

Role of Heterotrimeric G-Proteins in Improving Abiotic Stress Tolerance of Crop Plants

Parinita Majumdar¹ · María Daniela Torres Rodríguez¹ · Sona Pandey¹

Received: 22 July 2022 / Accepted: 24 February 2023

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract

As sessile organisms, plants are constantly exposed to a variety of environmental stresses that have detrimental effects on their growth and development, leading to major crop yield losses worldwide. To cope with adverse conditions, plants have developed several adaptive mechanisms. A thorough understanding of these mechanisms is critical to generate plants for the future. The heterotrimeric G-protein complex, composed of $G\alpha$, $G\beta$, and $G\gamma$ subunits, participates in the regulation of diverse cellular signaling pathways and has multiple roles in regulating plant stress responses. The complex has two functional entities, the GTP-bound $G\alpha$ subunit and the $G\beta\gamma$ dimer, both of which by interacting with additional proteins can activate various signaling networks. The involvement of G-proteins has been shown in plants' response to drought, salinity, extreme temperatures, heavy metals, ozone, and UV-B radiation. Due to their versatility and the number of processes modulated by them, G-proteins have emerged as key targets for generating stress-tolerant crops. In this review, we provide an overview of the current knowledge of the roles of G-proteins in abiotic stress tolerance, with examples from the model plant *Arabidopsis thaliana*, where these processes are most widely studied and from additional agriculturally relevant crops, where their potential is realized for human usage.

Keywords Heterotrimeric G-proteins · Abiotic stress · Drought · Salinity · Temperature · Crops · Stress tolerance · Adaptation

Introduction

Any divergence from optimal growth conditions adversely affecting an organism's growth, metabolism, and development can be termed as stress (Lichtenthaler 1998). Plants being sessile are continuously challenged by multiple stresses, both biotic and abiotic (Zhang et al. 2022). The common abiotic stresses in plants include drought, salinity, extreme temperatures (high/freezing), heavy metal contamination (cadmium, aluminum and arsenate in soil), ozone and UV-B radiation, which individually or in combination affect almost every aspect of their growth and development. Global climate change over the past few decades had compounded the effects of abiotic stresses on plants by significantly

affecting crop productivity world-wide, raising major concerns for future food security (Bita and Gerats 2013; Jagermeyr et al. 2021).

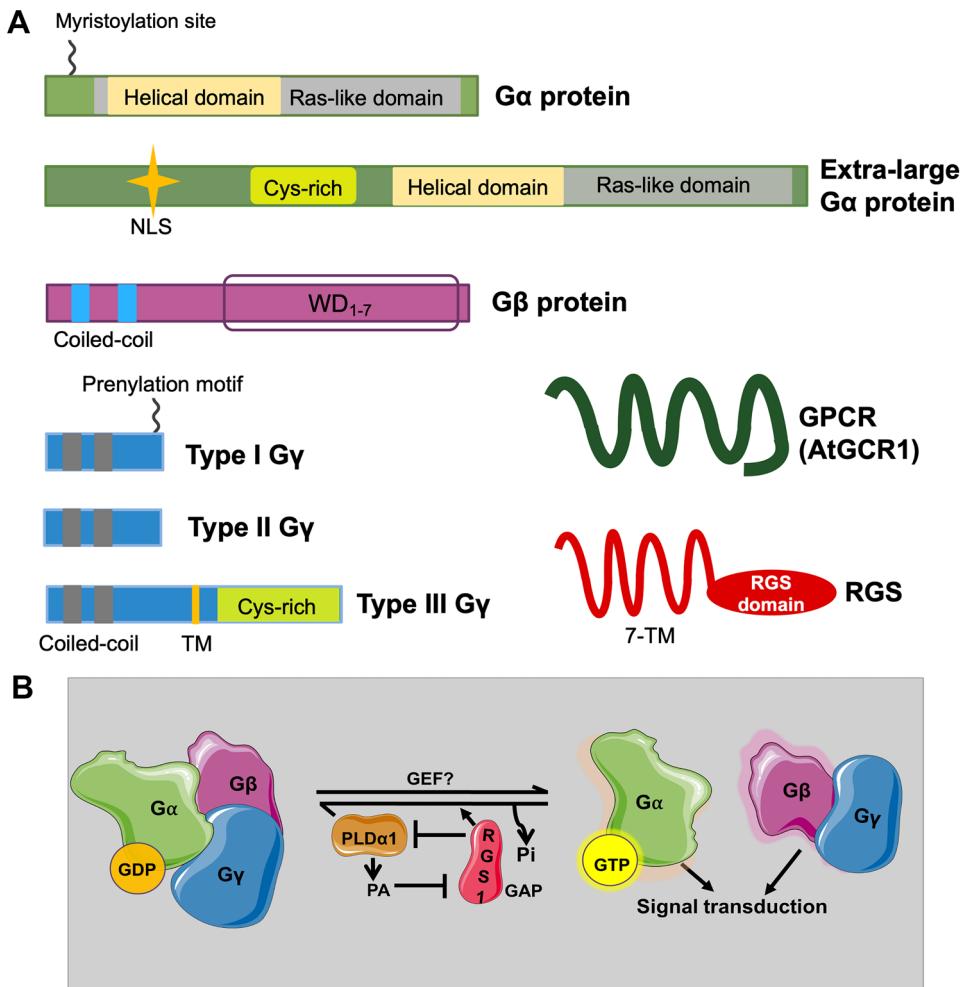
Plants' response to abiotic stresses can be adaptive, nonadaptive, or a combination of both. Nonadaptive responses are typically deleterious due to compromised biomolecule function and altered membrane dynamics (Zhang et al. 2022). The adaptive responses, on the other hand, are suitable to the sessile lifestyle of plants. Plants exhibit dramatic developmental plasticity brought about by rapid changes in ion channel activities, gene expression, chromatin remodeling, post-transcriptional modifications, and translational/post-translational modifications (Bita and Gerats 2013; Niu and Xiang 2018; Zhang et al. 2022), which is beneficial when responding to stresses. Studies performed over the years have also emphasized that the adaptive, plastic behavior of plants is an outcome of the regulation by multiple interconnected pathways and gene networks (Laitinen and Nikoloski 2019). Thus, it is pertinent to elucidate the molecular framework of stress responses in plants, with the aim of identifying key stress sensors, stress modulators, and

Handling Editor: Sudhir K. Sopory.

✉ Sona Pandey
spandey@danforthcenter.org

¹ Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA

stress-responsive genes. This will eventually lead to breeding stress-resistant crops to meet the future food demands.


Heterotrimeric guanine nucleotide binding proteins (G-proteins) comprised $G\alpha$, $G\beta$ and $G\gamma$ subunits are key signaling intermediates in eukaryotes (Offermanns 2003; Pandey 2019). In metazoans, G-proteins are key mediators of most sensory perceptions, hormones, and neurotransmitter signaling, and consequently affect almost all aspects of normal growth and development (Neves et al. 2002). Due to their involvement in controlling multiple diseases, the signaling mechanisms of G-proteins have been extremely well-characterized in humans. According to recent estimates, G-protein signaling pathways are targets of more than 30% of all pharmaceutical drugs (Li et al. 2020; Yang et al. 2021).

In plants, G-proteins affect every aspect of growth and development and response to a multitude of exogenous and endogenous cues (Jose and Roy Choudhury 2020; Pandey 2019; Tiwari and Bisht 2022; Wang and Botella 2022; Zhou et al. 2019). The subunit composition of the heterotrimer and the core biochemistry of the $G\alpha$, $G\beta$ and $G\gamma$ proteins is similar between plants and metazoans. However, there are also several unique components as well as distinct regulatory mechanisms that are thought to have evolved in response to the unique lifestyle of plants (Chakravorty and Assmann 2018; Pandey 2017, 2019; Wang et al. 2018; Zhou et al. 2019). Plant G-proteins are involved in modulation of a multitude of physiological processes at the subcellular, cellular, tissue, and organ levels. These include control of stomatal movement, regulation of phytohormone signaling and response to biotic and abiotic stresses (Chakravorty et al. 2011; Hao et al. 2012; Jose and Roy Choudhury 2020; Lee et al. 2018). These diverse responses are controlled by affecting fundamental processes such as regulation of ion channel activities (Chakravorty et al. 2011; Fan et al. 2008), cell division, expansion, and differentiation (Chen et al. 2003, 2006; Para et al. 2016; Ueguchi-Tanaka et al. 2000; Ullah et al. 2003; Urano et al. 2015), changes in membrane dynamics, and cell wall composition (Chakravorty et al. 2011; Roy Choudhury et al. 2019; Wu et al. 2007; Zhang et al. 2011). In addition, G-proteins are also affect key agronomic traits such as water and nitrogen use efficiency and grain yield by influencing inflorescence and root architecture, seed number and size, and germination potential (Botella 2012; Cui et al. 2020; Kaur et al. 2018; Liang et al. 2018; Roy Choudhury et al. 2019; Sun et al. 2014; Urano et al. 2015; Vavilova et al. 2017; Wendt et al. 2016; Wu et al. 2018; Zhang et al. 2015).

Plant Heterotrimeric G-Proteins Composition

In plants with non-duplicated genomes, the repertoire of heterotrimeric G-proteins is relatively simple compared to the metazoan systems (Pandey 2019). Plants have two

types of $G\alpha$ subunits, canonical $G\alpha$, which shows similarity to other known non-plant $G\alpha$ proteins and the larger form of $G\alpha$, known as extra-large $G\alpha$ (XLG), in which the $G\alpha$ domain is fused with an extra, N-terminal region (Chakravorty et al. 2015; Ding et al. 2008; Hackenberg et al. 2016). The $G\alpha$ protein possesses an intrinsic Ras-like GTPase domain and a unique alpha helical domain with conserved N-terminal myristylation site at (Gly2), crucial for its membrane anchorage (Fig. 1A) (Galbiati et al. 1994). The N-terminal region of XLGs possesses a cysteine-rich region and a nuclear localization signal (NLS; Chakravorty et al. 2015). The $G\alpha$ -like domain in XLG proteins has lost some of the residues crucial for nucleotide hydrolysis, but has been shown to bind to GTP (Hackenberg et al. 2016; Urano et al. 2016). Recent phylogenetic analysis shows that there are instances of the canonical $G\alpha$ loss in some plant groups (e.g., Bryopsida mosses) but the XLG proteins are present in all plant groups except Chlorophyceae algae (Mohanansundaram et al. 2022). The $G\beta$ protein harbors N-terminal coiled-coil helices and seven WD40 (Trp and Asp) repeat containing domains, which is implicated in multi-protein complex formation (van Nocker and Ludwig 2003). Plants have three types of $G\gamma$ proteins-types I, II, and III (also known as types A, B, and C) (Fig. 1A) (Roy Choudhury et al. 2011; Trusov et al. 2012). Phylogenetic analysis suggests that the $G\gamma$ proteins diverged before the evolution of land plants and underwent considerable changes in their domain structures, resulting in three subtypes (Mohanansundaram et al. 2022). Type-I is the prototypical $G\gamma$ subunit with N-terminal coiled-coil domain and C-terminal prenylation motif, CAAX ("C" represents cysteine, "A" for any aliphatic amino acids, and X denotes any amino acid) involved in post-translational modification and membrane anchorage. The type-II $G\gamma$ proteins differ from the type-I $G\gamma$ only by the loss of the prenylation motif (Fig. 1A), although the proteins are still hypothesized to be localized to the plasma membrane (Botella 2012; Zeng et al. 2007). The type-III are vascular plant-specific $G\gamma$ proteins with the N-terminal region similar to prototypical type-I $G\gamma$ fused with a highly divergent C-terminal cysteine-rich region (Botella 2012; Roy Choudhury et al. 2011; Trusov et al. 2012). In *Arabidopsis*, the G-protein trimeric complex is represented by one canonical $G\alpha$ (GPA1), three extra-large $G\alpha$ (XLG1, 2 and 3), one $G\beta$ (AGB1), and three $G\gamma$ proteins (AGG1, 2 and 3) (Mason and Botella 2000, 2001; Pandey 2019). The repertoire of G-proteins in many angiosperms is similar to that of *Arabidopsis*; however, plants with recently duplicated genomes have retained most copies of G-protein genes. For example, the soybean genome codes for 4 $G\alpha$, 4 $G\beta$, 10 XLG and 12 $G\gamma$ proteins (Bisht et al. 2011; Roy Choudhury et al. 2011). Similar higher numbers are reported from camelina, wheat, and brassica species (Gawande et al. 2022; Kumar et al. 2014; Roy Choudhury et al. 2014).

