure 5(b). This extendability makes the area of physical layers
�exible, and can allow mapping of more global structures onto the
physical layers.

Despite the similarity to the quantum hardware coupling graph
[48] prevailing used for today’s superconducting and ion trap hard-
ware architectures, we emphasize on the di�erences between them
as following.

1) Di�erent levels of coupling are not independent, and actually
their interplay could create some additional constraints. For ex-
ample, suppose the resource states generated by RSGs are 3-qubit
resource states, then although the fusion device allows each lo-
cation on the physical layers to maximally connect to 4 spatial
neighbors (up, down, left, right) and the corresponding locations
on previous and future physical layers up to the limit of delay lines,
only up to 3 of them can be activated.

2) The temporal connections are convertable to spatial connec-
tions in the extended physical layers. The 3D connectivity structure
of the coupling graph can be �attened into a series of 2D extended
physical layers along the time dimension, with each extended layer
consisting of several consecutive physical layers. Within each ex-
tended physical layer, the temporal connections (red lines in Fig-
ure 5) are treated in the same way as spatial connections.
3.2 Overview of OneQ
As the �rst end-to-end compiler for MBQC, it is important to �g-
ure out a set of meaningful optimization goals. Our investigation
on photonic one-way computing and realistic photonic quantum
device development suggests the following two key optimization
objectives. 1)Minimizing the physical depth. The physical depth

is de�ned as the number of physical layers consumed in the com-
putation, which represents the time of executing the compiled
program. 2) Reducing the number of fusions. Fusions are often
the most low-�delity and costly operations incurred in such an
MBQC photonic quantum computer.

In the rest of this subsection, we use a motivating example
(shown in Figure 6) to give high-level ideas about the key chal-
lenges introduced in Section 1 and the insights of how they can be
addressed by OneQ. We have attempted to maximize simplicity and
ease of understanding, while possibly sacri�cing some rigor. We
often omit the dependency arrows and explicit measurement bases
when they are not important for our optimization techniques, and
they can always be derived from the graph state [46].

Challenge 1: Dynamic Computing ResourcesAs resource
states are generated dynamically in physical layers, a large number
of qubits cannot be available simultaneously. In real-world quan-
tum programs, graph states are typically too large (in terms of
their number of nodes and edges) to be mapped onto a single or
a few physical layers. Therefore, careful partition and scheduling
schemes are needed to decompose large graph states into smaller
components so that the graph state can be accommodated by the
coordination of multiple physical layers. To minimize the delay
time of photonic qubits and decrease their loss rates, dependent
measurements can be scheduled according to their execution or-
ders. However, this approach may compromise the compactness
of graph state mapping onto the hardware by resulting in frag-
mented structures that lose the overall geometry of the graph state.
In OneQ, this challenge is addressed by an approach that concur-
rently considers both the dependencies between measurements and
the overall program geometry, allowing for a more e�cient and
e�ective allocation of resources. Section 4 gives detailed schemes
of partition and scheduling.

Challenge 2: Lack of High-Degree QubitsHigh-degree nodes
are a common occurrence in graph states, as qubits performing
many two-qubit gates with other qubits (e.g. node ⌧ in Figure 6(a))
can result in high-degree qubit nodes in the corresponding graph
state (e.g., node⌧ in Figure 6(b)). However, such high-degree qubits
may not be available in the resource states due to the limited inter-
connections among the photonic qubits they contain (e.g., qubits in
the 3-qubit resource states in Figure 6(c) have a maximum degree
of 2). This prevents a direct correspondence between the graph
state nodes and the photonic qubits. In OneQ, those high-degree
qubit nodes are synthesized by a proper strategy of fusions between
low-degree qubits in resource states (e.g., node� to the shaded area
in Figure 6(c), and node⌧ to the area around⌧ in the central part of
Figure 6(c)). By matching with some basic fusion patterns, arbitrary
high-degree input graph states (e.g., Figure 6(b)) can be synthesized
to accommodate input adaptivity. Such a fusion strategy is agnostic
to the routing constraints on the hardware, and aims to establish
a viable fusion relation between resource states to synthesize the
graph state eventually. The strategy can be abstracted to a fusion
graph that indicate necessary fusions at the level of resource state.
Section 5 gives detailed schemes for the generation of synthesis
strategies and their fusion graphs.

Challenge 3: Mapping and Routing Constraints Due to the
routing constraints, the irregular structure of fusions in Figure 6(b)

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Hezi Zhang, et al.

$ %

&

'
(

)

*

+

0 1

*

(

)

5

43

5

3 4

6%

&

(

$
%
&
'

)
*

0 1

(a) (b) (c) (d)

Figure 6: Compilation �ow. (a) Quantum circuit. (b) Graph state. (c) Fusion graph generation. (d) Fusion mapping and routing.

may not be compatible with the hardware connectivity. In Fig-
ure 6(d), each yellow square represents a location of RGS, with
the spatial routing allowing fusions between resource states from
neighboring RGS’s. It can be seen that the triangle in Figure 6(c)
consisting of resource states %,& and ' (circled part in Figure 6(c))
cannot be mapped to the orthogonal grid directly because ' can not
be adjacent to both % and& if % and& are mapped to adjacent RSG
locations. Such incompatibility exists widely in a general fusion
graph, which prevents a direct mapping from the fusion graph to
the underlying hardware topology. In OneQ this issue is resolved
by extending some of the edges and winding them along the 2D
lattice of individual or extended physical layers, which form paths
of consecutive fusions. We refer to this procedure as fusion rout-
ing. For example, in Figure 6(d), %,& and ' can conduct fusions
with each other with an auxiliary resource state (. In (, two qubits
participate in the routing path '(& , with the other qubit (in blue)
removed by a Z-measurement. By maximizing the compactness of
the mapping, we can minimize the overhead from extra fusions.
Section 6 gives detailed searching schemes to map the edges onto
orthogonal paths while minimizing the routing overhead.

Additional Challenge: Non-Planar Graph States The num-
ber of possible fusions on resource states is limited by the number
of qubits they contain. Typically, for small resource states, each
location in the coupling graph can be passed by at most one routing
path. For example, in Figure 6(d), resource state (is passed by the
routing path of edge &', which destroys two of its qubits. This
leaves only one qubit remaining, which is insu�cient for use in an-
other routing path. Therefore, the layout of the graph state cannot
have edges intersecting each other unless the resource states are
large enough to be splitted into multiple 2-qubit cluster states (e.g.,
as large as 5-qubit linear cluster state or 6-qubit ring-like cluster
state). In other words, only planar graphs, i.e., graphs that can be
embedded on a plane with no edges crossing each other, can be
mapped to a single physical layer. In OneQ, this is addressed by
enforcing a planarization process in all modules to prohibit the
graph non-planarity.
4 Graph Partition and Scheduling
Scheduling of operations for MBQC di�ers from that for the circuit
model in two ways. First, the dependency relations in MBQC can
be quite di�erent from those in the circuit model. For example,
dependencies between measurements occur only in the presence
of non-Cli�ord gates, while all measurements corresponding to

Cli�ord gates can be executed simultaneously. Second, the number
of graph state nodes that can be accommodated by each physical
layer is �exible, which is hard to predict beforehand since it depends
on the strategies of graph synthesis and routing. Speci�cally, the
synthesis of a node in the graph state may result in multiple nodes
in the fusion graph, while the mapping of an edge in the fusion
graph may require a routing path through multiple locations in the
coupling graph.

