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Identification of exfoliated graphene flakes and classification of the thickness are important in the nanoman-
ufacturing of advanced materials and devices. This paper presents a deep learning method to automatically
identify and classify exfoliated graphene flakes on Si/SiO, substrates from optical microscope images. The
presented framework uses a hierarchical deep convolutional neural network that is capable of learning new
images while preserving the knowledge from previous images. The deep learning model was trained and
used to classify exfoliated graphene flakes into monolayer, bi-layer, tri-layer, four-to-six-layer, seven-to-ten-
layer, and bulk categories. Compared with existing machine learning methods, the presented method showed
high accuracy and efficiency as well as robustness to the background and resolution of images. The results
indicated that the pixel-wise accuracy of the trained deep learning model was 99% in identifying and classifying
exfoliated graphene flakes. This research will facilitate scaled-up manufacturing and characterization of

graphene for advanced materials and devices.

1. Introduction

Two-dimensional (2D) materials, endowed with unique electri-
cal (Radisavljevic et al., 2011), ferromagnetic (Huang et al., 2017),
semiconducting (Xu et al., 2014), superconducting (Xi et al., 2016),
thermal (Zhang et al., 2015), and optical properties (Li et al., 2014)
are ideal candidates for mechanical, photonic, and electronic devices.
Fabrication of most 2D devices starts with mechanical exfoliation
(Novoselov et al., 2004, 2005), which ensures the most pristine prop-
erties and conditions of 2D materials. Mechanical exfoliation methods
yield flakes of 2D materials with random thicknesses and shapes on the
substrate, followed by a manual search under an optical microscope.
For scientific and device development purposes, the ideal flakes have
a uniform thickness, and many interesting phenomena occur only in
atomically thin samples. In current practices, flake thickness is mainly
evaluated by two methods: (1) manual examination of the color and
contrast of flakes from microscope images, and (2) material charac-
terization equipment, such as Raman microscope and atomic force
microscope (Li et al., 2013; Lin et al., 2018; Masubuchi and Machida,
2019; Ni et al., 2007; Nolen et al., 2011; Blake et al., 2007). The two
prevalent methods have disadvantages: Manual examination inevitably
yields errors due to different colors and background conditions regard-
ing color and brightness, and characterization of 2D flakes is costly,
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inefficient, and time-consuming. The two methods suffer from a trade-
off between efficiency and accuracy. Efficient and accurate methods for
identifying thickness are highly needed (Shelhamer et al., 2017; Chen
et al., 2018b; Ronneberger et al., 2015; Badrinarayanan et al., 2017).

Deep learning is a subset of machine learning based on artifi-
cial neural networks that can solve sophisticated machine learning
problems (Mahjoubi et al., 2023). Previous studies show that deep
learning methods can produce results comparable or better than human
experts (Chong et al., 2020; Allugunti, 2022). Deep learning is repre-
sented by a variety of architectures. Deep neural network is the most
popular architecture that has been applied to various problems such
as computer vision (Hassaballah and Awad, 2020), natural language
processing (Otter et al., 2020), material discovery (Mahjoubi et al.,
2022), and drug discovery (Chen et al., 2018a). Convolutional neural
networks (Gu et al.,, 2018) are a type of deep neural network that
is designed for processing multidimensional data such as images and
has been widely applied for computer vision tasks, such as image
classification (Wang et al., 2016), object detection (Ren et al., 2015),
and pixel-wise semantic segmentation (Hazirbas et al., 2017).

A few methods based on convolutional neural networks were re-
ported to identify 2D flakes from microscopy images (Masubuchi and
Machida, 2019; Masubuchi et al., 2018; Han et al., 2020; Saito et al.,
2019; Greplova et al.,, 2020; Masubuchi et al., 2020). Five major
limitations were identified from the existing methods: (1) The existing
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Table 1
Statistics of class weights.
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Designation Description Mean class Median Maximum Images with

of class of class weight class weight class weight zero-class weight
0 Background 91.99% 95.87% 99.83% 0.00%

1 1L 0.59% 0.00% 19.72% 75.63%

2 2L 1.77% 0.00% 62.62% 55.51%

3 3L 0.70% 0.00% 15.46% 55.15%

4 4-6L 0.68% 0.00% 12.17% 61.76%

5 7-10L 0.47% 0.00% 27.51% 79.04%

6 Bulk 3.81% 0.00% 40.61% 51.84%

Note: “L” stands for layer(s).

