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Abstract—We study a matrix completion problem that lever-
ages a hierarchical structure of social similarity graphs as side
information in the context of recommender systems. We assume
that users are categorized into clusters, each of which comprises
sub-clusters (or what we call “groups’). We consider a low-rank
matrix model for the rating matrix, and a hierarchical stochastic
block model that well respects practically-relevant social graphs.
Under this setting, we characterize the information-theoretic
limit on the number of observed matrix entries (i.e., optimal
sample complexity) as a function of the quality of graph side
information (to be detailed) by proving sharp upper and lower
bounds on the sample complexity. Furthermore, we develop a
matrix completion algorithm and empirically demonstrate via
extensive experiments that the proposed algorithm achieves the
optimal sample complexity.

I. INTRODUCTION

Personalized recommender systems have emerged in a wide
range of Web applications to predict the preferences of its
users and provide them with new and relevant items based
on scarce data about the users and/or items [1]. Inspired by
the Netflix challenge, a well-known technique for predicting
the missing ratings in collaborative filtering frameworks is
low-rank matrix completion. Given partial observation of a
matrix of users by items, the goal is to develop an algorithm
to accurately predict the values of the missing ratings. One
of the prime challenges of collaborative filtering systems that
rely on user-item interactions is the “cold start problem” in
which high-quality recommendations are not feasible for new
users/items that bear little or no information. A prominent
technique to overcome this problem is to incorporate the
community information into the framework of recommender
systems in order to enhance the recommendation quality.

Numerous research works have explored the idea of lever-
aging the information inferred from social graphs to enhance
the performance of recommender systems from an algorithmic
perspective [1]-[20]. Recently, [21]-[24] have investigated the
problem of interest from an information-theoretic perspective.
However, they impose a number of strict assumptions on the
system model such as the users of the same cluster have same
ratings over all items, and hence each cluster is represented
by a rank-one matrix. This limits the practicality of the pro-
posed models for real-world data. In this work, we relax this
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assumption and study a more generalized framework in which
each cluster is represented by a rank-r matrix. In particular,
we consider a matrix completion problem where the users are
categorized into c¢ clusters, each of which comprises g sub-
clusters, or what we call “groups”, producing a hierarchical
structure in which the features of different groups within a
cluster are broadly similar to each other; however, they are
different from the features of the groups in other clusters.
The main contributions of this paper are summarized as
follows. We characterize an information-theoretic threshold
for reliable matrix recovery as a function of the quantified
quality of the considered hierarchical graph side information
by establishing matching upper and lower bounds on the
sample complexity. To the best of our knowledge, this is
the first work to provide this characterization for any finite
field size, and any number of clusters and groups. We show
that the proposed algorithm, which leverages the hierarchical
graph structure, yields a substantial gain in sample complex-
ity, compared to a simple variant of [21], [22] that does
not leverage the relational structure across rating vectors of
groups. We also reveal that when the graph information is
rich enough to perfectly retrieve the structures of clusters and
groups, the optimal sample complexity increases linearly as the
number of clusters increases. Otherwise, the optimal sample
complexity remains almost constant, even though the number
of groups in a cluster increases. Furthermore, we develop a
matrix completion algorithm that starts with hierarchical graph
clustering, which produces an exact recovery of clusters, but an
almost exact recovery of groups. Then, the rating vectors are
estimated followed by iterative local refinement of groups. We
conduct extensive experiments to demonstrate that the optimal
sample complexity is achieved by the proposed algorithm.

