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An accurate description of plasma waves is fundamental for the understanding of

many plasma phenomena. It is possible to twist plasma waves such that in addition to

having longitudinal motion, they can possess a quantized orbital angular momentum.

One such type of plasma wave is the Laguerre-Gaussian mode. Three-dimensional

numerical particle-in-cell simulations demonstrate the existence of stable long-lived

plasma waves with orbital angular momentum. These waves can be shown to create

large amplitude static magnetic fields with unique twisted longitudinal structures.

In this paper we review the recent progress in studies of helical plasma waves and

present a new analytical description of a standing Laguerre-Gaussian plasma wave

mode along with 3D PIC simulation results. The Landau damping of twisted plasma

waves shows important differences compared to standard longitudinal plasma wave

Landau damping. These effects include an increased damping rate, which is affected

both by the focal width and the orbital number of the plasma wave. This increase

in the damping rate is of the same order as the thermal correction. Moreover, the

direction of momentum picked up by resonant particles from the twisted plasma wave

can be significantly altered. By contrast the radial electric field has a subtle effect

on the trajectories of resonant electrons.
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I. INTRODUCTION

For some time now it has been known that light waves in a specific configuration can carry

orbital angular momentum and that this property can be transferred to objects it interacts

with1. These light waves, which can be described using a Laguerre-Gaussian solution to the

paraxial wave equation, often referred to as either helical waves or vortex waves somewhat

interchangeably, have been suggested for use in a variety of applications at low intensities2.

More recently there have been several advances in optical and experimental techniques

that have allowed production of these beams near or at relativistic intensities via spiral

staircase-like mirrors3,4 and transmissive phase plates5–7. A fundamental phenomena when

considering laser-plasma interactions is the electron plasma wave, which is also able to be

constructed in helical configurations. While a helical plasma wave described by a Laguerre-

Gaussian paraxial solution has previously been proposed8,9, the solutions to the dispersion

and Landau damping rate in the linear regime were incomplete. A more accurate solution

of the dispersion equation for the helical plasma waves, along with kinetic calculations that

demonstrate the stability of such waves, is presented in Ref. 10. There are further works on

the properties of plasma waves with orbital angular momentum11–13 however the conclusions

drawn in these studies are based on the incomplete previously described9 plasma wave

dispersion and Landau damping. These results could be revisited using the methodology

described in this article and may result in further insights.

Helical laser produced plasma waves are important for a number of applications, an ex-

ample being the generation of extreme intensity ultra-short helical pulses through processes

like stimulated Raman amplification14–17. A particular nomenclature of “light-spring”18 has

been previously used to denote a multi-colored laser beam with an azimuthal mode index

correlated to the laser wavelength, configured such that it generates helical backscatter as

a result of stimulated Raman scattering. The Raman backscatter instability can be used to

generate high amplitude plasma waves16. A mechanism has been proposed where two co-

propagating laser beams with opposing helicity produce a ponderomotive force that excites

a helical plasma wave19. Such plasma wave was suggested for generation of large longitudi-

nal magnetic fields from azimuthal currents, which are a general feature of helical plasma

waves10. While there is a number of applications including helical plasma waves, a fur-

ther investigation of the basic physics is of interest, in particular, in the non-linear Landau
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damping regime in the high energy density plasmas, where plasma wave dynamics are shown

to be dominated by kinetic effects20, and where the study of helical plasma waves remains

unexplored.

This article presents an extended summary of physics of helical plasma waves and related

processes based on the kinetic consideration, as described in Refs. 10, 21, and 22 along

with new analytical and numerical results including three-dimensional particle-in-cell (PIC)

simulations. The new results include an analytical description of the second order magnetic

fields associated with standing helical plasma waves which is presented in Section III). To

support the analytical results, 3D PIC simulations of a standing helical plasma wave with l =

2 and a traveling plasma wave with l = 1 are shown in comparison to the previously produced

traveling l = 2 mode. Additionally Section IV presents an exploration of the trajectories of

single particles within plasma wave electric fields, demonstrating the constraining effect of

the radial electric field upon populations of resonant electrons. Finally in Section V several

further insights into the non-linear damping of helical plasma waves are presented.

This paper addresses three topics: the first is an overview of a self-consistent solution to

the dispersion and damping of helical plasma waves in the linear regime (Section II); the

second being the generation of magnetic fields via the second order vector field (Section III);

the third being the transfer of momentum from helical plasma wave to resonant electrons

(Section IV) through the nonlinear Landau damping (Section V).

II. LAGUERRE-GAUSSIAN PARAXIAL SOLUTION FOR PLASMA

WAVES AND A SELF-CONSISTENT LANDAU DAMPING

This section provides a brief overview of the dispersion and Landau damping of helical

plasma waves in the linear regime presented in Ref. 21. We consider the long wavelength limit

of kλD ≪ 1 in the calculation detailed below, such that the non-linear strong damping case

is explicitly excluded in the linear analysis. The reasoning behind this consideration is that

the plasma wave dispersion and damping can be described analytically as small corrections

to the plasma frequency. This also facilitates a comparison with numerical simulations. The

key to the solution lies within the paraxial approximation to the wave equation and so the

initial steps will be detailed to specifically elucidate this. The paraxial wave equation in

cylindrical coordinates can be written as ∇2U(z, r, θ) ≃ (2ik∂z +∇2
⊥)U(z, r, θ) = 0, which
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assumes that the function U evolves slowly in the propagation direction z. A solution using

Laguerre-Gaussian modes can be written as

U(z, r, θ) =
∑

p,l

ap,lFp,l(X) exp (ilθ + iϕp,l + iqX) (1)

where X = r2/w2
b(z) is a dimensionless radial coordinate, wb is the beam radius given

by wb(z) = wb,0

√

1 + z2/z2R, with wb,0 being the width at focus, the Rayleigh length is

zR = kw2
b,0/2, the Gouy phase is ϕp,l(z) = −(2p + |l| + 1) arctan(z/zR), ap,l is a constant

coefficient that informs of the mode amplitude, the factor q = z/2zR accounts for the

wavefront curvature and Fp,l is given by the Laguerre-Gaussian function:

Fp,l(X) =

√

p!