To handle these distinct features, we partition the graph state
into subgraphs in a way that respects the measurement dependency,
and allow a dynamic scheduling for each subgraph to accommo-
date the �exibility in the resource demand. The graph partition
enables the qubits measurable earlier to be scheduled onto earlier
physical layers in a coarse grain, which reduces the wait time of
qubits in the delay lines and enhances the program �delity. The
dynamic scheduling schedules each partition of the graph state
onto a �exible number of physical layers, with the physical layers
allocated dynamically until the partition is all mapped. This enables
the search for a compact layout of the scheduled partition, which
increases the e�ciency of resource utilization and reduces the total
number of physical layers required by the program.

The partition of the graph state respects the measurement de-
pendency through an analysis of the executability order of the
measurement operations. Due to the non-deterministic nature of
quantum measurements, MBQC requires a classical feed-forward
that induces dependencies between measurements. The partial or-
der between measurements can be described by a causal �ow [46],
which is determined by two types of dependencies. Speci�cally,
based on the measurement outcome of a particular qubit, the mea-
surement angles of its neighboring qubits may be adjusted from
U to (�1)BU + Cc where B, C 2 {0, 1}, with the dependency on B
called - -dependency and that on C called / -dependency. Note that
changing the angle from U to U+c only interchanges |±U i and |⌥U i,
which means the / -dependency is equivalent to a re-interpretation
of the measurement outcome of the a�ected qubit. Therefore the
condition when a measurement becomes executable can be sum-
marized as Lemma 1, with qubits executable at each time forming
a dependency layer.

L���� 1. A measurement on a qubit in the graph state is ex-
ecutable if all its - -dependent qubits are measured and all the / -
dependent qubits of all its - -dependent qubits are measured.

OneQ: A Compilation Framework for Photonic One-Way�antum Computation ISCA ’23, June 17–21, 2023, Orlando, FL, USA

This respect for measurement dependency is only in a coarse-
grainedmanner. This means that a partition can containmultiple de-
pendency layers, and dependency layers within the same partition
do not have to be scheduled strictly according to their executability
orders. The reason for this is two-fold. First, the presence of delay
lines can allow the delay of qubits’ arrival at the measurement
devices for some time, making an exact match between the exe-
cutability order and the physical layer order unnecessary. Second,
allowing for this mismatch enables a preservation of the overall
geometry structure among nearby dependency layers, which can
be used to increase the potential compactness of the graph layout
in the mapping process. Speci�cally, this coarse-grained manner
can be achieved by �rst sorting the measurements according to
their executability orders, and then forming each graph partition
by including a number of consecutive dependency layers.

Partitioned subgraphs are then scheduled for fusion graph gen-
eration and layout search for the fusion graph in ascending order of
their executability. The scheduling of these subgraphs is dynamic
in two levels. First, for each partition, physical layers would be
allocated dynamically for mapping and routing until all the nodes
in the corresponding fusion graph are mapped to the hardware.
Second, among partitions, there can be additional edges connecting
nodes of fusion graphs for di�erent partitions, which also need to
be mapped to the hardware to form the whole graphs state. This can
be achieved by dynamically allocating additional physical layers
between the partitions, and routing on those physical layers until
all cross-partition edges are mapped.

GraphPlanarizationTo further respect the planarity constraint
for resource states of small size, the planarity of the subgraphs can
be used as an additional condition for graph partitioning. Specif-
ically, in the process of grouping consecutive dependency layers
into partitions in ascending order of their executability, a planarity
check can be performed along the way. New dependency layers
will not be included if either the limit number of dependency layers
is exceeded or the accumulated subgraph is no longer a planar
graph. If a single dependency layer is already non-planar, it can
be decomposed into subgraphs by repeatedly �nding the maximal
planar subgraph ⌧8 from its remaining graph ⌧ , where a maximal
planar subgraph ⌧8 is de�ned as a subgraph such that the addition
of any edge 4 2 ⌧ �⌧8 breaks the planarity of ⌧8 . This planariza-
tion can ensure in advance that each partition scheduled for fusion
graph generation and layout searching is a planar graph, avoiding
unnecessary con�icts when the graph is large and complex.

5 Fusion Graph Generation
A graph state can be synthesized from small resource states via
fusion by �rst synthesizing necessary components such as high-
degree nodes and lines, then connecting them according to the
graph geometry. In this section, we lay the foundation of synthe-
sizing arbitrary graph states by de�ning a set of basic patterns.
Then we demonstrate the process of graph synthesis from 3-qubit
resource states and generalize it to more generic resource states.

Synthesis of arbitrary graph states can be realized by appropriate
strategies based on some basic fusion patterns, as shown in Figure 7.
First, the degree of a node+ can be increased by a degree increment
pattern, which fuses a leaf node (degree = 1) connecting to+ with a
node of degree > 1. For example, the degree of node+ in Figure 7(a)

�D��'HJUHH�,QFUHPHQW

�E��/LQH�([WHQVLRQ

�F��*UDSK�&RQQHFWLRQ

Figure 7: Basic fusion patterns.

is increased by 1 by fusing node E with a 2-degree nodeF . Second,
a line of nodes can be extended by a line extension pattern, which
fuses a leaf node of the line with that of another line. For example,
the 2-node line +E in Figure 7(b) is extended to a 3-node line by
fusing the leaf node E with the leaf node F . Third, two resource
states can be connected while maintaining their structures (except
the fused nodes) by a graph connection pattern, which fuses two
leaf nodes from each of them respectively. For example, the two
4-node graphs in Figure 7(c) are connected by a fusion between
node E and F , with the nodes + and, connected by an edge in
the formed graph state and the remaining structures of them left
unchanged.

(a) (b) (c)

Figure 8: Synthesize a high degree node in (a) by a basic fusion
pattern in (b). Represent the fusion pattern by a fusion graph
in (c), with each ‘⌦’ node representing a resource state, each
edge representing a fusion operation.

With these basic patterns, an arbitrary graph state can be syn-
thesized from resource states as small as 3-qubit resource states.
Speci�cally, high-degree nodes in the graph states can be synthe-
sized by a repetitive application of the degree increment pattern
until the required degree is satis�ed, as shown in Figure 8(a)(b).
The resulting fusion pattern can be represented by a fusion graph
in Figure 8(c), with each node representing a resource state, and
each edge representing a fusion operation. Similarly, lines can be
synthesized by a repetitive application of the line extension pat-
tern until the required length is satis�ed. Then, the high degree
nodes and lines can be connected via the graph connection pattern
(Figure 7(c)). We demonstrate it with an example of synthesizing
a graph in Figure 9(a). In Figure 9(b), we break down the graph
into high degree nodes �,⌫,⇠,⇡,$ and lines %&,'(. Each high-
degree node or each line is connected with some nodes in hollow
dots, which represent its neighbors in Figure 9(a). Those nodes are
referred to as virtual nodes. Note that multiple virtual nodes are

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Hezi Zhang, et al.