methods were designed for specific microscope conditions such as
background color and light brightness, compromising the applicability
under different conditions. (2) The existing machine learning models
are incapable of learning new micrographs. Re-training the existing
models using new data leads to catastrophic loss of the knowledge
learned from old data (Kirkpatrick et al., 2017). (3) Optical micro-
scope images suffer from artifacts such as poor contrast, vignetting,
and overexposure. Multiple methods have been developed to enhance
microscope images for human vision (Chen et al., 2010; Leong et al.,
2003), but not applicable to machine vision. (4) Imbalanced class
distribution in training images compromises the evaluation of under-
represented classes (Wu et al.,, 2019). The areas of thin flakes are
relatively small compared with the areas of the substrate (background)
and bulk flakes. (5) The classification precision of graphene thickness
was rough. The flakes were categorized into three classes (Masubuchi
et al., 2018), which are insufficient in many applications.

The motivation of this study is to address the identified limita-
tions through developing a novel hierarchical deep learning method
based on an unsupervised classification model and multiple semantic
segmentation models and evaluate the performance of the method in
automatically identifying exfoliated graphene flakes and determining
thicknesses from optical microscope images. The flakes are categorized
into six classes: monolayer (1L), bi-layer (2L), tri-layer (3L), four-to-
six-layer (4-6L), seven-to-ten-layer (7-10L), and bulk. Novel computer
vision techniques are presented to improve microscope images using an
image quality metric and improved adaptive gamma correction (Cao
et al., 2018). The proposed method leverages weak learning, data aug-
mentation, iterative stratification (Sechidis et al., 2011), and weighted
cross-entropy loss to improve performance in terms of accuracy and
generalizability. The effects of resolution and background conditions of
images are considered to improve the robustness of the deep learning
model. The proposed method will promote the capability of processing
and manufacturing 2D materials and devices by improving efficiency
and accuracy while minimizing human intervention.

The present study is novel in three aspects: (1) A robust framework
based on unsupervised learning and supervised deep learning is pre-
sented to identify the thickness of 2D flakes from microscopy images.
The presented framework classifies 2D flakes into six categories, is
robust to microscopy conditions, and has reasonable accuracy for any
of the considered categories. (2) A novel computer vision method,
named optimized adaptive gamma correction, is developed based on
optimization to improve the quality of microscopy images for machine
vision. (3) weak learning and iterative stratification are proposed in
this study to improve the generalization performance of deep learning
models trained on imbalanced datasets.

The remainder of the paper is organized as follows: Section 2
discusses the methodology of this study; Section 3 discusses the results
obtained by the proposed framework; and Section 4 discusses the
conclusions and future prospects.

2. Methodology

This section elaborates the hierarchical framework (Fig. 1) which
leverages supervised and unsupervised machine learning. The hierar-
chical framework has five main steps: (1) Dataset development: Optical
microscopy images are captured to develop a dataset for training a
machine learning model (see Section 2.1). (2) Dataset enhancement:
The quality of images is improved using multiple novel methods de-
veloped in this study (see Section 2.2). (3) Dataset standardization and
categorization: The images are standardized and categorized using a
novel unsupervised machine learning model (see Section 2.3). (4) Se-
mantic segmentation: A deep convolutional neural network is trained to
identify exfoliated graphene flakes and quantify layer numbers (see Sec-
tion 2.4). (5) Performance evaluation: The performance of the proposed
framework is evaluated using performance metrics (see Section 2.5).
Fig. 2 shows the pseudocode of the proposed hierarchical framework.

2.1. Dataset

A high-quality dataset is essential for training a machine learning
model. The dataset of microscopy images of exfoliated graphene flakes
was developed in three steps: (1) An optical microscope (Nikon Eclipse
LV150N) was used to capture RGB images of graphene flakes that
were mechanically exfoliated from bulk graphite and transferred to
SiO,/Si substrates. A total of 273 images were captured. (2) An atomic
force microscope (Bruker BioScope Resolve) and Raman spectroscope
(Renishaw inVia Confocal) were used to evaluate the thickness of
each flake. (3) Pixel-wise ground truth labels were annotated with the
thickness evaluation results. The pixels were categorized into seven
classes: background, 1L, 2L, 3L, 4-6L, 7-10L, and bulk.