Fig. 1 Heterotrimeric G-protein signaling components and mechanism. **A** Domain architecture of G-protein signaling components in plants. G α proteins have an N-terminal myristylation site followed by helical domain and C-terminal RAS-like domain. The plant-specific XLG proteins possess an extra-large domain of unknown function fused with the canonical G α -like domain. The N-terminal domain has a NLS, and a cysteine (Cys)-rich region. G β proteins have an N-terminal coiled-coil domain and seven WD repeats containing domain. The G γ proteins are classified into type-I, type-II, and type-III subtypes. Type-I G γ (canonical) proteins have the G γ domain that interacts with the coiled-coil domain of G β subunit and a C-terminal prenylation motif for its membrane anchorage. Type-II G γ proteins have G γ domain but lack the prenylation motif. Type-III proteins have the G γ domain followed by a transmembrane domain and Cys-rich region of variable length. A prototypical GPCR protein with seven-transmembrane regions is also identified in plants (e.g., GCR1 from

Arabidopsis). The plant RGS proteins have an N-terminal seven-transmembrane domain similar to GPCRs fused with the C-terminal RGS domain. **B** Basic G-protein signaling mechanism in plants. The core heterotrimeric G-protein complex comprises of G α , G β and G γ subunits. The signaling complex shuttles between inactive G α -GDP and active G α -GTP forms. Conventionally, the GDP to GTP exchange reaction is catalyzed by GPCR, which acts as guanine nucleotide exchange factor (GEF). In plants, no such GEF is identified, to date. A phosphorylation-dependent mechanism may be operative during plant G-protein signaling. The G α subunit has an inherent GTP hydrolysis activity, which is stimulated by the GTPase-activity accelerating protein (GAP), RGS1. RGS1 inhibits PLD α 1, whose product phosphatidic acid (PA) in-turn inhibits RGS1 and regulates the GTPase activity of G α protein. Once activated, the G β γ obligate dimer dissociates from G α -GTP subunit and both can activate downstream signaling through various effectors

Plant Heterotrimeric G-Protein Signaling Mechanisms

The G α subunit of the heterotrimer binds to guanine nucleotides and switches between the GDP-bound inactive, and GTP-bound active forms. In metazoan, the exchange of GTP for GDP on G α is facilitated by a plasma

membrane-localized, 7-transmembrane containing G-protein coupled receptor (GPCR), which acts as a guanine nucleotide exchange factor (GEF; Oldham and Hamm 2008). Upon activation by a GPCR, GTP-bound G α dissociates from the trimer and releases G β γ dimer. Both these entities (GTP-G α and G β γ) can independently interact with various downstream effectors to relay the G-protein mediated

signals (McCudden et al. 2005; Siderovski and Willard 2005). The inherent GTPase-activity of G α proteins causes the hydrolysis of bound GTP, generating its GDP-bound form, which associates with the G $\beta\gamma$ dimer to reconstitute the inactive trimer. This transition from active to inactive state is also accelerated by the GAP (GTPase-activity Accelerating Proteins) activity of RGS1 (Regulator of G-protein Signaling) proteins (McCudden et al. 2005; Siderovski and Willard 2005). These core properties i.e., guanine nucleotide-binding-dependent trimeric or monomeric G α proteins, signaling by freed G α and G $\beta\gamma$, and regulation of signaling by the GAP activity of the RGS proteins is conserved in plant G-protein signaling as well, but several deviations also exist (Fig. 1B). In addition to the unique features of XLG and type-III G γ proteins, the plant RGS proteins possess a domain containing 7-transmembrane regions and are localized to the plasma membrane (Chen et al. 2003; Hackenberg et al. 2017; Mohanasundaram et al. 2022; Roy Choudhury et al. 2012). Classical GPCRs with GDP/GTP exchange activity have not been identified in plants, to date. The only GPCR-like proteins identified in *Arabidopsis* through a reverse genetic approach, GCR1, has a protein-fold similar to non-plant GPCRs and act in G-protein-dependent pathways (Pandey and Assmann 2004), but its GEF activity remains unknown. Instead, the involvement of plasma membrane-bound receptor-like kinases (RLKs) in the regulation of G-protein signaling by phosphorylation/dephosphorylation-based mechanisms appears to be more prevalent in plants (Chakravorty and Assmann 2018; Liang et al. 2016; Roy Choudhury and Pandey 2015, 2016a; Wang et al. 2018). Similarly, RGS-dependent regulation of G-proteins exists in plants, but many plant groups do not have an RGS homolog in their genome (Bhatnagar and Pandey 2020; Hackenberg et al. 2017; Mohanasundaram et al. 2022). Various phospholipases may also be involved in the regulation of G-protein signaling (Brandenburg et al. 2014; Jeon et al. 2019; Pandey 2016, 2017; Roy Choudhury and Pandey 2016b, 2017). Furthermore, a guanine-nucleotide-independent mechanism of regulation has also been proposed (Maruta et al. 2021), implying that the regulation of G-protein signaling mechanisms in plants is flexible, potentially suitable for the sessile nature of plants and their need to integrate multiple signaling pathways.

Roles of G-Proteins in the Regulation of Abiotic Stress Responses

G-proteins are known to regulate multiple abiotic stresses in plants. However, most of our current knowledge is based on the results from the model plants *A. thaliana*, with some information from crops such as rice, maize, soybean or barley. In the next sections, we will describe the roles of

G-proteins in the regulation of abiotic stress responses with the foundational knowledge from *Arabidopsis* and the extent to which it has been expanded to crop plants.

Drought Stress

Drought stress leads to poor germination, challenges in seedling establishment, wilting of leaves with reduction in leaf number and surface area, reduced plant height, an overall change in root system architecture affecting primary root length, lateral root density and morphology of root hairs, reduced flowering and diminished seed filling, all resulting in significantly reduced yields (Koevoets et al. 2016; Seleiman et al. 2021). Drought stress is primarily sensed by roots and the information is transmitted to the aerial parts of plants through long-distance root-to-shoot signaling, leading to the production of abscisic acid (ABA) in leaves, a key phytohormone that regulates the stress response in plants through the regulation of stomatal movement and stress-responsive molecular changes (Li et al. 2021; McAdam et al. 2016; Schachtman and Goodger 2008). It is not surprising that several of the ABA-regulated gene expression networks are shared between roots hair cells and stomatal guard cells (Li et al. 2012).

Regulation of water-loss through stomatal pores by modulating the aperture of the guard cells is an important adaptive response of land plants (Buckley 2019). ABA plays a key role in maintenance of stomatal physiology through regulation of ion fluxes across the guard cell membrane (Assmann and Jegla 2016; Huang et al. 2019b; Kim et al. 2010; Munemasa et al. 2015). ABA regulates the inward potassium and the calcium channels and transporters, influencing the levels of K $^{+}$ and Ca $^{2+}$ and consequently of anions such as Cl $^{-}$ and malate, essentially promoting the closure of open stomata and inhibiting the opening of closed stomata, in response to water limitation (Assmann and Jegla 2016; Eisenach and De Angeli 2017; Kim et al. 2010; Munemasa et al. 2015). This regulation ensures plant fitness by controlling water-loss. Several genetic and biochemical studies have identified G-proteins as key regulators of ion channel activities and stomatal physiology, implying their direct role in mitigating drought stress (Fan et al. 2008; Jeon et al. 2019; Wang et al. 2001). In *Arabidopsis*, the availability of knockout mutants of each of the G-protein subunit genes (and their combinations) has allowed the investigation of the roles of G-proteins in regulating drought stress using multiple approaches (Fan et al. 2008; Nilson and Assmann 2010; Pandey and Assmann 2004). These include elucidating the effects of G-protein function on guard cell ion channel activities, transpiration efficiency, gene expression and proteomic changes, as well as whole plant drought responses. Overall, these data present a complex regulatory picture, where G-protein subunits have distinct tissue-specific roles in the regulation of plant

drought responses (Alvarez et al. 2015; Chakraborty et al. 2015; Fan et al. 2008; Nilson and Assmann 2010).

The stomatal responses of G-protein mutants are studied in detail. The *gpa1* mutant shows wild-type (WT)-like response to ABA-dependent promotion of stomatal closure, but hyposensitivity to ABA-dependent inhibition of stomatal opening (Wang et al. 2001). The *agb1* and *agg3* mutants also show impaired inhibition of inward K⁺ channels in guard cells (Fan et al. 2008), while the *agg1* and *agg2* mutants have WT-like stomatal ABA responses (Chakraborty et al. 2011; Trusov et al. 2008). These data predict that overexpression of specific G-protein genes can lead to better stress tolerance, by making guard cells more responsive to ABA/drought stress. However, overexpression of *AGB1* in WT or in the *agb1* backgrounds did not alter ABA-mediated inhibition of the K⁺ inward current and the stomata showed ABA sensitivity similar to the WT plants (Fan et al. 2008).

Drought stress (and other abiotic stresses) also causes significant spatio-temporal changes in intracellular Ca²⁺ concentration, which acts as an important secondary messenger in the activation of ABA-dependent ion channels (Huang et al. 2019b; Konrad et al. 2018). A theoretical Boolean model of gene expression changes related to stomatal opening/closing following the removal of ABA or external Ca²⁺ predicts that the cytosolic Ca²⁺ oscillation is a deterministic factor for maintaining stomatal physiology (Albert et al. 2017; Li et al. 2006; Maheshwari et al. 2020). Genetic studies have revealed that AGB1 is required for sensing guard cell Ca²⁺ and calcium-induced release of Ca²⁺ to amplify the signal for stomata closure in the presence of ABA (Jeon et al. 2019). An involvement of extracellular calmodulin (extCaM) and calcium-binding caleosin proteins (RD20/CLO) has also been identified (Brunetti et al. 2021).

In addition to the regulation of specific K⁺ and Ca²⁺ channels, a recent study has also shown the involvement of the RAPID ALKALIZATION FACTOR1-FERONIA (RALF-FER) signaling module in regulation of stomatal movement, where binding of RALF1 peptide ligand to its receptor kinase FER promotes stomatal closure and inhibits stomatal opening. Biochemical studies have shown that AGB1 interacts with FER and RALF-FER-mediated stomatal regulation requires AGB1, as *agb1* was impaired in such response. Importantly, AGGs and XLGs are also implicated in RALF1-FER-dependant stomatal response (Yu et al. 2018).

Another signaling module involved in the regulation of ABA and stomatal physiology is the interaction of lipid-mediated signaling with G-proteins. In *Arabidopsis*, Phospholipase D α 1 (PLD α 1) catalyses hydrolysis of membrane lipids into phosphatidic acid (PA), which is an important secondary messenger in the ABA signaling pathway (Mishra et al. 2006; Roy Choudhury and Pandey 2016b; Zhao 2015). In the presence of exogenous ABA, PA produced by PLD α 1

activity binds to PP2C phosphatases, which are the key negative regulator of the ABA perception module (Mishra et al. 2006). Interestingly, both PA and PLD α 1 interact with GPA1 to mediate ABA inhibition of stomatal opening. Furthermore, recent studies have shown that PLD α 1 also acts as a GAP for GPA1 in *Arabidopsis* and acts in a negative feedback loop where RGS1 inhibits PLD α 1 activity, whereas PA produced by PLD α 1 binds to RGS1 to inhibit its activity, eventually resulting in a dynamic, active pool of GPA1 (Roy Choudhury and Pandey 2017).

The G-protein-dependent effects of ABA on stomatal guard cells have two more aspects, which play an important role in regulating the drought responses of the plant. First, AGB1 has also been proposed to promote ABA biosynthesis (Liu et al. 2017). Since the loss of AGB1 function is effectively similar to the loss of entire G-protein function in plants like *Arabidopsis* (i.e., a single G β protein that interacts with multiple G α or G γ) (Pandey 2019; Roy Choudhury et al. 2020; Smythers et al. 2022; Urano et al. 2016), one would predict the role of G-proteins in regulating not only ABA signaling, but also ABA biosynthesis, during drought stress. Second, G-proteins also regulate key developmental phenotypes such as primary root length and lateral root density as well as stomatal density. The *Arabidopsis* *gpa1* mutants have significantly lower and the *agb1* mutant has significantly higher root mass and stomatal density than the WT plants (Chen et al. 2006; Ullah et al. 2003; Zhang et al. 2008). Both these traits will affect the whole plant drought response. Furthermore, the role of specific G-protein subunits and of their core interaction partners such as XLGs, RGS1 and PLD α 1 in regulation of stomatal development is exceedingly complex, and mostly unexplored (Pandey 2019; Roy Choudhury et al. 2020). These intersecting sets of regulations make the prediction of the exact role of G-proteins at the whole plant level even more complex. To address this, several studies have evaluated changes in G-protein-dependent transcriptome (Li et al. 2012; Pandey et al. 2010; Wang et al. 2011), proteome (Alvarez et al. 2015; Gookin et al. 2008; Song et al. 2018; Zhao et al. 2010), metabolome (Jin et al. 2013) and redox proteome (Smythers et al. 2022) in *Arabidopsis*. These results suggest that during G-protein-dependent ABA/drought signaling several regulatory pathways intersect, causing key changes in primary and secondary metabolism, photosynthetic efficiency, redox homeostasis, and ion balance, eventually leading to the optimal plant response. This complexity of response regulation is also reflected in the analysis of the whole plant drought response of the G-protein mutants. For example, based on the ion channel activities alone, one would predict that the *gpa1* mutants would have open stomata even under water stress and therefore lower transpiration efficiency (ratio of carbon assimilation and transpiration). However,

these plants show higher transpiration efficiency under drought stress and after exogenous application of ABA (Nilson and Assmann 2010), likely due to fewer stomata per leaf. Such observations necessitate detailed evaluation of multiple interconnected networks, before specific traits or genes are modified in crop plants.