$�

'�&�

%�$� %� 5

&

2 2

%$3 5

'4 6

%$3 5

& '4 6

%$3 5

& '4 6 &�4 6

3

4'� '�&�

%�$� %� 5$�

&� 6'�

3

2 2� 2�
2�

2�2�
2�

(a) (b) (c) (d) (e)

Figure 9: Fusion graph generation. (a) A planar embedding of the graph state geometry. (b) Split the edges. (c) Replace each
high-degree node with a piece of fusion graph, with each ‘⌦’ node representing a resource state. (d) Connect the pieces of fusion
graphs while keeping the clockwise (counter-clockwise) edge orders in the planar embedding so as to obtain a planar fusion
graph. (e) The planarity may be broken if not keeping the clockwise (counter-clockwise) edge orders.

allowed to represent the same node. We synthesize the high-degree
nodes and lines with the basic patterns Figure 7(a)(b), pairing up
the virtual nodes according to the original graph in Figure 9(a), and
connect these components by applying the basic pattern Figure 7(c)
on the paired virtual nodes.

For generic resource states, this synthesis process can be made
applicable by a modi�cation containing two steps. First, nodes of
the fusion pattern in Figure 8(c) can be reduced by utilizing qubits of
degree > 2. In particular, for resource states with max degree<, an
=-degree node can be synthesized by=//<+1 resource states, where
the extra (= mod<) qubits would be removed by Z-measurements.
Therefore, the fusion graph in Figure 8(c) becomes a linear graph
containing =//< + 1 nodes, instead of = � 1 nodes in the case of
3-qubit resource states. Second, edges in the fusion graph for 3-
qubit GHZ states can be contracted by utilizing the connections
between qubits within the resource states. This can be achieved by
a pattern matching process that traverses the graph, searching for
lines or cycles that match the intrinsic geometry of the resource
states. During the synthesis process, qubits in resource states can
be removed by Z-measurements when necessary. For example, a
=-qubit ring-like resource state can be tailored to a (= � 1)-qubit
linear resource state by removing one qubit, if linear structures,
rather than rings, need to be synthesized.

Planarity Preservation The planarity condition imposed in
the graph partition can be preserved in the process of fusion graph
generation. In other words, if the original graph is planar, then the
resulting fusion graph can also be planar. This can be achieved by
�rst �nding a planar embedding of the original graph, i.e., a way of
drawing it on the plane with no crossing edges, and then keeping
the clockwise (counterclockwise) orders among the edges when
connecting the synthesized high-degree nodes. The search for the
planar embedding can be e�ciently done by existing tools such as
Networkx [49]. For example, in the planar graph in Fig. 9(a), the
4-degree node $ has neighbors �,⌫,⇡,⇠ in the clockwise order.
So we replace it with a fusion graph component consisting of 3
nodes (component$ in the grey circle at the center of Fig. 9(c)), and
connect it with fusion graph components of�,⌫,⇡,⇠ in a clockwise
manner (Fig. 9(d)). As a comparison, Fig. 9(e) shows a fusion graph
that breaks planarity since the clockwise (counterclockwise) edge
orders are not maintained.

6 Fusion Mapping and Routing
Finding the most compact layout of a graph on a grid is known to
be an NP-hard problem [50], and it is particularly challenging in our
case due to two additional features of the grid. First, each layer of
grid has limited area because each physical layer of resource states
is generated by limited number of RSGs. Second, the space-time
coupling in the hardware has a 3D nature, which makes a direct
search of mapping ine�cient. In particular, each edge of a node can
be mapped or routed toward not only di�erent directions around
the node but also any of the previous or subsequent layers up to
the limit of delay time, which increases the search space and leads
to longer search times.

(a) (b) (c)

Figure 10: Mappings of ‘QUANTUM’ (red) and ‘COMPUTING’
(purple) connected through a shu�ling layer (b) in between.
Red dots on (c) represent the incomplete nodes whose edges
are not all mapped yet, with the other ends of them being
the purple dots on (a). Corresponding nodes are connected
by a shu�ling on the intermediate layer (green lines in (b)).

To address these challenges, we propose an algorithm consist-
ing of an in-layer mapping and an inter-layer shu�ing, which is
applicable for grids of various geometry (triangular, orthogonal,
etc.). It �nds the 3D layout of the scheduled graph by �nding a se-
ries of 2D compact layouts and connecting the them by a shu�ing
of nodes. Each 2D layout is found by a boundary-aware heuristic
search restricted to a physical layer or extended physical layer. The
incomplete nodes on each layer, whose edges are not all mapped
due to the limited grid area are then connected by a node shu�ing

OneQ: A Compilation Framework for Photonic One-Way�antum Computation ISCA ’23, June 17–21, 2023, Orlando, FL, USA

on additional physical layer between the 2D layouts. For example,
in Figure 10, the graph ‘QUANTUM’ (red) and ‘COMPUTING’ (pur-
ple) are mapped onto two extended physical layers in 10(c) and
10(a), respectively. Red dots on 10(c) represent the incomplete nodes
whose edges are not all mapped yet, with the other ends of those
edges being the incomplete nodes represented by the purple dots
on 10(a). These incomplete nodes are connected by a shu�ing on
the intermediate layer 10(b), with the green lines being the routing
paths between corresponding nodes.

In the in-layer mapping, each edge is mapped onto the physical
layer or extended physical layer either directly or via routing. The
routing is triggered in two scenarios. First, it can map the edges
between existing nodes in the layout, thus allowing the fusion be-
tween non-neighboring nodes and accommodating the irregularity
in the structure of the scheduled graph. Second, it is used to re-
duce the blockage between mapped nodes and future nodes, thus
increasing the number of edges that can be mapped to the layer
and maximizing compactness of the layout. A node is de�ned as
blocked if the number of its remaining unmapped edges A exceeds
the number of its adjacent available positions on the grid B , with
the case of B > 0 called partially blocked and the case of B = 0
called totally blocked. When a node is partially blocked by other
mapped nodes, we can route the node to a position that has enough
available degrees. When the direct mapping of an edge result in
a total blockage for some other nodes in the map, we can route
the node to a broader area before the mapping, such that it leaves
enough degrees for the other nodes.

(a) (b)

Figure 11: (a) Mapping of fusion graph for 8-qubit BV with
secret string ‘11111111’. (b) Mapping of fusion graph for 3-
qubit QFT. Blue and green dots correspond to the nodes ‘⌦’
existing in the fusion graph, with the green ones being the
incomplete nodes whose edges are not all mapped yet. Pink
dots represent the auxiliary resource states used for routing.

This can be more clearly demonstrated with two layout examples.
In Figure 11(a), the routing path �⌫⇠ , represented by pink nodes,
is used to connect the existing nodes and form the cyclic structure
in the shaded area. In Figure 11(b), routing was triggered for twice.
First, node �0 is routed from '1 by one step to avoid the total
blockage for node ⌫, because if node �0 is directly mapped to the
location '1, one of its edges �0⇠ and �0⇡ would have to take
location '2, which is the only remaining location around ⌫. Second,
node ⌫0 is routed by one step to address its partial blockage by�0⇡ ,

because while node ⌫0 can be directly mapped to the location '2,
the only one remaining location around it would be insu�cient for
mapping its two future edges ⌫0⇢ and ⌫0� . Note that in real cases
the length of routing paths should be � 2.

The heuristic search algorithm can be stated as below. We tra-
verse the edges in a cycle-prioritized breadth-�rst order, giving
priority to edges involved in cycles over those in trees, because tree
edges are more �exible for mapping. We choose to map each edge
either directly or via routing according to the scenarios above. After
each new edge is mapped, the layout is evaluated by the heuristic
cost function

� = occupied_area
+ #partially_blocked_nodes
+ U · #totally_blocked_nodes

where occupied_area refers to the area of the smallest rectangle that
can enclose the mapped edges. U should be larger than 1 as a total
blockage is more harmful. It can be typically set as the maximum
degree of each physical layer. The layout with the lowest cost is
then selected as the best candidate and used in the search for future
edges.

