Kinetic phenomena of helical plasma waves with orbital angular momentum
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An accurate description of plasma waves is fundamental for the understanding of
many plasma phenomena. It is possible to twist plasma waves such that in addition to
having longitudinal motion, they can possess a quantized orbital angular momentum.
One such type of plasma wave is the Laguerre-Gaussian mode. Three-dimensional
numerical particle-in-cell simulations demonstrate the existence of stable long-lived
plasma waves with orbital angular momentum. These waves can be shown to create
large amplitude static magnetic fields with unique twisted longitudinal structures.
In this paper we review the recent progress in studies of helical plasma waves and
present a new analytical description of a standing Laguerre-Gaussian plasma wave
mode along with 3D PIC simulation results. The Landau damping of twisted plasma
waves shows important differences compared to standard longitudinal plasma wave
Landau damping. These effects include an increased damping rate, which is affected
both by the focal width and the orbital number of the plasma wave. This increase
in the damping rate is of the same order as the thermal correction. Moreover, the
direction of momentum picked up by resonant particles from the twisted plasma wave
can be significantly altered. By contrast the radial electric field has a subtle effect

on the trajectories of resonant electrons.
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I. INTRODUCTION

For some time now it has been known that light waves in a specific configuration can carry
orbital angular momentum and that this property can be transferred to objects it interacts
with!. These light waves, which can be described using a Laguerre-Gaussian solution to the
paraxial wave equation, often referred to as either helical waves or vortex waves somewhat

interchangeably, have been suggested for use in a variety of applications at low intensities?.

More recently there have been several advances in optical and experimental techniques
that have allowed production of these beams near or at relativistic intensities via spiral
staircase-like mirrors®* and transmissive phase plates®”. A fundamental phenomena when
considering laser-plasma interactions is the electron plasma wave, which is also able to be
constructed in helical configurations. While a helical plasma wave described by a Laguerre-
Gaussian paraxial solution has previously been proposed®?, the solutions to the dispersion
and Landau damping rate in the linear regime were incomplete. A more accurate solution
of the dispersion equation for the helical plasma waves, along with kinetic calculations that
demonstrate the stability of such waves, is presented in Ref. 10. There are further works on
the properties of plasma waves with orbital angular momentum!* % however the conclusions
drawn in these studies are based on the incomplete previously described’ plasma wave
dispersion and Landau damping. These results could be revisited using the methodology

described in this article and may result in further insights.

Helical laser produced plasma waves are important for a number of applications, an ex-
ample being the generation of extreme intensity ultra-short helical pulses through processes
like stimulated Raman amplification'* 7. A particular nomenclature of “light-spring”!® has
been previously used to denote a multi-colored laser beam with an azimuthal mode index
correlated to the laser wavelength, configured such that it generates helical backscatter as
a result of stimulated Raman scattering. The Raman backscatter instability can be used to
generate high amplitude plasma waves'®. A mechanism has been proposed where two co-
propagating laser beams with opposing helicity produce a ponderomotive force that excites
a helical plasma wave'®. Such plasma wave was suggested for generation of large longitudi-
nal magnetic fields from azimuthal currents, which are a general feature of helical plasma
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waves'’. While there is a number of applications including helical plasma waves, a fur-

ther investigation of the basic physics is of interest, in particular, in the non-linear Landau



damping regime in the high energy density plasmas, where plasma wave dynamics are shown
to be dominated by kinetic effects?”, and where the study of helical plasma waves remains
unexplored.

This article presents an extended summary of physics of helical plasma waves and related
processes based on the kinetic consideration, as described in Refs. 10, 21, and 22 along
with new analytical and numerical results including three-dimensional particle-in-cell (PIC)
simulations. The new results include an analytical description of the second order magnetic
fields associated with standing helical plasma waves which is presented in Section III). To
support the analytical results, 3D PIC simulations of a standing helical plasma wave with [ =
2 and a traveling plasma wave with [ = 1 are shown in comparison to the previously produced
traveling [ = 2 mode. Additionally Section IV presents an exploration of the trajectories of
single particles within plasma wave electric fields, demonstrating the constraining effect of
the radial electric field upon populations of resonant electrons. Finally in Section V several
further insights into the non-linear damping of helical plasma waves are presented.

This paper addresses three topics: the first is an overview of a self-consistent solution to
the dispersion and damping of helical plasma waves in the linear regime (Section II); the
second being the generation of magnetic fields via the second order vector field (Section III);
the third being the transfer of momentum from helical plasma wave to resonant electrons

(Section IV) through the nonlinear Landau damping (Section V).