To evaluate the effects of specific genes in conferring stress tolerance, the *AGG3* gene of *Arabidopsis* was overexpressed in *Camelina sativa*, an emerging oil seed crop. Constitutive and seed-specific overexpression of *AGG3* resulted in tolerance to drought due to higher photosynthetic rate with greater stomatal conductance leading to an elevated transpiration rate (Roy Choudhury et al. 2014). The seed-specific proteome from these transgenics identified proteins involved in drought tolerance corroborating its role as a positive regulator of plant stress responses (Alvarez et al. 2015). The effects of efficiently managed stress response also translated to better productivity, as seen by an overall increase in biomass, seed size, and seed yield, in these transgenic camelina plants under greenhouse conditions (Roy Choudhury et al. 2014) and in field trials (unpublished data).

Several studies have demonstrated the roles of different G-protein subunits in regulating drought responses in *Oryza sativa* (rice). The G-protein complex in rice consists of one G α (*RGA1*), one G β (*RGB1*) and five G γ subunits, *RGG1*, *RGG2*, *DEP1* (RICE DENSE AND ERECT PANICLE 1), *GS3* (GRAIN SIZE3) and *GGC2* (Perfus-Barboch et al. 2004; Sun et al. 2018). Among these, the *RGA1*, *RGB1*, *RGG1*, and *RGG2* transcripts are up-regulated under drought stress, implying their plausible involvement in mitigating this response (Cui et al. 2020). The *d1* mutant of rice, which possesses a non-functional *RGA1* protein, exhibits higher stomatal conductance under drought stress with increased photosynthetic rate and a higher root to-shoot ratio, suggesting that *RGA1* is a negative regulator of drought stress response (Ferrero-Serrano and Assmann 2016). Further characterization of *d1* mutants in rice cultivars Nipponbare and Taichung revealed improved photosynthesis and CO₂ conductance, corroborating this hypothesis (Zait et al. 2021). Transcriptomic analysis of the *d1* mutant showed several differentially expressed genes related to the drought stress response (Jangam et al. 2016), supporting the role of G-proteins in regulating such response at the gene expression level, in addition to the improved stomatal conductance. The use of CRISPR/Cas9-mediated mutagenesis to generate precisely edited G-protein genes in rice and consequent mutant analysis confirmed the results obtained with the *RGA1* gene (Cui et al. 2020). The *rga1* mutants showed a better survival rate under drought stress. Of the four putative XLGs in rice, *pxlg4* knockout mutant also showed better survival following drought treatment compared to the WT (Cui et al. 2020), suggesting the G α proteins, in general, may

act as negative regulators of drought responses in rice. The molecular mechanisms underlying these responses have not yet been determined.

Contrary to the regulation by the G α proteins, the *RGB1* subunit is a positive regulator of drought tolerance in rice. *RGB1* has been shown to promote ABA biosynthesis, similar to the role of *Arabidopsis AGB1* (Zhang et al. 2015). Genetic analysis shows that the knockdown of *RGB1* causes hypersensitivity to drought stress due to elevated water-loss (Zhang et al. 2015). Similar responses were observed in different G γ gene-edited mutants i.e., *rgg1*, *rgg2*, *gs3*, and *ggc2* which exhibited hypersensitivity to drought stress (Cui et al. 2020). Genetic ablation of the G γ gene (*qPE9-1* allele) in rice is also reported to have conferred tolerance to drought due to reduced water-loss and higher stomatal conductance. Furthermore, *qPE9* was shown to suppress ABA responsive transcription factors involved in stress tolerance and therefore acts as a negative regulator of drought stress in rice (Zhang et al. 2015). It should be noted that the phenotypes of G-protein mutants in dicot versus monocot plants are distinct- the monocot G α mutants are of smaller stature, with bushy leaves; a phenotype not seen in the dicot G α mutant plants (Bhattacharya and Pandey 2020; Bommert et al. 2013; Cui et al. 2020; He et al. 2013). Complete knockout of the monocot G β gene results in seedling lethality (Utsunomiya et al. 2012; Wu et al. 2020) and, consequently, the available data are from plants expressing lower levels of G β gene (Gao et al. 2019; Utsunomiya et al. 2012; Wu et al. 2020). In eudicots, complete loss of the G β gene results in multiple phenotypic changes, inherently and in response to a signal, but plants are viable and capable of completing their life cycle (Roy Choudhury et al. 2020; Ullah et al. 2003). Monocot plants expressing lower levels of the G β transcript also exhibit several morphological differences from the WT plants, such as short stature, bushy and narrow leaves (Utsunomiya et al. 2012; Wu et al. 2020). The extent to which these developmental phenotypes contribute to the overall plant drought responses is yet to be explored.

The role of G-proteins in regulation of drought stress is reported from crops such as pea, tobacco, sugarcane, cucumber and mulberry (Bhardwaj et al. 2020; Liu et al. 2021b; Ramasamy et al. 2021). In most of these cases, the results are reported based on the change in transcript level of G-protein genes in response to drought stress; overexpression in the heterologous system (e.g., the mulberry gene overexpressed in tobacco Liu et al. 2018), or protein–protein interactions, and mechanistic knowledge about the signaling pathways involved remains limited (Table 1). Additional studies exploring the roles of G-proteins in conferring drought tolerance in greenhouses and in field settings are required to fully utilize their potential in generating drought-tolerant crops.

Salinity and Osmotic Stress

When exposed to high salt, plants experience a combination of osmotic shock due to reduced water availability in the soil and ionic stress imparted by excess Na^+ uptake which eventually interferes with the uptake of other ions like K^+ leading to ionic imbalance (van Zelm et al. 2020). Salinity-driven osmotic stress attenuates plant growth due to arrest of cell proliferation in meristems and results in cell death by ion toxicity (Liu et al. 2015). In particular, salinity stress in the plants results in accumulation of reactive oxygen species (ROS), which is detrimental to proper biomolecule functioning and restrains plant growth and productivity (Miller et al. 2010). Thus, maintenance of ion homeostasis and detoxification of ROS are the major adaptive responses of plants during salinity stress.

G-proteins are involved in modulating plant's growth during salt stress. Several studies have highlighted the possible involvement of G-proteins in maintaining ion fluxes and scavenging ROS during salinity stress (Liu et al. 2018; Peng et al. 2019). Transcriptomic analysis also revealed that the core G-protein subunits $\text{G}\alpha$, $\text{G}\beta$ and $\text{G}\gamma$ are significantly up-regulated under salt stress in *Arabidopsis* and other crop plants such as rice, rape seeds, and peas (Gao et al. 2010a; Jangam et al. 2016; Yadav et al. 2012).

The *Arabidopsis* *gpa1* mutants exhibit higher tolerance to salt stress compared to the WT plants, in term of seed germination, root-shoot ratio, relative water content and ROS detoxification (Chakraborty et al. 2015), implying that the $\text{G}\alpha$ subunit is a negative regulator of salt stress. On the other hand, *agb1* mutants exhibit higher sensitivity to salinity stress, as NaCl treatment results in smaller and chlorotic leaves with increased Na^+ and reduced K^+ in the roots, leading to ion imbalance (Colaneri et al. 2014). Molecular characterization of *agb1* showed that the mutant was compromised in translocation of Na^+ from root to-shoot, resulting in altered Na^+ fluxes. Genes involved in Na^+ homeostasis are significantly downregulated in *agb1* (Ma et al. 2015b). The hypersensitivity of *agb1* mutant to salinity stress was also correlated with the reduced peroxidase (POD) activity required for ROS detoxification (Ma et al. 2015b). A recent study has shown that AGB1 interacts with N-Myc 1 (NDL1), which acts as a modulator of the salt stress response in *Arabidopsis* (Gupta et al. 2021). Similarly to *agb1*, *xlg1/2/3* triple and *agg1/2/3* triple mutants also show hypersensitivity to salinity stress and exhibit smaller and chlorotic leaves when grown in the presence of high NaCl (Colaneri et al. 2014; Roy Choudhury et al. 2020). While AGGs are involved in salt stress tolerance by activating ROS detoxification, XLGs do so by interacting with the salt-inducible, zinc finger transcription factors SZF1 and SZF2. It has been proposed that AGB1 interacts with XLGs to promote plant growth during salt stress through the expression of SZF1

and SZF2 (Liang et al. 2017). These findings highlight the role of AGB1 (or the XLG.AGB1.AGG trimer) as a positive regulator of salinity stress by ROS detoxification and maintaining ionic balance, although the detailed underlying molecular mechanisms are only beginning to be discovered.

Maintenance of cell wall integrity during salinity/osmotic stress is crucial for plants to withstand the turgor pressure (Rui and Dinneny 2020; Vaahtera et al. 2019). A key component in maintaining cell wall integrity is the recently identified LRX-RALF-FER signaling module in *Arabidopsis* (Feng et al. 2018). The leucine-rich repeat extensin (LRX) crosslinks with cell wall pectin. FER also binds pectin through its extracellular malectin-binding domain. Cell type-specific increases in Ca^{2+} fluxes are also required to maintain cell wall integrity through crosslinking of pectins in FER-dependant fashion. These interactions are disrupted under salt stress and the integrity of the cell wall is lost in *fer* loss-of-function mutant. Because AGB1 has been identified as a key interactor of FER (Yu et al. 2018), an AGB1/LX-RALF-FER signaling module may also be involved in pectin-crosslinking-associated cell wall damage during salinity stress (Feng et al. 2018; Zhao et al. 2018).

A forward genetic screen in rice identified a novel mutant allele of *RGA1*, *sd58*, which showed better salt tolerance due to reduced ROS accumulation, consistent with higher enzymatic activity of ROS detoxification enzymes (Peng et al. 2019). Quantitative proteomics identified differentially expressed proteins involved in the regulation of photosynthesis, metabolic processes, and ROS homeostasis in *sd58*. Similarly, CRISPR/Cas9 edited $\text{G}\alpha$ mutants in rice, *rga1-1*, and *rga1-2* also exhibit better survival after salinity stress (Cui et al. 2020). These mutants showed delayed leaf senescence, lower chlorophyll degradation and reduced electrolyte leakage from the cytoplasm during salt stress (Cui et al. 2020). The $\text{G}\alpha$ subunit, CT2 (COMPACT PLANT2) in maize is an important regulator of agronomic traits including upright leaf, higher spikelet density and kernel row number (Bommert et al. 2013). The *ct2* null mutant exhibited better salt tolerance with reduced cytoplasm electrolyte leakage, delayed leaf senescence and chlorophyll degradation, similar to *rga1* in rice (Urano et al. 2014). All these studies support the role of $\text{G}\alpha$ proteins as a negative regulator of the response to salt stress in plants. In contrast, the results obtained from the overexpression of the $\text{G}\alpha$ genes in pea led to improved salt tolerance (Misra et al. 2007), whereas knockdown of the $\text{G}\alpha$ gene expression in cucumber led to hypersensitivity to salt stress with increased leaf wilting and reduced water content (Yan et al. 2020), suggesting their role as positive regulators. The extent to which these results are due to different stress conditions, age of the plants, or additional experimental factors is not known.