Statistical analysis was conducted using the ground truth labels to
evaluate the distributions of the seven classes. The weight of the ith
class was defined as the number of pixels of the ith class divided by the
total number of pixels. Table 1 lists the results of the mean, median, and
maximum class weights of the seven classes, as well as the percentage
of images with a zero-class weight. The mean class weights of classes
1, 3, 4, and 5 were less than 1%. The median class weights of classes
1 to 6 were zero, while the median class weight of background was
higher than 95%. The percentages of images with zero-class weight
for classes 1 (1L) and 5 (7-10L) were higher than 75%. The statistical
results indicated that the different classes in the dataset were highly
imbalanced. The interested classes 1 to 6 were under-represented, while
the background class was over-represented. The statistical analysis was
extended to the colors of images. It was found that different images
had different background colors and brightness (see (Fig. A.1). Due
to the variation of pixel color and intensity, it is unsuitable to use
color-based segmentation methods (Masubuchi and Machida, 2019).
In summary, the dataset of images introduces challenges due to the
imbalanced classes and scattering of background colors and brightness.

Microscopy images introduce challenges due to overexposure, spec-
ular reflection, vignetting, dirt, and out-of-focus problems: (1) Over-
exposure: When excessive light is received by the microscope, over-
exposure may occur and cause loss of detail in images. (2) Specular
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Fig. 1. Flowchart of the robust hierarchical framework for classification of 2D flakes.

reflection: Overhead lighting may cause specular reflection of graphene
flakes and lead to oversaturation and loss of detail. (3) Vignetting:
Vignetting appears as a radial darkening toward the corners of an
image. (4) Dirt: Dirt and debris cause blur images. (5) Out-of-focus:
Improper focus of the microscope causes blur images and loss of details.

2.2. Optimized adaptive gamma correction
To improve the quality of images, we present an optimized adaptive

gamma correction method (Fig. 1), through integrating the improved
adaptive gamma correction method (Cao et al.,, 2018), noise-aware

image quality metrics (Shin et al., 2019), and particle swarm optimiza-
tion (Kennedy and Eberhart, 1995). The development and integration
of these methods are elaborated in the following subsections.

2.2.1. Improved adaptive gamma correction

The improved adaptive gamma correction method modifies light
intensity while preserving the color properties of images with overex-
posure problems in the following eight steps (Cao et al., 2018):

(1) RGB images are converted to Y C,C, color space, where Y is the
luma component for light intensity; C, and C, are the blue-difference
and red-difference chroma components, respectively.
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The proposed hierarchical framework
Input: Microscopy image
Output: Thickness map

Step 1: Dataset development
Capture images of graphene flakes with an optical microscope
for any captured microscopy image do:
Use Atomic force microscope and Raman spectroscope to measure the thickness of flakes
Generate a pixel-wise ground truth label (thickness map) based on thickness evaluation
Develop a dataset containing microscopy images and pixel-wise ground truth labels

Step 2: Dataset enhancement
for any labeled image in the dataset do:
Perform optimization to obtain optimal setting for improved adaptive gamma correction

Modify light intensity of microscopy images with improved adaptive gamma correction

Step 3: Dataset standardization and categorization
for any image and label in the dataset do:
Resize the image and the corresponding label to a standard size (256x256 pixels)
Normalize the resized image by dividing the pixel intensities in each channel by 255
Use K-means++ clustering to categorize the images according to the chroma channels

Step 4: Semantic segmentation
Perform image augmentation to artificially enlarge the dataset
Perform iterative stratification to split the dataset into train and test sets

Train several deep convolutional neural networks using K-means++ clustering and weak learning

Step S: Performance evaluation
Evaluate the overall performance of trained neural network models using evaluation metrics
Check the class-wise performance to ensure reasonable accuracy for under-represented classes

Fig. 2. Pseudocode of the robust hierarchical framework for classification of 2D flakes.
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(2) The luma component is used to convert an image into a negative
image:

Y (x,y)y =255-Y (x,y) m

where Y (x, y)y is the negative image; Y (x, y) is the luma component of
the input image; x and y are the coordinates of images: x = 1,2,..., M,
and y = 1,2,..., N, where M and N are the width and height of an
image in pixel.