II. LAGUERRE-GAUSSIAN PARAXIAL SOLUTION FOR PLASMA
WAVES AND A SELF-CONSISTENT LANDAU DAMPING

This section provides a brief overview of the dispersion and Landau damping of helical
plasma waves in the linear regime presented in Ref. 21. We consider the long wavelength limit
of kAp < 1 in the calculation detailed below, such that the non-linear strong damping case
is explicitly excluded in the linear analysis. The reasoning behind this consideration is that
the plasma wave dispersion and damping can be described analytically as small corrections
to the plasma frequency. This also facilitates a comparison with numerical simulations. The
key to the solution lies within the paraxial approximation to the wave equation and so the
initial steps will be detailed to specifically elucidate this. The paraxial wave equation in

cylindrical coordinates can be written as V2U(z,r,0) ~ (2ikd, + V*)U(z,r,0) = 0, which
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assumes that the function U evolves slowly in the propagation direction z. A solution using

Laguerre-Gaussian modes can be written as

U(z,r,0) Z ap i Fp 1 (X) exp (il6 + ig,; + igX) (1)

where X = r?/w}(z) is a dimensionless radial coordinate, wy, is the beam radius given
by wy(z) = wb,om, with wy ¢ being the width at focus, the Rayleigh length is
zr = kwi /2, the Gouy phase is ¢,(2) = —(2p + |I] + 1) arctan(z/zr), a,; is a constant
coefficient that informs of the mode amplitude, the factor ¢ = z/2zr accounts for the

wavefront curvature and F},; is given by the Laguerre-Gaussian function:

Fou(X) = ﬁx“'/%'l'm exp (—X/2), 2)

where LL”(X) = (p!) ' exp(X)X 'd% (exp(—X)X"*P) is a generalized Laguerre polyno-
mial, as described by the Rodriguez representation, of degree p and [. The constant term in
F,,; is defined from the orthonormal condition [~ dX F, ((X)Fy (X) = 6,

For a plane plasma wave, solution to the Poisson equation depends only on one coordinate
z in the direction of wave propagation. By contrast, for twisted waves it is necessarily to

consider a full three-dimensional solution to the Poisson equation that becomes
(2ik0, + V) ® = —eey 'one = —eey ! /dvéfe, (3)

where —e is the electron charge, ® is the electric potential, on, the perturbation to the
electron density, and 0 f, the perturbation to the electron distribution function. The Poisson
equation can be solved by considering ¢ f. written as sum of eigenmodes given by Laguerre-

Gaussian functions. The set of solutions for the potential then becomes:
(z,7,0,1) Z%JF” )exp (i€), (4)
and similarly for the perturbation to the electron distribution function:
dfe(z,m,0,v,1) Z foa(v X) exp (i€) (5)

with the phase £ = —wt + kz+10 +1,; + ¢X, where p is the radial mode number and [ the

azimuthal mode number.



To find the expression for the complex plasma wave frequency, including dispersion cor-
rection and Landau damping, we use the potential, given by the Poisson equation, and
solve the linearized Vlasov equation for the electron distribution function in the paraxial

approximation, which can be written as:

(—iw+ikv, + vy -V 1)fpu =
(—ikvz — V] - VJ_) e®p718€f0, (6)

where 0. fj is the derivative of the unperturbed electron distribution function fy, with respect
to the electron kinetic energy . Since the unperturbed distribution function is assumed to
be isotropic, only the electric field is retained in the linearized Vlasov equation. The case of
plasma waves in a magnetized plasma?®® with an anisotropic electron distribution is out of
the scope of this paper.

While the linearized paraxial Vlasov equation is already a simplification, solving it re-
quires assessment of several issues. A particular problem occurs when considering the trans-
verse gradient operator v, - V. This operator leads to the coupling of the neighboring
plasma wave modes since the eigenfunctions to the paraxial Poisson equation are not eigen-
functions of the Vlasov equation. The physical implication is that the electron motion in
the transverse directions couples the plasma wave modes.

This mode-coupling was ignored in the previous publication’, and an erroneous simpli-
fication was suggested by taking an average over of the transverse operator over a single
mode. This inconsistent approach leads to incorrect expressions for the Landau damping
rate and wave dispersion. Instead, we account for this mode-coupling effect by consider-
ing an expansion over the parameter 1/kw, < 1, being a small factor within the paraxial
approximation.

The full derivation to the solution to the linearized Vlasov equation is described in Ref. 21.
All of the operations carried out in the solution to Eq. (6) assume a small value for 1/kwy, <1
and so only terms on the first order of this parameter are kept. The solution obtained gives
the following expression for the longitudinal dielectric permittivity, which is valid within the

Rayleigh length, |z| < zg:
2

e
=14 —
€(w, k) =1+ e X

/ dv{( wlw =k 4l 4 (7)
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where w is the plasma wave frequency, k the wavenumber and N = 2p + |I| + 1.
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FIG. 1. Dispersion (a) and damping (b) of the helical plasma wave mode p = 0, [ = 2 calculated
from Egs. (8) and (9) for the wave width shown in the legend. The black dashed line on panel (a)
shows the Bohm-Gross dispersion corresponding to wy,o/Ap — oo, while the black dashed line on

panel (b) shows the damping rate in the limit k*Apwp o > 1.

The dispersion function € has a resonance, similar to the plane wave case, close to v, =
w/k. However this resonance is now split to v = w/k % (v, /kwy)V/N. This widening of
the resonance condition has interesting consequences which carry over into the non-linear
Landau resonance regime and will be described in Section IV of this article. It is worth
noting that the extra term in the resonance is non-zero even for a Gaussian beam as a
consequence of the limited transverse dimension of the plasma wave.

For the case of a Maxwellian velocity distribution with a thermal velocity of vy, using
a Taylor expansion and assuming the limit kAp < 1, one can find an explicit dispersion
equation for helical plasma waves:

Rew?