Similar to what was observed with the response to drought stress, the $\text{G}\beta$ and $\text{G}\gamma$ proteins seem to be positive

Table 1 Role of G-proteins in regulating plant abiotic stress responses

Plant species	G-protein subunit	Stress	Positive or negative regulation	Explored mechanisms, pathways or responses	Reference
<i>Arabidopsis</i>	GPA1	Drought	Negative	Transpiration efficiency and stomatal density	Nilson and Assmann (2010)
	AGB1	Salinity	Negative		Chakraborty et al. (2015)
	AGG1.2.3	Cold	Negative	Seed germination, root-shoot ratio, relative water content and ROS detoxification	Chakraborty et al. (2015)
	XLG1.2.3	UV-B	Unknown		He et al. (2013)
	AGG3	Ozone	Unknown		Joo et al. (2005)
		Drought	Positive	Cold stress-responsive gene expression	Fan et al. (2008)
		Salinity	Positive		Colaneri et al. (2014), Ma et al. (2015b) and Yu et al. (2018)
		Ozone	Unknown	Stomatal movement under high UV-B treatment	
		Salinity	Positive	Sensitivity to O ₃ -induced damage	Joo et al. (2005)
		Salinity	Positive	ABA-dependent ion channel activity in guard cells, plant's fitness and seed yield	Colaneri et al. (2014) and Yu et al. (2018)
		Cd toxicity	Positive	ROS detoxification and ion homeostasis, chlorophyll degradation and plants survival	Liang et al. (2017)
				Sensitivity to O ₃ -induced damage	Alvarez et al. (2015)
				ROS detoxification	
				Salt stress-responsive gene expression changes	
				Expression of proteins involved in heavy metal tolerance	
<i>Camelina</i>	AGG3-OE	Drought	Positive	Stomatal conductance, photosynthetic and transpiration rate	Roy Choudhury et al. (2014)
Rapeseed	<i>BnGA1</i> , <i>BnGB1</i> , <i>BnGG2</i>	Heat and cold	Negative	Temperature responsive gene expression	Gao et al., (2010a, 2010b)
Tomato	<i>LeGPA1</i>	Cold	Positive	ROS detoxification and synthesis of protectants e.g., proline, soluble sugars	Guo et al. (2020)
Pea	<i>PsGα</i> <i>PsGα</i> <i>PsGβ</i>	Salinity Heat	Positive Positive	Improved water content Stomatal movement, gene expression changes	Misra et al. (2007) Bhardwaj et al. (2020)
Rice	RGA1	Drought	Negative	Stomatal conductance, photosynthetic rate and root-shoot ratio	Ferrero-Serrano and Assmann (2016)
	PXLG4	Salinity	Negative		Peng et al. (2019)
	RGB1	Cold	Positive	ROS detoxification	Ma et al. (2015a)
	qPE9-1(G γ)	Drought	Negative	Activation of Ca ²⁺ channel for temperature sensing	Cui et al. (2020)
	RGG1	Drought	Positive		Zhang et al. (2015)
	DEP1	Salinity	Positive	Regulation of water-loss and ABA biosynthesis	Biswas et al. (2019) and Swain et al. (2019)
	DEP1	Heat	Positive		
	GS3	Drought	Negative	Electrolyte leakage, chlorophyll content and ROS detoxification	Biswas et al. (2019)
		Salinity	Positive		Zhang et al. (2015)
		Salinity	Negative	Effective mitigation of ROS and activation of heat shock proteins	Swain et al. (2019)
		Cd toxicity	Positive		Cui et al. (2020)
		Salinity	Negative	Regulation of water-loss and stomatal conductance	(Kunihiro et al. 2013)
		Heat	Negative	ROS detoxification	(Cui et al. 2020)
				Survival rate and crop yield	Kan et al. (2022)
				Heterologous expression, may act through its Cys-rich region	
				Survival rate and crop yield	
				Regulation of heat-triggered Ca ²⁺ signaling and wax biosynthesis	
Maize	CT2	Salinity	Negative	Electrolyte leakage from the cytoplasm, leaf senescence and chlorophyll degradation	Urano et al. (2015)
Wheat	GPBL	Cold	Negative	ROS scavenging and cold responsive gene expression	Dong et al. (2019)

Table 1 (continued)

Plant species	G-protein subunit	Stress	Positive or negative regulation	Explored mechanisms, pathways or responses	Reference
Mulberry	<i>MaGα</i> <i>MaGβ, MaGγ1, MaGγ2</i>	Drought and salinity Drought and Salinity	Negative Positive	Modulates ROS detoxification ROS detoxification and proline content	Liu et al. (2018) Liu et al. (2021a, 2017)
Cucumber	<i>CsGα</i> <i>CsGG3.2</i>	Salinity Cold	Positive Positive	Improves water content and leaf wilting Affects ROS detoxification and membrane lipid peroxidation	Yan et al. (2020) Bai et al. (2018)

regulators of salinity stress in rice. Overexpression of *RGB1* resulted in better salt tolerance with reduced electrolyte leakage and higher chlorophyll content (Biswas et al. 2019). At the molecular level, the better salt tolerance was correlated with increased expression of ROS detoxification enzymes like superoxide dismutase (SOD). Concurrent overexpression of *RGB1* and *RGG1* in rice improved salt tolerance by increasing the expression of stress-responsive genes and better management of ROS (Swain et al. 2019). However, an *rgb1* mutant generated by CRISPR/Cas9 mutagenesis showed better survival after salinity treatment (Cui et al. 2020), which confounds previous observations.

The non-canonical Gy subunits in rice, DEP1 and GS3 may also act as negative regulator of salt stress as *gs3* and *dep1* mutants showed better survival rate following salinity treatment and both the mutants had higher yield (Cui et al. 2020). In a few other crop species where the roles of G-proteins in salt stress has been analysed, a similar confounding picture emerges—the overexpression of a *Gβ* gene in pea led to no effect (Misra et al. 2007), whereas the overexpression of mulberry *Gβ*, *Gγ1* or *Gγ2* genes led to increased salt tolerance (Liu et al. 2017, 2018). As mentioned earlier, the contrasting results could be due to the experimental conditions or due to the inherent nature of the G-protein complex regulation (discussed in the next sections) and need further confirmation.

Temperature Stress

Extreme hot and cold temperatures affect both the vegetative and reproductive phases of plant life cycle resulting in a significant decrease in crop productivity (Zhang et al. 2022). At the molecular level, heat stress adversely affects various biomolecules, resulting in altered membrane fluidity leading to loss of cell membrane integrity, reduced protein synthesis, improper protein functionality due to their aggregation and altered enzyme kinetics (Niu and Xiang 2018). The morphological changes include delayed seedling establishment with an overall reduction in plant growth rate, smaller

leaves, early senescence and abscission, elongated hypocotyl, petiole and damaged fruit (Bita and Gerats 2013). Heat stress also affects reproductive development in plants such as reduced pollen and ovule viability, resulting in poor fertilization, slower pollen tube elongation, improper floral organ development, and closed floral buds with reduced seed vigor (Endo et al. 2009; Kumar et al. 2013; Snider et al. 2011). Among physiological changes, reduction in the rate of photosynthesis, respiration, and transpiration is more evident during heat stress, accompanied by an overall increase in the ROS and phytohormone production (Kumar et al. 2012; Yin et al. 2008).

In response to cold stress, plants need to synthesize cryoprotectants such as soluble sugars, proline and cold-resistance proteins to protect themselves from the freezing temperatures by regulating osmotic potential, avoiding ice crystal formation and providing stability of the cell membrane (Kaplan and Guy 2004). Calcium channels have been involved in low temperature detection in plants (Knight and Knight 2012). Ca^{2+} , along with other secondary messenger molecules such as ROS and NO are involved in the regulation of the plant response to cold stress (Knight and Knight 2012; Zhao et al. 2009), although the downstream events involved in the cold signalling pathway are poorly understood.

As with other types of abiotic stresses, the involvement of G-proteins has been shown in response to tolerance to temperature stress. In *Arabidopsis*, these responses are mostly evaluated at the transcriptomic level, where a number of transcripts related to temperature stress were differentially expressed in *gpa1* mutants (Chakraborty et al. 2015). The *gpa1* mutants exhibit significantly increased tolerance to cold stress and a subtle increased tolerance to heat stress, corroborating the transcriptomics data (Chakraborty et al. 2015). However, unlike other stresses, where the response mechanisms have been characterized to some extent, no mechanistic data exist on the response to temperature stress of G-protein mutants in *Arabidopsis*. The transcriptional regulation of different G-protein subunits themselves has been

reported in rapeseed (*Brassica napus*). The *Gα* (*BnGA1*), *Gβ* (*BnGB1*) and *Gγ* (*BnGG2*) transcripts show downregulation in response to heat and cold stresses (Gao et al. 2010a, 2010b), suggesting that the G-protein subunits may act as negative regulators of temperature stress responses in plants. This was supported by the heterologous overexpression of a wheat Gβ protein, *TaGPBL* in *Arabidopsis*, which causes reduced plant growth at 16 °C. These plants also show reduced expression of cold-inducible genes and lower activity of ROS scavengers, compared to WT plant, corroborating the role of Gβ proteins as a negative regulator of temperature stress signaling (Dong et al. 2019).

In other species, such as Chinese pear (*Pyrus pyrifolia*), six out of eight *Gα* genes were up-regulated in response to high temperature in leaves (Chen et al. 2022). Similarly, the transcript levels of the pea *Gα* and *Gβ* genes showed higher expression after heat treatment (Misra et al. 2007). Furthermore, transgenic tobacco plants constitutively expressing *PsGα* or *PsGβ* showed tolerance to heat stress when tested by leaf disk senescence assay and germination/growth of T₁ seeds/seedlings (Misra et al. 2007). Further characterization of tobacco plants overexpressing *PsGβ* suggest that the heat stress response is mediated by nitric oxide (NO)-induced stomatal closure during heat stress (Bhardwaj et al. 2020), and may also include mitogen activated protein kinase (PsMPK3). These results suggest a positive role of G-proteins during temperature stress response, in contrast to what has been suggested for *Arabidopsis*. Studies in tomato plants expressing an altered level of *Gα* gene by *RNAi* and overexpression approaches also support the positive role of these proteins in the tolerance to cold stress (Guo et al. 2020). The *LeGPA1-RNAi* and *LeGPA1-OX* plants exhibit reduced and improved tolerance to cold stress, respectively, compared to the WT tomato plants. The *LeGPA1-OX* plants showed higher activities of antioxidant enzymes such as SOD, POD, and catalase (CAT) leading to a lower accumulation of H₂O₂ and O²⁻. Moreover, there was an upregulation of the transcripts involved in cold signaling, resulting in an increased levels of proline and soluble sugar that protect against cellular damage (Guo et al. 2020).

The involvement of G-proteins in controlling temperature stress in rice has been studied at multiple levels. Transcriptomic analysis of the rice *d1* mutant identified hundreds of differentially expressed transcripts related to temperature stress tolerance. Specific G-protein subunits themselves are also regulated at the transcript level and show altered expression in response to cold and heat stress. As with other stresses, the regulation seems to be complex. For example, the level of *RGA1* was reduced in response to elevated temperature. On the contrary, the *RGB1*, *RGG1*, and *RGG2* transcripts were up-regulated in response to both heat and cold stress (Yadav et al. 2013, 2014). The G-protein-dependent cold stress response in rice has been

also linked to a quantitative trait locus COLD 1 (Chilling-tolerance divergence 1), a homolog of *Arabidopsis* GTG proteins, which interact with *GPA1* (Pandey et al. 2009). COLD1 interacts with rice *RGA1* and affect its GTPase-activity and calcium channel activation. Overexpression of COLD1 significantly improved chilling tolerance, whereas its downregulation was reported in cold-sensitive rice lines (Ma et al. 2015a). Overexpression of the *RGB1* gene in rice also led to improved heat stress tolerance, potentially via effective mitigation of ROS and activation of heat shock proteins (Biswas et al. 2019).

One of the rice type-III *Gγ* proteins, GS3, is recently identified as the causal gene underlying the quantitative trait locus for heat stress tolerance, thermotolerance 2, TT2 (Kan et al. 2022). Heat-treated plants with the natural allele of disrupted TT2 function exhibited a reduction in wax content, therefore an enhanced thermotolerance in comparison with plants carrying the functional TT2 allele. The transcription factor SCT1 (Sensing Ca²⁺ Transcription factor 1) is a calmodulin (CaM)-interacting Ca²⁺ decoder, that negatively regulates the *OsWR2* gene (*Wax Synthesis Regulatory 2*). The CaM-SCT1 interaction was affected in plants with disrupted TT2, revealing that the G-protein TT2 regulates thermotolerance by mediating heat-triggered Ca²⁺ signaling and Ca²⁺/CaM-dependent suppression of SCT1 transcriptional activity to control wax biosynthesis in rice (Kan et al. 2022).

The roles of G-proteins in mediating temperature stress have been evaluated in a few additional crops. In wheat, the *Gα* gene, *GA1-D*, and two of the *Gγ* genes, *Gγ2-B* and *Gγ2-D*, were significantly up-regulated by cold and heat stress, respectively (Gawande et al. 2022). In cucumber, a type-III *Gγ* protein, CsGG3.2, has been shown to be involved in the regulation of tolerance to cold stress by modulating the CBF (Cold Binding Factor) signaling module and resulting in increased activities of antioxidant enzymes and consequently decreased production of ROS, reduced membrane lipid peroxidation after cold stress (Bai et al. 2018). A recent study in sugarcane (*Saccharum* spp.), implies a role of G-protein signaling in stress responses. The sugarcane GPCR-like protein (ShGPCR1), a homolog of the *Arabidopsis* GCR1, was upregulated by cold, drought and salinity stresses (Ramasamy et al. 2021). GCR1 is a known interactor of *GPA1* and regulates stress response in *Arabidopsis*, potentially via G-protein signaling (Pandey and Assmann 2004). Constitutive overexpression of *ShGPCR1* in sugarcane conferred tolerance to multiple abiotic stresses and showed up-regulation of multiple cold stress marker genes such as *NAC23* (*NAM/ATAF1/2/CUC*), *CBF2* (*COLD BINDING FACTOR 2*), *ScADH3* (*ALCOHOL DEHYDROGENASE 3*), as well as several drought and salinity marker genes (Ramasamy et al. 2021).