In the inter-layer shu�ing, incomplete nodes in di�erent 2D
layouts are connected via routing on the physical layers allocated
between them. This shu�ing can be achieved by �rst pairing up
the incomplete nodes, sorting the node pairs according to their
distances, and then �nding the shortest routing paths to connect
the node pairs in ascending order of the distances. Speci�cally,
if a single physical layer is not enough to accommodate all the
routing paths, more physical layers can be allocated dynamically
until all the node pairs are connected. The inter-layer shu�ing can
be used to support the subgraph connection need arising in two
circumstances. First, as the graph partition process partitions the
whole graph state into subgraphs, the fusion graphs of di�erent
subgraphs need to be connected to form the whole graph state.
Second, the mapping of each partition may generate multiple 2D
layouts, as some nodes may be inevitably blocked due to the limited
area of physical layers and the complexity of the graph geometry.
While positions of incomplete nodes in the previous layers are
taken into account in the mapping of subsequent layers to increase
their proximity, those 2D layouts may still need to be connected by
the inter-layer shu�ing if not all con�icts can be resolved within
the in-layer mapping.

Planarity-Aware SearchWhen the given fusion graph is planar,
the heuristic search for in-layer mapping can be made planarity-
aware to maximize the number of edges accommodated by each
physical layer. Speci�cally, we can �rst �nd a planar embedding of
the fusion graph, and make the mapping of each edge follow the
planar embedding, which can be achieved by forcing the mapped
edge to leave enough degrees for its clockwise or counterclockwise
neighboring edges connected to the same node. This planarity-
awareness naturally prevents routing paths from crossing each
other and reduces the demand for inter-layer shu�ing. This ap-
proach is more e�ective when the area of physical layers is large
enough, because otherwise the edges would be blocked by the
limited area anyway. This area can be increased by extension of
physical layers, as shown in Figure 5(b).

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Hezi Zhang, et al.

7 Evaluation
7.1 Experiment Setup
Metric As discussed in Section 3.2, the �rst metric we consider is
the physical depth, i.e., the number of physical layers consumed
in the execution of the program. The second metric is the number
of fusion operations performed in the execution of the program,
which is denoted as ‘# fusion’. A better compiler should compile a
quantum program into a smaller depth which indicates a shorter
execution time and less consumption of resources, and a smaller
‘# fusion’ which indicates less overhead and being less error-prone.
For comparison with the baseline, we de�ne an improvement factor
of physical depth as the ratio of the depth in the baseline to the
depth in OneQ, and an improvement factor of ‘# fusion’ as the
ratio of the number of fusions consumed in the baseline to the that
consumed in OneQ.
Baseline Our optimized baseline is based on the basic MBQC in-
terpreter introduced in Section 2 but with two preprocessing steps.
The �rst step is synthesizing a su�ciently large 3D cluster state
by fusions from small resource states generated by the RSGs. The
su�cient size of each 2D layer of the cluster state is referred to as
cluster area, while the number of RSGs required to form a cluster
state of that size is referred to as physical area. The second step is
�nding a layout for the circuit so that measurement patterns of all
gates in the circuit can be joined in a way shown as Figure 4.

For the �rst step, instead of relying on any speci�c synthesis
strategy, we adopt a lower bound of the physical area, which indi-
cates the least number of required resource states when ignoring
the spatial constraints for fusion routing. For the second step, to
ensure an e�cient implementation of a two-qubit gate with MBQC,
it is necessary to place the strips of the involved qubits close to
each other in the cluster state, similar to that in the circuit model
with solid-state-qubit quantum computing. As a result, we utilize
the qubit mapping and routing functions of Qiskit [21] to address
the issues related to far-apart 2-qubit gates prior to mapping the
circuit onto the cluster state. Speci�cally, this is achieved by using
a 2D coupling graph that shares the same structure with each 2D
layer of the cluster state as the hardware coupling graph to Qiskit.
Benchmark programs We select Quantum Fourier transform
(QFT), quantum approximate optimization algorithm (QAOA), Ripple-
Carry Adder (RCA) [51] and Bernstein-Vazirani (BV) algorithm as
our benchmarks, which include both building blocks of quantum
programs (QFT and RCA) and application driven programs target-
ing at solving real-world problems (QAOA and BV). For QAOA, we
choose the graph maxcut problem on randomly generated graphs.
Speci�cally, the graphs are generated by randomly selecting half of
its all possible edges. For BV, we select the secret strings randomly,
with approximately half of the digits being 0 and half being 1. In ta-
ble 1, we list the number of qubits and the number of gates for each
benchmark, as well as the cluster area and physical area required
by the baseline approach. For each benchmark, our framework is
evaluated on the same physical area with the baseline to make them
more comparable.
7.2 Experiment Result
We �rst show the results of the baseline and OneQ for 3-qubit
resource states in Table 2, as the number of qubits increases for
each benchmark. It can be seen that OneQ outperforms the baseline

Table 1: Benchmark programs.

Name #qubit cluster area physical area
Quantum
Fourier
Transform
(QFT)

16 7x7 16x16

25 9x9 21x21

36 11x11 25x25
Quantum
Approximate
Optimization
Alg (QAOA)

16 7x7 16x16

25 9x9 21x21

36 11x11 25x25

Ripple-Carry
Adder (RCA)

16 7x7 16x16

25 9x9 21x21

36 11x11 25x25

Bernstein
Vazirani (BV)

16 7x7 16x16

25 9x9 21x21

100 19x19 43x43

by orders of magnitude in both physical depth and the number of
fusions. As the number of qubits increases, this improvement of
performance stays stable or slightly increases.

Among the benchmarks, OneQ has the most signi�cant improve-
ment for BV. This is because the graph state of BV is acyclic and
planar, making it easier the heuristic search in OneQ to �nd a com-
pact layout for the graph and map it to only a few physical layers.
In contrast, the graph states of the QFT, QAOA and RCA contain a
lot of short-range and long-range cycles, which makes the structure
more complex and increases the demand for routing. However, for
these benchmarks, OneQ still achieves a reduction on the physical
depth by a factor of 15 on average (geomean), and a reduction on
the number of fusions by a factor of 47 on average (geomean).
General resource states To achieve greater generality, our opti-
mization modules are designed to be extendable to a wide range of
resource states. This is made possible by accommodating �exible
fusion strategies for synthesizing graph states and representing
each strategy with a fusion graph. Figure 12 shows the results when
the resource states are 3-qubit line-shaped graph state, 4-qubit line-
shaped, star-shaped and ring-shaped graphs states, respectively.
The improvements in physical depth and the number of fusions
are shown in (a) and (b), respectively. It can be seen that OneQ
achieves similar levels of improvement in performance for these
various resource states.
Flexible coupling structureWhile the results in Table 2 are on
physical layers of # ⇥ # square coupling structure, OneQ is ap-
plicable to more general coupling structures. Figure 13 shows the
physical depth (13(a)) and the number of fusions (13(b)) when the
ratio of each physical layer is 16x16 (ratio = 1), 20x13 (ratio = 1.5),
23x11 (ratio = 2.1) and 26x10 (ratio = 2.6) respectively. For compar-
ison, the results are normalized by those on the square physical
layer. It can be seen that OneQ achieves similar levels of perfor-
mance on these various shapes of physical layers. Moreover, the
area of physical layers is adjustable by regarding multiple consec-
utive physical layers as an extended physical layer, which can be

OneQ: A Compilation Framework for Photonic One-Way�antum Computation ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Table 2: The results of OneQ and its relative performance to the baseline.

