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A B S T R A C T   

Agricultural decision-making by different interest groups (e.g., farmers, development agents and policy makers) 
usually takes place on different scales (e.g., plot, landscape and country). Currently, tools to assist decision- 
making are either dedicated to small-scale management guidance or large-scale assessment, which ignore the 
cross-scale linkages and interactions and thus may not provide robust and consistent guidance and assessment. 
Here, we developed an advanced agricultural modeling framework by integrating the strengths of conventional 
crop models in representing crop growth processes and management practices into a terrestrial biosphere model 
(TBM), the Dynamic Land Ecosystem Model (DLEM), to meet the cross-scale application needs (e.g., adaptation 
and mitigation). Specifically, dynamic crop growth processes, including crop-specific phenological development, 
carbon allocation, yield formation, biological nitrogen fixation processes, and management practices such as 
tillage, cover cropping and genetic improvements, were explicitly represented in DLEM. The new model was 
evaluated against site-scale observations and the results showed that the model performed generally well, with 
an average normalized root mean square error of 19.91% for leaf area index and 17.46% for aboveground 
biomass at the seasonal scale and 14.42% for annual yield. Then the model was applied to simulate corn, soy
bean, and winter wheat productions in the conterminous United States from 1960 to 2018. The spatial patterns of 
simulated crop productions were consistent with ground survey data. Our model also captured both the long- 
term trends and interannual variations of the total national productions of the three crops. This study demon
strates the significance of fusing conventional crop modeling techniques into TBMs to establish a unified 
modeling framework, which holds the potential to address climate impacts, adaptation and mitigation across 
varied spatiotemporal scales.   
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1. Introduction 

Ensuring global food security while achieving sustainable agricul
tural development is a grand challenge for human society (Davis et al., 
2016; Rosenzweig et al., 2014). During the past several decades, climate 
change and associated environmental stressors (e.g., water scarcity, pest 
prevalence, and soil degradation) have significantly impacted crop 
growth and production and are likely to reduce the resilience of global 
food systems (Bezner Kerr et al., 2022; Lesk et al., 2016; Wheeler and 
von Braun, 2013). Agricultural activities (e.g., fertilization, irrigation, 
and cropland expansion) have, in turn, exacerbated climatic and envi
ronmental changes through pathways such as greenhouse gas (GHG) 
emissions, groundwater extraction, and nutrient pollution (Giordano 
and Villholth, 2007; Tian et al., 2016; Tian et al., 2020a). In view of the 
increasing uncertainty in the agriculture-climate-environment system 
caused by complex cross-sector interactions, effective climate change 
mitigation and adaptation strategies in the agricultural sector are 
needed to limit further changes in the climate system and reduce the 
negative impacts of climate change on food production (Howden et al., 
2007; Vermeulen et al., 2012). Such mitigation and adaptation actions 
occur on multiple scales and are intertwined in intricate ways (Bever
idge et al., 2018; Klein et al., 2007; Tol, 2005). Specifically, stake
holders’ adaptation decisions to sustain food production are usually 
carried out on a small scale (e.g., field-farm-landscape scales) and 
benefit local communities, as the influences of climate change on crop 
growth and production are largely mediated by local environments and 
local-specific adaptation strategies would be more effective (Hammer 
et al., 2014; Ofgeha and Abshare, 2021). In contrast, agricultural miti
gation measures (e.g., soil organic carbon sequestration and GHG miti
gation) and their potential feedbacks to the environment and climate are 
often implemented and assessed on a broader scale (e.g., 
regional-national-global scales), because effective mitigation requires 
the participation of major GHG emitters globally and is primarily driven 
by international agreements and ensuing national public policies 
(Hansen and Jones, 2000; Klein et al., 2007; Locatelli, 2011). Therefore, 
a unified tool that is capable of addressing cross-scale agricultural 
application demands is needed (Beveridge et al., 2018; Peng et al., 
2020). Such a tool would enable a more consistent and robust prediction 
and assessment of crop production and the concomitant environmental 
and climatic tradeoffs. 

Process-based crop models are commonly used to inform small-scale 
farm adaptation decisions to sustain food production (Chenu et al., 
2017; Jones et al., 2017). A number of crop models that simulate crop 
growth and yields as influenced by weather, soil, cultivar, and man
agement strategies have been developed, such as DSSAT (Decision 
Support System for Agrotechnology Transfer) (Jones et al., 2003), 
APSIM (Agricultural Production Systems sIMulator) (Holzworth et al., 
2014; Keating et al., 2003), EPIC (Erosion Productivity Impact Calcu
lator) (Williams et al., 1989), and CROPSYST (Cropping Systems 
Simulation Model) (Stöckle et al., 2003; Stöckle et al., 2014). Physio
logical mechanisms of crop development, growth, and yield formation 
processes under biotic and abiotic stresses, and farming management 
practices such as tillage and irrigation, are well-represented in these 
models. However, since crop models are originally designed for farmer’s 
decision support, they generally focus on field-scale yield simulation 
over homogeneous plot conditions. Meanwhile, they typically have a 
reduced-form representation of hydrologic, energy and biogeochemical 
cycles. These properties limit their ability to simulate regional crop 
production, assess mitigation potential in the agriculture sector, and 
evaluate the environmental impacts of agricultural management 
activities. 

Terrestrial biosphere models (TBMs) with agricultural components 
provide new insights for agricultural climate change mitigation and 
adaptation on a broader scale (Bondeau et al., 2007; Lombardozzi et al., 
2020; McDermid et al., 2017). Most TBMs have included detailed hy
drological, biophysical, and biogeochemical processes and can be 

further integrated with general circulation models for future climate 
change impact projections (Alo and Wang, 2008; Fisher et al., 2014; 
Schaphoff et al., 2006). Therefore, they can potentially be used to 
simulate regional crop production under historical and future climate 
scenarios, assess the mitigation potential of agricultural management 
options, and quantify the exchange of carbon, water, nutrient and en
ergy fluxes within the agriculture-climate-environment system. How
ever, the representation of agriculture in most TBMs is relatively simple 
(e.g., lacking or simplifying dynamic crop growth processes and man
agement practices), with some TBMs even treating crops as natural 
grasses though using different eco-physiological parameters as a 
distinction (Betts, 2005; McDermid et al., 2017). Since crops have rather 
different phenological development processes compared with natural 
vegetation and often involve implementation of management practices 
(e.g., irrigation and fertilization), such simplified schemes are unlikely 
to be able to closely replicate observed yields under varying climatic and 
environmental conditions across different spatiotemporal scales, which 
limit their use for agricultural adaptation and mitigation assessments. 