Heavy Metal Stress

Heavy metals such as cadmium or arsenic impose significant stress on plants under specific growth environments. In particular, Cd due to its chemical similarity to metal co-factors such as Zn, Fe, and Ca, can inactivate and denature proteins by binding to free sulfhydryl groups (DalCorso et al. 2008; Lewandowska et al. 2020). Plants typically cope with Cd toxicity by sequestration into the vacuoles, a process that largely involves cysteine (Cys)-rich proteins that can chelate heavy metals (Freisinger 2008). Several studies have demonstrated the role of unique type-III G γ proteins in Cd tolerance. Overexpression of rice DEP1 (a type-III G γ protein) in heterologous systems, such as yeast and in *Arabidopsis* resulted in tolerance to high levels of Cd (Kunihiro et al. 2013). Similarly, the overexpression of *Arabidopsis AGG3* gene in camelina improved Cd tolerance, which was also supported by a quantitative proteomics analysis, where several proteins related to heavy metal toxicity were differentially abundant (Alvarez et al. 2015). Such response to Cd is proposed to be mediated via the Cys-rich C-terminal region of these proteins. In contrast, the role of G α and G β subunits in the response to heavy metal stress is poorly understood in plants. Based on transcript profiling in rice, it appears that *RGA1* is involved in heavy metals such as cadmium and arsenate tolerance/sensitivity, while *RGB1* expression was not affected by these heavy metals (Yadav et al. 2013, 2014).

Other Environmental Stresses

In addition to their relatively well-documented roles in droughts, temperature and salinity stress, the involvement of G-proteins has been demonstrated in other adverse atmospheric conditions such as UV-B radiation and ozone (O₃) (He et al. 2013; Joo et al. 2005).

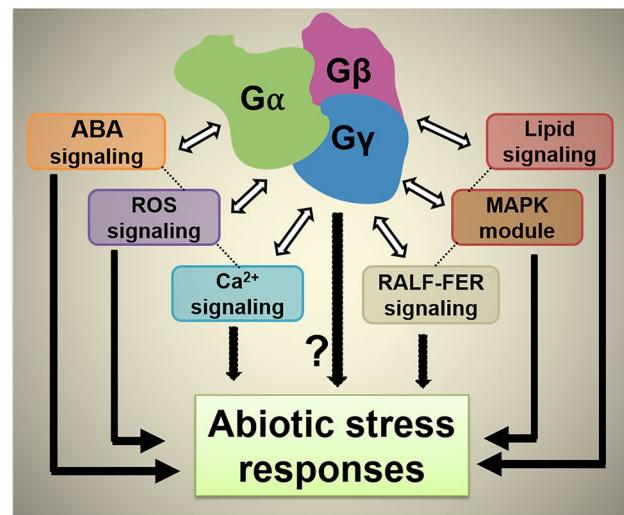
In plants, high-energy enriched UV-B radiation causes thickening of leaves and cuticular wax layers and reduction of photosynthetic efficiency, plant growth, and pollen fertility (Caldwell et al. 2007). Stomatal regulation is central to the plants' response to UV-B. Exposure to UV-B results in increased production of reactive oxygen and reactive nitrogen species in the stomatal guard cells, which ensures stomatal closure under high light/UV-B radiation (Jansen and van den Noort 2000). ABA elicits the production of ROS including H₂O₂ under such conditions (He et al. 2013). In *Arabidopsis*, the plasma membrane-bound NADPH oxidases RbohD and RbohF are involved in the generation of H₂O₂ in an ABA-dependant manner (Kwak et al. 2003). Being an important mediator of the stomatal ABA response, the *gpa1* mutant is compromised in stomatal closure under high UV-B treatment due to reduced H₂O₂ and NO production. However, exogenously added H₂O₂ and NO can rescue the stomatal closure defect of *gpa1*, suggesting that GPA1-mediated signaling is

upstream of UV-B-mediated H₂O₂ and NO production (He et al. 2013). The cytosolic synthesis of phenylalanine (Phe) ensures the timely production of antioxidants and photo-protective molecules against high-frequency radiation (Para et al. 2016). ADT3 (AROGENATE DEHYDRATASE 3) is one of the final enzymes participating in the biosynthesis of Phe and it has been shown that ADT3 is positively regulated by GPA1 in response to blue light that controls the synthesis of phenylpyruvate, Phe, and a variety of UV- and blue light absorbing compounds (Warpeha et al. 2006, 2008). It has also been demonstrated that when *adt3* *Arabidopsis* seedlings were exposed to UV-C light, ROS production was significantly increased, and that Phe could prevent this significant ROS accumulation (Para et al. 2016), revealing the crucial role of ADT3 in ROS homeostasis and its regulation by GPA1. The involvement of other G-protein subunits in UV-B response is largely unknown.

In addition to UV-B, ozone is also harmful for plants as it can enter through stomata (Torsethaugen et al. 1999) and generate oxidative stress intracellularly, resulting in massive cellular damage (Joo et al. 2005). Elevated ozone (O₃) levels affect crop productivity by reducing yield and grain quality. For example, wheat and rice exposed to high levels of O₃ produced significantly smaller grains with decreased starch content, increased protein and nutrient (P, K, Mg, Ca, Zn, Fe) content, affecting the grain texture and its baking properties (Broberg et al. 2015; Ueda et al. 2015). Similar to UV-B radiation, O₃ also induces ROS production primarily in the chloroplasts of the stomatal guard cells (Evans et al. 2005). The signal is transmitted to the adjoining cells where extracellular ROS act as a molecular trigger for generation of intracellular ROS production through membrane-localized NADPH oxidases RbohD and RbohF. The mutants *gpa1* and *agb1* have reduced and increased sensitivities, respectively, to O₃-induced damage. It was proposed that the G β γ complex mediates the early chloroplastic oxidative burst, while the G α induces the late ROS production that leads to the activation of the membrane-bound NADPH oxidases, necessary for transmitting the ROS signal and trigger cell death (Joo et al. 2005). Ozone and UV-B radiation stress mediated effects may be correlated, as the depletion of the stratospheric ozone layer exacerbates the harmful effect of UV-B on crop productivity. However, the role of G-protein subunits in ozone and UV-B tolerance in crop plants largely remains unknown.

Signaling Modules Affected by G-Proteins in Regulation of Stress Responses

The overall description of the role of G-proteins in mediating abiotic stress responses in plants presents a complex picture. However, a closer examination of several of these


responses supports scenarios where G-proteins potentially affect a few fundamental signaling modules, which by interconnecting with discrete signaling networks may result in signal-specific responses (Fig. 2). For example, the role of G-proteins in affecting ABA signaling pathways places them in a central position to regulate almost all abiotic stress responses (Fan et al. 2008; Liu et al. 2021a; Yu et al. 2018; Zhang et al. 2015). G-proteins regulate the signaling pathways of several other phytohormones, which intersect and feedback into ABA synthesis and signaling networks (Alvarez et al. 2015; Bhardwaj et al. 2020; Smythers et al. 2022; Zhang et al. 2015). ABA responses are also related to ROS production (Bohmer and Schroeder 2011; Mittler and Blumwald 2015). Regulation of ROS levels is central to the normal growth, development and productivity of plants. By their ability to affect the ROS levels, either by their interactions with NADPH oxidases, or via the high Cys containing regions of the type-III G γ proteins, or other unknown mechanisms, G-proteins have the ability to affect several of these stress responses (Bai et al. 2018; Guo et al. 2020; Liu et al. 2017). There is additional information that links the G-proteins with ROS signaling. For example, the proteomic analysis of *Arabidopsis adt3 (arogenate dehydratase3)* mutant shows misregulation of proteins involved in cell wall organization (Para et al. 2016), which were also identified as interactors of GPA1 (Kloppfleisch et al. 2011). ADT3 catalyzes the last step of phenylalanine (Phe) biosynthesis. Activation of ADT3 increases the Phe content and the production of phenylpropanoids which are implicated in ROS homeostasis (Huang et al. 2019a; Warpeha et al. 2006, 2008), and it has been demonstrated that GPA1 and GCR1 are involved in blue light-mediated Phe biosynthesis in ADT3-dependant manner (Warpeha et al. 2006, 2008). In addition, the similar phenotypes of the *adt3*, *gpa1*, and *gcr1* *Arabidopsis* mutants, including the reduced number of guard cells, broader cotyledons, and defects in chloroplasts development (Nilsson and Assmann 2010; Para et al. 2016; Zhang et al. 2008) provide strong evidence of the relationship between G-proteins and ROS homeostasis in a pathway where ADT3 is involved.

Another module potentially involves the change in membrane potential and dynamics as well as in plasma membrane composition, which can eventually affect fundamental cellular properties and response, as well as ion channel activities (Assmann and Jegla 2016; Huang et al. 2019b; Kim et al. 2010; Munemasa et al. 2015). G-proteins are known to interact with and regulate several phospholipases, sphingosine phosphatases and kinases, potentially affecting multiple aspects of lipid biosynthesis and signaling (Coursol et al. 2003; Roy Choudhury and Pandey 2016b; Zhao and Wang 2013). Additionally, developmental regulations, such as the stomatal density, which are key to plants interaction with its environment, interactions with intracellular membrane

systems, such as ER biogenesis and regulation and potentially cell wall composition also contribute to the G-protein-dependent responses (Feng et al. 2018; Para et al. 2016; Roy Choudhury et al. 2019; Roy Choudhury and Pandey 2016b; Rui and Dinneny 2020). Even though the cause-and-effect relationships of these signaling/developmental modules is not clear, future research geared towards identifying these will certainly result in critical knowledge needed to harness the power of these proteins in generating stress-tolerant plants.

The Challenges and Future Perspectives

One of the biggest challenges in synthesizing available data on the roles of G-proteins in plant abiotic stress responses is the seemingly random and often contrasting phenotypes observed in various studies. This is primarily confounded by the inherent composition and signaling mechanism of G-proteins. An initial level of complexity is introduced at the level of trimer composition itself. In plants such as *Arabidopsis* and rice that have simpler repertoire of G-proteins, a single G β protein can interact with one of multiple G α or G γ proteins. When studying the effect of the loss of an individual G α or an individual G γ gene (e.g., *gpa1*, *rga1*, *dep1* mutants), it is not clear if the observed effects are due to the loss of this individual protein or an effect of a varied stoichiometry between different subunits (Pandey

Fig. 2 Signaling pathways involved in G-protein mediated abiotic stress responses in plants. Involvement of abscisic acid (ABA), Ca $^{2+}$, reactive oxygen species (ROS), rapid alkalinization factor-Feronia (RALF-FER), lipid-mediated signaling and mitogen activated protein kinase (MAPK) modules has been shown during G-protein modulated abiotic stress signaling pathways. The cause/effect relationships between these modules is not fully elucidated (depicted as double arrowheads)

2019; Roy Choudhury et al. 2020; Urano et al. 2016). For example, the phenotype of a *gpa1* mutant could be due to the loss of GPA1 function, due to the altered availability of AGB1 for XLG proteins or due to constitutive signaling by freed G β (Roy Choudhury and Pandey 2022). In such situations, the effects of the loss of a gene function may not be exact opposite of the its overexpression. The situation becomes significantly more complex when studying plants with higher numbers of each of the G-protein subunits such as soybean or wheat. Moreover, the protein complex is trimeric, but it is active when the trimer is dissociated. Both G α and G $\beta\gamma$ can be functional signal transducers, but can also affect each other's availability/localization (Chakravorty and Botella 2007; Trusov et al. 2007; Wang and Botella 2022). Therefore, results with gain- or loss-of-function of an individual protein should be interpreted cautiously. The modular structures of specific proteins also add to this complexity. For example, the C-terminal of the type-III G γ protein has been proposed to be an inhibitor of its N-terminal G γ -like domain (Botella 2012; Tiwari and Bisht 2022). In this case, mutations that result in the removal of only the C-terminal may actually result in a highly active G γ protein, similar to its overexpression. Examples of such effects have been seen during grain size regulation in rice by the *GS3* gene, where site-specific mutations in the same gene may result in smaller or longer grains (Botella 2012; Cui et al. 2020; Fan et al. 2009; Mao et al. 2010).

Another level of complexity is added by the potential tissue or organ-specific roles of these proteins. Although such studies are limited mostly to *Arabidopsis*, it appears that significant differences exist. For example, *Arabidopsis gpa1* and *agb1* mutants show hyposensitivity to ABA during stomatal opening responses, these same mutants are hypersensitive to ABA during seed germination (Fan et al. 2008; Smythers et al. 2022; Yu et al. 2018). It is therefore important to consider the plant's response to specific signals in totality, not only in a specific tissue type.

A further key point to consider is the experimental designs themselves. Plant growth condition, plant age, stress treatment conditions, severity of stresses, and time, all vary considerably between experiments. Many of these are performed in heterologous systems, most under laboratory conditions, which has little relevance to actual plant growth in fields. The timings and methodologies of how plants are subjected to stress conditions is also important, but rarely considered. For example, stress experienced by the plants at their vegetative growth stage maybe tolerated better than the stress experienced at the time of flowering, or seed filling. Similarly, the way plants perceive these stresses needs to be optimized for each species. A rice seedling submerged in water during early growth may not experience the same severity of heat stress compared to a wheat seedling growing at a similar higher temperature. Finally, plants growing in

fields experience several stresses simultaneously and thus will respond differently than what is assessed with plants grown under control laboratory conditions, subjected to one specific stress at a time.

In summary, it is obvious that the global climate change has already exacerbated the harmful effects of various abiotic stresses in crop plants, drastically reducing their overall productivity worldwide. It is of utmost importance to design and breed stress-resilient crops to meet the needs of future generations. The information obtained so far places the G-proteins in a central position to serve this role. However, an integrated approach that combines current 'cause/effect' information with precise genome editing technologies, multi-omics analysis and modeling, extensive crop physiology, agriculture economics and management is required to apply it directly to crops of interest, in field settings in order to enable food security.