(3) The probability density function of pixels with an intensity level
I is expressed as:

PDF () = % )

where n, is the number of pixels with an intensity level /.
(4) The weighting distribution function is expressed as:

PDF(l)- PDF,, 1*
W () = PDF, ® mi

S —_ U 3
e PDFmax_PDFmin ®

where PDF,,,, and PDF,,;, are the maximum and minimum probability
density functions of pixels with an intensity level /, respectively; « is
the adjusted parameter; and /,,,, is the maximum intensity level of the

luma component.

max

(5) The cumulative distribution function is expressed as:

T WO

Imax :
i WO

CDF ()= (C))

(6) The modified luma component of the negative image is obtained
from the following transformation function:
|\ "CPFO
I' (%, )N = lpax <—>

lmax (5)

(7) The modified luma component of the input image is determined
as:

Y (x,) =255~ 1" (x, )y (6)

(8) The modified luma component and chroma components of the
image are converted to an RGB image, as the improved image.

2.2.2. Noise-aware image quality metric

A noise-aware image quality metric was used to assess image quality
based on the gradient, entropy, and noise of an image (Shin et al.,
2019). We introduced three metrics based on gradient, entropy, and
noise. The gradient-based metric (M, ,g;.,,) Was used to evaluate the

edge information.

&= Ni[log Mg —n+1] (7a)
14
N, =log[A(1-7)+1] (7b)
G= Y& §=L2..N, (7¢)
iEcj
KGE (G)
Mgradiem = ﬁ 7d)



S. Mahjoubi, F. Ye, Y. Bao et al

where g; is the amount of gradient information at pixel i; g; is the
gradient magnitude at pixel i, which is estimated using the Sobel
operator; 4 is the control parameter; y is the activation threshold; N, <
and K are normalization factors; G, is the grid cell; N, is the number
of grid cells; E and S are the mean and standard deviation operators,
respectively.
The entropy-based metric was used to estimate the information in
an image:
255
Memropy =—k, Z P(i) lng P(i) (8)
i=0
where P(i) is the probability of intensity level i in a grayscale image;
k, is a normalization factor.
The noise-based metric is defined as follows:

3
Migise = FZl \/§ Nlp ZHOUO |1« K0 ©)

where N, is the number of pixels whose pixel value is 1 in H.U, where
“.” is the elementwise multiplication operator; H (i) is the homogeneous
region mask for pixel i; U(i) is the overexposed-underexposed region
mask for pixel i; I; is the pixel value of the input image in channel
Jj; and “«” is the convolution operator; K is a noise estimation kernel
that was used to evaluate the noise level of an image with Gaussian
noise, as defined in Eq. (10); the inhomogeneous, overexposed, and
underexposed regions of images were removed using a homogeneous
mask and overexposed-underexposed mask defined in Egs. (11) and
(12), since the noise estimation kernel overestimates noises in those
regions.

1 -2 1
K=|-2 4 -2 (10)
1 -2 1
1, 8i <é
H(i) = an
0, g>¢6
I, <I; <1,
U(i)= 12)
0, otherwise

where § is the adaptive threshold; 7, and 7, are the lower and upper
bounds, respectively; and I; is the pixel value of pixel i. Finally, the
image quality metric is derived by combining gradient, entropy, and

noise-based metrics:

-CM,

fU)=AM, noise 13

gradien

.+ BM,

ntropy

where A, B, and C are user parameters, which are set to 0.4, 0.6, and 0.4
according to (Shin et al., 2019). A high f (I) implies higher edge and
texture details and lower noise. Therefore, it is promising to maximize
the quality metric to obtain a well-exposed microscopy image.