Name-#qubits Baseline Depth Our Depth Improv. Factor Baseline #Fusions Our #Fusions Improv. Factor

QFT-16 787 83 9 201,472 8,167 25

QFT-25 1,518 162 9 669,438 26,921 25

QFT-36 2,712 324 8 1,695,000 66,830 25

QAOA-16 595 29 20 152,320 2,578 59

QAOA-25 1,287 63 20 567,567 8,343 68

QAOA-36 2,648 122 22 1,655,000 21,302 78

RCA-16 734 46 16 187,904 4,568 41

RCA-25 1,273 65 20 561,393 8,915 63

RCA-36 1,934 85 23 1,208,750 14,115 86

BV-16 94 1 92 24,064 63 382

BV-25 181 1 181 79,821 114 700

BV-100 787 4 197 1,455,163 644 2,260

	�����
�����
�!"�
� ���

 �!�# ���!"�"��"%��

�

��

��

	�

�
�
�
"
�
��
�

�

�
$
�

���

����

�
�

��

(a)

������ 	����� 	�!"� 	� ���

 �!�# ���!"�"��"%��

�

��

�

��

�
�#

!
��

�
��
�

�

�
$
�

���

����

���

�

(b)

Figure 12: Improvement factors of physical depth (a) and
fusions (b) of 16-qubit QFT,QAOA,RACandBV for di�erent
basic resource states.

used to accommodate more global structure of the graph. As a
demonstration, Figure 14 shows a slice of mapping generated by
OneQ for a 16-qubit QFT program. The whole rectangular 13 ⇥ 39
extended physical layer is composed of 3 layers of 13⇥ 13 grid. The
�rst physical layer ranges from column 1 to column 13, the second
ranges from column 14 to column 26, and the third from column 27

� ��	 ��� ��

�� ������� ��!�� �

���

��	

���

��	
�
�
�
�

�
��
"
�
�
��

�
�

�

���

����

�
�

��

(a)

� ��
 	�� 	��

 �"�������"��$��"�

���

��

���

��

�
�

�

�
��
%
�
�
��

�#
!
��

�

���

����

���

�

(b)

Figure 13: Normalized physical depth (a) and # fusions (b)
of 16-qubit QFT, QAOA, RCA and BV on di�erent shapes of
physical layers. Results on rectangular physical layers (ratio
> 1) are normalized by those on square physical layers (ratio
= 1).

to column 39 respectively. In the �gure, blue and green dots corre-
spond to the nodes ‘⌦’ existing in the fusion graph, with the green
ones representing the incomplete nodes, which means that some
of edges connected to them have not been mapped onto the grid.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Hezi Zhang, et al.

Figure 14: Mapping of the fusion graph of a 16-qubit QFT program with a more global optimization by considering an extended
physical layer consisting of 3 successive physical layers of size 13 ⇥ 13. Blue and green dots correspond to the nodes ‘⌦’ existing
in the fusion graph, with the green ones being the incomplete nodes whose edges are not all mapped yet. Pink dots represent
the auxiliary resource states used for routing.

Pink dots represent the auxiliary resource states used for routing.
In principle, the optimization techniques in OneQ is also applicable
when the coupling structure between RSGs are not orthogonal (e.g.,
triangular, hexagonal) since none of our optimization modules has
explicit dependency on a speci�c coupling architecture.

E�ect of physical area In contrast to the �xed size of physical
layers required by the baseline approach, OneQ does not impose
strict constraints on the size of physical layers, allowing programs
to be compiled onto hardware of di�erent sizes. Speci�cally, the
physical depth can be decreased by allowing longer routing paths on
larger physical layers, with a cost of more fusions. Figure 15 shows
the physical depth and the number of fusions when the programs
are compiled onto di�erent sizes of physical layers. For comparison,
the results are normalized by those on the physical area required by
the baseline approach, which is 16x16 when the number of qubits is
16. It can be seen that when the physical area increases, the physical
depth initially decreases rapidly, but eventually reaches a plateau
when the physical area becomes su�ciently large. On the other
hand, the number of fusions shows a reverse trend, increasing as
the physical area increases. Note that if physical layers are larger
than necessary, they can be truncated by restricting compilation to
a portion of the physical layers.

8 Conclusion
In this work, we provide in-depth analysis and discussion of the
unique challenges for photonic one-way computing at both pro-
gramming and hardware levels. We build the �rst end-to-end compi-
lation framework for optimizing the mapping of any quantum pro-
grams onto photonic devices supported by our hardware abstract
model. With this being said, many of the optimization problems
here are NP-hard problems, and thus we believe there is still sig-
ni�cant potential for fully exploring the entire optimization space.
As the �rst work in this direction, we hope our work could attract
more e�ort from the computer architecture and compiler commu-
nity to explore the advantages of photonic quantum architectures
and overcome the unique challenges.
Acknowledgments
We thank the anonymous reviewers for their constructive feedback
and the cloud bank [52]. This work is supported in part by Cisco
Research, NSF 2048144, and Robert N.Noyce Trust.

��� ���
�� ��� ����

��#!������ ��

���

��	

���

��	

���

�
�

�

�
��
$
�
�
��

�
�
"
� ���

����

���

�

(a)

��� 	�� ��� ��� ����

!�%#������"��

���

��

���

��

���

�

"
�
�
��
&
�
�
��
�$
#
�
�

���

�
�

��

��

(b)

Figure 15: Normalized physical depth (a) and # fusions (b)
of 16-qubit QFT, QAOA, RAC and BV for di�erent physical
areas. Results on di�erent physical areas are normalized by
those on the same physical area as required by the baseline
approach.

References
[1] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer. SIAM review, 41(2):303–332, 1999.
[2] Lov K Grover. A fast quantum mechanical algorithm for database search. In

Proceedings of the twenty-eighth annual ACM symposium on Theory of computing,
pages 212–219, 1996.

[3] Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D.
Johnson, Mária Kieferová, Ian D. Kivlichan, Tim Menke, Borja Peropadre, Nico-
las P.D. Sawaya, Sukin Sim, Libor Veis, and Alán Aspuru-Guzik. Quantum Chem-
istry in the Age of Quantum Computing. Chemical Reviews, 119:10856–10915,
2019.

[4] Sam McArdle, Suguru Endo, Alán Aspuru-Guzik, Simon C Benjamin, and Xiao
Yuan. Quantum computational chemistry. Reviews ofModern Physics, 92(1):015003,

OneQ: A Compilation Framework for Photonic One-Way�antum Computation ISCA ’23, June 17–21, 2023, Orlando, FL, USA

2020.
[5] Michel H Devoret and Robert J Schoelkopf. Superconducting circuits for quantum

information: an outlook. Science, 339(6124):1169–1174, 2013.
[6] Colin D Bruzewicz, John Chiaverini, Robert McConnell, and Jeremy M Sage.

Trapped-ion quantum computing: Progress and challenges. Applied Physics
Reviews, 6(2):021314, 2019.

[7] Mark Sa�man. Quantum computing with atomic qubits and rydberg interactions:
progress and challenges. Journal of Physics B: Atomic, Molecular and Optical
Physics, 49(20):202001, 2016.