Acknowledgements Research in the Pandey Lab is supported by Grants from the National Science Foundation (MCB-1714693 and MCB-2207012) to S.P.

Author Contributions PM, DRTR and SP wrote the review.

Declarations

Conflict of interest The authors have no conflict of interest related to the work described in this manuscript.

References

- Albert R, Acharya BR, Jeon BW, Zanudo JGT, Zhu MM, Osman K, Assmann SM (2017) A new discrete dynamic model of ABA-induced stomatal closure predicts key feedback loops. *PLoS Biol* 15(9):e2003451
- Alvarez S, Roy Choudhury S, Sivagnanam K, Hicks LM, Pandey S (2015) Quantitative proteomics analysis of *Camelina sativa* seeds overexpressing the *AGG3* gene to identify the proteomic basis of increased yield and stress tolerance. *J Proteome Res* 14:2606–2616
- Assmann SM, Jegla T (2016) Guard cell sensory systems: recent insights on stomatal responses to light, abscisic acid, and CO₂. *Curr Opin Plant Biol* 33:157–167
- Bai L, Liu Y, Mu Y, Anwar A, He C, Yan Y, Li Y, Yu X (2018) Heterotrimeric G-protein gamma subunit CSGG3.2 positively regulates the expression of *CBF* genes and chilling tolerance in cucumber. *Front Plant Sci* 9:488
- Bhardwaj D, Sahoo RK, Naqvi AR, Lakhanpaul S, Tuteja N (2020) Pea G β subunit of G proteins has a role in nitric oxide-induced stomatal closure in response to heat and drought stress. *Protoplasma* 257:1639–1654
- Bhatnagar N, Pandey S (2020) Heterotrimeric G-protein interactions are conserved despite regulatory element loss in some plants. *Plant Physiol* 184:1941–1954
- Bisht NC, Jez JM, Pandey S (2011) An elaborate heterotrimeric G-protein family from soybean expands the diversity of plant G-protein networks. *N Phytol* 190:35–48
- Biswas S, Islam MN, Sarker S, Tuteja N, Seraj ZI (2019) Overexpression of heterotrimeric G protein beta subunit gene (OsRGB1)

confers both heat and salinity stress tolerance in rice. *Plant Physiol Biochem* 144:334–344

Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. *Front Plant Sci* 4:273

Bohmer M, Schroeder JI (2011) Quantitative transcriptomic analysis of abscisic acid-induced and reactive oxygen species-dependent expression changes and proteomic profiling in *Arabidopsis* suspension cells. *Plant J* 67:105–118

Bommert P, Je BI, Goldshmidt A, Jackson D (2013) The maize $\text{G}\alpha$ gene COMPACT PLANT2 functions in CLAVATA signalling to control shoot meristem size. *Nature* 502:555–558

Botella JR (2012) Can heterotrimeric G proteins help to feed the world? *Trends Plant Sci* 17:563–568

Brandenburg LO, Pufe T, Koch T (2014) Role of phospholipase D in G-protein coupled receptor function. *Membranes (Basel)* 4:302–318

Broberg MC, Feng Z, Xin Y, Pleijel H (2015) Ozone effects on wheat grain quality—a summary. *Environ Pollut* 197:203–213

Brunetti SC, Arseneault MKM, Wright JA, Wang Z, Ehdaievand MR, Lowden MJ, Rivoal J, Khalil HB, Garg G, Gulick PJ (2021) The stress induced caleosin, RD20/CLO3, acts as a negative regulator of GPA1 in *Arabidopsis*. *Plant Mol Biol* 107:159–175

Buckley TN (2019) How do stomata respond to water status? *N Phytol* 224:21–36

Caldwell MM, Bornman JF, Ballare CL, Flint SD, Kulandaivelu G (2007) Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. *Photochem Photobiol Sci* 6:252–266

Chakravorty D, Assmann SM (2018) G protein subunit phosphorylation as a regulatory mechanism in heterotrimeric G protein signaling in mammals, yeast, and plants. *Biochem J* 475:3331–3357

Chakravorty D, Botella JR (2007) Over-expression of a truncated *Arabidopsis thaliana* heterotrimeric G protein γ subunit results in a phenotype similar to α and β subunit knockouts. *Gene* 393:163–170

Chakravorty D, Trusov Y, Zhang W, Acharya BR, Sheahan MB, McCurdy DW, Assmann SM, Botella JR (2011) An atypical heterotrimeric G-protein γ -subunit is involved in guard cell K^+ -channel regulation and morphological development in *Arabidopsis thaliana*. *Plant J* 67:840–851

Chakraborty N, Singh N, Kaur K, Raghuram N (2015a) G-protein signaling components GCR1 and GPA1 mediate responses to multiple abiotic stresses in *Arabidopsis*. *Front Plant Sci* 6:1000

Chakravorty D, Gookin TE, Milner MJ, Yu Y, Assmann SM (2015b) Extra-large G proteins expand the repertoire of subunits in *Arabidopsis* heterotrimeric G protein signaling. *Plant Physiol* 169:512–529

Chen JG, Willard FS, Huang J, Liang J, Chasse SA, Jones AM, Siderovski DP (2003) A seven-transmembrane RGS protein that modulates plant cell proliferation. *Science* 301:1728–1731

Chen JG, Gao Y, Jones AM (2006) Differential roles of *Arabidopsis* heterotrimeric G-protein subunits in modulating cell division in roots. *Plant Physiol* 141:887–897

Chen G, Yi X, Zhao B, Li Y, Qiao X, Gao H, Duan W, Jin C, Zheng Z, Hua Z et al (2022) Genomewide characterization of the $\text{G}\alpha$ subunit gene family in Rosaceae and expression analysis of *PbrGPAs* under heat stress. *Gene* 810:146056

Colaneri AC, Tunc-Ozdemir M, Huang JP, Jones AM (2014) Growth attenuation under saline stress is mediated by the heterotrimeric G protein complex. *BMC Plant Biol* 14:129

Coursol S, Fan LM, Le Stunff H, Spiegel S, Gilroy S, Assmann SM (2003) Sphingolipid signalling in *Arabidopsis* guard cells involves heterotrimeric G proteins. *Nature* 423:651–654

Cui Y, Jiang N, Xu Z, Xu Q (2020) Heterotrimeric G protein are involved in the regulation of multiple agronomic traits and stress tolerance in rice. *BMC Plant Biol* 20:90

DalCorso G, Farinati S, Maistri S, Furini A (2008) How plants cope with cadmium: staking all on metabolism and gene expression. *J Integr Plant Biol* 50:1268–1280

Ding L, Pandey S, Assmann SM (2008) *Arabidopsis* extra-large G proteins (XLGs) regulate root morphogenesis. *Plant J* 53:248–263

Dong W, Gao T, Song Y (2019) A wheat GTP-binding protein like gene reduces tolerance to low temperature in *Arabidopsis*. *Biochem Biophys Res Commun* 509:148–153

Eisenach C, De Angeli A (2017) Ion transport at the vacuole during stomatal movements. *Plant Physiol* 174:520–530

Endo M, Tsuchiya T, Hamada K, Kawamura S, Yano K, Ohshima M, Higashitani A, Watanabe M, Kawagishi-Kobayashi M (2009) High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. *Plant Cell Physiol* 50:1911–1922

Evans NH, McAinsh MR, Hetherington AM, Knight MR (2005) ROS perception in *Arabidopsis thaliana*: the ozone-induced calcium response. *Plant J* 41:615–626

Fan LM, Zhang W, Chen JG, Taylor JP, Jones AM, Assmann SM (2008) Abscisic acid regulation of guard-cell K^+ and anion channels in Gbeta- and RGS-deficient *Arabidopsis* lines. *Proc Natl Acad Sci USA* 105:8476–8481

Fan C, Yu S, Wang C, Xing Y (2009) A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. *Theor Appl Genet* 118:465–472

Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V, Duan Q, Liu MC, Maman J, Steinhorst L, Schmitz-Thom I et al (2018) The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca^{2+} signaling. *Curr Biol* 28:666–675.e665

Ferrero-Serrano A, Assmann SM (2016) The α -subunit of the rice heterotrimeric G protein, RGA1, regulates drought tolerance during the vegetative phase in the dwarf rice mutant d1. *J Exp Bot* 67:3433–3443

Freisinger E (2008) Plant MTs—long neglected members of the metallothionein superfamily. *Dalton Trans*. <https://doi.org/10.1039/B809789E>

Galbiati F, Guzzi F, Magee AI, Milligan G, Parenti M (1994) N-terminal fatty acylation of the alpha-subunit of the G-protein Gi1: only the myristoylated protein is a substrate for palmitoylation. *Biochem J* 303(Pt 3):697–700

Gao Y, Li T, Liu Y, Ren C, Zhao Y, Wang M (2010a) Isolation and characterization of gene encoding G protein α subunit protein responsive to plant hormones and abiotic stresses in *Brassica napus*. *Mol Biol Rep* 37:3957–3965

Gao Y, Zhao Y, Li TT, Ren CX, Liu Y, Wang ML (2010b) Cloning and characterization of a G protein β subunit gene responsive to plant hormones and abiotic stresses in *Brassica napus*. *Plant Mol Biol Rep* 28:450–459

Gao Y, Gu H, Leburu M, Li X, Wang Y, Sheng J, Fang H, Gu M, Liang G (2019) The heterotrimeric G protein β subunit RGB1 is required for seedling formation in rice. *Rice (n Y)* 12:53

Gawande ND, Hamiditabar Z, Brunetti SC, Gulick PJ (2022) Characterization of the heterotrimeric G protein gene families in *Triticum aestivum* and related species. *3 Biotech* 12:99

Gookin TE, Kim J, Assmann SM (2008) Whole proteome identification of plant candidate G-protein coupled receptors in *Arabidopsis*, rice, and poplar: computational prediction and in vivo protein coupling. *Genome Biol* 9:R120

Guo X, Li J, Zhang L, Zhang Z, He P, Wang W, Wang M, Wang A, Zhu J (2020) Heterotrimeric G-protein alpha subunit (LeGPA1) confers cold stress tolerance to processing tomato plants (*Lycopersicon esculentum* Mill). *BMC Plant Biol* 20:394

Gupta N, Kanojia A, Katiyar A, Mudgil Y (2021) Molecular characterization of NDL1-AGB1 mediated salt stress signaling: further exploration of the role of NDL1 interacting partners. *Cells* 10(9):2261

Hackenberg D, Perroud PF, Quatrano R, Pandey S (2016) Sporophyte formation and life cycle completion in moss requires heterotrimeric G-proteins. *Plant Physiol* 172:1154–1166

Hackenberg D, McKain MR, Lee SG, Roy Choudhury S, McCann T, Schreier S, Harkess A, Pires JC, Wong GK, Jez JM et al (2017) G α and regulator of G-protein signaling (RGS) protein pairs maintain functional compatibility and conserved interaction interfaces throughout evolution despite frequent loss of RGS proteins in plants. *N Phytol* 216:562–575

Hao LH, Wang WX, Chen C, Wang YF, Liu T, Li X, Shang ZL (2012) Extracellular ATP promotes stomatal opening of *Arabidopsis thaliana* through heterotrimeric G protein alpha subunit and reactive oxygen species. *Mol Plant* 5:852–864

He JM, Ma XG, Zhang Y, Sun TF, Xu FF, Chen YP, Liu X, Yue M (2013) Role and interrelationship of G α protein, hydrogen peroxide, and nitric oxide in ultraviolet B-induced stomatal closure in *Arabidopsis* leaves. *Plant Physiol* 161:1570–1583

Huang H, Ullah F, Zhou DX, Yi M, Zhao Y (2019a) Mechanisms of ROS regulation of plant development and stress responses. *Front Plant Sci* 10:800

Huang S, Waadt R, Nuhkat M, Kollist H, Hedrich R, Roelfsema MRG (2019b) Calcium signals in guard cells enhance the efficiency by which abscisic acid triggers stomatal closure. *N Phytol* 224:177–187

Jagermeyr J, Muller C, Ruane AC, Elliott J, Balkovic J, Castillo O, Faye B, Foster I, Folberth C, Franke JA et al (2021) Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. *Nat Food* 2:875

Jangam AP, Pathak RR, Raghuram N (2016) Microarray analysis of rice d1 (RGA1) mutant reveals the potential role of G-protein α subunit in regulating multiple abiotic stresses such as drought, salinity, heat, and cold. *Front Plant Sci* 7:11

Jansen MAK, van den Noort RE (2000) Ultraviolet-B radiation induces complex alterations in stomatal behaviour. *Physiol Plant* 110:189–194

Jeon BW, Acharya BR, Assmann SM (2019) The *Arabidopsis* heterotrimeric G-protein β subunit, AGB1, is required for guard cell calcium sensing and calcium-induced calcium release. *Plant J* 99:231–244

Jin XF, Wang RS, Zhu MM, Jeon BW, Albert R, Chen SX, Assmann SM (2013) Abscisic acid-responsive guard cell metabolomes of *Arabidopsis* wild-type and *gpa1* G-protein mutants. *Plant Cell* 25:4789–4811