(l + p)!
X |l|/2L|l|

p (X) exp (−X/2), (2)

where L
|l|
p (X) = (p!)−1 exp(X)X−1dpX

(

exp(−X)X(l+p)
)

is a generalized Laguerre polyno-

mial, as described by the Rodriguez representation, of degree p and l. The constant term in

Fp,l is defined from the orthonormal condition
∫∞

0
dXFp,l(X)Fp′,l(X) = δp,p′ .

For a plane plasma wave, solution to the Poisson equation depends only on one coordinate

z in the direction of wave propagation. By contrast, for twisted waves it is necessarily to

consider a full three-dimensional solution to the Poisson equation that becomes

(2ik∂z +∇2
⊥) Φ = −eϵ−1

0 δne = −eϵ−1
0

∫

dvδfe, (3)

where −e is the electron charge, Φ is the electric potential, δne the perturbation to the

electron density, and δfe the perturbation to the electron distribution function. The Poisson

equation can be solved by considering δfe written as sum of eigenmodes given by Laguerre-

Gaussian functions. The set of solutions for the potential then becomes:

Φ(z, r, θ, t) =
∑

p,l

ϕp,lFp,l (X) exp (iξ) , (4)

and similarly for the perturbation to the electron distribution function:

δfe(z, r, θ,v, t) =
∑

p,l

fp,l(v)Fp,l (X) exp (iξ) (5)

with the phase ξ = −ωt+ kz + lθ+ψp,l + qX, where p is the radial mode number and l the

azimuthal mode number.
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To find the expression for the complex plasma wave frequency, including dispersion cor-

rection and Landau damping, we use the potential, given by the Poisson equation, and

solve the linearized Vlasov equation for the electron distribution function in the paraxial

approximation, which can be written as:

(−iω + ikvz + v⊥ · ∇⊥) δfp,l =

(−ikvz − v⊥ · ∇⊥) eΦp,l∂εf0, (6)

where ∂εf0 is the derivative of the unperturbed electron distribution function f0 with respect

to the electron kinetic energy ε. Since the unperturbed distribution function is assumed to

be isotropic, only the electric field is retained in the linearized Vlasov equation. The case of

plasma waves in a magnetized plasma23 with an anisotropic electron distribution is out of

the scope of this paper.

While the linearized paraxial Vlasov equation is already a simplification, solving it re-

quires assessment of several issues. A particular problem occurs when considering the trans-

verse gradient operator v⊥ · ∇⊥. This operator leads to the coupling of the neighboring

plasma wave modes since the eigenfunctions to the paraxial Poisson equation are not eigen-

functions of the Vlasov equation. The physical implication is that the electron motion in

the transverse directions couples the plasma wave modes.

This mode-coupling was ignored in the previous publication9, and an erroneous simpli-

fication was suggested by taking an average over of the transverse operator over a single

mode. This inconsistent approach leads to incorrect expressions for the Landau damping

rate and wave dispersion. Instead, we account for this mode-coupling effect by consider-

ing an expansion over the parameter 1/kwb ≪ 1, being a small factor within the paraxial

approximation.

The full derivation to the solution to the linearized Vlasov equation is described in Ref. 21.

All of the operations carried out in the solution to Eq. (6) assume a small value for 1/kwb ≪ 1

and so only terms on the first order of this parameter are kept. The solution obtained gives

the following expression for the longitudinal dielectric permittivity, which is valid within the

Rayleigh length, |z| ≲ zR:

ϵ(ω, k) =1 +
e2

ϵ0k2
×

∫

dv

[

ω(ω − kvz)

(ω − kvz)2 −Nv2⊥/w
2
b

− 1

]

∂εfe,0, (7)
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where ω is the plasma wave frequency, k the wavenumber and N = 2p+ |l|+ 1.
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FIG. 1. Dispersion (a) and damping (b) of the helical plasma wave mode p = 0, l = 2 calculated

from Eqs. (8) and (9) for the wave width shown in the legend. The black dashed line on panel (a)

shows the Bohm-Gross dispersion corresponding to wb,0/λD → ∞, while the black dashed line on

panel (b) shows the damping rate in the limit k2λDwb,0 ≫ 1.

The dispersion function ϵ has a resonance, similar to the plane wave case, close to vz =

ω/k. However this resonance is now split to v±z = ω/k ± (v⊥/kwb)
√
N . This widening of

the resonance condition has interesting consequences which carry over into the non-linear

Landau resonance regime and will be described in Section IV of this article. It is worth

noting that the extra term in the resonance is non-zero even for a Gaussian beam as a

consequence of the limited transverse dimension of the plasma wave.