2.2.3. Particle swarm optimization

With the noise-aware image quality metric, the particle swarm opti-
mization algorithm was used to optimize the adjusted parameter, which
is the only control parameter of the improved adaptive gamma correc-
tion method. The adjusted parameter affects the weighting distribution
function, elaborated in Eq. (3). The image quality metric, defined in
Eq. (13), was used as the objective function of optimization. We used
20 search agents that moved in the search space following Eq. (14a)
to seek the optimal solutions in 30 iterations for five independent
runs (Kennedy and Eberhart, 1995):

b = +V/ (14a)

V! = oV, + ¢;r| (pbest; — §;) + cyry (gbest — ;) (14b)
itermax — iter

= (m) (©max = Opin) + O (140)
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where ¢ and ¢, are the new and current positions of the ith search
agent; V/ is the current velocity of the ith agent; V; is the previous
velocity of the ith agent; pbest; is the best solution obtained by the ith
agent; ghest is the global best solution; w is the inertia weight; ,,,, and
@in are the maximum and minimum inertia weights, respectively; c,
and ¢, are the acceleration coefficients; r; and r, are random numbers
in the range of O to 1.

2.3. Dataset standardization and categorization

The images with different resolutions were resized to a standard
size (256 x 256 pixels). Next, the resized images were normalized by
dividing the pixel intensities in each channel by 255, so that the pixel
intensity values were in the range of 0 to 1.

With the different distributions of colors in the images, an un-
supervised classification model was developed based the k-means++
clustering with squared Euclidean distance (Arthur and Vassilvitskii,
2006) to categorize the images into different groups according to the
chroma channels (C, and C,, see Fig. A.2).

2.4. Semantic segmentation

A semantic segmentation model was developed based on an object-
contextual representation network with a high-resolution network (Yuan
et al.,, 2020; Wang et al., 2020). The model consisted of multiple
convolutional neural networks for pixel-wise classification, and a con-
volutional neural network was trained for each class. A weak learning
method was presented to enable the neural network to learn from new
images while preserving the knowledge learned from previous images.
Three methods were used for the imbalanced dataset: (1) A multi-
class cross-entropy loss function was presented to mitigate the extent
of imbalance. (2) An iterative stratification method was proposed to
split the highly imbalanced dataset into train and test sets. (3) Image
augmentation was performed to artificially enlarge the dataset. These
methods are elaborated in the following subsections.

2.4.1. Object-contextual representation

Object-contextual representation network (Yuan et al., 2020) is a
recently developed convolutional neural network originally developed
for autonomous driving. The neural network was recently used for
various practical applications, such as traffic monitoring (He et al.,
2022), roof defect detection based on aerial images (Yudin et al., 2021),
and pedestrian lane detection for vision-impaired individuals (Lei et al.,
2022). This study uses object-contextual representation network in
materials science for the first time. The object-contextual representation
network has six main steps (Fig. 1):

(1) Feature extraction: The HRNetV2-W18 is used as the feature
extractor for the neural network with 20 million parameters and pre-
trained using ImageNet for faster convergence (Yuan et al., 2020).

(2) Coarse segmentation: With the extracted features, a coarse seg-
mentation map is generated for each class. The pixel value indicates
the class of a pixel. The map is obtained according to the output of the
HRNetV2-W18 and a 1 x 1 convolution unit (Yuan et al., 2020).

(3) Object region representation: The object region representation
for class k is defined as:

fi= D, (15a)
iel
M i
my; = softmax (mk’,.) =" k’m : (15b)
Zjel e

where f is the object region representation for class k; x; is the output
of the backbone network for pixel i; m, ; is the normalized value of m, ;
my; is the value of pixel i in coarse segmentation map for class k; the
softmax function is used to normalize the coarse segmentation maps.
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(a) (b)
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(©) (d)

Fig. 3. The effect of optimized adaptive gamma correction on the microscopy images. The upper row are the original images, and the lower row of images are the enhanced

images by the optimized adaptive gamma correction.

(4) Pixel-region relation: The relation between pixels with each class
is defined as:

X )
0 = Kev/( )w(fi) 16
Yo v (%) w(f)

where K is the number of classes; y is the transformation function con-
sisting of 1 x 1 convolution, batch normalization, and ReLU activation
function.

(5) Object-contextual representation: The object-contextual repre-
sentation is computed by aggregating the pixel-region relation with all
coarse segmentation maps:

K
vi=w [2 oy (fk):| a7
k=1
where y; is the object-contextual representation for pixel i; f; is the
object region representation for class k; K is the number of classes; and
oy ; is the pixel-region relation for class k and pixel i.