Joo JH, Wang S, Chen JG, Jones AM, Fedoroff NV (2005) Different signaling and cell death roles of heterotrimeric G protein α and β subunits in the *Arabidopsis* oxidative stress response to ozone. *Plant Cell* 17:957–970

Jose J, Roy Choudhury S (2020) Heterotrimeric G-proteins mediated hormonal responses in plants. *Cell Signal* 76:109799

Kan Y, Mu XR, Zhang H, Gao J, Shan JX, Ye WW, Lin HX (2022) TT2 controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis. *Nat Plants* 8:53–67

Kaplan F, Guy CL (2004) β -Amylase induction and the protective role of maltose during temperature shock. *Plant Physiol* 135:1674–1684

Kaur J, Roy Choudhury S, Vijayakumar A, Hovis L, Rhodes Z, Polzin R, Blumenthal D, Pandey S (2018) *Arabidopsis* type III G γ protein AGG3 is a positive regulator of yield and stress responses in the model monocot *Setaria viridis*. *Front Plant Sci* 9:109

Kim TH, Bohmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO₂, and Ca²⁺ signaling. *Annu Rev Plant Biol* 61:561–591

Klopffleisch K, Phan N, Augustin K, Bayne RS, Booker KS, Botella JR, Carpita NC, Carr T, Chen JG, Cooke TR et al (2011) *Arabidopsis* G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis. *Mol Syst Biol* 7:532

Knight MR, Knight H (2012) Low-temperature perception leading to gene expression and cold tolerance in higher plants. *N Phytol* 195:737–751

Koevoets IT, Venema JH, Elzenga JT, Testerink C (2016) Roots withstanding their environment: exploiting root system architecture responses to abiotic stress to improve crop tolerance. *Front Plant Sci* 7:1335

Konrad KR, Maierhofer T, Hedrich R (2018) Spatio-temporal aspects of Ca²⁺ signalling: lessons from guard cells and pollen tubes. *J Exp Bot* 69:4195–4214

Kumar S, Kaushal N, Nayyar H, Gaur P (2012) Abscisic acid induces heat tolerance in chickpea (*Cicer arietinum* L.) seedlings by facilitated accumulation of osmoprotectants. *Acta Physiol Plant* 34:1651–1658

Kumar S, Thakur P, Kaushal N, Malik JA, Gaur P, Nayyar H (2013) Effect of varying high temperatures during reproductive growth on reproductive function, oxidative stress and seed yield in chickpea genotypes differing in heat sensitivity. *Arch Agron Soil Sci* 59:823–843

Kumar R, Arya GC, Bisht NC (2014) Differential expression and interaction specificity of the heterotrimeric G-protein family in *Brassica nigra* reveal their developmental- and condition-specific roles. *Plant Cell Physiol* 55:1954–1968

Kunihiro S, Saito T, Matsuda T, Inoue M, Kuramata M, Taguchi-Shiobara F, Youssefian S, Berberich T, Kusano T (2013) Rice DEP1, encoding a highly cysteine-rich G protein gamma subunit, confers cadmium tolerance on yeast cells and plants. *J Exp Bot* 64:4517–4527

Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI (2003) NADPH oxidase AtrobohD and AtrobohF genes function in ROS-dependent ABA signaling in *Arabidopsis*. *EMBO J* 22:2623–2633

Laitinen RAE, Nikoloski Z (2019) Genetic basis of plasticity in plants. *J Exp Bot* 70:739–745

Lee S, Rojas CM, Oh S, Kang M, Choudhury SR, Lee HK, Allen RD, Pandey S, Mysore KS (2018) Nucleolar GTP-binding protein 1–2 (NOG1-2) interacts with Jasmonate-ZIM Domain Protein 9 (JAZ9) to regulate stomatal aperture during plant immunity. *Int J Mol Sci* 19(7):1922

Lewandowska M, Keyl A, Feussner I (2020) Wax biosynthesis in response to danger: its regulation upon abiotic and biotic stress. *N Phytol* 227:698–713

Li S, Assmann SM, Albert R (2006) Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling. *PLoS Biol* 4:1732–1748

Li S, Pandey S, Gookin TE, Zhao ZX, Wilson L, Assmann SM (2012) Gene-sharing networks reveal organizing principles of transcriptomes in *Arabidopsis* and other multicellular organisms. *Plant Cell* 24:1362–1378

Li J, Ge Y, Huang JX, Stromgaard K, Zhang X, Xiong XF (2020) Heterotrimeric G proteins as therapeutic targets in drug discovery. *J Med Chem* 63:5013–5030

Li HF, Testerink C, Zhang YX (2021) How roots and shoots communicate through stressful times. *Trends Plant Sci* 26:940–952

Liang X, Ding P, Lian K, Wang J, Ma M, Li L, Li L, Li M, Zhang X, Chen S et al (2016) *Arabidopsis* heterotrimeric G proteins regulate immunity by directly coupling to the FLS2 receptor. *Elife* 5:e13568

Liang Y, Gao Y, Jones AM (2017) Extra large G-protein interactome reveals multiple stress response function and partner-dependent XLG subcellular localization. *Front Plant Sci* 8:1015

Liang Y, Zhao X, Jones AM, Gao Y (2018) G proteins sculpt root architecture in response to nitrogen in rice and *Arabidopsis*. *Plant Sci* 274:129–136

Lichtenthaler HK (1998) The stress concept in plants: an introduction. *Ann N Y Acad Sci* 851:187–198

Liu W, Li RJ, Han TT, Cai W, Fu ZW, Lu YT (2015) Salt stress reduces root meristem size by nitric oxide-mediated modulation of auxin accumulation and signaling in *Arabidopsis*. *Plant Physiol* 168:343–356

Liu C, Xu Y, Long D, Cao B, Hou J, Xiang Z, Zhao A (2017) Plant G-protein β subunits positively regulate drought tolerance by elevating detoxification of ROS. *Biochem Biophys Res Commun* 491:897–902

Liu C, Xu Y, Feng Y, Long D, Cao B, Xiang Z, Zhao A (2018) Ectopic expression of mulberry G-proteins alters drought and salt stress tolerance in tobacco. *Int J Mol Sci* 20(1):89

Liu C, Hu J, Fan W, Zhu P, Cao B, Zheng S, Xia Z, Zhu Y, Zhao A (2021a) Heterotrimeric G-protein gamma subunits regulate ABA signaling in response to drought through interacting with PP2Cs and SnRK2s in mulberry (*Morus alba* L.). *Plant Physiol Biochem* 161:210–221

Liu YM, Du QH, Bai LQ, Sun MT, Li YS, He CX, Wang J, Yu XC, Yan Y (2021b) Interference of CsgPA1, the α -subunit of G protein, reduces drought tolerance in cucumber seedlings. *Hortic Plant J* 7:209–220

Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D et al (2015a) COLD1 confers chilling tolerance in rice. *Cell* 160:1209–1221

Ma YN, Chen M, Xu DB, Fang GN, Wang EH, Gao SQ, Xu ZS, Li LC, Zhang XH, Min DH et al (2015b) G-protein β subunit AGB1 positively regulates salt stress tolerance in *Arabidopsis*. *J Integr Agric* 14:314–325

Maheshwari P, Assmann SM, Albert R (2020) A guard cell abscisic acid (ABA) network model that captures the stomatal resting state. *Front Physiol* 11:927

Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q (2010) Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. *Proc Natl Acad Sci USA* 107:19579–19584

Maruta N, Trusov Y, Urano D, Chakravorty D, Assmann SM, Jones AM, Botella JR (2021) GTP binding by *Arabidopsis* extra-large G protein 2 is not essential for its functions. *Plant Physiol* 186:1240–1253

Mason MG, Botella JR (2000) Completing the heterotrimer: isolation and characterization of an *Arabidopsis thaliana* G protein γ -subunit cDNA. *Proc Natl Acad Sci USA* 97:14784–14788

Mason MG, Botella JR (2001) Isolation of a novel G-protein γ -subunit from *Arabidopsis thaliana* and its interaction with G β . *Biochim Biophys Acta* 1520:147–153

McAdam SA, Brodribb TJ, Ross JJ (2016) Shoot-derived abscisic acid promotes root growth. *Plant Cell Environ* 39:652–659

McCudden CR, Hains MD, Kimple RJ, Siderovski DP, Willard FS (2005) G-protein signaling: back to the future. *Cell Mol Life Sci* 62:551–577

Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. *Plant Cell Environ* 33:453–467

Mishra G, Zhang W, Deng F, Zhao J, Wang X (2006) A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in *Arabidopsis*. *Science* 312:264–266

Misra S, Wu Y, Venkataraman G, Sopory SK, Tuteja N (2007) Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume (*Pisum sativum*): role in salinity and heat stress and cross-talk with phospholipase C. *Plant J* 51:656–669

Mittler R, Blumwald E (2015) The roles of ROS and ABA in systemic acquired acclimation. *Plant Cell* 27:64–70

Mohanansundaram B, Dodds A, Kukshal V, Jez JM, Pandey S (2022) Distribution and the evolutionary history of G-protein components in plant and algal lineages. *Plant Physiol* 189:1519–1535

Munemasa S, Hauser F, Park J, Waadt R, Brandt B, Schroeder JI (2015) Mechanisms of abscisic acid-mediated control of stomatal aperture. *Curr Opin Plant Biol* 28:154–162

Neves SR, Ram PT, Iyengar R (2002) G protein pathways. *Science* 296:1636–1639

Nilson SE, Assmann SM (2010) The α -subunit of the *Arabidopsis* heterotrimeric G protein, GPA1, is a regulator of transpiration efficiency. *Plant Physiol* 152:2067–2077

Niu Y, Xiang Y (2018) An overview of biomembrane functions in plant responses to high-temperature stress. *Front Plant Sci* 9:915

Offermanns S (2003) G-proteins as transducers in transmembrane signalling. *Prog Biophys Mol Biol* 83:101–130

Oldham WM, Hamm HE (2008) Heterotrimeric G protein activation by G-protein-coupled receptors. *Nat Rev Mol Cell Biol* 9:60–71

Pandey S (2016) Phospholipases as GTPase activity accelerating proteins (GAPs) in plants. *Plant Signal Behav* 11:e1176821

Pandey S (2017) Heterotrimeric G-protein regulatory circuits in plants: conserved and novel mechanisms. *Plant Signal Behav* 12:e1325983

Pandey S (2019) Heterotrimeric G-protein signaling in plants: conserved and novel mechanisms. *Annu Rev Plant Biol* 70:213–238

Pandey S, Assmann SM (2004) The *Arabidopsis* putative G protein-coupled receptor GCR1 interacts with the G protein alpha subunit GPA1 and regulates abscisic acid signaling. *Plant Cell* 16:1616–1632

Pandey S, Nelson DC, Assmann SM (2009) Two novel GPCR-type G proteins are abscisic acid receptors in *Arabidopsis*. *Cell* 136:136–148

Pandey S, Wang RS, Wilson L, Li S, Zhao Z, Gookin TE, Assmann SM, Albert R (2010) Boolean modeling of transcriptome data reveals novel modes of heterotrimeric G-protein action. *Mol Syst Biol* 6:372

Para A, Muhammad D, Orozco-Nunnally DA, Memishi R, Alvarez S, Naldrett MJ, Warpeha KM (2016) The dehydratase ADT3 affects ROS homeostasis and cotyledon development. *Plant Physiol* 172:1045–1060

Peng P, Gao Y, Li Z, Yu Y, Qin H, Guo Y, Huang R, Wang J (2019) Proteomic analysis of a rice mutant sd58 possessing a novel d1 allele of heterotrimeric G protein alpha subunit (RGA1) in salt stress with a focus on ROS scavenging. *Int J Mol Sci* 20(1):167

Perfus-Barbeoch L, Jones AM, Assmann SM (2004) Plant heterotrimeric G protein function: insights from *Arabidopsis* and rice mutants. *Curr Opin Plant Biol* 7:719–731

Ramasamy M, Damaj MB, Vargas-Bautista C, Mora V, Liu J, Padilla CS, Irigoyen S, Saini T, Sahoo N, DaSilva JA et al (2021) A sugarcane G-protein-coupled receptor, ShGPCR1, confers tolerance to multiple abiotic stresses. *Front Plant Sci* 12:745891

Roy Choudhury S, Pandey S (2015) Phosphorylation-dependent regulation of G-protein cycle during nodule formation in soybean. *Plant Cell* 27:3260–3276

Roy Choudhury S, Pandey S (2016a) Interaction of heterotrimeric G-protein components with receptor-like kinases in plants: an alternative to the established signaling paradigm? *Mol Plant* 9:1093–1095

Roy Choudhury S, Pandey S (2016b) The role of PLD α 1 in providing specificity to signal-response coupling by heterotrimeric G-protein components in *Arabidopsis*. *Plant J* 86:50–61

Roy Choudhury S, Pandey S (2017) Phosphatidic acid binding inhibits RGS1 activity to affect specific signaling pathways in Arabidopsis. *Plant J* 90:466–477