2
wp

=1+ 3K°\3 + (8)

2, 2
k2wg

with the imaginary part giving the Landau damping rate:
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where the function R(() is given by:

R(C) =1+ \/gg exp (%2) xf (%) | (10)

where erf(z) denotes the error function with argument z, Ap is the Debye length, and w, is
the electron plasma frequency.

These expressions self-consistently take into account the mode coupling that occurs when
considering a three-dimensional plasma wave structure. The term arising from the beam-like
structure of the plasma wave is proportional to 1/k*\pwy,. It is non-zero even for a Gaussian
wave (I = 0 mode) and it can be comparable or even dominate the thermal corrections. An
example of the dispersion and damping rates of a helical wave and a comparison to the plane

wave limit (where kwy, — 00) is shown in Fig. 1.

IIT. PLASMA WAVE STABILITY AND MAGNETIC FIELD
GENERATION

In this section we describe the second order magnetic field associated with helical plasma
waves. A selection of snapshots from the 3D PIC simulations are shown in Fig. 2. Fig-
ure 2(a,b) describes the | = 1, [ = 2 helical plasma wave, whereas Fig. 2(c) presents results
from the superposition of [ = +2 and [ = —2 plasma waves resulting in a standing helical
plasma wave. Each panel of Fig. 2 shows the density displacement of each wave and a calcu-
lation of the magnetic field lines for each plasma wave are also shown. The axial magnetic
field in the p = 0, [ = 1 case appears weaker, and a significant amount of numerical noise can
be seen in the plot. We first consider an analytical calculation of the magnetic fields, then
we describe the set up of PIC simulations, and finally a comparison between the numerical

simulations and the analytical theory is made.

Analytical calculation of helical plasma wave magnetic fields

While a paraxial helical plasma wave is electrostatic to first order on its amplitude, it can

produce magnetic fields in the second order due to the finite radial extension of the plasma
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wave longitudinal electric field. As demonstrated by Bell and Gibbon?’, a vector potential
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FIG. 2. Density perturbations and magnetic field lines in a twisted plasma wave obtained from
simulations with the PIC code OCEAN?4. Panel (a) shows a simulation of a traveling plasma wave
mode p =0, 1 =1, (b) a traveling plasma wave mode p = 0, [ = 2, (¢) a standing wave mode p = 0,
| = £2. The surfaces of a constant density perturbation dne/ne o correspond to the positive (red)
and negative (blue) perturbation at the level of 80% of the maximum density displacement. The
magnetic field lines correspond to the interior (green) and exterior (purple) regions of the plasma

wave. The magnetic field lines are calculated using the Mayavi2 streamline package.

A® is associated with a second order oscillating current in a beam-like plasma wave:
(0} — VP + w2)A® = 139, (11)

where J® = —€0(0ne/Ne0)OE is the plasma wave current density, a product of the plasma
wave electric field E and density perturbation dn./neq, both of them proportional to the
plasma wave potential ®,;. A magnetic field can then be calculated from this vector potential
using the relation B® = V x A®. For a single mode plasma wave near the focal region

(wy, >~ wy o) the magnetic field is static in time and has two components in the axial e, and
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azimuthal ey directions:

Bo _ _FeEg
MeW3wh,

(F2,(X)) {eg\/i — ele : (12)

p7 ktwb

where m, is the electron mass and Fj is the plasma wave electric field amplitude. Full details
for the calculation of the magnetic field can be found in Ref. 10. The same method can be
applied to obtain a field for the helical standing plasma wave. In this case the magnetic field
has non-zero axial and radial components, B, and B,:

. (F2,(X)) (1 . w? cos(Zkz)) -

B® _ ke E?
kwy, 4k2c? + w2

2mewdwy,

F2)(X) wsin(2kz)

. . 1
© VX 4k + Wl (13)

While static in time, magnetic field oscillates along the propagation axis with a wavenum-
ber double that of the electric field oscillation. The derivation of this formula is given in
Appendix A.

It is worth noting that the magnetic field obeys the zero divergence condition: V-B?) = 0,
which in the case of traveling wave reads: 9,B,+r"10yBy = 0, and in the case of the standing
wave: 0.8, + 0,B, = 0. The structure and magnitude of the magnetic fields is verified in
the PIC calculation for the p = 0, [ = 2 mode where the magnetic fields are seen to be
static with only minor fluctuations in the amplitude. A snapshot in time of the PIC results
compared to the magnetic field calculations described by Eq. (12) can be seen in Fig. 3.

The second order magnetic field is not necessarily weak in experiments. A plasma wave of
a wavelength of 400 nm, width of 8 um (kwy = 407) and amplitude ag = eEy/mecw, = 0.2
excited in a plasma of density n, = 1.7 x 10 cm™3 will generate a magnetic field of
approximately 4 T (or 40 kG) in the azimuthal direction. This magnetic field depends on
the plasma wave radius as B o (ag/kwy)?, which may enable the generation of significantly

higher magnetic fields for smaller values of kwy, or larger wave amplitudes.