In view of the strengths and weaknesses of process-based crop 
models and TBMs, it is highly desirable to integrate these two types of 
models into a unified framework to complement each other (Peng et al., 
2020). Such a framework is capable of meeting cross-scale agricultural 
application needs and providing more robust and consistent predictions 
and assessments. Some recent developments of TBMs have attempted to 
move in this direction, such as the Joint UK Land Environment Simulator 
(JULES) (Van den Hoof et al., 2011), the Organizing Carbon and Hy
drology in Dynamic Ecosystems Model (ORCHIDEE) (Wu et al., 2016), 
the Lund Potsdam Jena managed Land model (LPJmL5) (Lutz et al., 
2019), and the Community Land Model (CLM) (Boas et al., 2021; 
Lombardozzi et al., 2020; Peng et al., 2018). These augmented models 
are not only conducive to yield simulation, but also improve the esti
mation of regional-scale carbon, water and energy exchanges within the 
agriculture-climate-environment system (Boas et al., 2021; Lokupitiya 
et al., 2009; Song et al., 2013). However, despite these recent progresses, 
most TBMs still lack a sound representation of crop-specific physiology 
and/or agricultural land-use changes and management practices (e.g., 
tillage, cover cropping, and genetic improvement). Moreover, some 
TBMs still fail to adequately represent the effects of multiple environ
mental changes (e.g., CO2 fertilization, nitrogen (N) deposition, and 
ozone pollution) on crop growth and development. Improvements in our 
knowledge of the environmental and management factors influencing 
crop growth and yield will further deepen our understanding of the 
food-energy-water nexus and lead toward sustainable agricultural 
systems. 

In this study, we implemented such a unified framework in the 
platform of the Dynamic Land Ecosystem Model v4.0 (hereinafter 
referred to as the agricultural module of DLEM v4.0), which is well- 
recognized for simulating coupled carbon-water-nutrient cycles (Pan 
et al., 2021; Tian et al., 2010; Tian et al., 2020b; Yao et al., 2020). 
Specifically, leveraging the strengths of DLEM v4.0 in representing hy
drological, biophysical and biogeochemical processes under multiple 
environmental changes, we incorporated explicit and mechanistic rep
resentations of dynamic crop growth processes and agricultural man
agement practices into it, including but not limited to crop-specific 
phenological development, carbon allocation, yield formation, and 
biological N fixation processes, as well as management practices such as 
tillage, cover cropping, and crop genetic improvements. The perfor
mance of the new agricultural module in reproducing the seasonal 
variations and magnitudes of leaf area index (LAI), aboveground 
biomass, and yield was evaluated against field observations. Using this 
model, we also simulated corn, soybean, and winter wheat production in 
the conterminous United States (U.S.) over 1960-2018 and examined 
how they varied spatially and temporally. 
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2. Materials and methods 

DLEM v4.0 is a highly integrated TBM that is capable of quantifying 
daily, spatially explicit carbon, water, and nutrient stocks and fluxes in 
terrestrial ecosystems and inland water systems across site, regional, and 
global scales (Pan et al., 2021; Tian et al., 2010, 2020b; Yao et al., 2020). 
Five core components are included in DLEM v4.0 to simulate the 
biogeochemical and biogeophysical processes within terrestrial ecosys
tems: biophysics, plant physiology, dynamic vegetation, soil biogeo
chemistry, and natural and anthropogenic disturbances. Through 
coupling major biogeochemical-hydrological processes, DLEM is able to 
simultaneously depict the biosphere-atmosphere exchanges of CO2, 
nitrous oxide (N2O) and methane (CH4) as driven by multiple environ
mental forcings (e.g., climate, atmospheric CO2 concentration, N 
deposition, tropospheric ozone pollution, and land use and land cover 
change). This capability provides a powerful tool for supporting the 
development of effective GHG mitigation options. DLEM has been 
widely evaluated and applied to estimate CO2, CH4 and N2O fluxes at 
multiple sites and regions like China (Ren et al., 2011; Tian et al., 2011), 
the United States (Tian et al., 2012a; Zhang et al., 2012), North America 
(Tian et al., 2015; Xu et al., 2012, 2010), and across the globe (Fried
lingstein et al., 2020; Saunois et al., 2020; Tian et al., 2020a). In addi
tion, a land-aquatic interface has also been coupled to DLEM (Pan et al., 
2021; Yao et al., 2020), which enhances its ability to simulate nutrient 
loading from agroecosystems and investigate potential mitigation 
strategies. 

2.1. Development of the agricultural module of DLEM v4.0 

The new agricultural module is developed based on previous agri
cultural versions of DLEM (DLEM-Ag and DLEM-Ag2), which included 
simplified crop growth processes and basic management practices (e.g., 
N fertilization, irrigation, and rotation) (Ren et al., 2012; Tian et al., 
2012b; Zhang et al., 2018). While DLEM-Ag and DLEM-Ag2 can achieve 
a good performance at specific sites, their performance in regional-scale 
simulations has been relatively poor (especially when simulating 
long-term series of regional crop production) (Zhang et al., 2018). 
Moreover, their ability in quantifying impacts of agricultural activities 
on biosphere-atmosphere feedback is also limited. 

To overcome the above shortcomings, the new agricultural module 
in DLEM v4.0 has major improvements in five aspects: crop phenological 
development, carbon allocation, yield formation, biological N fixation, 
and management practices (Table S1). First, we included crop-specific 
phenological development schemes, with phenology-stage-dependent 
environmental stresses explicitly considered. Second, a new dynamic 
carbon allocation scheme was implemented, where the allocation frac
tion of net assimilates to different vegetation pools is determined by a 
prescribed growth-stage dependent carbon allocation curve and modi
fied by water, light, and N stresses. Third, the yield formation process 
was improved by calculating crop yield as the balance between available 
carbon supply to the reproduction pool and the actual carbon demand 
for grain filling. The actual carbon demand for grain filling of different 
crops was calculated using crop-specific methods derived from relevant 
studies (Gaspar et al., 2017; Gregory and Atwell, 1991; Gregory et al., 
1995; Lei et al., 2010; Lokupitiya et al., 2009; Peart and Shoup, 2018; 
Ritchie, 1991; Srivastava et al., 2006; Taylor et al., 1982; Wilhelm, 
1998; Yamagata et al., 1987). Meanwhile, the translocation of dry 
matter between the stem tissue and the reproduction pool to supplement 
grain filling was also considered. Fourth, a new biological N fixation 
scheme was included, where the N fixation rate is dependent on soil 
temperature, soil moisture, N availability, substrate concentration, and 
crop phenological stage. Finally, we incorporated several important 
management practices (i.e., tillage, cover cropping, and crop genetic 
improvements) in the new model and implemented a dynamic crop 
rotation scheme through introducing time-varying crop rotation maps to 
better reflect the interannual changes in distributions of different crop 

types. 