Roy Choudhury S, Pandey S (2022) SymRK-dependent phosphorylation of G α protein and its role in signaling during soybean (*Glycine max*) nodulation. *Plant J* 110:277–291

Roy Choudhury S, Bisht NC, Thompson R, Todorov O, Pandey S (2011) Conventional and novel G γ protein families constitute the heterotrimeric G-protein signaling network in soybean. *PLoS ONE* 6:e23361

Roy Choudhury S, Westfall CS, Laborde JP, Bisht NC, Jez JM, Pandey S (2012) Two chimeric regulators of G-protein signaling (RGS) proteins differentially modulate soybean heterotrimeric G-protein cycle. *J Biol Chem* 287:17870–17881

Roy Choudhury S, Riesselman AJ, Pandey S (2014) Constitutive or seed-specific overexpression of Arabidopsis G-protein γ subunit 3 (AGG3) results in increased seed and oil production and improved stress tolerance in *Camelina sativa*. *Plant Biotechnol J* 12:49–59

Roy Choudhury S, Marlin MA, Pandey S (2019) The role of G β protein in controlling cell expansion via potential interaction with lipid metabolic pathways. *Plant Physiol* 179:1159–1175

Roy Choudhury S, Li M, Lee V, Nandety RS, Mysore KS, Pandey S (2020) Flexible functional interactions between G-protein subunits contribute to the specificity of plant responses. *Plant J* 102:207–221

Rui Y, Dinneny JR (2020) A wall with integrity: surveillance and maintenance of the plant cell wall under stress. *N Phytol* 225:1428–1439

Schachtman DP, Goodger JQ (2008) Chemical root to shoot signaling under drought. *Trends Plant Sci* 13:281–287

Seleiman MF, Al-Suhailani N, Ali N, Akmal M, Alotaibi M, Refay Y, Dindaroglu T, Abdul-Wajid HH, Battaglia ML (2021) Drought stress impacts on plants and different approaches to alleviate its adverse effects. *Plants (basel)* 10(2):259

Siderovski DP, Willard FS (2005) The GAPs, GEFs, and GDIs of heterotrimeric G-protein α subunits. *Int J Biol Sci* 1:51–66

Smythers AL, Bhatnagar N, Ha C, Majumdar P, McConnell EW, Mohanasundaram B, Hicks LM, Pandey S (2022) Abscisic acid-controlled redox proteome of Arabidopsis and its regulation by heterotrimeric G β protein. *N Phytol* 236:447–463

Snider JL, Oosterhuis DM, Kawakami EM (2011) Diurnal pollen tube growth rate is slowed by high temperature in field-grown *Gossypium hirsutum* pistils. *J Plant Physiol* 168:441–448

Song G, Brachova L, Nikolau BJ, Jones AM, Walley JW (2018) Heterotrimeric G-protein-dependent proteome and phosphoproteome in unstimulated Arabidopsis roots. *Proteomics* 18:e1800323

Sun H, Qian Q, Wu K, Luo J, Wang S, Zhang C, Ma Y, Liu Q, Huang X, Yuan Q et al (2014) Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. *Nat Genet* 46:652–656

Sun SY, Wang L, Mao HL, Shao L, Li XH, Xiao JH, Ouyang YD, Zhang QF (2018) A G-protein pathway determines grain size in rice. *Nat Commun* 9:851

Swain DM, Sahoo RK, Chandan RK, Ghosh S, Kumar R, Jha G, Tuteja N (2019) Concurrent overexpression of rice G-protein β and γ subunits provide enhanced tolerance to sheath blight disease and abiotic stress in rice. *Planta* 250:1505–1520

Tiwari R, Bisht NC (2022) The multifaceted roles of heterotrimeric G-proteins: lessons from models and crops. *Planta* 255:88

Torsethaugen G, Pell EJ, Assmann SM (1999) Ozone inhibits guard cell K $^{+}$ channels implicated in stomatal opening. *Proc Natl Acad Sci USA* 96:13577–13582

Trusov Y, Rookes JE, Tilbrook K, Chakravorty D, Mason MG, Anderson D, Chen JG, Jones AM, Botella JR (2007) Heterotrimeric G protein γ subunits provide functional selectivity in G β γ dimer signaling in Arabidopsis. *Plant Cell* 19:1235–1250

Trusov Y, Zhang W, Assmann SM, Botella JR (2008) G γ 1+G γ 2 not equal G β : Heterotrimeric G protein G γ -deficient mutants do not recapitulate all phenotypes of G β -deficient mutants. *Plant Physiol* 147:636–649

Trusov Y, Chakravorty D, Botella JR (2012) Diversity of heterotrimeric G-protein γ subunits in plants. *BMC Res Notes* 5:608

Ueda Y, Frimpong F, Qi Y, Matthus E, Wu L, Holler S, Kraska T, Frei M (2015) Genetic dissection of ozone tolerance in rice (*Oryza sativa* L.) by a genome-wide association study. *J Exp Bot* 66:293–306

Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, Ashikari M, Iwasaki Y, Kitano H, Matsuoka M (2000) Rice dwarf mutant *dl*, which is defective in the α subunit of the heterotrimeric G protein, affects gibberellin signal transduction. *Proc Natl Acad Sci USA* 97:11638–11643

Ullah H, Chen JG, Temple B, Boyes DC, Alonso JM, Davis KR, Ecker JR, Jones AM (2003) The β -subunit of the Arabidopsis G protein negatively regulates auxin-induced cell division and affects multiple developmental processes. *Plant Cell* 15:393–409

Urano D, Colaneri A, Jones AM (2014) G α modulates salt-induced cellular senescence and cell division in rice and maize. *J Exp Bot* 65:6553–6561

Urano D, Jackson D, Jones AM (2015) A G protein α null mutation confers prolificacy potential in maize. *J Exp Bot* 66:4511–4515

Urano D, Miura K, Wu Q, Iwasaki Y, Jackson D, Jones AM (2016) Plant morphology of heterotrimeric G protein mutants. *Plant Cell Physiol* 57:437–445

Utsunomiya Y, Samejima C, Fujisawa Y, Kato H, Iwasaki Y (2012) Rice transgenic plants with suppressed expression of the beta subunit of the heterotrimeric G protein. *Plant Signal Behav* 7:443–446

Vaahtera L, Schulz J, Hamann T (2019) Cell wall integrity maintenance during plant development and interaction with the environment. *Nat Plants* 5:924–932

van Nocker S, Ludwig P (2003) The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function. *BMC Genomics* 4:50

van Zelm E, Zhang Y, Testerink C (2020) Salt tolerance mechanisms of plants. *Annu Rev Plant Biol* 71:403–433

Vavilova V, Konopatskaia I, Kuznetsova AE, Blinov A, Goncharov NP (2017) *DEP1* gene in wheat species with normal, compactoid and compact spikes. *BMC Genet* 18:106

Wang Y, Botella JR (2022) Heterotrimeric G protein signaling in abiotic stress. *Plants (basel)* 11(7):876

Wang XQ, Ullah H, Jones AM, Assmann SM (2001) G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. *Science* 292:2070–2072

Wang RS, Pandey S, Li S, Gookin TE, Zhao Z, Albert R, Assmann SM (2011) Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells. *BMC Genomics* 12:216

Wang J, Grubb LE, Wang J, Liang X, Li L, Gao C, Ma M, Feng F, Li M, Li L et al (2018) A regulatory module controlling homeostasis of a plant immune kinase. *Mol Cell* 69:493–504.e496

Warpeha KM, Lateef SS, Lapik Y, Anderson M, Lee BS, Kaufman LS (2006) G-protein-coupled receptor 1, G-protein Galphai-subunit 1, and prephenate dehydratase 1 are required for blue light-induced production of phenylalanine in etiolated Arabidopsis. *Plant Physiol* 140:844–855

Warpeha KM, Gibbons J, Carol A, Slusser J, Tree R, Durham W, Kaufman LS (2008) Adequate phenylalanine synthesis mediated by G protein is critical for protection from UV radiation damage in young etiolated *Arabidopsis thaliana* seedlings. *Plant Cell Environ* 31:1756–1770

Wendt T, Holme I, Dockter C, Preuss A, Thomas W, Druka A, Waugh R, Hansson M, Braumann I (2016) HvDep1 is a positive regulator

of culm elongation and grain size in barley and impacts yield in an environment-dependent manner. *PLoS ONE* 11:e0168924

Wu Y, Xu X, Li S, Liu T, Ma L, Shang Z (2007) Heterotrimeric G-protein participation in *Arabidopsis* pollen germination through modulation of a plasma membrane hyperpolarization-activated Ca^{2+} -permeable channel. *N Phytol* 176:550–559

Wu Q, Regan M, Furukawa H, Jackson D (2018) Role of heterotrimeric Galphai proteins in maize development and enhancement of agronomic traits. *PLoS Genet* 14:e1007374

Wu Q, Xu F, Liu L, Char SN, Ding Y, Je BI, Schmelz E, Yang B, Jackson D (2020) The maize heterotrimeric G protein β subunit controls shoot meristem development and immune responses. *Proc Natl Acad Sci USA* 117:1799–1805

Yadav DK, Islam SM, Tuteja N (2012) Rice heterotrimeric G-protein γ subunits (RGG1 and RGG2) are differentially regulated under abiotic stress. *Plant Signal Behav* 7:733–740

Yadav DK, Shukla D, Tuteja N (2013) Rice heterotrimeric G-protein α subunit (RGA1): in silico analysis of the gene and promoter and its upregulation under abiotic stress. *Plant Physiol Biochem* 63:262–271

Yadav DK, Shukla D, Tuteja N (2014) Isolation, in silico characterization, localization and expression analysis of abiotic stress-responsive rice G-protein β subunit (RGB1). *Plant Signal Behav* 9:e28890

Yan Y, Sun M, Li Y, Wang J, He C, Yu X (2020) The CsGPA1-CsAQPs module is essential for salt tolerance of cucumber seedlings. *Plant Cell Rep* 39:1301–1316

Yang D, Zhou Q, Labroska V, Qin S, Darbalaei S, Wu Y, Yuliantie E, Xie L, Tao H, Cheng J et al (2021) G protein-coupled receptors: structure- and function-based drug discovery. *Signal Transduct Target Ther* 6:7

Yin H, Chen QM, Yi MF (2008) Effects of short-term heat stress on oxidative damage and responses of antioxidant system in *Lilium longiflorum*. *Plant Growth Regul* 54:45–54

Yu Y, Chakravorty D, Assmann SM (2018) The G protein β -subunit, AGB1, interacts with FERONIA in RALF1-regulated stomatal movement. *Plant Physiol* 176:2426–2440

Zait Y, Ferrero-Serrano A, Assmann SM (2021) The α subunit of the heterotrimeric G protein regulates mesophyll CO_2 conductance and drought tolerance in rice. *N Phytol* 232:2324–2338

Zeng Q, Wang X, Running MP (2007) Dual lipid modification of *Arabidopsis* $\text{G}\gamma$ -subunits is required for efficient plasma membrane targeting. *Plant Physiol* 143:1119–1131

Zhang L, Hu G, Cheng Y, Huang J (2008) Heterotrimeric G protein α and β subunits antagonistically modulate stomatal density in *Arabidopsis thaliana*. *Dev Biol* 324:68–75

Zhang W, Jeon BW, Assmann SM (2011) Heterotrimeric G-protein regulation of ROS signalling and calcium currents in *Arabidopsis* guard cells. *J Exp Bot* 62:2371–2379

Zhang DP, Zhou Y, Yin JF, Yan XJ, Lin S, Xu WF, Baluska F, Wang YP, Xia YJ, Liang GH et al (2015) Rice G-protein subunits qPE9-1 and RGB1 play distinct roles in abscisic acid responses and drought adaptation. *J Exp Bot* 66:6371–6384

Zhang H, Zhu J, Gong Z, Zhu JK (2022) Abiotic stress responses in plants. *Nat Rev Genet* 23:104–119

Zhao J (2015) Phospholipase D and phosphatidic acid in plant defence response: from protein–protein and lipid–protein interactions to hormone signalling. *J Exp Bot* 66:1721–1736

Zhao J, Wang X (2013) Biochemical analysis of the interaction between phospholipase D α 1 and GTP-binding protein α -subunit from *Arabidopsis thaliana*. *Methods Mol Biol* 1043:21–35

Zhao MG, Chen L, Zhang LL, Zhang WH (2009) Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in *Arabidopsis*. *Plant Physiol* 151:755–767

Zhao Z, Stanley BA, Zhang W, Assmann SM (2010) ABA-regulated G protein signalling in *Arabidopsis* guard cells: a proteomic perspective. *J Proteome Res* 9:1637–1647

Zhao C, Zayed O, Yu Z, Jiang W, Zhu P, Hsu CC, Zhang L, Tao WA, Lozano-Duran R, Zhu JK (2018) Leucine-rich repeat extensin proteins regulate plant salt tolerance in *Arabidopsis*. *Proc Natl Acad Sci USA* 115:13123–13128

Zhou Z, Zhao Y, Bi G, Liang X, Zhou JM (2019) Early signalling mechanisms underlying receptor kinase-mediated immunity in plants. *Philos Trans R Soc Lond B* 374:20180310

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.