For the case of a Maxwellian velocity distribution with a thermal velocity of vth, using

a Taylor expansion and assuming the limit kλD ≪ 1, one can find an explicit dispersion

equation for helical plasma waves:

Reω2
L

ω2
p

= 1 + 3k2λ2D +
N

k2w2
b

(8)

with the imaginary part giving the Landau damping rate:

ImωL

ReωL

= −
√

π

8

1

k3λ3D
exp

(

− ω2

2k2v2th

)

R

(

√

N/2

k2λDwb

)

, (9)
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where the function R(ζ) is given by:

R (ζ) = 1 +

√

π

2
ζ exp

(

ζ2

2

)

erf

(

ζ√
2

)

, (10)

where erf(x) denotes the error function with argument x, λD is the Debye length, and ωp is

the electron plasma frequency.

These expressions self-consistently take into account the mode coupling that occurs when

considering a three-dimensional plasma wave structure. The term arising from the beam-like

structure of the plasma wave is proportional to 1/k2λDwb. It is non-zero even for a Gaussian

wave (l = 0 mode) and it can be comparable or even dominate the thermal corrections. An

example of the dispersion and damping rates of a helical wave and a comparison to the plane

wave limit (where kwb → ∞) is shown in Fig. 1.

III. PLASMA WAVE STABILITY AND MAGNETIC FIELD

GENERATION

In this section we describe the second order magnetic field associated with helical plasma

waves. A selection of snapshots from the 3D PIC simulations are shown in Fig. 2. Fig-

ure 2(a,b) describes the l = 1, l = 2 helical plasma wave, whereas Fig. 2(c) presents results

from the superposition of l = +2 and l = −2 plasma waves resulting in a standing helical

plasma wave. Each panel of Fig. 2 shows the density displacement of each wave and a calcu-

lation of the magnetic field lines for each plasma wave are also shown. The axial magnetic

field in the p = 0, l = 1 case appears weaker, and a significant amount of numerical noise can

be seen in the plot. We first consider an analytical calculation of the magnetic fields, then

we describe the set up of PIC simulations, and finally a comparison between the numerical

simulations and the analytical theory is made.

Analytical calculation of helical plasma wave magnetic fields

While a paraxial helical plasma wave is electrostatic to first order on its amplitude, it can

produce magnetic fields in the second order due to the finite radial extension of the plasma

wave longitudinal electric field. As demonstrated by Bell and Gibbon25, a vector potential
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FIG. 2. Density perturbations and magnetic field lines in a twisted plasma wave obtained from

simulations with the PIC code OCEAN24. Panel (a) shows a simulation of a traveling plasma wave

mode p = 0, l = 1, (b) a traveling plasma wave mode p = 0, l = 2, (c) a standing wave mode p = 0,

l = ±2. The surfaces of a constant density perturbation δne/ne,0 correspond to the positive (red)

and negative (blue) perturbation at the level of 80% of the maximum density displacement. The

magnetic field lines correspond to the interior (green) and exterior (purple) regions of the plasma

wave. The magnetic field lines are calculated using the Mayavi2 streamline package.

A(2) is associated with a second order oscillating current in a beam-like plasma wave:

(∂2t − c2∇2 + ω2
p)A

(2) = ϵ−1
0 J(2), (11)

where J(2) = −ϵ0(δne/ne,0)∂tE is the plasma wave current density, a product of the plasma

wave electric field E and density perturbation δne/ne,0, both of them proportional to the

plasma wave potential Φp,l. A magnetic field can then be calculated from this vector potential

using the relation B(2) = ∇ × A(2). For a single mode plasma wave near the focal region

(wb ≃ wb,0) the magnetic field is static in time and has two components in the axial ez and
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azimuthal eθ directions:

B(2) =
keE2

0

meω3
pwb

(

F 2
p,l(X)

)′
[

eθ
√
X − ez

l

kwb

]

, (12)

whereme is the electron mass and E0 is the plasma wave electric field amplitude. Full details

for the calculation of the magnetic field can be found in Ref. 10. The same method can be

applied to obtain a field for the helical standing plasma wave. In this case the magnetic field

has non-zero axial and radial components, Bz and Br:

B(2) =
lkeE2

0

2meω3
pwb

[

ez

(

F 2
p,l(X)

)′

kwb

(

1 +
ω2
p cos(2kz)

4k2c2 + ω2
p

)

−

er
F 2
p,l(X)√
X

ω2
p sin(2kz)

4k2c2 + ω2
p

]

. (13)

While static in time, magnetic field oscillates along the propagation axis with a wavenum-

ber double that of the electric field oscillation. The derivation of this formula is given in

Appendix A.

It is worth noting that the magnetic field obeys the zero divergence condition: ∇·B(2) = 0,

which in the case of traveling wave reads: ∂zBz+r
−1∂θBθ = 0, and in the case of the standing

wave: ∂zBz + ∂rBr = 0. The structure and magnitude of the magnetic fields is verified in

the PIC calculation for the p = 0, l = 2 mode where the magnetic fields are seen to be

static with only minor fluctuations in the amplitude. A snapshot in time of the PIC results

compared to the magnetic field calculations described by Eq. (12) can be seen in Fig. 3.