3D PIC simulations of helical plasma wave magnetic fields

The stability of helical plasma waves is tested in numerical simulations with the PIC code
OCEAN?*. The representative simulations showing the excitation of three different plasma

wave modes are discussed below. In two simulations we excite traveling waves with mode
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FIG. 3. Transverse slices (a), (c), and (e) and line-outs from those slices (b), (d) and (f) of the
magnetic field B, generated by helical plasma waves in three PIC simulations. The locations of
slices and line-outs are described above each plot. Panels (a) and (b) correspond to a traveling
helical plasma wave mode p = 0, [ = 1 (see Fig. 2(a)). Panels (c) and (d) correspond to a traveling
plasma wave mode p = 0, I = 2 (see Fig. 2(b)). Panels (e) and (f) correspond to a standing plasma
wave mode p = 0, [ = £2 (see Fig. 2(c)). The black dashed lines show theoretical predictions of
B, for each mode according to Eq. (12) for panels (b) and (d) using amplitudes ap = 0.15 and
ap = 0.2 respectively, and Eq. (13) for panel (f), using a mode amplitude of ag = 0.22. The data

is plotted after a 3D Gaussian filter with a width of 1 cell used to remove high frequencies.

indices p = 0, [l =1 and p = 0, [ = 2. In the third simulation we excite a standing wave
mode with p = 0 and [ = 2, which is equivalent to a pair of counter-propagating p = 0 modes
with [ = £2 so the azimuthal component of the current is present. A detailed description of
the simulation of the p = 0, [ = 2 mode can be found in Ref. 10. For completeness the full
details for the three simulations, along with the procedure used to excite the plasma wave,

are described in Appendix B.
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To ensure that the excited plasma wave is stable, the plasma temperature and density
are chosen such that there is no Landau damping within the simulation. This was done
by choosing a relatively low plasma temperature, T, = 1.54 x 10™3m.c® and setting a large
plasma wave phase velocity, v,, = w/k = c¢. The plasma wave width wy, =5 ¢/w,, is chosen
such that the paraxial approximation is verified, 1/kwy, = 0.2, and coupling to other modes
in Eq. (9) is minimized, 1/k*w,Ap = 0.2. To avoid exciting ion acoustic waves, fixed ions
are considered.

The length of the box is chosen to exactly fit one wavelength with kL, = 2w. The box
is filled with a fully ionized uniform hydrogen plasma with the cell side length equal to one
Debye length Al = Ap. In order to observe the second order magnetic field, the signal-
to-noise is kept at a sufficiently low level by using 100 macro-particles per cell per species.
The transverse boundary conditions are chosen to be absorbing for both particles and fields.
This choice is motivated by the fact that orbital angular momentum is extrinsic and so any
interaction from nearby plasma waves, via periodic boundary conditions in the transverse
directions could complicate the wave dynamics.

The wave is excited over 10 plasma periods, T}, = 27/w,,, by using a weak driving force
Eq calculated from Eq = —V®,,;. Details regarding the excitation process are discussed in
Ref. 22 and in Appendix B. After the initial excitation time ¢ = 107}, the driving force Eq4
removed, and the plasma wave is allowed to oscillate freely. An amplitude of 0.15 < ag < 0.25
is achieved for each plasma wave, which is smaller than the driver amplitude due to slight
frequency mismatching of E4 with the excited plasma wave, and slight absorption at the
otherwise periodic axial boundaries. Figure 2 shows three-dimensional renderings of the
plasma wave density perturbation and magnetic field lines for the resulting plasma waves at
a time ¢t = 147}, after the driving field Eq4 is removed.

Selected results from the particle-in-cell simulations can be seen in Figs. 3 and 4 where the
non-zero components of the second order magnetic field is plotted. The remaining magnetic
field components (B, in the case for traveling waves, and By in the case for the standing
wave) are at the noise level. The axial component of magnetic field B, is plotted in Fig. 3
at a time of 147}, after the driving field E4 is removed. The simulation for p = 0, [ = 2
standing and traveling waves are run for a total time of 207}, after the driver is removed and
show stable magnetic fields until the end of the simulations. The PIC results for the axial

magnetic field match the analytical formulas to a high degree. The axial magnetic field is
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FIG. 4. Transverse slices (a), (c), and (e) and line-outs from those slices (b), (d) and (f) of the
non-zero transverse components of the magnetic field generated by helical plasma waves in three
PIC simulations. The locations of slices and line-outs are described above each plot. Panels (a)
and (b) show the azimuthal magnetic field By generated by a traveling helical plasma wave mode
p=0,1=1 (see Fig. 2(a)). Panels (c) and (d) show the azimuthal magnetic field By for a traveling
plasma wave mode p = 0, [ = 2. Panels (e) and (f) show the radial magnetic field B, for a standing
plasma wave mode p = 0, [ = £2. Two line-outs shown in panel (f) correspond to the cuts shown
in panel (e) using the matching line styles. The black dashed lines show theoretical predictions
of By for each mode according to Eq. (12) for panels (b) and (d) using amplitudes ay = 0.15 and

ap = 0.2 respectively, and Eq. (13) for panel (f) using a mode amplitude of ag = 0.22

uniquely from the helical structure of the electric field.