[8] Pieter Kok, William J Munro, Kae Nemoto, Timothy C Ralph, Jonathan P Dowling,
and Gerard J Milburn. Linear optical quantum computing with photonic qubits.
Reviews of modern physics, 79(1):135, 2007.

[9] Shuntaro Takeda and Akira Furusawa. Toward large-scale fault-tolerant universal
photonic quantum computing. APL Photonics, 4(6):060902, 2019.

[10] Mihir Pant, Don Towsley, Dirk Englund, and Saikat Guha. Percolation thresholds
for photonic quantum computing. Nature communications, 10(1):1–11, 2019.

[11] Jeremy L. O’Brien, Akira Furusawa, and Jelena Vučković. Photonic quantum
technologies. Nature Photonics, 3(12):687, 2009.

[12] S. Bogdanov, M. Y. Shalaginov, A. Boltasseva, and V. M. Shalaev. Material plat-
forms for integrated quantum photonics. Opt. Mater. Express, 7(1):111–132, Jan
2017.

[13] Mikkel V Larsen, Xueshi Guo, Casper R Breum, Jonas S Neergaard-Nielsen,
and Ulrik L Andersen. Deterministic multi-mode gates on a scalable photonic
quantum computing platform. Nature Physics, 17(9):1018–1023, 2021.

[14] JianweiWang, Fabio Sciarrino, Anthony Laing, andMarkGThompson. Integrated
photonic quantum technologies. Nature Photonics, 14(5):273–284, 2020.

[15] Lars S. Madsen, Fabian Laudenbach, Mohsen Falamarzi. Askarani, Fabien Rortais,
Trevor Vincent, Jacob F. F. Bulmer, FilippoM. Miatto, Leonhard Neuhaus, Lukas G.
Helt, Matthew J. Collins, Adriana E. Lita, Thomas Gerrits, Sae Woo Nam, Varun D.
Vaidya, Matteo Menotti, Ish Dhand, Zachary Vernon, Nicolás Quesada, and
Jonathan Lavoie. Quantum computational advantage with a programmable
photonic processor. Nature, 606(7912):75–81, Jun 2022.

[16] Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng Chen, Li-Chao Peng,
Yi-Han Luo, Jian Qin, Dian Wu, Xing Ding, Yi Hu, Peng Hu, Xiao-Yan Yang,
Wei-Jun Zhang, Hao Li, Yuxuan Li, Xiao Jiang, Lin Gan, Guangwen Yang, Lixing
You, Zhen Wang, Li Li, Nai-Le Liu, Chao-Yang Lu, and Jian-Wei Pan. Quantum
computational advantage using photons. Science, 370(6523):1460–1463, 2020.

[17] Han-Sen Zhong, Yu-Hao Deng, Jian Qin, Hui Wang, Ming-Cheng Chen, Li-Chao
Peng, Yi-Han Luo, Dian Wu, Si-Qiu Gong, Hao Su, Yi Hu, Peng Hu, Xiao-Yan
Yang, Wei-Jun Zhang, Hao Li, Yuxuan Li, Xiao Jiang, Lin Gan, Guangwen Yang,
Lixing You, Zhen Wang, Li Li, Nai-Le Liu, Jelmer J. Renema, Chao-Yang Lu, and
Jian-Wei Pan. Phase-programmable gaussian boson sampling using stimulated
squeezed light. Phys. Rev. Lett., 127:180502, Oct 2021.

[18] Sara Bartolucci, Patrick Birchall, Hector Bombin, Hugo Cable, Chris Dawson,
Mercedes Gimeno-Segovia, Eric Johnston, Konrad Kieling, Naomi Nickerson,
Mihir Pant, Fernando Pastawski, Terry Rudolph, and Chris Sparrow. Fusion-based
quantum computation. arXiv preprint arXiv:2101.09310, 2021.

[19] Hector Bombin, Isaac H Kim, Daniel Litinski, Naomi Nickerson, Mihir Pant,
Fernando Pastawski, Sam Roberts, and Terry Rudolph. Interleaving: Modular
architectures for fault-tolerant photonic quantum computing. arXiv preprint
arXiv:2103.08612, 2021.

[20] Sara Bartolucci, Patrick Birchall, Damien Bonneau, Hugo Cable, Mercedes
Gimeno-Segovia, Konrad Kieling, Naomi Nickerson, Terry Rudolph, and Chris
Sparrow. Switch networks for photonic fusion-based quantum computing. arXiv
preprint arXiv:2109.13760, 2021.

[21] MD SAJID ANIS, Héctor Abraham, AduO�ei, Rochisha Agarwal, Gabriele
Agliardi, MeravAharoni, Ismail YunusAkhalwaya, Gadi Aleksandrowicz, Thomas
Alexander, Matthew Amy, Sashwat Anagolum, Eli Arbel, Abraham Asfaw, An-
ish Athalye, Artur Avkhadiev, Carlos Azaustre, PRATHAMESH BHOLE, Abhik
Banerjee, Santanu Banerjee, Will Bang, Aman Bansal, Panagiotis Barkoutsos,
Ashish Barnawal, George Barron, George S. Barron, Luciano Bello, Yael Ben-
Haim, M. Chandler Bennett, Daniel Bevenius, Dhruv Bhatnagar, Arjun Bhobe,
Paolo Bianchini, Lev S. Bishop, Carsten Blank, Sorin Bolos, Soham Bopardikar,
Samuel Bosch, Sebastian Brandhofer, Brandon, Sergey Bravyi, Nick Bronn, Bryce-
Fuller, David Bucher, Artemiy Burov, Fran Cabrera, Padraic Calpin, Lauren Capel-
luto, Jorge Carballo, Ginés Carrascal, Adam Carriker, Ivan Carvalho, Adrian
Chen, Chun-Fu Chen, Edward Chen, Jielun (Chris) Chen, Richard Chen, Franck
Chevallier, Kartik Chinda, Rathish Cholarajan, Jerry M. Chow, Spencer Churchill,
CisterMoke, Christian Claus, Christian Clauss, Caleb Clothier, Romilly Cocking,
Ryan Cocuzzo, Jordan Connor, Filipe Correa, Abigail J. Cross, Andrew W. Cross,
Simon Cross, Juan Cruz-Benito, Chris Culver, Antonio D. Córcoles-Gonzales,
Navaneeth D, Sean Dague, Tareq El Dandachi, Animesh N Dangwal, Jonathan
Daniel, Marcus Daniels, Matthieu Dartiailh, Abdón Rodríguez Davila, Faisal
Debouni, Anton Dekusar, Amol Deshmukh, Mohit Deshpande, Delton Ding,
Jun Doi, Eli M. Dow, Eric Drechsler, Eugene Dumitrescu, Karel Dumon, Ivan
Duran, Kareem EL-Safty, Eric Eastman, Grant Eberle, Amir Ebrahimi, Pieter