The second order magnetic field is not necessarily weak in experiments. A plasma wave of

a wavelength of 400 nm, width of 8 µm (kw0 = 40π) and amplitude a0 = eE0/mecωp = 0.2

excited in a plasma of density ne = 1.7 × 1019 cm−3 will generate a magnetic field of

approximately 4 T (or 40 kG) in the azimuthal direction. This magnetic field depends on

the plasma wave radius as B ∝ (a0/kwb)
2, which may enable the generation of significantly

higher magnetic fields for smaller values of kwb or larger wave amplitudes.

3D PIC simulations of helical plasma wave magnetic fields

The stability of helical plasma waves is tested in numerical simulations with the PIC code

OCEAN24. The representative simulations showing the excitation of three different plasma

wave modes are discussed below. In two simulations we excite traveling waves with mode
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FIG. 3. Transverse slices (a), (c), and (e) and line-outs from those slices (b), (d) and (f) of the

magnetic field Bz generated by helical plasma waves in three PIC simulations. The locations of

slices and line-outs are described above each plot. Panels (a) and (b) correspond to a traveling

helical plasma wave mode p = 0, l = 1 (see Fig. 2(a)). Panels (c) and (d) correspond to a traveling

plasma wave mode p = 0, l = 2 (see Fig. 2(b)). Panels (e) and (f) correspond to a standing plasma

wave mode p = 0, l = ±2 (see Fig. 2(c)). The black dashed lines show theoretical predictions of

Bz for each mode according to Eq. (12) for panels (b) and (d) using amplitudes a0 = 0.15 and

a0 = 0.2 respectively, and Eq. (13) for panel (f), using a mode amplitude of a0 = 0.22. The data

is plotted after a 3D Gaussian filter with a width of 1 cell used to remove high frequencies.

indices p = 0, l = 1 and p = 0, l = 2. In the third simulation we excite a standing wave

mode with p = 0 and l = 2, which is equivalent to a pair of counter-propagating p = 0 modes

with l = ±2 so the azimuthal component of the current is present. A detailed description of

the simulation of the p = 0, l = 2 mode can be found in Ref. 10. For completeness the full

details for the three simulations, along with the procedure used to excite the plasma wave,

are described in Appendix B.
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To ensure that the excited plasma wave is stable, the plasma temperature and density

are chosen such that there is no Landau damping within the simulation. This was done

by choosing a relatively low plasma temperature, Te = 1.54× 10−3mec
2 and setting a large

plasma wave phase velocity, vph = ω/k = c. The plasma wave width wb = 5 c/ωp is chosen

such that the paraxial approximation is verified, 1/kwb = 0.2, and coupling to other modes

in Eq. (9) is minimized, 1/k2wbλD = 0.2. To avoid exciting ion acoustic waves, fixed ions

are considered.

The length of the box is chosen to exactly fit one wavelength with kLz = 2π. The box

is filled with a fully ionized uniform hydrogen plasma with the cell side length equal to one

Debye length ∆l = λD. In order to observe the second order magnetic field, the signal-

to-noise is kept at a sufficiently low level by using 100 macro-particles per cell per species.

The transverse boundary conditions are chosen to be absorbing for both particles and fields.

This choice is motivated by the fact that orbital angular momentum is extrinsic and so any

interaction from nearby plasma waves, via periodic boundary conditions in the transverse

directions could complicate the wave dynamics.

The wave is excited over 10 plasma periods, Tp = 2π/ωp, by using a weak driving force

Ed calculated from Ed = −∇Φp,l. Details regarding the excitation process are discussed in

Ref. 22 and in Appendix B. After the initial excitation time t = 10Tp, the driving force Ed

removed, and the plasma wave is allowed to oscillate freely. An amplitude of 0.15 < a0 < 0.25

is achieved for each plasma wave, which is smaller than the driver amplitude due to slight

frequency mismatching of Ed with the excited plasma wave, and slight absorption at the

otherwise periodic axial boundaries. Figure 2 shows three-dimensional renderings of the

plasma wave density perturbation and magnetic field lines for the resulting plasma waves at

a time t = 14Tpe after the driving field Ed is removed.

Selected results from the particle-in-cell simulations can be seen in Figs. 3 and 4 where the

non-zero components of the second order magnetic field is plotted. The remaining magnetic

field components (Br in the case for traveling waves, and Bθ in the case for the standing

wave) are at the noise level. The axial component of magnetic field Bz is plotted in Fig. 3

at a time of 14Tp after the driving field Ed is removed. The simulation for p = 0, l = 2

standing and traveling waves are run for a total time of 20Tp after the driver is removed and

show stable magnetic fields until the end of the simulations. The PIC results for the axial

magnetic field match the analytical formulas to a high degree. The axial magnetic field is
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FIG. 4. Transverse slices (a), (c), and (e) and line-outs from those slices (b), (d) and (f) of the

non-zero transverse components of the magnetic field generated by helical plasma waves in three

PIC simulations. The locations of slices and line-outs are described above each plot. Panels (a)

and (b) show the azimuthal magnetic field Bθ generated by a traveling helical plasma wave mode

p = 0, l = 1 (see Fig. 2(a)). Panels (c) and (d) show the azimuthal magnetic field Bθ for a traveling

plasma wave mode p = 0, l = 2. Panels (e) and (f) show the radial magnetic field Br for a standing

plasma wave mode p = 0, l = ±2. Two line-outs shown in panel (f) correspond to the cuts shown

in panel (e) using the matching line styles. The black dashed lines show theoretical predictions

of Bθ for each mode according to Eq. (12) for panels (b) and (d) using amplitudes a0 = 0.15 and

a0 = 0.2 respectively, and Eq. (13) for panel (f) using a mode amplitude of a0 = 0.22

uniquely from the helical structure of the electric field.