2.1.1. Crop phenological development 
The life cycle of a crop can be divided into several phenological 

stages that influence the development of crop canopy structure (e.g., LAI 
and canopy height), the allocation of carbon and nutrients among crop 
tissues, and the biological N fixation process. Some of these phenological 
stages are general to all crops, such as sowing, germination, emergence, 
physiological maturity, and harvest; while other stages are crop-specific 
such as the tassel initiation and silking stages of corn. DLEM-Ag uses 
prescribed static LAI curves derived from satellite images to determine 
phenology (Ren et al., 2012). DLEM-Ag2 divides the life cycle of all 
crops into the same eight stages and does not consider environmental 
stresses on phenological development (Zhang et al., 2018), which have 
been shown to be critical for determining phenological stages (Gungula 
et al., 2003; Uhart and Andrade, 1995; Wilhelm et al., 1993). Our new 
model explicitly considers the phenological differences among crops as 
well as phenology-stage-dependent environmental stresses. It also 
adopts two separate schemes to determine phenological stages of 
various crop types: a general crop scheme (GCS) for some crops 
(currently including rice, peanuts, cotton, sorghum, barley, rye, cassava, 
potato, rapeseed, sugarbeet and sugarcane, but can be flexibly expanded 
if needed) and a specific crop scheme (SCS) for other crops (currently 
including corn, soybean, and wheat). For the GCS, we used a unified 
phenological development cycle similar to that in DLEM-Ag2 but 
included more detailed phenological stages and the environmental 
stresses (e.g., water and N) on phenological development. Crop life cycle 
in the GCS is divided into ten stages: sowing, germination, emergence, 
end of juvenile, floral initiation, flowering, beginning of grain filling, 
end of grain filling, maturity, and harvest (Fig. 1). Each crop type using 
the GCS is specifically parameterized. The SCS has the same basic 
characteristics as the GCS, but it additionally includes crop-specific 
phenological stages (Table S2), such as the tassel initiation and silking 
stages for corn, beginning of pod growth and end of pod growth stages 
for soybean, and terminal spikelet and end of ear growth stages for 
winter wheat, and the main growth tissues also differ across the crops’ 
various phenological stages. Moreover, the SCS also includes 
crop-specific physiological characteristics, such as photoperiodism and 
biological N fixation for soybean, and vernalization for winter wheat. 

The crop life cycle begins with seed sowing or planting. In DLEM-Ag 
and DLEM-Ag2, crop sowing dates have been prescribed and remain 
unchanged, which may lead to large errors in the simulated yields 
considering that crop planting dates vary annually due to changing 
weather conditions (Kucharik, 2006; Laux et al., 2010; Yang et al., 
2020). In contrast, sowing dates in the new model are dynamically 
simulated rather than prescribed. To determine crop sowing dates, 
sowing trigger criteria modified from CLM4.5 were used (Levis et al., 
2012). The original sowing trigger criteria in CLM4.5 include: (1) a 
10-day running average of mean air temperature that exceeds a 
threshold; (2) a 10-day running average of minimum air temperature 
that exceeds a threshold; and (3) a 20-year running average of 8 
℃-based growing degree-days (GDD) from April to September that ex
ceeds a threshold. However, these criteria have been found to lead to 
earlier sowing dates than the actual, because the GDD criterion is easily 
met and thus the sowing date is in fact determined by the first two 
criteria (Chen et al., 2015, 2018). To this end, we have modified the 
GDD criterion to be the cumulative thermal time from the earliest 
sowing date (defined by input data) that is greater than the crop-specific 
threshold (Peng et al., 2018). Summarizing, the revised sowing trigger 
criteria used in DLEM v4.0 are as follows: 
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

SDateearliest ≤ SDate ≤ SDatelatest

Tp
avg < T10d

avg

Tp
min < T10d

min

ATTmin < ATT

(1)  

where SDateearliest and SDatelatest denote the crop-specific prescribed 
earliest and latest sowing dates, respectively, which are obtained from 
input data; SDate denotes the simulated sowing date; Tp

avg and Tp
min 

denote the crop-specific thresholds of the 10-day running average and 
minimum temperatures for sowing; T10d

avg and T10d
min denote the actual 10- 

day running average and minimum air temperatures, respectively; 
ATTmin denotes the crop-specific threshold of minimum thermal time for 
sowing; ATT denotes the accumulated thermal time from the earliest 
sowing date to the current day, which is calculated using Eqs. (A1) and 
(A2) in Appendix A1.1. If the above criteria are not met, crops will be 
sown at the prescribed latest sowing date. 

Seed germination is triggered if the number of days after the simu
lated sowing date is larger than the crop-specific threshold. The initia
tion and duration of the subsequent phenological stages (i.e., from 
emergence to maturity) are determined according to the Biological Days 
(BD)-based phenological development scheme (Soltani and Sinclair, 
2012). Specifically, we first calculate the daily BD (i.e., an indicator of 
daily development rate) using a 3-segment temperature response func
tion, with the vernalization and photoperiod effects as well as envi
ronmental stresses considered (Eq. (2)); then the fraction of Cumulative 
Biological Days (fCBD), an indicator of cumulative crop development 
rate updated at a daily time-step, is calculated as the actual accumulated 
BD from germination to the current day divided by the total BD required 
for maturity (Eq. (3)). A phenological stage is predicted to occur when 
the calculated fCBD reaches the target fCBD of that stage. 

dailyBD = tempfun × ppfun × verfun × fstress (2)  

fCBD =

∑current day
germinationdailyBD

∑maturity
germinationdailyBD

(3)  

where dailyBD denotes daily crop development rate; tempfun, ppfun, 

verfun, and fstress denote the inhibition of the potential crop development 
rate by temperature, photoperiod, vernalization, and environmental 
stresses, respectively, and are calculated using Eqs. (A3)–(A8) in Ap
pendix A1.2; fCBD denotes the fraction of accumulated dailyBD (i.e., 
from germination to the current day) to total BD required for maturity, 
in which fCBD is equal to 0 at the germination stage and equal to 1 at the 
maturity stage. The crop is harvested immediately after maturity or 
when the growing season length of crops exceeds the crop-specific 
longest growing days. 