(6) Augmented representation: The final semantic segmentation
map is obtained using the transformation function, the output of the
backbone network, and object-contextual representation:

z; = y([xp,1") 18)

where z; is the final segmentation solution for pixel i; x; is the output
of the backbone network for pixel i; and y; is the object-contextual
representation for pixel i.

2.4.2. Weak learning

Weak learning was proposed to address two challenges in training
convolutional neural networks: (1) The dataset is limited and becomes
smaller when it is divided into different groups. (2) It is time-consuming
to repeatedly train the convolutional neural network when new images
are added to the dataset. Weak learning was performed in two steps:
(1) A convolutional neural network was trained using the entire dataset.
(2) Transfer learning was performed.

The neural network was retained for each group of images while the
learning rate was near zero. The learning rate is a hyperparameter of a
convolutional neural network and controls the changes in the weights
in training. Since the learning rate was low, the change of weights was
small, so the knowledge learned from previous images was reserved.
Meanwhile, the convolutional neural network learned new images and
slightly modified the weights to achieve high performance for the new
images.

2.4.3. Multi-class cross-entropy loss
Cross-entropy was applied to obtain the discrepancy between the
predicted distribution mask P (x) and the true distribution mask D (x):

CE(P,D)= Z D (x) - log[P (x)] (19)
xeQ

where Q is the mask region. The multi-class cross-entropy loss function

is expressed as:

K
LOSSC = Z Z dx,i lOg(px,i) (20)
i=1 xeQ
where K is the number of classes; d, ; is the true one-hot distribution
probability of pixel x on class i; and p, ; is the predicted probability for
pixel x and class i.
Since the annotated pixels of under-represented classes were scarce,
the effect of the under-represented classes on the loss function was
limited. Thus, the neural network tends to maximize the prediction ac-
curacy for over-represented classes while ignoring the under-presented
classes. This research assigned sample weights to mitigate the under-
representation problem:
K

Lossy, = " Y wd, log(p, ) 21)
i=1 xe2

where w; is the sample weight for class i.

There was no definitive advice on how to set the sample weights.
We proposed to calculate the sample weights using Eq. (22):

1 B
w; = <—> (22)
Hi

where y; is the class weight for class i; and g is an adjustment factor.
The adjustment factor was optimized by the particle swarm optimiza-
tion to minimize the image quality metric.

2.4.4. Iterative stratification

When the dataset is small and highly imbalanced, it is inappropriate
to randomly split the dataset into train and test sets, because under-
represented classes may be missing in one of the sets and thus the
trained model fails to represent the whole dataset. We proposed to
employ an iterative stratification method for multi-label data (Sechidis
et al., 2011). The whole dataset was divided into more than two subsets
while the class weights of the sets were almost the same.
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Fig. 4. An investigation on an overexposed image: (a) the original image, (b) the improved image, (c) the pixel intensity histogram of the red channel of the original image,
(d) the pixel intensity histogram of the red channel of the improved image, (e) oversaturated index of the red channel, (f) oversaturated index of the green channel, and (g)
oversaturated index of the blue channel. In (a) and (b), pixels with intensity levels over 253 represent oversaturation and are shown in red color.

Table 2
Results of the performance metrics.

Methods Pixel accuracy Mean accuracy F1 mloU Precision Recall

The existing methods

UNet++ 96.7% 61.7% 56.0 56.4 60.9 51.9
PSPNet 95.5% 64.6% 56.0 56.5 59.5 52.8
DeepLabv3+ 96.9% 70.9% 62.8 58.5 66.7 59.3
The proposed methods

Baseline (HRNet+OCR) 97.1% 71.7% 65.9 59.0 67.9 63.9
Baseline+Loss |, 98.3% 73.6% 72.9 61.5 77.2 69.1
Baseline+Loss ,,+OAGC 98.8% 75.2% 87.2 66.7 89.7 85.1
Baseline+Loss ,,+OAGC+WL 99.0% 81.6% 91.8 71.7 93.5 90.2

Note: “Loss ,,” is weighted cross-entropy loss; “OAGC” is optimized adaptive gamma correction; and “WL” is weak learning.