Eendebak, Daniel Egger, ElePT, Emilio, Alberto Espiricueta, Mark Everitt, Da-
vide Facoetti, Farida, Paco Martín Fernández, Samuele Ferracin, Davide Fer-
rari, Axel Hernández Ferrera, Romain Fouilland, Albert Frisch, Andreas Fuhrer,
Bryce Fuller, MELVIN GEORGE, Julien Gacon, Borja Godoy Gago, Claudio
Gambella, Jay M. Gambetta, Adhisha Gammanpila, Luis Garcia, Tanya Garg,
Shelly Garion, James R. Garrison, Tim Gates, Leron Gil, Austin Gilliam, Aditya
Giridharan, Juan Gomez-Mosquera, Gonzalo, Salvador de la Puente González,
Jesse Gorzinski, Ian Gould, Donny Greenberg, Dmitry Grinko, Wen Guan, Dani
Guijo, John A. Gunnels, Harshit Gupta, Naman Gupta, Jakob M. Günther, Mikael
Haglund, Isabel Haide, Ikko Hamamura, Omar Costa Hamido, Frank Harkins,
Kevin Hartman, Areeq Hasan, Vojtech Havlicek, Joe Hellmers, Łukasz Herok,
Stefan Hillmich, Hiroshi Horii, Connor Howington, Shaohan Hu, Wei Hu, Junye
Huang, Rolf Huisman, Haruki Imai, Takashi Imamichi, Kazuaki Ishizaki, Ishwor,
Raban Iten, Toshinari Itoko, Alexander Ivrii, Ali Javadi, Ali Javadi-Abhari, Wahaj
Javed, Qian Jianhua, Madhav Jivrajani, Kiran Johns, Scott Johnstun, Jonathan-
Shoemaker, JosDenmark, JoshDumo, John Judge, Tal Kachmann, Akshay Kale,
Naoki Kanazawa, Jessica Kane, Kang-Bae, Annanay Kapila, Anton Karazeev,
Paul Kassebaum, Josh Kelso, Scott Kelso, Vismai Khanderao, Spencer King, Yuri
Kobayashi, Kovi11Day, Arseny Kovyrshin, Rajiv Krishnakumar, Vivek Krishnan,
Kevin Krsulich, Prasad Kumkar, Gawel Kus, Ryan LaRose, Enrique Lacal, Raphaël
Lambert, Haggai Landa, John Lapeyre, Joe Latone, Scott Lawrence, Christina Lee,
Gushu Li, Jake Lishman, Dennis Liu, Peng Liu, Abhishek K M, Liam Madden,
Yunho Maeng, Saurav Maheshkar, Kahan Majmudar, Aleksei Malyshev, Mo-
hamed El Mandouh, Joshua Manela, Manjula, Jakub Marecek, Manoel Marques,
Kunal Marwaha, Dmitri Maslov, PawełMaszota, DolphMathews, Atsushi Matsuo,
Farai Mazhandu, Doug McClure, Maureen McElaney, Cameron McGarry, David
McKay, Dan McPherson, Srujan Meesala, Dekel Meirom, Corey Mendell, Thomas
Metcalfe, Martin Mevissen, Andrew Meyer, Antonio Mezzacapo, Rohit Midha,
Daniel Miller, Zlatko Minev, Abby Mitchell, Nikolaj Moll, Alejandro Montanez,
Gabriel Monteiro, Michael Duane Mooring, Renier Morales, Niall Moran, David
Morcuende, Seif Mostafa, Mario Motta, Romain Moyard, Prakash Murali, Jan
Müggenburg, Tristan NEMOZ, David Nadlinger, Ken Nakanishi, Giacomo Nan-
nicini, Paul Nation, Edwin Navarro, Yehuda Naveh, Scott Wyman Neagle, Patrick
Neuweiler, Aziz Ngoueya, Johan Nicander, Nick-Singstock, Pradeep Niroula,
Hassi Norlen, NuoWenLei, Lee James O’Riordan, Oluwatobi Ogunbayo, Pauline
Ollitrault, Tamiya Onodera, Raul Otaolea, Steven Oud, Dan Padilha, Hanhee
Paik, Soham Pal, Yuchen Pang, Ashish Panigrahi, Vincent R. Pascuzzi, Simone
Perriello, Eric Peterson, Anna Phan, Kuba Pilch, Francesco Piro, Marco Pistoia,
Christophe Piveteau, Julia Plewa, Pierre Pocreau, Alejandro Pozas-Kerstjens,
Rafał Pracht, Milos Prokop, Viktor Prutyanov, Sumit Puri, Daniel Puzzuoli, Jesús
Pérez, Quant02, Quintiii, Rafey Iqbal Rahman, Arun Raja, Roshan Rajeev, Isha
Rajput, Nipun Ramagiri, Anirudh Rao, Rudy Raymond, Oliver Reardon-Smith,
Rafael Martín-Cuevas Redondo, Max Reuter, Julia Rice, Matt Riedemann, Rietesh,
Drew Risinger, Marcello La Rocca, Diego M. Rodríguez, RohithKarur, Ben Rosand,
Max Rossmannek, Mingi Ryu, Tharrmashastha SAPV, Nahum Rosa Cruz Sa, Arijit
Saha, Abdullah Ash-Saki, Sankalp Sanand, Martin Sandberg, Hirmay Sandesara,
Ritvik Sapra, Hayk Sargsyan, Aniruddha Sarkar, Ninad Sathaye, Bruno Schmitt,
Chris Schnabel, Zachary Schoenfeld, Travis L. Scholten, Eddie Schoute, Mark
Schulterbrandt, Joachim Schwarm, James Seaward, Sergi, Ismael Faro Sertage,
Kanav Setia, Freya Shah, Nathan Shammah, Rohan Sharma, Yunong Shi, Jonathan
Shoemaker, Adenilton Silva, Andrea Simonetto, Deeksha Singh, Divyanshu Singh,
Parmeet Singh, Phattharaporn Singkanipa, Yukio Siraichi, Siri, Jesús Sistos, Iskan-
dar Sitdikov, Seyon Sivarajah, Magnus Berg Sletfjerding, John A. Smolin, Mathias
Soeken, Igor Olegovich Sokolov, Igor Sokolov, Vicente P. Soloviev, SooluThomas,
Star�sh, Dominik Steenken, Matt Stypulkoski, Adrien Suau, Shaojun Sun, Kevin J.
Sung, Makoto Suwama, Oskar Słowik, Hitomi Takahashi, Tanvesh Takawale,
Ivano Tavernelli, Charles Taylor, Pete Taylour, Soolu Thomas, Kevin Tian, Math-
ieu Tillet, Maddy Tod, Miroslav Tomasik, Caroline Tornow, Enrique de la Torre,
Juan Luis Sánchez Toural, Kenso Trabing, Matthew Treinish, Dimitar Trenev,
TrishaPe, Felix Truger, Georgios Tsilimigkounakis, Davindra Tulsi, Wes Turner,
Yotam Vaknin, Carmen Recio Valcarce, Francois Varchon, Adish Vartak, Almu-
dena Carrera Vazquez, Prajjwal Vijaywargiya, Victor Villar, Bhargav Vishnu,
Desiree Vogt-Lee, Christophe Vuillot, JamesWeaver, JohannesWeidenfeller, Rafal
Wieczorek, Jonathan A. Wildstrom, Jessica Wilson, Erick Winston, WinterSoldier,
Jack J. Woehr, StefanWoerner, RyanWoo, Christopher J. Wood, RyanWood, Steve
Wood, James Wootton, Matt Wright, Lucy Xing, Jintao YU, Bo Yang, Unchun
Yang, Daniyar Yeralin, Ryota Yonekura, David Yonge-Mallo, Ryuhei Yoshida,
Richard Young, Jessie Yu, Lebin Yu, Christopher Zachow, Laura Zdanski, Helena
Zhang, Iulia Zidaru, and Christa Zoufal. Qiskit: An open-source framework for
quantum computing, 2021.

[22] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington,
and Ross Duncan. t| ket>: a retargetable compiler for nisq devices. Quantum
Science and Technology, 6(1):014003, 2020.