Along with the development of phenology, crop LAI is updated at a 
daily time step and increases until the beginning of the reproductive 
phase. The daily LAI is calculated as a function of leaf carbon content 
and specific leaf area (SLA; the ratio of leaf area to leaf dry mass) (Eq. 
(A9) in Appendix A1.2). Meanwhile, following CLM 4.5 (Levis et al., 
2012), crop canopy height also varies with phenological stages and is 
obtained by scaling the maximum canopy height by the daily LAI (Eq. 
(A10) in Appendix A1.2). 

2.1.2. Carbon assimilation and allocation 
Photosynthetic processes in the agricultural module of DLEM v4.0 

are inherited from a previous DLEM version (Tian et al., 2010). How
ever, to improve the representation of C4 plant (e.g., corn and sorghum) 
responses to environmental stresses (e.g., temperature, moisture, and 
radiation), we further incorporated an enzyme-driven C4 photosynthesis 
routine (Di Vittorio et al., 2010), which uses an enzyme-driven bundle 
sheath CO2 concentration to substitute the diffusion-driven internal CO2 
concentration available to ribulose-1,5-bisphosphate carboxylase-ox
ygenase (Rubisco) for carbon assimilation. 

For daily carbon allocation, DLEM-Ag and DLEM-Ag2 do not 
consider environmental stresses when allocating net carbon assimilates 
to the leaf, stem, and reproduction pools. To overcome this limitation, 
we implemented a new dynamic carbon allocation scheme in the agri
cultural module of DLEM v4.0. The potential allocation ratios followed a 
crop-specific dynamic carbon allocation curve across phenological 
stages (Fig. S1) (Gaspar et al., 2017; Gregory and Atwell, 1991; Gregory 
et al., 1995; Lei et al., 2010; Lokupitiya et al., 2009; Peart and Shoup, 
2018; Ritchie, 1991; Srivastava et al., 2006; Taylor et al., 1982; Wil
helm, 1998; Yamagata et al., 1987), which were further regulated by 

Fig. 1. Crop life cycle in the general crop scheme of the Dynamic Land Ecosystem Model v4.0. fCBD_emer, fCBD_juve, fCBD_fini, fCBD_flow, fCBD_bfill, fCBD_efill, 
and fCBD_matu denote the target fraction of Cumulative Biological Days required to reach the phenological stages of emergence, end of juvenile, floral initiation, 
flowering, beginning of grain filling, end of grain filling, and maturity, respectively. 
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light, N, and water stresses (Song et al., 2013) to obtain the actual ratios: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aleaf =
Aleaf ,p

1 + ω × (3 − fL − fN − fW )

Astem =
Astem,p + ω × (1 − fL)

1 + ω × (3 − fL − fN − fW )

Aroot =
Aroot,p + ω × (2 − fN − fW )

1 + ω × (3 − fL − fN − fW )

Arepr =
min

(
Cavail × Arepr,p,Cdemand

)

Cavail × (1 + ω × (3 − fL − fN − fW ))

(4)  

where Aleaf , Astem, Aroot , and Arepr denote the actual carbon allocation 
ratios for leaf, stem, root, and reproduction pools modified by envi
ronmental stresses, respectively; Aleaf ,p, Astem,p, Aroot,p, and Arepr,p denote 
the potential carbon allocation ratios for leaf, stem, root, and repro
duction pools, respectively, which are derived from the prescribed 
growth-stage dependent carbon allocation curve; ω is a scaling param
eter representing the sensitivity of an allocation ratio to changes in light, 
N, and water stresses; fL, fN, and fW denote the light, N, and water 
stresses, respectively, which are calculated using Eq. (A11) in Appendix 
A2; Cavail is the net carbon assimilates available for allocation; and 
Cdemand is the actual carbon demand for fulfilling grain filling, which is 
calculated as: 

Cdemand = AKW × GN × Pdensity (5)  

where AKW denotes the actual kernel weight at physiological maturity, 
which is determined as the product of daily BD and potential kernel 
growth rate (pKGR) and is subject to heat and N stresses (calculated 
using Eq. (A12) in Appendix A2); GN denotes grain number per plant, 
which is calculated using crop-specific methods (Fischer, 1985; Keating 
et al., 2003; Vega et al., 2001; Zheng et al., 2014) (calculated using Eq. 
(A13) in Appendix A2); and Pdensity denotes planting density (i.e., num
ber of plants per square meter). 

This dynamic carbon allocation scheme allows optimizing crop 
growth processes across its phenological stages. During the emergence 
stage, carbon stored in the seeds is allocated to the leaf pool and root 
pool at a fixed ratio of 0.6 and 0.4, respectively; during the vegetative 
phase, net assimilates are preferentially allocated to leaf, root, and then 
stem to facilitate capture of solar radiation and uptake of nutrients and 
water; and during the reproductive phase, the reproduction pool has the 
highest priority of carbon allocation to fulfill grain filling. 

2.1.3. Yield formation 
In DLEM v4.0, the estimation of crop yield adopts a different algo

rithm than DLEM-Ag and DLEM-Ag2. Specifically, in DLEM-Ag, crop 
yield is estimated as the product of total aboveground biomass and a 
constant harvest index, which may lead to deviation in the simulated 
yields considering that harvest index actually varies with climate con
ditions, farming practices, and environmental factors (Hay, 1995; 
Porker et al., 2020; Sinclair, 1998). In DLEM-Ag2, crop yield is deter
mined by the actual carbon demand for grain filling, where a single 
empirical equation related to stem dry weight is used to calculate the 
actual carbon demand of all crops, even though the grain filling char
acteristics differ by crops. In DLEM v4.0, yield formation follows a 
supply-demand relationship. That is, it is estimated as the balance be
tween the available carbon assimilates supply to the reproduction pool 
and the actual carbon demand for crop to fulfill grain filling (Jones et al., 
2003; Villalobos et al., 1996). Moreover, we use various methods 
derived from relevant studies, with crop-specific grain filling charac
teristics considered, to calculate the actual carbon demand of different 
crops (Eq. (5)). The translocation of dry matter between the stem tissue 
and the reproduction pool is also considered in the new model, allowing 
up to 20% of carbon to be translocated from the stem pool to the 
reproduction pool to supplement grain filling if the available carbon 

assimilates cannot satisfy the actual carbon demand. If excess assimi
lates are available, the carbon that exceeds the actual carbon demand 
will be re-translocated from the reproduction pool to the stem pool to 
ensure mass balance. 