2.4.5. Image augmentation strategies: (1) Resizing: Images were resized from 256 x 256 pixels
Augmentation was performed to increase the dataset size and im- to 320 x 256 pixels. (2) Random cropping: Images were randomly
prove the generalizability of semantic segmentation models (Shorten cropped to 256 x 256 pixels. (3) Random flipping: Images were ran-

and Khoshgoftaar, 2019). The training dataset was enlarged using four domly flipped horizontally and vertically with a probability of 50%. (4)
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Green 150
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Fig. A.1. Scatter plots of pixel intensity levels: (a) the pixel intensity of the background, and (b) the average pixel intensity of images. Each dot represents a microscope image.

The color of dot represents the calculated color value.

Photometric distortion: brightness, contrast, saturation, and hue were
randomly modified with a probability of 50%.

2.5. Performance metrics

Six statistical performance metrics were used to evaluate the seman-
tic segmentation model:

K
Zk:l(TPk + TNk)

Pixel accuracy = = (23a)
21 TP+ FP + TN+ FNy)
K
TP, +TN,
M ean accuracy = L Z ( k k > (23b)
K A \TP + FP + TN+ FN,
K
TP
o= L3 (T ) 250
K A \TP +FP + FN,
K
TP
Precision = 1 Z —k (23d)
K & \TP +FP,
K
TP
Recall = L P v (23¢)
K “\TP +FN,
Fl=2x Precision x Recall (230)

Precision + Recall
where TP, and TN, are respectively the true positives and true nega-
tives corresponding to class k; F P, and FN, are respectively the false
positives and false negatives corresponding to class k; K is the number
of classes; and mIoU is mean intersection-over-union.

3. Results

Four pairs of representative images before and after applying the
optimized adaptive gamma correction are compared in Fig. 3. The com-
parison shows that the optimized adaptive gamma correction method
improves the visibility of the microscope images of graphene regardless
of the background color and brightness. The texture and edges of the
improved images become easier to distinguish from the background.
The optimal adjusted parameter obtained by the particle swarm opti-
mization to minimize the image quality metric was 0.561. The lowest
image quality metric value was 1.48.

The pixel intensity levels of the fourth pair of images are compared
in Fig. 4. The comparison shows that the oversaturation and oversatu-
rated regions are greatly reduced by impeding the optimized adaptive
gamma correction. An index defined by Eq. (24) is proposed to indicate

200
@'Gs
O
160 ®e ©
. (@¢)) (6}
@) )

140 ° QA

— O@a%‘io
Cluster 1
120 O o)

[ Cluster 2
[—Cluster 3 (@)
100
50 75 100 125 150

Cy

Fig. A.2. The geography of groups in the C, and C, space. Each dot represents a
microscope image. The color of each dot represents the mean pixel intensity. The
microscope images are grouped by k-means clustering based on the blue-difference
and red-difference chroma components.

the effect of the optimized adaptive gamma correction for improvement
of the images:

5= A (24)
Ar

where ¢ is the oversaturated index; A, is the number of pixels with

an intensity level over 253; and A; is the total number of pixels.

The oversaturated indices of original and modified images for the red,

green, and blue channels are highly reduced as shown in Fig. 4(e) to

4(®).

The proposed method was compared with three state-of-the-art
convolutional neural networks, which are UNet++ (Zhou et al., 2018),
PSPNet (Zhao et al.,, 2017), and DeepLabv3+ (Chen et al.,, 2018).
The proposed models were trained by stochastic gradient descent. The
learning rate was 0.1. The momentum was 0.9. The weight decay was
0.0005. The batch size was eight. The maximum number of iterations
was 10,000. Conventional cross-entropy loss was used as the loss func-
tion. The deep learning models were trained using the labeled images.
That is, the microscopy images are the inputs while the thickness map
of exfoliated graphene flakes are the outputs. The performance metrics
of the different methods are compared in Table 2. The proposed method
(Baseline+Lossw+OAGC+WL) shows the highest accuracy.