II. PROBLEM FORMULATION

Consider a rating matrix X € F;‘X’", where n denotes the
number of users and m denotes the number of items. The
ratings of the rth user over m items forms the rth row of
X for r € [n]. However, the rating matrix is incomplete,
in the sense that some entries might be missing. The user
similarity graphs (e.g., social graphs) are leveraged as side-
information to enhance the quality of the matrix completion.
More specifically, we consider a hierarchical similarity graph
over the users that consists of ¢ disjoint clusters, and each
cluster comprises g disjoint groups. For the sake of tractable
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mathematical analysis, we assume equal-sized clusters and
groups. The theoretical guarantees, however, hold as long
as the group sizes are order-wise same (See Section III).
According to the social homophily theory [25], users within
the same community (that is, those who are more likely to be
connected in the social graph) are more likely to share similar
preferences over items. This results in a low rank structure of
the rating matrix since the rows of the rating matrix associated
with such users are likely to be similar [26]. To capture this
crucial fact in our model, we make the following assumptions:
(i) the rating vectors of the users who belong to the same
group are equal, and hence there are gc distinct rating vectors
in total; (ii) the rating vectors of the groups of a given cluster
are different, yet intimately-related to each other through a
linear subspace of r basis vectors for some integer r < g [27],
[28]. Let vz@ denotes the rating vector of the users in cluster
x and group i for x € [c] and i € [g]. Let R™®) € [F9>™ denote
a matrix whose rows are the rating vectors of the groups in
cluster « for = € [c]. The set of g rows of R(*) (that is, the set
of g rating vectors of the groups in cluster z) is spanned by
any subset of 7 rows of R(*). Let X, denote the ground truth
rating matrix. Each instance of the problem corresponds to a
rating matrix X, which can be represented by a set of rating
vectors Vo = {UEI) :x € [c],i € [g]} and a user partitioning
Zy. Formally, Z; is a family of subsets of [n] that partitions
the set of all users [n] into ¢ clusters and g groups (per cluster).

The main goal is to find the best estimate of Xy with the
knowledge of two types of observations. The first type is a
partial and noisy observation Y of Xj. For every r € [n] and
t € [m], let Y(r,t) € F, U {+}, where * denotes no obser-
vation. Let the set of observed entries of X be denoted by
Q={(r,t) € [n] x[m] : Y(r,t) # x}. The partial observation
is modeled by assuming that each entry of X is observed with
probability p € [0,1], independently from others. Moreover,
the potential noise in the observation is modeled by a random
uniform noise distribution; that is, the noise is not adversarial
(i.e., not deterministic). We assume that each observed entry
Xo(r,t), for (r,t) € €, can possibly be flipped to any element
of the set {0, 1,...,¢—1}\ Xo(r,t) with a uniform probability
of /(q — 1) for @ € [0,(¢g —1)/q). The second type of
observation is user similarity graph G = ([n],£). A vertex
represents a user, and an edge captures a social connection
between two users. The set [n] of vertices is partitioned into
¢ disjoint clusters, each of which has n/c users. Each cluster
is further partitioned into g disjoint groups, each of which has
n/(cg) users. The user similarity graph is generated according
to the hierarchical stochastic block model (HSBM) [29], [30],
which is a generative model for random graphs exhibiting
hierarchical cluster behavior. In this model, each two nodes
in the graph are connected by an edge, independent of all
other nodes, such that there is an edge between two users in
the same group within a cluster with probability «; there is an
edge between two users in different groups but within the same
cluster with probability 3; and there is an edge between two
users in different clusters with probability 7. We assume the

edge probabilities scale with the problem size, i.e., & = aloi n

8= ﬁ% and 7 = 7%, where «, 5 and ~ are positive
real numbers such that « > 3 > . Note that the considered
edge probabilities guarantee the disappearance of isolated
vertices (i.e., vertices of degree zero) in the user similarity
graph, which is a necessary property for exact recovery in the
stochastic block model (SBM) [31]. Furthermore, motivated
by the social homophily theory [25], we assume o > 8 > =y
where users within the same group (or cluster) are more likely
to be connected than those in different groups (or clusters).

Let 1 denote an estimator (decoder) that takes as input a
pair (Y, G), and outputs a completed rating matrix X € Fy ™.
Note that both the set of rating vectors )V and the user
partitioning Z can be recovered from the completed rating
matrix X and vice versa. With a slight abuse of notation, we
denote the output of the estimator as X or (V, Z).