The PIC simulation results for the non-zero transverse magnetic field components (B,
in the standing case, and By in the traveling case) are shown in Fig. 4. The traveling
waves, both [ = 1 and [ = 2, have azimuthal transverse magnetic field By that shows a

good match to the analytical predictions. The lower signal to noise ratio observable in the
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[ = 1 simulation is due to both a weaker coupling between the driving electric field and
excited plasma wave, and additional numerical noise. Both of these effects are due to the
lower resolution used for this simulation (see Table I). The PIC results for the standing
wave, however, show several discrepancies when compared to the analytical calculation (see
Fig. 4(e) and (f)). The most obvious one is the magnitude of B,, which is two times larger
compared to the theoretical prediction. The second discrepancy is that there is an oscillation
in the azimuthal direction seen in the numerical calculations which is not expected in the
theory. The frequency of this oscillation is 2wy, so it is possible that it is related to the

insufficient resolution of the PIC code in the longitudinal direction.

The larger B, field may also be explained by a mismatched driving field leading to exci-
tation of additional small-amplitude non-resonant modes. The description of the magnetic
fields described by Eq. (13) requires that the time-varying terms in the second order vector
potential A (calculated in Appendix A) exactly cancel when calculating V x A® = B®),
A frequency mismatch may change the contribution of the axial and azimuthal currents to
the radial magnetic field B,., which would have both a static component and a component

that oscillates in time at a frequency of 2wy,

IV. TRANSFER OF ORBITAL ANGULAR MOMENTUM TO
ELECTRONS

In this section the motion of resonant electrons within a helical plasma wave is considered.
Analytical expressions for the electron trajectories are illustrated with numerical calculations

for different initial conditions.

Electron motion in a helical plasma wave

Electron dynamics is obtained from the non-relativistic equations of motion:

diTe = Vq and Med;ve = —eE
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with the electric field of plasma wave calculated from the potential Eq. (4). For a single

traveling plasma wave mode an electric field reads:

B, =EoF,(X) sin(kz — wt + 16), (14)
LE,
Ey=—X"2F (X)sin(kz — wt + 10), (15)
kwb
_ 2L 1/2 1
E,=— k:_X F (X)) cos(kz — wt +10). (16)
Wp ’

According to Eqs. (14) and (15), the electron momentum increments in the axial and az-
imuthal directions are related as Ap,/Apg = kr/l. This leads to the relationship between

the axial momentum p, and orbital axial momentum [, = rpy:
IAp, = kl, + Amgc, (17)

where A is an integration constant depending on initial conditions. The radial momentum
Ap,, however, is out of phase with Ap, and Al..

The Beeman integration routine® is used in numerical calculation of electron trajectories,
due to it’s simplicity of implementation. A small amplitude, eFy/mewv,, = 1074, plasma
wave mode p = 0, [ = 1 is considered, so the second order effects can be neglected. Two
representative initial conditions correspond either to a non-resonant electron initially at
rest, vo = 0, or to a resonant electron traveling close to the plasma wave phase velocity,
v;0 = 0.99v,;, and v, 5 o0 = 0. The relative strength of the electric field in a plasma wave vary
with radial position r and so initial positions in the range ro/wy, = 0.1 — 2.0 are considered.
The electrons are tracked within the focal region of the plasma wave, |z| < zg. The motion
of electrons is followed over time interval of 257,. The electron trajectories and phase plots
are shown in Fig. 5.

Non-resonant electrons perform an oscillatory movement with the radial velocity v, phase-
shifted by a quarter of period with respect to v, and vy (see Fig. 5(a) and (c)). Thus, there is
no net transfer of momentum from the wave to the non-resonant particles. This is expected
given that the corresponding components of electric field, Eqs. (14), (15) and (16), have
similar phase differences. The velocities v, and vy oscillate in phase, which is described by
a straight line in Fig. 5(e) in agreement with Eq. (17). The size and shape of the electron’s
orbits in phase space vary as a function of r. The radial oscillation swaps direction at

r = 1.bwy due to the reversal in the sign of the radial electric field F,, seen in Fig. 5(g).
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FIG. 5. Trajectories and phase plots of test electrons initiated at 6y = 7/2 and several radial
positions 7 indicated in the figure. Panels (a), (c), and (e) show the velocity of a non-resonant
electron with varying initial radial position rg, v, = 0, and initial phase v = 0, over 25 plasma
periods. Panels (b), (d), and (f) show the velocity of a resonant electron with the same initial
conditions except v, o = 0.99vp,, over the same time. Panel (g) shows the radial profile of the
electric field with a phase of v = 0 for E,, and v = —7/4 for E, and Ejy. Panel (h) shows the phase

v of the plasma wave electric field experienced by the resonant particles over time. The phase of

This change in sign of the radial velocity corresponds to the change in sign of the magnetic



field in Fig. 3.

A markedly different behavior is observed for resonant electrons with velocity close to the
phase velocity, see Fig. 5(b), (d), (f) and for the phase of the electric field experienced by the
electrons (h). Each electron experiences a slowly varying local electric field, which results in
a regular change of the momentum with time, both in axial and transverse directions. While
a linear relationship between the axial and azimuthal velocities, v, and vy, in Fig. 5(g) is
similar to the non-resonant electrons, their values are one order of magnitude larger. The
deviation from the linear relationship occurs due to changes of electron radial position over
time, which alters the ratio between E, and FEjy in a non-linear fashion.