Four HRNet+OCR models established based on the presented meth-
ods were compared to test the effects of the weighted cross-entropy



S. Mahjoubi, F. Ye, Y. Bao et al.

Engineering Applications of Artificial Intelligence 119 (2023) 105743

100 , ,

T
90 - [ Baseline (
I Baseline+Loss,,
80 - Baseline+Loss,,+OAGC .
[ Baseline+Loss,+OAGC+WL

HRNet+OCR)

70

60 -

50

IoU [%]

40 -
30 -
20

10+

0

3 4 5 6

Class number [-]

110 T T T

I T I T

100 -

80 -

I Baseline (HRNet+OCR)
[ Baseline+Loss,,

90 - Baseline+Loss,,+0AGC n
[ Baseline+Loss,+OAGC+WL

70 -

50

Accuracy [%]

40

20
10 -

3 4 5 6

Class number [-]

Fig. A.3. The class-wise performance of the applied segmentation methods: (a) Mean IoU (mloU), (b) accuracy. Loss,,, OAGC, WL stand for the weighted cross-entropy loss,

optimized adaptive gamma correction, and weak learning, respectively.

loss, optimized adaptive gamma correction, and weak learning on
the accuracy. The comparison results show that the accuracy is sig-
nificantly improved by applying the weighted cross-entropy loss, op-
timized adaptive gamma correction, and weak learning in the final
model (HRNet+OCR+Loss,+OAGC+WL). The pixel accuracy of the
final model is higher than 99%. The class-wise intersection-over-union
(IoU) and accuracy of the four HRNet+OCR models are shown in
Fig. A.3. The IoU and accuracy of the highly under-represented classes
1L, 3L, and 6-10L are significantly increased by the weighted cross-
entropy loss, optimized adaptive gamma correction, and weak learning.
The minimum IoU of the final model is higher than 56%. Fig. A.4
shows representative optical microscope images in the test set and the
corresponding prediction results.

4. Conclusions

This study develops a deep learning method for automatic identi-
fication and classification of exfoliated graphene flakes from optical
microscope images. Novel methods are presented to improve the qual-
ity of optical microscope images and address important challenges

associated with the imbalanced classes, limited dataset size, different
background conditions, and different resolutions of the optical micro-
scope images. Based on the above investigations, the following findings
are summarized:

» The presented machine learning framework based on object-
contextual representations is promising for automatically identi-
fying 2D material flakes and classifying the thickness of the flakes
based on microscope images. The pixel accuracy of the trained
model is higher than 99%, outperforming the state-of-the-art deep
convolutional neural networks DeepLabv3+, PSPNet, and UNet
++.

The proposed method is robust to the background color of mi-
croscope images because the proposed machine learning method
can automatically identify the background color of the images
and categorize the images into appropriate groups. The proposed
method is also robust to the brightness and resolution of im-
ages because the optimized adaptive gamma correction method
can effectively improve the quality of overexposed microscopy
images.
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Predicted result Overlay
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Fig. A.4. Representative optical microscope images and the predicted results using HRNet+OCR.

» The presented machine learning framework can learn characteri-
zation from new images while preserving the knowledge learned
from old images. The weak learning method enables us to re-
train convolutional neural networks while preserving the learned
knowledge by the network. The method is useful especially when
the training set is small but there is a convolutional neural
network trained on a similar task.

The presented method can handle imbalanced datasets. The IoU
of different classes is in the range of 57% and 99%, and the mIoU
of all the classes is 59%. This study shows that image augmenta-
tion, iterative stratification, and weighted cross-entropy loss can
significantly enhance the predictive performance of convolutional
neural networks on under-represented classes.

Further research can be conducted from the following aspects:

« It is promising to test the applicability of the proposed hierarchi-
cal deep learning model to other 2D materials through transfer
learning, which will address limited data issues and accelerate the
training process of new predictive models for classification of 2D
materials.

+ Although the proposed model shows higher accuracy in identi-
fying exfoliated graphene flakes compared with the competing
models, it is unclear whether the method can be used under

other microscopy conditions. It is necessary to examine the pro-
posed method using other datasets to evaluate the generalization
performance in future research.

One of the challenges in performing microscopy imaging exper-
iments is to configure the microscope based on room setup and
lighting conditions to obtain reasonable resolution. It is desirable
to develop a machine vision method based on the proposed

noise-aware image quality metric and reinforcement learning for
automated microscopy configuration, aiming to maximize the
spatial resolution of microscopy images as well as distinction
between various 2D flakes.
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