The PIC simulation results for the non-zero transverse magnetic field components (Br

in the standing case, and Bθ in the traveling case) are shown in Fig. 4. The traveling

waves, both l = 1 and l = 2, have azimuthal transverse magnetic field Bθ that shows a

good match to the analytical predictions. The lower signal to noise ratio observable in the
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l = 1 simulation is due to both a weaker coupling between the driving electric field and

excited plasma wave, and additional numerical noise. Both of these effects are due to the

lower resolution used for this simulation (see Table I). The PIC results for the standing

wave, however, show several discrepancies when compared to the analytical calculation (see

Fig. 4(e) and (f)). The most obvious one is the magnitude of Br, which is two times larger

compared to the theoretical prediction. The second discrepancy is that there is an oscillation

in the azimuthal direction seen in the numerical calculations which is not expected in the

theory. The frequency of this oscillation is 2ωp, so it is possible that it is related to the

insufficient resolution of the PIC code in the longitudinal direction.

The larger Br field may also be explained by a mismatched driving field leading to exci-

tation of additional small-amplitude non-resonant modes. The description of the magnetic

fields described by Eq. (13) requires that the time-varying terms in the second order vector

potential A(2) (calculated in Appendix A) exactly cancel when calculating ∇×A(2) = B(2).

A frequency mismatch may change the contribution of the axial and azimuthal currents to

the radial magnetic field Br, which would have both a static component and a component

that oscillates in time at a frequency of 2ωp.

IV. TRANSFER OF ORBITAL ANGULAR MOMENTUM TO

ELECTRONS

In this section the motion of resonant electrons within a helical plasma wave is considered.

Analytical expressions for the electron trajectories are illustrated with numerical calculations

for different initial conditions.

Electron motion in a helical plasma wave

Electron dynamics is obtained from the non-relativistic equations of motion:

dtre = ve and medtve = −eE
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with the electric field of plasma wave calculated from the potential Eq. (4). For a single

traveling plasma wave mode an electric field reads:

Ez =E0Fp,l(X) sin(kz − ωt+ lθ), (14)

Eθ =
lE0

kwb

X−1/2Fp,l(X) sin(kz − ωt+ lθ), (15)

Er =− 2E0

kwb

X1/2F ′
p,l(X) cos(kz − ωt+ lθ). (16)

According to Eqs. (14) and (15), the electron momentum increments in the axial and az-

imuthal directions are related as ∆pz/∆pθ = kr/l. This leads to the relationship between

the axial momentum pz and orbital axial momentum lz = rpθ:

l∆pz = klz + Amec, (17)

where A is an integration constant depending on initial conditions. The radial momentum

∆pr, however, is out of phase with ∆pz and ∆lz.

The Beeman integration routine26 is used in numerical calculation of electron trajectories,

due to it’s simplicity of implementation. A small amplitude, eE0/meωvph = 10−4, plasma

wave mode p = 0, l = 1 is considered, so the second order effects can be neglected. Two

representative initial conditions correspond either to a non-resonant electron initially at

rest, v0 = 0, or to a resonant electron traveling close to the plasma wave phase velocity,

vz,0 = 0.99vph and vy,x,0 = 0. The relative strength of the electric field in a plasma wave vary

with radial position r and so initial positions in the range r0/wb = 0.1 → 2.0 are considered.

The electrons are tracked within the focal region of the plasma wave, |z| < zR. The motion

of electrons is followed over time interval of 25Tp. The electron trajectories and phase plots

are shown in Fig. 5.

Non-resonant electrons perform an oscillatory movement with the radial velocity vr phase-

shifted by a quarter of period with respect to vz and vθ (see Fig. 5(a) and (c)). Thus, there is

no net transfer of momentum from the wave to the non-resonant particles. This is expected

given that the corresponding components of electric field, Eqs. (14), (15) and (16), have

similar phase differences. The velocities vz and vθ oscillate in phase, which is described by

a straight line in Fig. 5(e) in agreement with Eq. (17). The size and shape of the electron’s

orbits in phase space vary as a function of r. The radial oscillation swaps direction at

r = 1.5w0 due to the reversal in the sign of the radial electric field Er, seen in Fig. 5(g).
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FIG. 5. Trajectories and phase plots of test electrons initiated at θ0 = π/2 and several radial

positions r0 indicated in the figure. Panels (a), (c), and (e) show the velocity of a non-resonant

electron with varying initial radial position r0, vz,0 = 0, and initial phase ν = 0, over 25 plasma

periods. Panels (b), (d), and (f) show the velocity of a resonant electron with the same initial

conditions except vz,0 = 0.99vph, over the same time. Panel (g) shows the radial profile of the

electric field with a phase of ν = 0 for Er, and ν = −π/4 for Ez and Eθ. Panel (h) shows the phase

ν of the plasma wave electric field experienced by the resonant particles over time. The phase of

the field is found from ν = kz − ωt+ lθ.

This change in sign of the radial velocity corresponds to the change in sign of the magnetic
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field in Fig. 3.