2.1.4. Biological nitrogen fixation 
Crops like soybeans are able to fix N to meet nutrient requirements 

for growth. In DLEM-Ag and DLEM-Ag2, the biological N fixation is 
determined by the prescribed PFT-specific annual N fixation rate and 
CO2 concentration, which does not consider environmental stresses and 
the effects of crop growth stages. In DLEM v4.0, the biological N fixation 
process has been improved, which is calculated as a function of potential 
N fixation rate, soil temperature, soil moisture, soil mineral N concen
tration, substrate carbon concentration, and crop phenological stage 
(Liu et al., 2011): 

Nfix = Nfix, pot × fsoilT × fsoilW × fsoilN × fsoilC × fphen (6)  

where Nfix is the actual biological N fixation rate; Nfix, pot is the potential 
N fixation rate; fsoilT is a soil temperature factor; fsoilW is a soil moisture 
factor; fsoilN is a soil mineral N factor; fsoilC is a function of substrate 
carbon concentration; and fphen is a factor of crop phenological stage 
(calculated using Eq. (A14) in Appendix A3). 

2.1.5. Agricultural management practices 
Previous DLEM versions have incorporated common management 

practices, including N fertilization, irrigation, and crop rotation. N 
fertilization practice is represented by adding N directly to the soil 
ammonium and nitrate pools to meet crop N demands through both 
industrial fertilizer and manure application. Irrigation practice is 
implemented by assuming that soil moisture would reach field capacity 
when irrigated, in which irrigation timing is determined as the point 
when soil moisture of the top layer dropped to 30% of maximum 
available water (i.e., field capacity minus wilting point) during the 
growing season (Ren et al., 2011). Crop rotation is implemented by 
allowing different crop types to exist on the same soil during different 
periods of growing/planting cycles (e.g., rotation of winter and summer 
crops). 

In the new model, besides including more management practices like 
tillage and cover cropping, we also incorporated genetic improvement 
options, as increased crop yields in the past decades can be largely 
attributed to improvements in both management practices and crop 
genetic breeding (Duvick, 1984; Duvick, 2005; Hammer et al., 2009; 
Pingali, 2012). Four types of tillage practices (i.e., no-tillage, conser
vation tillage, reduced tillage, and conventional tillage) are considered 
in our model, based on the differences in tillage depth, mixing efficiency, 
and the proportion of soil surface covered by residues after tillage 
(Table S3) (Porwollik et al., 2019). Three aspects of tillage impacts on 
the agroecosystem are represented: (1) changes in surface residue 
coverage and the subsequent redistribution of soil organic matter (SOM) 
and nutrients within the tilled soil layers due to tillage mixing (Eqs. 
(B1)–(B3) in Appendix B1.1); (2) changes in litter interception, bulk 
density, soil moisture and other water-related effects on processes such 
as nitrification, denitrification, and leaching (Eqs. (B4)–(B10) in Ap
pendix B1.2); and (3) changes in the soil decomposition rate (Eqs. 
(B12)–(B20) in Appendix B1.3). Cover cropping is represented in the 
new model through planting crops (e.g., winter rye and peas) during the 
normal fallow period and leaving crop biomass in the field at the 
beginning of the following main crop growing season (Huang et al., 
2020). The impacts of crop genetic improvements on yields are repre
sented through two mechanisms: (1) increasing the photosynthesis rate 
of crops (Long et al., 2015; Parry et al., 2011; Wu et al., 2019), and (2) 
enhancing crop N uptake ability (Lu et al., 2018). Besides these new 
considerations, we have also improved the representation of the existing 
rotation practice, where a dynamic rotation scheme is incorporated into 
the new model through introducing time-varying crop rotation maps, 
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rather than the static rotation map in previous versions. 

2.2. Input data 

To drive DLEM v4.0, long-term spatial datasets at a resolution of 5×5 
arc-min were developed, including climate, atmospheric CO2 concen
tration, N deposition, soil properties, land use and land cover change, 
crop rotation, N fertilizer use rates, manure N application rates, irriga
tion, tillage intensity, and the earliest and latest crop planting dates 
(Table 1). Specifically, the historical daily climate dataset (including 
precipitation, solar radiation, maximum, minimum and mean temper
atures) from 1860 to 2018 was reconstructed from the North American 
Land Data Assimilation System product (Mitchell et al., 2004; Xia et al., 
2012), the Climate Research Unit-National Centers for Environmental 
Prediction dataset (Mitchell and Jones, 2005), and the IPSL Climate 
Model dataset (Boucher et al., 2020), using a revised delta downscaling 
method (Liu et al., 2013). Monthly atmospheric CO2 concentration data 
from 1860 to 2018 were obtained from the NOAA GLOBALVIEW-CO2 
dataset derived from atmospheric and ice core measurements (www. 
esrl.noaa.gov). Monthly atmospheric N deposition data from 1860 to 
2018 were acquired from the International Global Atmospheric Chem
istry (IGAC)/Stratospheric Processes and Their Role in Climate (SPARC) 
Chemistry–Climate Model Initiative (CCMI) (Eyring et al., 2013). Soil 
physical and chemical properties were obtained from the ISRIC-WISE 
Harmonized Global Soil Profile dataset (Batjes, 2008). The annual land 
use and land cover change dataset (including coverage fraction of 
croplands) from 1860 to 2016 was obtained from Yu and Lu (2018). The 
annual crop rotation dataset from 1910 to 2018 was developed by 
combining the United States Department of Agriculture (USDA) Crop
land Data Layer (CDL) product and the USDA-National Agricultural 
Statistics Service (NASS) survey data of county-scale crop planting areas, 
using the spatialization method implemented in Yu et al. (2018). The 

annual crop-specific N fertilizer use data from 1910 to 2018 was 
reconstructed using the state-level N fertilizer use rates from 
USDA-NASS and the national-level commercial N fertilizer consumption 
data from Mehring et al. (1957) and USDA-ERS (2019), following Cao 
et al. (2018). The annual manure N application dataset from 1860 to 
2018 was acquired from Bian et al. (2021). The annual crop-specific 
irrigation dataset from 1950 to 2018 was downscaled from the 
county-scale irrigation reanalysis dataset (McManamay et al., 2021) and 
the USDA-NASS county-scale irrigated cropland area, using the MODIS 
Irrigated Agriculture Dataset (MIrAD) (Brown and Pervez, 2014; Pervez 
and Brown, 2010) as a base map. The annual tillage intensity dataset 
from 1960 to 2018 was reconstructed from the county-scale tillage 
practices survey data (1989–2011) obtained from the National Crop 
Residue Management Survey (CRM) of the Conservation Technology 
Information Center (https://www.ctic.org/CRM). Tillage maps for 
missing years were kept the same as the nearest years when data were 
available. The original five types of tillage practices in the CRM dataset 
were reorganized into four types through combining the ridge tillage 
and mulch tillage types in CRM to the conservation tillage type in DLEM 
v4.0. The county-scale CRM dataset was combined with the CDL-derived 
crop rotation map and the USDA-NASS crop planting area to estimate 
historical spatial distributions of tillage practices. The state-level earliest 
and latest crop planting dates were obtained from the USDA-NASS 
survey report (NASS, 2010), which provides the planting and harvest
ing windows in most of the historical years. Other auxiliary data such as 
topography and river network data were obtained from our previous 
studies (Tian et al., 2010; Tian et al., 2012b, 2020b; Xu et al., 2019). 