A key parameter of the main result (see Section III) is the
discrepancy between the rating vectors. Let ¢, be the minimum
normalized Hamming distance among the distinct pairs of
rating vectors of groups within the same cluster. Let §. be
the counterpart with respect to different pairs of rating vectors
across different clusters. Formally, é, and J. are given by

min dy (u(x) u(y))

K2 ? J

dg= 1 min min dy (uggg), UEGC), 562l o
m zele]i,je(g] ‘ m i,jelg]
i£j z,y€lc],z#£y
Our main result hinges on § = (d4, d.). We provide theoretical
guarantees for the recovery of all rating matrices M in which
the rating vectors maintain a minimum level of dissimilarity.
Formally, define M(®) as the set of matrices M = (V, Z)
such that the following properties are satisfied: (i) the set of
rating vectors ) must satisfy the property that the minimum
normalized Hamming distance among rating vectors in dif-
ferent groups within the same cluster and those in different
clusters are not smaller than 6g and ¢, respectively; and (ii)
the user partitioning Z must satisfy the property that the sizes
of clusters and groups are ¢/n and ¢/(ng) users, respectively.
The performance metric we consider to provide theoretical
guarantees on the recommendation quality is the worst-case
probability of error P,. In other words, the quality of the esti-
mator is defined by its accuracy of estimating the most difficult
ground truth matrix M = (V, Z) € M), Therefore, we apply
a minimax optimization approach wherein the objective is to
find the estimator that minimizes the maximum risk, i.e.,

. (%) .
inf P (¢) = inf nax Plp(y,g)#M]. (D

Our goal is to characterize the optimal sample complexity (i.e.,
the minimum number of entries of the rating matrix that is
required to be observed), concentrated around nmp* in the
limit of n and m, for exact rating matrix recovery. Here, p*
denotes a sharp threshold on the observation probability such
that the following conditions, in the limit of n and m, are
satisfied: (i) when p > p*, there exists an estimator such that
the error probability can be made arbitrarily close to 0; and
(i) when p < p*, the error probability does not converge to
zero no matter what and whatsoever.
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III. MAIN RESULTS

Similar to [21], [32], we assume that m = w(logn) and
logm = o(n) in order to apply large deviation theories.
These assumptions are practically relevant, as they eliminate
the possibility of having extremely tall or wide matrices.

Theorem 1 (Optimal Sample Complexity). Let m = w(logn)
and logm = o(n). Let q,0,c,g and r be constants such
that q is prime, § € [0,(q — 1)/q), and v < g. Let
Y(q,0) = 1/(v1—-0 — \/0/(q—1)). For any constant
e > 0, if (2) holds, then there exists an estimator ) that
outputs a rating matrix X € M) given Y and G such
that lim,, Pe(é)(w) = 0; conversely, if (3) holds, then
lim,, 00 Pe(o)(w) % 0 for any estimator 1. Therefore, the
optimal observation probability p* is given by (4).

Proof: We provide a proof sketch of Theorem 1. We defer
the complete achievability and converse proofs to [33]. The
achievability proof is based on maximum likelihood estimation
(MLE). We first evaluate the likelihood for a given cluster-
ing/grouping of users and the corresponding rating matrix.
Next, we provide an upper bound on the worst-case probability
of error, which is given by the probability that the likelihood
of the ground truth rating matrix is less than that of a candidate
rating matrix. Then, we partition the candidate rating matrices
into two sets, typical and atypical sets. A typical (or atypical)
set denotes the set of rating matrices that have a relatively
small (or large) number of error entries compared to the
ground truth matrix. Finally, we conduct typical and atypical
error analyses as follows. In the typical error analysis, we
provide a tight upper bound on the cardinality of the typical
set and a loose upper bound on the error probability of a
candidate matrix. On the other hand, in the atypical error
analysis, we provide a loose upper bound on the cardinality of
the typical set and a tight upper bound on the error probability
of a candidate matrix. These analyses are based on the fact that
the size of the set of candidate matrices with a small number of
error entries is relatively larger than that of the one with a large
number of error entries. Based on these bounds, we show that
the probability of error for any candidate matrix in the typical
set is negligibly smaller than the carnality of the typical set of
matrices, and hence this leads to convergence of the overall
worst-case probability of error to zero as n and m goes to
infinity. Hence, the worst-case probability of error vanishes in
the limit of n and m. This completes the achievability proof.