A markedly different behavior is observed for resonant electrons with velocity close to the

phase velocity, see Fig. 5(b), (d), (f) and for the phase of the electric field experienced by the

electrons (h). Each electron experiences a slowly varying local electric field, which results in

a regular change of the momentum with time, both in axial and transverse directions. While

a linear relationship between the axial and azimuthal velocities, vz and vθ, in Fig. 5(g) is

similar to the non-resonant electrons, their values are one order of magnitude larger. The

deviation from the linear relationship occurs due to changes of electron radial position over

time, which alters the ratio between Ez and Eθ in a non-linear fashion.

The trajectories of electrons vary significantly as a function of the initial radial position.

The inner electrons with r0 ≲ 1.5w0 are accelerated outwards, while the outer electrons

are accelerated inwards. This results in the bunching of resonant electrons at the position

r0 ∼ 1.5w0, corresponding to the zero of the radial electric field, and a significant non-

zero net transfer of momentum and energy over the time of 25Tp from the wave to the

resonant particles. This behavior is similar to that observed when helical light interacts

with electrons27, the impact of which requires further study.

V. NON-LINEAR DAMPING OF HELICAL PLASMA WAVES

This section presents a brief overview of results related to the energy and momentum

exchange of a helical plasma wave with electrons in the nonlinear regime. The previous

work22 described the helical plasma wave damping in the kinetic regime kλD > 0.320 due to

the trapping of resonant electrons in the wave. In contrast with the linear regime, where the

Landau damping coefficient given by Eq. (9) is calculated from the unperturbed electron

distribution function, the simulations presented in Ref. 22 correspond to the case where the

helical plasma wave strongly modifies the electron distribution in the phase space.

Four simulations detailed in Ref. 22 present the dynamics of resonant electrons in a

Gaussian wave mode p = 0, l = 0, and three Laguerre-Gaussian modes l = 1, 2 and 4. The

same method of gradual excitation as described in Appendix B is used, however, the plasma

temperature was higher, Te = 0.03mec
2, such that kλD = 0.33 and a significant number of

electrons may resonantly interact with the wave. The frequency of each plasma wave was

measured at several positions along the z-axis and at the radial positions of the axial electric
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field maximum. It is observed that the frequency of helical plasma wave decreases as its

amplitude increases. This is explained by the particle trapping inline with the kinetic theory

of plane plasma waves28–30. The frequency measured was the same, ω = 1.11 ± 0.01ωp, for

the all four considered cases.

Particle trapping is observed by plotting the electron motion in phase space. In a plane

or Gaussian plasma wave the electrons with velocity close to the phase velocity perform a

rotation in the phase space z, pz alternating between accelerating and decelerating phases

of the plasma wave electric field. For a helical plasma wave the phase-space rotation oc-

curs in a twisted phase space described by z̃, pz, where z̃ = z + lθ/k where the accelerat-

ing/decelerating phases are twisted about the z−axis l times per wavelength.
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FIG. 6. Distribution of electrons in the phase space, z̃, vz averaged over the transverse coordinate

r and transverse velocities vr and vθ. Here z̃ = z+ lθ/k, λpe = 2π/k and vph = 0.615c. A Gaussian

mode p = 0, l = 0 (a), and three Laguerre-Gaussian modes with p = 0, and l = 1 (b), 2 (c) and

4(d) are considered. The results are presented at a time t = 9.5 Tp.

Figure 6 shows the phase plot in the plane z̃, pz where the resonant particles are trapped

and oscillate around the phase velocity vph = 0.615c. The distribution function, which is

retrieved from numerical simulation at time 9.5Tp, is integrated over the transverse velocities

vr and vθ and in the transverse plane r, θ. In order to account for azimuthal displacement of

trapped particles in the helical wave, integral over the azimuthal angle is performed in the

tilted plane, θ, z − lθ/k, while keeping constant the tilted coordinate z̃ = z + lθ/k.

The amplitude of electron oscillations decreases with the orbital number l, but a difference

between the Landau damping rate across modes in such a nonlinear regime is difficult to
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quantify as the simulation comprises several bounce periods. The damping is suppressed

due to the rapid phase mixing and formation of a plateau in the distribution function close

to the phase velocity of the plasma waves. Once the plateau is formed, there is a roughly

equal quantity of trapped electrons traveling above and below the phase velocity, resulting

in a zero net energy exchange between the particles and the wave.
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FIG. 7. Correlation between the axial momentum pz and OAM ⟨lz⟩pz averaged over the perpen-

dicular components of the electron momentum and radial coordinate. Panel (a) shows k⟨lz⟩pz as

a function of pz separately for each mode. The + markers show the maximum value calculated

from a Gaussian fit. Panel (b) shows dependence of this maximum value, k⟨lz⟩pz ,max on lpz, where

l is the azimuthal mode number. The gradient of the fitted straight line is 0.9± 0.2 with intercept

A = 0.04 ± 0.05 is in good agreement with Eq. (17). Reprinted figure with permission from [D.

R. Blackman, R. Nuter, P. Korneev, and V. T. Tikhonchuk, Phys. Rev. E 102, 033208 (2020).]

Copywrite (2020) by the American Physical Society.

The correlation between the gain of OAM and axial momentum resonant electrons pre-

dicted by Eq. (17) is verified in Fig. 7. In panel (a) we show lz for a given pz averaged over

the perpendicular components of the electron momentum and radial coordinate, ⟨lz⟩pz . The
gain is observed for the axial electron velocities vz above the minimum velocity vmin ≃ 0.5c,

which is slightly below the phase velocity vph = 0.615c. The maximum gain of OAM in-

creases with l, but the corresponding axial momentum pz,max decreases. This relation is

further exploited in Fig. 7(b), where the maximum value of OAM, k⟨lz⟩pz ,max as a function
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of the axial momentum lpz,max corresponding to the position of this maximum. A linear rela-

tion between the OAM gain the characteristic axial momentum is indeed in good agreement

with the theoretical prediction given by Eq. (17).