The trajectories of electrons vary significantly as a function of the initial radial position.
The inner electrons with rqg < 1.5wy are accelerated outwards, while the outer electrons
are accelerated inwards. This results in the bunching of resonant electrons at the position
ro ~ 1.5wp, corresponding to the zero of the radial electric field, and a significant non-
zero net transfer of momentum and energy over the time of 257, from the wave to the
resonant particles. This behavior is similar to that observed when helical light interacts

with electrons®’, the impact of which requires further study.

V. NON-LINEAR DAMPING OF HELICAL PLASMA WAVES

This section presents a brief overview of results related to the energy and momentum
exchange of a helical plasma wave with electrons in the nonlinear regime. The previous
work?? described the helical plasma wave damping in the kinetic regime kAp > 0.3%° due to
the trapping of resonant electrons in the wave. In contrast with the linear regime, where the
Landau damping coefficient given by Eq. (9) is calculated from the unperturbed electron
distribution function, the simulations presented in Ref. 22 correspond to the case where the
helical plasma wave strongly modifies the electron distribution in the phase space.

Four simulations detailed in Ref. 22 present the dynamics of resonant electrons in a
Gaussian wave mode p = 0, [ = 0, and three Laguerre-Gaussian modes [ = 1, 2 and 4. The
same method of gradual excitation as described in Appendix B is used, however, the plasma

2 such that kAp = 0.33 and a significant number of

temperature was higher, T, = 0.03m,c
electrons may resonantly interact with the wave. The frequency of each plasma wave was

measured at several positions along the z-axis and at the radial positions of the axial electric
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field maximum. It is observed that the frequency of helical plasma wave decreases as its
amplitude increases. This is explained by the particle trapping inline with the kinetic theory

of plane plasma waves?® 39

. The frequency measured was the same, w = 1.11 & 0.01w,, for
the all four considered cases.

Particle trapping is observed by plotting the electron motion in phase space. In a plane
or Gaussian plasma wave the electrons with velocity close to the phase velocity perform a
rotation in the phase space z, p, alternating between accelerating and decelerating phases
of the plasma wave electric field. For a helical plasma wave the phase-space rotation oc-

curs in a twisted phase space described by Z, p,, where Z = z + 10/k where the accelerat-

ing/decelerating phases are twisted about the z—axis [ times per wavelength.

d?N,/dv.dz [arb. units]

0 1 2 3 40 1 2 3 4
Z/ Ape

FIG. 6. Distribution of electrons in the phase space, z, v, averaged over the transverse coordinate
r and transverse velocities v, and vg. Here Z = 2410/k, Ape = 27 /k and vy, = 0.615¢. A Gaussian
mode p = 0, I = 0 (a), and three Laguerre-Gaussian modes with p = 0, and [ = 1 (b), 2 (¢) and

4(d) are considered. The results are presented at a time ¢t = 9.5 T),.

Figure 6 shows the phase plot in the plane z, p, where the resonant particles are trapped
and oscillate around the phase velocity v,, = 0.615c. The distribution function, which is
retrieved from numerical simulation at time 9.57),, is integrated over the transverse velocities
v, and vy and in the transverse plane r, 6. In order to account for azimuthal displacement of
trapped particles in the helical wave, integral over the azimuthal angle is performed in the
tilted plane, 6, z — 10/k, while keeping constant the tilted coordinate Z = z + 10/k.

The amplitude of electron oscillations decreases with the orbital number [, but a difference

between the Landau damping rate across modes in such a nonlinear regime is difficult to
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quantify as the simulation comprises several bounce periods. The damping is suppressed
due to the rapid phase mixing and formation of a plateau in the distribution function close
to the phase velocity of the plasma waves. Once the plateau is formed, there is a roughly
equal quantity of trapped electrons traveling above and below the phase velocity, resulting

in a zero net energy exchange between the particles and the wave.

------ 1=0 === l=1 —— =2 —= =4

0.6 0.8 1.0 1.2

p2/mec

Q

S 34 -=- grad 0.9402 JPtia

> % peaks _--

227 % 2e

/\: 14 ”’*zf

= Pl (®)

= e

0 1 2 3

Ip./mec

FIG. 7. Correlation between the axial momentum p, and OAM (l.),, averaged over the perpen-
dicular components of the electron momentum and radial coordinate. Panel (a) shows k(l.),, as
a function of p, separately for each mode. The + markers show the maximum value calculated
from a Gaussian fit. Panel (b) shows dependence of this maximum value, k(l;),_ max on [p,, where
[ is the azimuthal mode number. The gradient of the fitted straight line is 0.9 + 0.2 with intercept
A = 0.04 £0.05 is in good agreement with Eq. (17). Reprinted figure with permission from [D.
R. Blackman, R. Nuter, P. Korneev, and V. T. Tikhonchuk, Phys. Rev. E 102, 033208 (2020).]

Copywrite (2020) by the American Physical Society.