The converse proof starts with establishing a lower bound

on the error probability and showing that it is minimized
when employing the maximum likelihood estimator. Next,
we prove that if p is smaller than any of the three terms
in the RHS of (4), then there exists another solution that
yields a larger likelihood, compared to the ground-truth ma-
trix. More precisely, for any estimator and any ground truth
rating matrix, we present the following three cases. First,
if p< T(q,@)%, there exists a class of matrices
obtained by replacing one column of the ground truth rating
matrix with a carefully chosen sequence, and it yields a higher
likelihood than that of the ground truth rating matrix. Second,

if p< T(q,@)?ﬂ%((l—e) — (‘Fo‘;i(\ﬁf), there exists a class
of rating matrices obtained by swapping the rating vectors of
two users in the same cluster yet from distinct groups with the
Hamming distance between their rating vectors being md,. We
show that the likelihood of any rating matrix from this class is
greater than the one of the ground tguth rating matrZ)ix. Third,
lfp < T(q, 9) lg)f£ ((1—6)— Voa—v7) +(5;1)(\/37ﬁ) ), we can
find a class of rating matrices obtained by swapping the rating
vectors of two users in distinct clusters with an md, Hamming
distance between their rating vectors. We show that any rating
matrix from this class yields a larger likelihood than that of
the ground truth rating matrix. For each case, we show that the
maximum likelihood estimator will fail in the limit of n and
m by selecting one of the rating matrices from the respective
class instead of the ground truth rating matrix. This completes
the converse proof and concludes the proof of Theorem 1. H

Remark 1. The technical distinctions from the previous
works [21], [22], [32] are four-fold. First, the likelihood
computation requires more involved combinatorial arguments
due to the hierarchical structure of the similarity graph (See
Lemma 1 in [33]). Second, sophisticated upper and lower
bounding techniques are developed to leverage the relational
structure across different groups (See Lemmas 3 and 4 in
[33]). Third, novel typical and atypical error analyses are
proposed for the achievability proof (See Lemmas 5 and 6
in [33]). Fourth, novel failure proof techniques are developed
for the converse proof (See Section V in [33]). Furthermore,
setting (¢, g,7,q9)=(2, 3,2, 2), the optimal probability p* in (4)
reduces to the one characterized by [32]. Hence, the result of
[32] is subsumed by the general result given by Theorem 1.
Note that the optimal sample complexity for general (¢, g,1,q)
is conjectured by [32]. However, the proofs are provided
only for (c,g,1,q9)=(2,3,2,2). This work presents complete
achievability and converse proofs for any (c, g,r, q).

g—r+1 n ~d;m

p=>7T(q,0) maX{
gc

gc(1+¢€) logm logn <(1+6)_ (Va—vB

dem gc

) >’logn<(1_~_e)_(\/a\/7) +(g,1)(\/37\/7y) )} 2)

g—r+1 n ~d;m

p < Y(g,0) max{
gc
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IV. DISCUSSION

A. Noise Model and Finite Field Size

The reason for choosing the uniform noise model is that
the uniform noise distribution is the worst case distribution in
discrete channels. Next, it is evident that the optimal sample
complexity in (4) increases as # increases. Furthermore, as 6
approaches (¢ —1)/q, each sampled entry of the rating matrix
can take any of the ¢ possible values with a uniform probability
of 1/q, and hence an infinite sample complexity is theoretically
required to exactly recover the entries of the rating matrix.