A detailed study of the OAM transfer from the plasma wave to resonant particles in

the linear regime is presented in Ref. 21. It is demonstrated analytically that energy, axial

momentum, and OAM are dissipated from the plasma wave at the same rate. Inline with

the numerical calculations presented in Section IV, the radial velocity of electrons within

the plasma wave does not affect the OAM transfer between wave and particle. In the linear

regime the total rate of transfer of OAM from wave to particles can be written as:

1

Lz

dLz

dt
=
e2ω2

ϵ0k2

∫

dv
∂ϵfe,0

√

(v⊥l/r)2 − (kvz − ω)2
, (18)

where Lz is the local value of the OAM lz averaged over the electron distribution function and

the plasma wave period. As can be seen from the denominator in the right hand side of this

expression, resonant particles make a dominant contribution. In the case of a Maxwellian

distribution the rate of OAM transfer reads:

1

Lz

dLz

dt
=

√

π

8

ω

k3λ3D
exp

(

− ω2

2k2v2th
+

l2

2k2λDr

)

. (19)

The above expression shows important dependence of the dissipation rate on the radial

coordinate. Near the plasma wave axis, where k2λDr ≲ l2, the transfer of plasma wave

OAM to resonant particles is increased over the Landau damping rate described by Eq. (9).

For the helical plasma waves described in Ref. 10 this limit is reached (noting that kλD ≃ 0.3

and kwb = 6) for radial positions where r ≲ 0.6wbl
2. The role of this effect in the non-linear

Landau damping regime remains to be investigated.

VI. DISCUSSION

This article provides a brief overview of the research carried out in Refs. 10, 21, and 22

along with several new results of simulations of plasma wave magnetic fields and particle

trajectories within a plasma wave.

A self-consistent solution for the Landau damping of helical plasma waves in the linear

regime10 takes into account in the paraxial approximation the coupling between Laguerre-

Gaussian modes in a helical plasma wave. This results in the modification of the wave

dispersion and damping.
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The 3D PIC simulations show the stability of helical plasma wave structure and complex

magnetic field structures associated with the rotational component of the plasma wave pon-

deromotive force. The unique longitudinal magnetic field structure seen with plasma waves

with OAM matches the analytical predictions well in both structure and magnitude for small

amplitude plasma waves. The manuscript presents new results demonstrating the magnetic

field structure of a standing plasma wave with OAM, which is investigated both analytically

and in a PIC simulation. The standing wave shows a strong longitudinal component along

with a radial component sensitive to small deviations from the analytical result. These

magnetic fields should be observable in a laboratory by using high power lasers for driving

helical plasma waves in low density gas jets.

For electrons traveling close to the phase velocity of the plasma wave a clear relationship

between the exchange of longitudinal momentum and OAM is demonstrated in both analyt-

ical and numerical calculations. The trapped resonant electrons acquire a significant OAM

which is proportional to the gain of the axial momentum. A novel result from the analysis

performed in Section V shows that the transverse fields play a role not only in the transfer of

OAM from wave to particle but in constraining electrons to the regions of the plasma wave

where the electric field is strongest. Other processes of wave-particle interactions in high

energy density (HED) plasmas involving the OAM transfer are yet to be explored. These

phenomena include three wave interactions, such as stimulated Raman scattering, may be

strongly affected by the OAM kinetics31–34. Interesting results are likely to be yielded from

an investigation into OAM plasma wave dynamics in more complex HED plasma physics

scenarios.
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Appendix A: Standing plasma wave magnetic field calculation

A helical plasma wave can be constructed from two plasma waves with opposing helicities

and phase velocities, but with otherwise identical mode structure. Interference of such two

modes generates a plasma wave with only rotational motion in the phase. To calculate the

magnetic field of the standing helical plasma wave the lowest moments of the electric current

and electron density can be found using the Poisson and Ampere equations. The following

derivation assumes that the dispersion can be neglected (ω ≃ ωp), and that |z| < zR. The

potential of a twisted standing plasma wave is given by:

ϕ = 2ϕp,lFp,l(X) cos(kz) cos(ωt− lθ). (A1)

The electric field can then be found from the relation E = −∇ϕ:

Ez =E0Fp,l(X) sin(kz) cos(ωt− lθ), (A2)

Eθ =
lE0

kwb

Fp,l(X)√
X

cos(kz) sin(ωt− lθ), (A3)

Er =− 2E0

kwb

√
XF ′

p,l(X) cos(kz) cos(ωt− lθ) (A4)

where E0 = 2kϕp,l. The electron density is calculated from the paraxial version of the

Poisson equation10: k2ϕ = eϵ−1
0 δne, which gives

δne

ne,0

= − keE0

meω2
p

Fp,l(X) cos(kz) cos(ωt− lθ). (A5)

The electric currents, given by j = −ϵ0∂tE are:

jz =ϵ0ωE0Fp,l(X) sin(kz) sin(ωt− lθ), (A6)

jθ =− ϵ0ωlE0

kwb

Fp,l(X)√
X

cos(kz) cos(ωt− lθ), (A7)

jr =− 2ϵ0ωE0

kwb

F ′
p,l(X)√
X

cos(kz) sin(ωt− lθ). (A8)