The correlation between the gain of OAM and axial momentum resonant electrons pre-
dicted by Eq. (17) is verified in Fig. 7. In panel (a) we show [, for a given p, averaged over
the perpendicular components of the electron momentum and radial coordinate, (l.),.. The
gain is observed for the axial electron velocities v, above the minimum velocity vy, =~ 0.5¢,
which is slightly below the phase velocity v,, = 0.615c. The maximum gain of OAM in-
creases with [, but the corresponding axial momentum p, . decreases. This relation is

further exploited in Fig. 7(b), where the maximum value of OAM, k(l.),. max @s a function
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of the axial momentum Ip, m.x corresponding to the position of this maximum. A linear rela-
tion between the OAM gain the characteristic axial momentum is indeed in good agreement
with the theoretical prediction given by Eq. (17).

A detailed study of the OAM transfer from the plasma wave to resonant particles in
the linear regime is presented in Ref. 21. It is demonstrated analytically that energy, axial
momentum, and OAM are dissipated from the plasma wave at the same rate. Inline with
the numerical calculations presented in Section IV, the radial velocity of electrons within
the plasma wave does not affect the OAM transfer between wave and particle. In the linear

regime the total rate of transfer of OAM from wave to particles can be written as:

R )
L, dit 60k2 \/ (v l/r)? = (kv, — w)?’

where L, is the local value of the OAM [, averaged over the electron distribution function and

(18)

the plasma wave period. As can be seen from the denominator in the right hand side of this
expression, resonant particles make a dominant contribution. In the case of a Maxwellian

distribution the rate of OAM transfer reads:

1 dLC, Tw o w? N 2 (19)
— =/-==exp| — .
L. dt SEAS TP\ T2k T 2Ry

The above expression shows important dependence of the dissipation rate on the radial

coordinate. Near the plasma wave axis, where k*Xpr < [2, the transfer of plasma wave

OAM to resonant particles is increased over the Landau damping rate described by Eq. (9).
For the helical plasma waves described in Ref. 10 this limit is reached (noting that kAp ~ 0.3
and kwy, = 6) for radial positions where r < 0.6wy,/2. The role of this effect in the non-linear

Landau damping regime remains to be investigated.

VI. DISCUSSION

This article provides a brief overview of the research carried out in Refs. 10, 21, and 22
along with several new results of simulations of plasma wave magnetic fields and particle
trajectories within a plasma wave.

A self-consistent solution for the Landau damping of helical plasma waves in the linear
regime'? takes into account in the paraxial approximation the coupling between Laguerre-
Gaussian modes in a helical plasma wave. This results in the modification of the wave

dispersion and damping.
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The 3D PIC simulations show the stability of helical plasma wave structure and complex
magnetic field structures associated with the rotational component of the plasma wave pon-
deromotive force. The unique longitudinal magnetic field structure seen with plasma waves
with OAM matches the analytical predictions well in both structure and magnitude for small
amplitude plasma waves. The manuscript presents new results demonstrating the magnetic
field structure of a standing plasma wave with OAM, which is investigated both analytically
and in a PIC simulation. The standing wave shows a strong longitudinal component along
with a radial component sensitive to small deviations from the analytical result. These
magnetic fields should be observable in a laboratory by using high power lasers for driving
helical plasma waves in low density gas jets.

For electrons traveling close to the phase velocity of the plasma wave a clear relationship
between the exchange of longitudinal momentum and OAM is demonstrated in both analyt-
ical and numerical calculations. The trapped resonant electrons acquire a significant OAM
which is proportional to the gain of the axial momentum. A novel result from the analysis
performed in Section V shows that the transverse fields play a role not only in the transfer of
OAM from wave to particle but in constraining electrons to the regions of the plasma wave
where the electric field is strongest. Other processes of wave-particle interactions in high
energy density (HED) plasmas involving the OAM transfer are yet to be explored. These
phenomena include three wave interactions, such as stimulated Raman scattering, may be
strongly affected by the OAM kinetics®' 4. Interesting results are likely to be yielded from
an investigation into OAM plasma wave dynamics in more complex HED plasma physics

scenarios.
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Appendix A: Standing plasma wave magnetic field calculation

A helical plasma wave can be constructed from two plasma waves with opposing helicities
and phase velocities, but with otherwise identical mode structure. Interference of such two
modes generates a plasma wave with only rotational motion in the phase. To calculate the
magnetic field of the standing helical plasma wave the lowest moments of the electric current
and electron density can be found using the Poisson and Ampere equations. The following
derivation assumes that the dispersion can be neglected (w ~ w,), and that |z| < zg. The

potential of a twisted standing plasma wave is given by:

¢ = 2¢,,F, (X)) cos(kz) cos(wt — 10). (A1)

The electric field can then be found from the relation E = —V¢:

E, =EyF,;(X)sin(kz) cos(wt — 16), (A2)

Ey :llciw(; F’i}()_?() cos(kz) sin(wt — 16), (A3)

E = — ?\/YF;I(X) cos(kz) cos(wt — 16) (A4)
Wy, ’

where Ey = 2k¢,;. The electron density is calculated from the paraxial version of the

Poisson equation': k¢ = ee; 'dn,, which gives

ONe keFE)

nd = —@FP,Z(X) cos(kz) cos(wt — 10). (A5)

The electric currents, given by j = —eg0;E are:
J. =€owEoF, (X)) sin(kz) sin(wt — 10), (A6)