[23] Robert Raussendorf. Measurement-based quantum computation with cluster
states. International Journal of Quantum Information, 7(06):1053–1203, 2009.

[24] Nathan Killoran, Josh Izaac, Nicolás Quesada, Ville Bergholm, Matthew Amy,
and Christian Weedbrook. Strawberry �elds: A software platform for photonic
quantum computing. Quantum, 3:129, 2019.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Hezi Zhang, et al.

[25] Craig S Hamilton, Regina Kruse, Linda Sansoni, Sonja Barkhofen, Christine
Silberhorn, and Igor Jex. Gaussian boson sampling. Physical review letters,
119(17):170501, 2017.

[26] Robert Raussendorf, Daniel E Browne, and Hans J Briegel. Measurement-based
quantum computation on cluster states. Physical review A, 68(2):022312, 2003.

[27] Hans J Briegel, David E Browne, Wolfgang Dür, Robert Raussendorf, and Maarten
Van denNest. Measurement-based quantum computation. Nature Physics, 5(1):19–
26, 2009.

[28] Maarten Van den Nest, Akimasa Miyake, Wolfgang Dür, and Hans J Briegel.
Universal resources for measurement-based quantum computation. Physical
review letters, 97(15):150504, 2006.

[29] Mercedes Gimeno-Segovia, Pete Shadbolt, Dan E Browne, and Terry Rudolph.
From three-photon ghz states to universal ballistic quantum computation. 2015.

[30] Hans J Briegel and Robert Raussendorf. A one-way quantum computer. Physical
Review Letters, 86(22), 2003.

[31] Michael A Nielsen. Optical quantum computation using cluster states. Physical
review letters, 93(4):040503, 2004.

[32] Sébastien Tanzilli, Anthony Martin, Florian Kaiser, Marc P De Micheli, Olivier
Alibart, and Daniel B Ostrowsky. On the genesis and evolution of integrated
quantum optics. Laser & Photonics Reviews, 6(1):115–143, 2012.

[33] Philip Walther, Kevin J Resch, Terry Rudolph, Emmanuel Schenck, Harald Wein-
furter, Vlatko Vedral, Markus Aspelmeyer, and Anton Zeilinger. Experimental
one-way quantum computing. Nature, 434(7030):169–176, 2005.

[34] Giuseppe Vallone, Gaia Donati, Natalia Bruno, Andrea Chiuri, and PaoloMataloni.
Experimental realization of the deutsch-jozsa algorithm with a six-qubit cluster
state. Physical Review A, 81(5):050302, 2010.

[35] Mark S Tame, Bryn A Bell, Carlo Di Franco, William J Wadsworth, and John G
Rarity. Experimental realization of a one-way quantum computer algorithm
solving simon’s problem. Physical Review Letters, 113(20):200501, 2014.

[36] Sébastien Tanzilli, Hugues De Riedmatten, Wolfgang Tittel, Hugo Zbinden, Pascal
Baldi, Marc De Micheli, Daniel Barry Ostrowsky, and Nicolas Gisin. Highly
e�cient photon-pair source using periodically poled lithium niobate waveguide.
Electronics Letters, 37(1):26–28, 2001.

[37] Kaoru Sanaka, Karin Kawahara, and Takahiro Kuga. New high-e�ciency source
of photon pairs for engineering quantum entanglement. Physical Review Letters,
86(24):5620, 2001.

[38] Konrad Banaszek, Alfred B U’Ren, and Ian A Walmsley. Generation of correlated
photons in controlled spatial modes by downconversion in nonlinear waveguides.
Optics letters, 26(17):1367–1369, 2001.

[39] Simone Ferrari, Carsten Schuck, and Wolfram Pernice. Waveguide-integrated
superconducting nanowire single-photon detectors. Nanophotonics, 7(11):1725–
1758, 2018.

[40] Jianwei Wang, Stefano Paesani, Yunhong Ding, Ra�aele Santagati, Paul
Skrzypczyk, Alexia Salavrakos, Jordi Tura, Remigiusz Augusiak, LauraMančinska,
Davide Bacco, et al. Multidimensional quantum entanglement with large-scale
integrated optics. Science, 360(6386):285–291, 2018.

[41] Vinicius S Ferreira, Gihwan Kim, Andreas Butler, Hannes Pichler, and Oskar
Painter. Deterministic generation of multidimensional photonic cluster states
with a single quantum emitter. arXiv preprint arXiv:2206.10076, 2022.

[42] Peter J Shadbolt, Maria R Verde, Alberto Peruzzo, Alberto Politi, Anthony Laing,
Mirko Lobino, Jonathan CF Matthews, Mark G Thompson, and Jeremy L O’Brien.
Generating, manipulating and measuring entanglement and mixture with a
recon�gurable photonic circuit. Nature Photonics, 6(1):45–49, 2012.

[43] Jacques Carolan, Christopher Harrold, Chris Sparrow, Enrique Martín-López,
Nicholas J Russell, Joshua W Silverstone, Peter J Shadbolt, Nobuyuki Mat-
suda, Manabu Oguma, Mikitaka Itoh, et al. Universal linear optics. Science,
349(6249):711–716, 2015.

[44] Sara Bartolucci, Patrick Birchall, Hector Bombin, Hugo Cable, Chris Dawson,
Mercedes Gimeno-Segovia, Eric Johnston, Konrad Kieling, Naomi Nickerson,
Mihir Pant, Fernando Pastawski, Terry Rudolph, and Chris Sparrow. Fusion-based
quantum computation. arXiv preprint 2101.09310, 2021.

[45] Fabian Ewert and Peter van Loock. 3/4-e�cient bell measurement with passive
linear optics and unentangled ancillae. Physical review letters, 113(14):140403,
2014.

[46] Anne Broadbent and Elham Kashe�. Parallelizing quantum circuits. Theoretical
computer science, 410(26):2489–2510, 2009.

[47] Aleks Kissinger and John van de Wetering. Pyzx: Large scale automated diagram-
matic reasoning. arXiv preprint arXiv:1904.04735, 2019.

[48] Gushu Li, Yufei Ding, and Yuan Xie. Tackling the qubit mapping problem for
nisq-era quantum devices. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 1001–1014, 2019.

[49] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure,
dynamics, and function using networkx. Technical report, Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), 2008.

[50] Maurizio Patrignani. On the complexity of orthogonal compaction. Computa-
tional Geometry, 19(1):47–67, 2001.

[51] Steven A Cuccaro, Thomas G Draper, Samuel A Kutin, and David Petrie Moulton.
A new quantum ripple-carry addition circuit. arXiv preprint quant-ph/0410184,
2004.

[52] Michael Norman, Vince Kellen, Shava Smallen, Brian DeMeulle, Shawn Strande,
Ed Lazowska, Naomi Alterman, Rob Fatland, Sarah Stone, Amanda Tan, et al.
Cloudbank: Managed services to simplify cloud access for computer science re-
search and education. In Practice and Experience in Advanced Research Computing,
pages 1–4. 2021.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 MBQC on Photonic Platforms
	2.2 Programming Paradigm of MBQC

	3 Problem Formulation
	3.1 Hardware Abstraction
	3.2 Overview of OneQ

	4 Graph Partition and Scheduling
	5 Fusion Graph Generation
	6 Fusion Mapping and Routing
	7 Evaluation
	7.1 Experiment Setup
	7.2 Experiment Result

	8 Conclusion
	Acknowledgments
	References