In addition, to better represent crop growth characteristics across a 
wide range of temperature and precipitation regimes, we divided corn, 
soybean and winter wheat varieties in the U.S. into seven, seven, and 
three groups, respectively (Fig. S2), based on the classification of rela
tive maturity groups (Zhang et al., 2007, 2020). The spatial distribution 

Table 1 
Input datasets to drive DLEM v4.0.  

Dataset name Period Spatial 
resolution 

Temporal 
resolution 

Methods and data sources 

Climate (precipitation, solar 
radiation, maximum, minimum 
and mean temperatures) 

1860–2018 5 arc-min Daily Reconstructed from the North American Land Data Assimilation System product ( 
Mitchell et al., 2004; Xia et al., 2012), the Climate Research Unit-National Centers for 
Environmental Prediction dataset (Mitchell and Jones, 2005), and the IPSL Climate Model 
dataset (Boucher et al., 2020), using a revised delta downscaling method (Liu et al., 2013) 

CO2 concentration 1860–2018 5 arc-min Monthly Obtained from the NOAA GLOBALVIEW-CO2 data set (www.esrl.noaa.gov) 
Nitrogen deposition 1860–2018 5 arc-min Yearly Acquired from the International Global Atmospheric Chemistry (IGAC)/Stratospheric 

Processes and Their Role in Climate (SPARC) Chemistry–Climate Model Initiative (CCMI) 
(Eyring et al., 2013) 

Soil physical and chemical 
properties (e.g., texture and pH) 

One time 5 arc-min One time Obtained from the ISRIC-WISE Harmonized Global Soil Profile dataset (Batjes, 2008) 

Land use and land cover change (e. 
g., cropland fraction) 

1860-2016 5 arc-min Yearly Acquired from Yu and Lu (2018) 

Crop rotation maps 1910–2018 5 arc-min Yearly Developed by combining the United States Department of Agriculture (USDA) Cropland 
Data Layer (CDL) product, the USDA-National Agricultural Statistics Service (NASS) 
survey data of county-scale crop planting area, and the Google Earth Engine cloud 
computing platform, using the spatialization method implemented in Yu et al. (2018) 

Crop-specific nitrogen fertilizer 
use rate 

1910–2018 State-level Yearly Reconstructed using the state-level N fertilizer use rates from USDA-NASS and the 
national-level commercial N fertilizer consumption data from Mehring et al. (1957) and  
USDA-ERS (2019), following a method similar to that used in Cao et al. (2018) 

Manure nitrogen application 1860–2018 5 arc-min Yearly Acquired from Bian et al. (2021) 
Crop-specific irrigation map 1950–2018 5 arc-min Yearly Using the MODIS Irrigated Agriculture Dataset (MIrAD) (Brown and Pervez, 2014; Pervez 

and Brown, 2010) as a base map, and then combining the county-scale irrigation 
reanalysis dataset derived from the United States Geological Survey (USGS) ( 
McManamay et al., 2021) and the USDA-NASS county-scale irrigated cropland area to 
extrapolate the spatially explicit irrigation map in historical years 

Tillage map 1960–2018 5 arc-min Yearly Reconstructed from the county-scale tillage practices survey data obtained from the 
National Crop Residue Management Survey (CRM) of the Conservation Technology 
Information Center (https://www.ctic.org/CRM), where tillage maps for missing years 
were kept consistent with the nearest years for which data were available 

The earliest and latest crop 
planting dates 

One time State-level One time Obtained from the USDA-NASS survey report (NASS, 2010) 

Auxiliary data (e.g., topography 
and river network) 

One time 5 arc-min One time Obtained from previous DLEM studies (Tian et al., 2010, 2012b, 2020b; Xu et al., 2019)  
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of crop maturity groups remains relatively stable over time but differed 
in several genetic characteristics, including the total CBD required for 
maturity, the timing and duration of different phenological stages, and 
photoperiod-related parameters (Table S4). The spatial distribution of 
corn variety groups was adapted from the corn maturity zones provided 
by the Elk Mound Seed Company (https://www.elkmoundseed.com/s 
eed-corn/seed-corn-resources/), and we merged the zone with matu
rity between 91 and 95 days and the zone with maturity between 95 and 
100 days into one. The distribution of soybean variety groups was 
derived from the revised optimum adaptation zones for soybean matu
rity groups (Zhang et al., 2007). The distribution of winter wheat variety 
groups was determined based on the wheat production map by the 
National Association of Wheat Growers (https://www.wheatworld. 
org/wheat-101/wheat-production-map/), and we divided the U.S. 
winter wheat varieties into three groups, i.e., soft white winter wheat, 
hard red winter wheat, and soft red winter wheat. 

2.3. Model calibration and validation 

We calibrated and validated the new model using data collected from 
multiple sources, including the AmeriFlux Network, the Greenhouse Gas 
Reduction through Agricultural Carbon Enhancement Network, the 
Resilient Economic Agricultural Practices Project, the USDA-NASS, and 
relevant literature. The values of the crop variety group parameters 
(Table S4) and the general model parameters related to crop growth 
processes (Table S5) were determined through model calibration within 
a reasonable range of reported values in literature. Specifically, we first 
used the default parameters to run the model, and then we adjusted the 
parameters (within a ±20% range of default values) to obtain a close 
match between the observed and predicted values for LAI, aboveground 
biomass, and grain yield. The parameter set obtaining the minimal bias 
between the simulated and measured values across all sites was adopted. 
In addition, we calibrated parameters related to crop genetic improve
ments (Table S6), including N uptake capability (Nupmax) and the 
maximum carboxylation rate (Vcmax). Specifically, we first calibrated the 
temporal changes of Nupmax using the time series of Nupmax obtained from 
Lu et al. (2018), in which a logistic equation was used to model the 
impacts of crop genetic improvements in enhancing Nupmax. Then, a 
linear regression model was used to estimate the temporal changes in 
increasing rate of Vcmax to obtain the best match between the simulated 
time series of national crop yields and the USDA-NASS records. 