. eowlEy Fpl(X)
= — : k t—10 A7
Jo kwb \/y COS( Z) COS(w )7 ( )

2eqwEy F (X
Gy = — cow o £ (X) cos(kz) sin(wt — 10). (A8)

kwy, \/Y

Using trigonometric identities to simplify the second order terms, the current density J©) =
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jone/ne reads:
keeo B3
dmewy,
2 6601E3 Fp2,l(X)
O dmewpkwy, X

J2 —

z

F2 /(X)) sin(2kz) sin(2(wt — 10)), (A9)

1 4 cos(2kz)+

cos(2kz) cos(2(wt — 16)) + cos(2(wt — 10)) |, (A10)
J@ — _ 2eeq Ey Fp,l(X)F;;,z(X) %
T dmewykwy, NS¢
sin(2kz) [1 + cos(2(wt — 16))]. (A11)

The second order vector potential given by Eq. (11) components:

keE? sin(2kz) sin(2(wt — 10))

AY == F) Al12
‘ dmewy, p(X) (4k2c? — 3w2) ’ (A12)
(2) _ elBy I (X) 1 cos(2kz)

O T dmawpkw, VX w2 (4k2E2 + w?)
cos(2kz) cos(2(wt — 10)  cos(2(wt + 10)) (A13)
(4/{3262 — 3(,()12)) 3W;2; )
A(Q) _ 2€E0 Fp’l<X)F;,l(X) «
" dmewp kwy, VX
sin(2kz) | 1 cos(2(wt —10)) (A14)
(4k2c% + w?) | w2 3w? '

The second order magnetic field can then be calculated from the vector potential V x A(?) =

B®.

2el B2 r| 1 cos(2kz)
B® — 0 gy | GOSN Al
F Amewpw? (F5) w2 4kt 4 w2 | (A15)
B =0, (A16)
BO) — 2kelE2 FJ,  sin(2kz) (AL7)

 Amewyw, /X (4k2¢2 + w?)’
Appendix B: Particle in Cell Simulation Details

The simulations parameters used to generate the results seen in Figs. 2, 3 and 4 are

detailed in Table I. To generate the plasma waves, a small amplitude field is introduced into
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Simulation parameters:
Plasma Simulation Standing/ |Traveling [ =1

Traveling [ = 2

Transverse size (cells) 1200 x 1200 | 1000 x 1000

Longitudinal size (cells) 160 80
Transverse B.C. absorbing absorbing
Longitudinal B.C. periodic periodic
Cell side length 0.01257 c/wp | 0.0257 c/wy
Time step T,/160 T,/80

Electron temperature |1.5 x 1073mec?| 7 x 10 3mec?
Macro-particles 100 100
(per cell per species)

Ion species Fixed HT Fixed HT

TABLE I. 3D PIC simulations parameters used for calculations of magnetic fields. The plasma
waves were excited with a box of a length L, equal to the plasma wavelength A\, = 27 /k. A width

parameter wp = 5 ¢/wp. The electron density n. is fixed by selecting the appropriate value of wy,.

the plasma in order to generate a perturbation in the plasma wave of the desired type. The

plasma wave and obeys an equation of a driven oscillator:
O Epe + WiE, = w’Ey (B1)

where E,. is the electric field of the plasma wave oscillating at the eigen frequency wy, (k)
(see Eq. (8)) and Eq is the small perturbing driving field operating at w = wy,. For a driving
field of the form:

Eq = é&,E0F, (X) cos(kz — wt +10), (B2)

where €, is the unit vector in the z-direction, a plasma electric field oscillation will be excited

of the form:

——F, (X)) sin(kz — wt 4 10) (B3)

to a first order approximation wy, ~ wp.
In practice the frequency of a plasma wave wy, is not exactly equal to the so-called plasma
frequency wy, as it is subject to both dispersion in the linear regime, and frequency suppres-

sion in the non-linear regime®’. The driving field must accurately match the plasma wave
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frequency to obtain an efficient amplification and avoid the amplification of non-resonant
modes. Frequency matching that can be accounted for by Eq. (8) but the non-linear fre-
quency reduction associated with Landau damping in the non-linear regime must be esti-
mated.

For the simulations produced for this manuscript the standard dispersion (Eq. (8)) is
sufficient for efficient amplification as the phase speed is so high that any Landau damping
that does occur is in the linear regime. This is also the case for the simulations described
in previous publications!'®?!.

The estimate used for the driver frequency w in Ref. 22 was w = 1.11w,, based on prelim-
inary simulations. The driving field was chosen such that the plasma wave should reach a
normalized amplitude of ay = 0.3 over a time ¢ = 107,,.

When performing simulations to observe second order magnetic fields the driving electric
field requires not just the longitudinal component but the transverse components as well.
If the driver does not contain the transverse field structure discrepancies similar to those
seen in the simulation of a standing [ = 2 wave are observable (see Section III), indicating
possible additional non-resonant mode growth.

The driving electric fields are calculated using Eqgs. (A2), (A3) and (A4) for the standing
helical plasma wave, and Egs. (14), (15) and (16) for the traveling waves using appropriate

values according to the simulation scenario.
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