B. Quality of Hierarchical Similarity Graph

We illustrate the relationship between the optimal sample
complexity and the quality of the hierarchical graph by defin-
ing the following quality parameters: I, g = (\/af\/B)Q,
Iny = (\/&—\ﬁ)Z, and Ig ., = (\/B—\ﬁ)2 Intuitively,
as I, p increases, it becomes easier to distinguish users
in different groups within the same cluster. On the other
hand, higher values of I,., and Iz, lead to better user
clustering. The optimal sample complexity reads different
values depending on the quality parameters of the hierarchical
graph. Next, we define three regimes as follows. The first
term in the RHS of (4) is activated when I, g,1,, and
Ig . are large enough so that the grouping and clustering
information is reliable. Therefore, this regime is coined as
“perfect clustering/grouping regime”. The second term in the
RHS of (4) is activated when I, g is small such the grouping
information is not reliable, Therefore, this regime is coined as
“grouping-limited regime”. The third term in the RHS of (4) is
activated when I, - and Ig , are small such that the clustering
information is not reliable, and §, > J.. Thus, this regime is
coined as “clustering-limited regime”. Next, we analyze the
optimal sample complexity under each regime. For illustrative
purposes, we assume that § = 0. This implies Y(q,§) = 1.

1) Perfect Clustering/Grouping Regime: The optimal sam-
ple complexity reads (gc/(g—r+1))mlogm. Since the group-
ing and clustering information are reliable, one can recover the
groups and clusters from the similarity graph. However, further
increments of the values of these quality parameters do not
yield further improvement in the sample complexity, and hence
the sample complexity gain from the similarity graph is satu-
rated in this regime. Moreover, it should be noted that a naive
generalization of [21], [22] requires crm logm observations
since there are r independent rating vectors to be estimated
for each the c clusters, and each rating vector requires m log m
observations under the considered random sampling due to the
coupon-collecting effect. On the other hand, we leverage the
relational structure (i.e, linear dependency) across the rating
vectors of different groups, reflected by the underlying linear
MDS code structure (See Section IV in [33]), and hence
this serves to estimate the rc rating vectors more efficiently,
precisely by a factor of r(g — r 4+ 1)/g improvement, thus
yielding (gc¢/(g — r + 1))mlogm.

2) Grouping-Limited Reiime: The optimal sample com-

plexity reads é (1 — %
function of I, g. This szimple complexity coincides with that
of [22] in which the considered similarity graph consists of
only gc clusters. This implies that leveraging the relational
structure across different groups does not help improve the
sample complexity when the grouping information is not
reliable. Moreover, since the clustering information is reliable,
the clusters can be recovered from the similarity graph. How-
ever, further increases in I, , and Ig . do not reduce sample
complexity, so the sample complexity gain from these two
parameters is saturated in this regime.

3) Clustering-Limited Regime: The optimal sample com-
plexity reads 3- (1 — W#) nlogn, which is a de-
creasing function of [, , and I . This is the most challenging
scenario, which has not been explored by any prior works.
Since the clustering information is not reliable, it is not
possible to recover the groups and clusters from the similarity
graph. Furthermore, note that when S = -, i.e., groups
and clusters are indistinguishable, we have I, 3 = I, and
Ig~ = 0. As a result, it boils down to a problem setting
of gc clusters, and hence the optimal sample complexity
I“—ﬁ) nlogn. Comparing to the optimal sample
gc
complexity expression for the grouping-limited regime, the
only distinction appears in the denominator, in which d, is
replaced with d. due to the fact that §. < d,.

nlogn, which is a decreasing

reads - (1 -

C. Illustrative Comparisons

Fig. la and Fig. 1b depict the different regimes of the
optimal sample complexity as a function of (I, g,15~). In
Fig. 1a, where d, > 6., the region depicted by diagonal stripes
corresponds to the perfect clustering/grouping regime and the
first term in the RHS of (4) is active. The graph quality param-
eters I, g, I, and consequently I, ., are large, and the graph
information is rich enough to perfectly retrieve the clusters
and groups. The region represented by dots corresponds to the
grouping-limited regime, where the second term in the RHS
of (4) is active. In this regime, graph information suffices to
exactly recover the clusters, but we need to rely on rating
observation to exactly recover the groups. Finally, the third
term in the RHS of (4) is active in the region captured by
horizontal stripes. This indicates the clustering-limited regime,
where neither clustering nor grouping is exact without the side
information of the rating vectors. On the other hand, Fig. 1b,
where d, < d., depicts the practically-relevant setting in which
the rating vectors of users in the same cluster are expected to
be more similar than those in different clusters. Note that the
third regime (clustering-limited regime) vanishes in Fig. 1b.