After model calibration, field observed LAI, aboveground biomass, 
and yield data (excluding the data for model calibration), as well as the 
regional-scale crop production survey data were used to evaluate the 
new model performance. The distribution and description of these field 
sites are presented in Fig. S3 and Tables S7–S9. Several metrics were 
used to quantitatively evaluate the model performance, including the 
coefficient of determination (R2), the root mean square error (RMSE), 
and the normalized root mean square error (NRMSE). 

2.4. Model implementation 

The implementation of the agricultural module of DLEM v4.0 in
cludes three major steps: an equilibrium run, a spin-up run, and a 
transient run. The equilibrium run was driven by the average climate 
data during the 1860s and other environmental factors in 1860. The 
equilibrium state was assumed to be reached when the changes in car
bon, N, and water pools between two consecutive 20 years period were 
less than 0.5 g C m− 2 year− 1, 0.5 g N m− 2 year− 1, and 0.5 mm year− 1, 
respectively. The spin-up run was driven by the detrended climate data 
during the 1860s to eliminate model fluctuations due to the mode 
transition from equilibrium run to transient run. Finally, the transient 
run was driven by the historical data from 1860 to 2018. 

2.5. Parameter sensitivity analysis 

The Sobol’ method, a variance-based global sensitivity analysis 
method, was used to measure the sensitivity of simulated crop yield to 
key model parameters. The Sobol’ method decomposes model output 
variance into the contribution of each input parameter and their in
teractions to calculate sensitivity index (Sobol, 1993): 

VY =
∑

i
Vi +

∑

i

∑

j>i
Vij +

∑

i

∑

j>i

∑

k>j
Vijk + ⋯ + V1,2,…,n (7)  

where VY represents the total variance of model output, Vi represents the 
variance explained by the ith input parameter, Vij represents the vari
ance explained by the interactions between the ith and jth input pa
rameters, and n represents the number of input parameters. The first- 
order sensitivity index is defined as Si = Vi/VY , the higher-order sensi
tivity indices are defined as Sij = Vij/VY , Sijk = Vijk/VY ,…, S1,2,…,i,…,n =

V1,2,…,i,…,n/VY , respectively, and the total-order sensitivity index STi of 
the ith parameter is defined as the sum of its first-order sensitivity index 
and all the higher-order sensitivity indices involving it. Among them, Si 
measures the direct impact of each input parameter on the output 
variance and STi measures the total impacts (i.e., the sum of direct and 
indirect impacts). A large difference between Si and STi indicates that the 
parameter mainly affects output through interactions. The Sobol’ 
method uses the Monte Carlo sampling scheme to generate random 
parameter samples. To calculate sensitivity indices, it requires a 
parameter set with a sample size of M × (2n + 2), where M represents 
the number of base samples and n represents the number of input pa
rameters. Here, M is set to 512 (You et al., 2019). 

3. Results 

3.1. Site-scale model performance 

3.1.1. Evaluation of the simulated leaf area index 
The performance of the LAI simulation was evaluated against 15 site- 

years of field observations for corn, 6 site-years for soybean, and 10 site- 
years for winter wheat. Generally, the simulated LAI was consistent with 
the observed LAI (Fig. 2), with RMSE (NRMSE) values for corn, soybean, 
and winter wheat being 1.26 m2/m2 (20%), 0.87 m2/m2 (19%), and 
0.66 m2/m2 (21%), respectively, and R2 values being 0.68, 0.66, and 
0.57, respectively. The model also captured the seasonal dynamics of 
LAI, for example, in the US-Ne3 corn-soybean rotation site, where the 
model reproduced well the timing of LAI increase and decrease as well as 
its amplitude (Fig. 3). However, some discrepancies still existed between 
the simulated LAI and the observations. Specifically, the simulated LAI 
underestimated the observed LAI at its low end, suggesting that the 
simulated leaf onset slightly lags behind the actual leaf onset, which may 
be due to the simulated planting date being later than the actual planting 
date. For instance, our simulated planting date of corn in 2001 at the US- 
Ne3 site is May 22, while the actual planting date was May 14. In 
addition, at the US-Ne3 site, the simulated LAI of corn was slightly 
overestimated during the late growing season compared with the ob
servations, and the peak LAI of soybean was underestimated in the year 
2002 and 2006 (Fig. 3). Such deviations also occurred at other sites 
(Fig. S4). 

3.1.2. Evaluation of the simulated aboveground biomass 
Generally, the simulated aboveground biomass was in line with the 

observed data (Fig. 4), where the RMSE (NRMSE) values between them 
for corn, soybean, and winter wheat were 2912 kg/ha (12%), 658 kg/ha 
(14%), and 278 kg/ha (27%), respectively, and the R2 between them 
were 0.82, 0.79, and 0.45, respectively. Meanwhile, similar to LAI, the 
modeled seasonal variations in aboveground biomass at each site was 
well consistent with the observations (Figs. 5 and S5). 
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3.1.3. Evaluation of the simulated crop yield 
The simulated yields agreed well with the observations of 94 site- 

years for corn, of 87 site-years for soybean, and of 12 site-years for 
winter wheat (Fig. 6), with the RMSE values for corn, soybean, and 

winter wheat ranging from 351 to 1080 kg/ha, and the NRMSE values 
ranging from 11% to 20%. Meanwhile, the R2 values for all crops were 
greater than 0.4. Compared to corn and soybean, the simulation accu
racy for winter wheat yield was lower, maybe partly due to the smaller 

Fig. 2. Site-scale comparisons between the simulated leaf area index (LAI) and field observations for corn (a), soybean (b), and winter wheat (c). Different colors 
indicate different crop sites, and a detailed description of these sites are shown in Tables S7–S9. 

Fig. 3. The seasonal evolution of observed and simulated leaf area index (LAI) in a corn-soybean rotation rainfed site, US-Ne3, where corn is planted in odd years 
(2001, 2003, 2005, and 2007) and soybean is planted in even years (2002, 2004, 2006). 

Fig. 4. Site-scale comparisons between the simulated aboveground biomass and field observations for corn (a), soybean (b), and winter wheat (c). Different colors 
indicate different crop sites, and a detailed description of these sites are shown in Tables S7–S9. 
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number of observations in correlation analysis. 

3.2. Spatial patterns of simulated crop production 

We used the calibrated model to simulate the production of corn, 
soybean, and winter wheat in the conterminous U.S. from 1960 to 2018. 
The simulation results show that corn and soybean had relatively high 
production in the Midwest region but low production in the southern 
region, while winter wheat had relatively high production in the 
Southern Plains and northwestern regions (Fig. 7). Overall, the spatial 
pattern of simulated mean annual crop production during 1960-2018 
was consistent with the USDA-NASS survey data, and the decadal- 
scale comparisons also showed good performance (Figs. S6–S8), which 
suggest that our model is capable of reproducing the spatial pattern of 
crop production across a wide range of temperature and precipitation 
regimes. At the grid level, the simulated crop production was mostly 
significantly correlated (P value < 0.05) with the USDA-NASS survey 
data (Fig. S9). The areas with R2 > 0.7 accounted for 88.91%, 97.51% 
and 64.62% of the total planting areas of corn, soybean and winter 
wheat, respectively. 