Using trigonometric identities to simplify the second order terms, the current density J(2) =
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jδne/ne,0 reads:

J (2)
z =− keϵ0E

2
0

4meωp

F 2
p,l(X) sin(2kz) sin(2(ωt− lθ)), (A9)

J
(2)
θ =

eϵ0lE
2
0

4meωpkwb

F 2
p,l(X)√
X

[

1 + cos(2kz)+

cos(2kz) cos(2(ωt− lθ)) + cos(2(ωt− lθ))

]

, (A10)

J (2)
r =− 2eϵ0E0

4meωpkwb

Fp,l(X)F ′
p,l(X)√

X
×

sin(2kz)
[

1 + cos(2(ωt− lθ))
]

. (A11)

The second order vector potential given by Eq. (11) components:

A(2)
z =− keE2

0

4meωp

F 2
p,l(X)

sin(2kz) sin(2(ωt− lθ))

(4k2c2 − 3ω2
p)

, (A12)

A
(2)
θ =

elE2
0

4meωpkwb

F 2
p,l(X)√
X

[

1

ω2
p

+
cos(2kz)

(4k2c2 + ω2
p)
+

cos(2kz) cos(2(ωt− lθ)

(4k2c2 − 3ω2
p)

+
cos(2(ωt+ lθ))

3ω2
p

]

, (A13)

A(2)
r =− 2eE0

4meωpkwb

Fp,l(X)F ′
p,l(X)√

X
×

sin(2kz)

(4k2c2 + ω2
p)

[

1

ω2
p

− cos(2(ωt− lθ))

3ω2
p

]

. (A14)

The second order magnetic field can then be calculated from the vector potential ∇×A(2) =

B(2):

B(2)
z =

2elE2
0

4meωpw2
b

(

F 2
p,l

)′

[

1

ω2
p

+
cos(2kz)

4k2c2 + ω2
p

]

, (A15)

B
(2)
θ =0, (A16)

B(2)
r =− 2kelE2

0

4meωpwb

F 2
p,l√
X

sin(2kz)

(4k2c2 + ω2
p)
. (A17)

Appendix B: Particle in Cell Simulation Details

The simulations parameters used to generate the results seen in Figs. 2, 3 and 4 are

detailed in Table I. To generate the plasma waves, a small amplitude field is introduced into
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Simulation parameters:

Plasma Simulation Standing/ Traveling l = 1

Traveling l = 2

Transverse size (cells) 1200× 1200 1000× 1000

Longitudinal size (cells) 160 80

Transverse B.C. absorbing absorbing

Longitudinal B.C. periodic periodic

Cell side length 0.0125π c/ωp 0.025π c/ωp

Time step Tp/160 Tp/80

Electron temperature 1.5× 10−3mec
2 7× 10−3mec

2

Macro-particles 100 100

(per cell per species)

Ion species Fixed H+ Fixed H+

TABLE I. 3D PIC simulations parameters used for calculations of magnetic fields. The plasma

waves were excited with a box of a length Lz equal to the plasma wavelength λpe = 2π/k. A width

parameter wb = 5 c/ωp. The electron density ne is fixed by selecting the appropriate value of ωp.

the plasma in order to generate a perturbation in the plasma wave of the desired type. The

plasma wave and obeys an equation of a driven oscillator:

∂2tEpe + ω2
LEpe = ω2Ed (B1)

where Epe is the electric field of the plasma wave oscillating at the eigen frequency ωL(k)

(see Eq. (8)) and Ed is the small perturbing driving field operating at ω = ωL. For a driving

field of the form:

Ed = êzE0Fp,l(X) cos(kz − ωt+ lθ), (B2)

where êz is the unit vector in the z-direction, a plasma electric field oscillation will be excited

of the form:

Epe = êz
ωE0t

2
Fp,l(X) sin(kz − ωt+ lθ) (B3)

to a first order approximation ωL ∼ ωp.

In practice the frequency of a plasma wave ωL is not exactly equal to the so-called plasma

frequency ωp as it is subject to both dispersion in the linear regime, and frequency suppres-

sion in the non-linear regime30. The driving field must accurately match the plasma wave
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frequency to obtain an efficient amplification and avoid the amplification of non-resonant

modes. Frequency matching that can be accounted for by Eq. (8) but the non-linear fre-

quency reduction associated with Landau damping in the non-linear regime must be esti-

mated.

For the simulations produced for this manuscript the standard dispersion (Eq. (8)) is

sufficient for efficient amplification as the phase speed is so high that any Landau damping

that does occur is in the linear regime. This is also the case for the simulations described

in previous publications10,21.

The estimate used for the driver frequency ω in Ref. 22 was ω = 1.11ωp based on prelim-

inary simulations. The driving field was chosen such that the plasma wave should reach a

normalized amplitude of a0 = 0.3 over a time t = 10Tp.

When performing simulations to observe second order magnetic fields the driving electric

field requires not just the longitudinal component but the transverse components as well.

If the driver does not contain the transverse field structure discrepancies similar to those

seen in the simulation of a standing l = 2 wave are observable (see Section III), indicating

possible additional non-resonant mode growth.

The driving electric fields are calculated using Eqs. (A2), (A3) and (A4) for the standing

helical plasma wave, and Eqs. (14), (15) and (16) for the traveling waves using appropriate

values according to the simulation scenario.
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