Fig. 1c compares the optimal sample complexity, as a
function of I, g, between the one reported by Theorem 1 and
that of [22]. Note that [22] leverages neither the hierarchical
structure of the graph nor the linear dependency among the
rating vectors. Thus, the problem formulated in Section II
will be translated to a graph that consists of gc clusters
whose rating vectors are linearly independent in the setting
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(3,4,5,3), 0 = 0.01, (8,7) = (9,0.5), and (54,6.) = (1/3,1/3). The MDS code structure is u(" =
success rates of two matrix completion algorithms where (n,m,6,~,c, g,r,q) =

of [22]. Furthermore, the minimum Hamming distance for
[22] is .. The significant gain in the sample complexity of
our result is evident in the diagonal parts of the plot (i.e.,
clustering-limited and grouping-limited regimes on the left
side) is due to leveraging the hierarchical graph structure,
while the improvement in the sample complexity in the flat
part of the plot (i.e, perfect clustering/grouping regime) is a
consequence of leveraging the relational structure (i.e., linear
dependency) among the rating vectors within each cluster.
Fig. 1d depicts the sample complexity as a function of the
number of clusters in the perfect clustering/grouping regime.
It shows both the theoretical values (given by (4)) and the em-
pirical values (given by the algorithm explained in Section V).
It is evident that the sample complexity increases linearly
with the number of clusters when there is enough graph side
information to retrieve the cluster and group structures.

V. SIMULATION RESULTS

We conduct Monte Carlo experiments to show that the
proposed algorithm achieves p* characterized by Theorem 1.
Empirical success rates are averaged on 100 random realiza-
tions of rating vectors and hierarchical graphs. The settings of
the experiments are stated in the captions of the figures. The
proposed algorithm is built in part upon the computationally
efficient matrix completion algorithm proposed in [32]. It
consists of four phases. The first one exactly recovers the
clusters using the community detection algorithm in [34]. The
second phase gives an initial estimate of the groups (i.e, almost
exact recovery) using any spectral clustering algorithm, e.g.
[31], [35]-[39]. Next, the third phase exactly recovers the
rating vectors associated with each group in each cluster using

= (1680, 840, 4,0, 3, 5) and
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(d) Algorithm of [22]
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(a), (b): The success rate of the proposed algorithm as a function of p/p* for different values of n, m and a. The problem setting is (¢, g9,q,7) =

) for @ € [3]. (¢). (d): The
(1/2,1/2).

maximum likelihood estimation. Finally, the last phase exactly
recovers the group via an iterative local refinement procedure.
The distinction of our algorithm compared to [32] is that
the stage of exact recovery of the rating vectors is based on
maximum likelihood estimation.

In Figs. 2a and 2b, we quantify the empirical success rate
of the proposed algorithm as a function of the normalized
sample complexity. We vary n and m such that n/m =4.
Fig. 2a shows the case of a=49 which corresponds to perfect
clustering/grouping regime, while Fig. 2b depicts the case of
a=27 which corresponds to the grouping-limited regime. In
both figures, we observe a phase transition in the success rate
at p=p*, and the phase transition gets sharper as n and m
increase. This implies that the proposed algorithm achieves p*,
given by Theorem 1, in different regimes when the graph side
information is not scarce.

Finally, we highlight the sample complexity gain from lever-
aging the relational structure among rating vectors. Figs. 2¢c
and 2d depict the success rates under various values of p and
1, for the proposed algorithm and the one in [22] (where the
relational structure among rating vectors is not considered),
respectively. The empirical success rate is represented by a
grayscale heat map. The orange line indicates the optimal sam-
ple complexity given by Theorem 1. The vertical and diagonal
lines correspond to the sample complexity in perfect clus-
tering/grouping and grouping-limited regimes, respectively. In
Fig. 2c, the phase transition in the success rate of the proposed
algorithm is sharp and occurs at the optimal probability given
by (4). However, the phase transition in Fig. 2d occurs at a
higher observation probability, and therefore [22] requires a
higher sample complexity than the proposed algorithm.

gz) + u(z) + u3
(2400, 600, 0,0.5, 3,4, 3,5), and (69, de) =
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