In addition, we also used NRMSE and R2 to quantitatively evaluate 
the simulation accuracy of crop production at county scale (Fig. 8). The 
NRMSE values between the DLEM-simulated crop production and the 
USDA-NASS survey data for corn, soybean, and winter wheat were all 

smaller than 5%, and the corresponding R2 values were 0.93, 0.94, and 
0.67, respectively. However, despite the overall good performance, it 
should be noted that there were still some discrepancies between the 
simulated production of winter wheat and the survey data (e.g., the 
underestimated winter wheat production in the northwestern U.S.). 

3.3. Temporal variations of simulated crop production 

Temporal variations in simulated crop production at the national 
scale was also examined (Fig. 9). From the 1960s to the 2010s, the na
tional corn production almost tripled and the soybean production almost 
quadrupled. Winter wheat production showed large interannual varia
tions, increasing at first and then decreasing. Generally, the temporal 
variations of national crop production simulated by DLEM agreed well 
with the USDA-NASS survey data. The NRMSE values between them for 
corn, soybean, and winter wheat ranged from 6.89% to 10.92%, and the 
R2 values between them were all greater than 0.7. Meanwhile, the re
sults indicate that the new model was capable of capturing the re
ductions in crop production caused by extreme weather disasters. For 
example, the extreme drought event that occurred in 2012 swept most of 
the contiguous U.S. (Mallya et al., 2013), leading to a significant 
reduction in crop production, and our simulated results also showed a 
large reduction. However, it should be noted that the simulated pro
duction responded more severely to extreme weather events than the 

Fig. 5. The seasonal evolution of observed and simulated aboveground biomass in a corn-soybean rotation rainfed site, US-Ne3, where corn is planted in odd years 
(2001, 2003, 2005, and 2007) and soybean is planted in even years (2002, 2004, 2006). 

Fig. 6. Site-scale comparisons between the simulated yield and field observations for corn (a), soybean (b) and winter wheat (c). Different colors indicate different 
crop sites, and a detailed description of these sites are shown in Tables S7–S9. 
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Fig. 7. Comparisons between the spatial patterns of average annual crop production simulated by the Dynamic Land Ecosystem Model (DLEM) and derived from the 
United States Department of Agriculture-National Agricultural Statistics Service (USDA-NASS) during 1960-2018, as well as the differences between them. (a–c) Corn 
production obtained from the DLEM and the USDA-NASS and their difference; (d–f) Soybean production obtained from the DLEM and the USDA-NASS and their 
difference; (g–i) Winter wheat production obtained from the DLEM and the USDA-NASS and their difference. A negative value in the difference of production in
dicates an underestimation of production by the DLEM, and a positive value indicates an overestimation of production by the DLEM. The unit of crop production is 
106 kg per county. 

Fig. 8. Quantitative comparisons between the average annual crop production during 1960-2018 simulated by the Dynamic Land Ecosystem Model (DLEM) and 
obtained from the United States Department of Agriculture-National Agricultural Statistics Service (USDA-NASS) survey data at county-scale for corn (a), soybean (b) 
and winter wheat (c), respectively. The number next to the color bar represents the normalized point density. The unit of crop production is 106 kg per county. 

Fig. 9. Historical trends of national crop production simulated by the Dynamic Land Ecosystem Model (DLEM) and obtained from the United States Department of 
Agriculture-National Agricultural Statistics Service (USDA-NASS) for corn (a), soybean (b) and winter wheat (c), respectively. 
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observations. For instance, the corn production loss in 2012 estimated 
by DLEM was about twice the actual loss relative to the average corn 
production in 2011 and 2013. 

4. Discussion 

4.1. General performance of the agricultural module of DLEM 

The site-scale validation results indicate that the DLEM-simulated 
LAI, aboveground biomass, and yield were generally consistent with 
the observations (Figs. 2–6), although part of the modeled LAI during 
the late growing season was still overestimated and the peak LAI in some 
years was underestimated. The deviations in the simulated LAI may be 
partly due to the constant SLA used in our model. Specifically, daily LAI 
in DLEM is calculated based on the leaf carbon and the constant SLA, 
while SLA actually varies with the crop growth stage and is simulta
neously regulated by environmental conditions (Danalatos et al., 1994; 
Tardieu et al., 1999). However, the mechanism of how SLA responds to 
changes in climate and environmental factors throughout the growing 
season is still unclear (Drewniak et al., 2013), making it difficult to 
include dynamic SLA in the model at this time. Another possible 
explanation for the deviations in the simulated LAI might be the bias in 
the modeled planting date and growing season length. Specifically, our 
model tended to estimate later planting dates and longer growing sea
sons than observations (Fig. 3), which cause the simulated LAI to 
maintain a high value for a longer period than the actual duration and in 
turn overestimates LAI during the late growing season. The accurate 
simulation of plant phenology (e.g., planting date and growing season 
length) has been shown to be critical for modeling productivity (Ana
palli et al., 2005; Wallach et al., 2021; You et al., 2020). In our model, to 
reduce model complexity and its associated uncertainty, only 
temperature-derived metrics are used to determine planting date (Levis 
et al., 2012). Given that planting date depends not only on temperature 
but on other factors as well, for example, soil moisture, terrain condition 
and factors that may affect farmers’ decisions such as labor and equip
ment availability (Kucharik, 2006; Sacks et al., 2010), it is not surprising 
that there are some discrepancies in the modeled phenology. Consid
eration of these additional factors on planting date may help to improve 
the simulation of crop phenology in the future. 

The spatial pattern of crop production simulated by our model was 
also comparable to survey data (Figs. 7 and S6–S8), although some 
discrepancies still exist. The underestimated winter wheat production in 
the northwestern U.S. may be partly due to the deficiency of our model 
in simulating available soil water. A similar problem has also been re
ported in the spatial pattern of winter wheat yield simulated by CLM 4.5 
(Lu et al., 2017). In DLEM, we use a water regulation factor, β, to 
represent the limitation of soil water on photosynthesis and other 
water-related processes (Pan et al., 2015; Tian et al., 2010). A β value of 
0 denotes complete water restriction, whereas a β value of 1 denotes no 
water stress. The spatial pattern of DLEM-modeled β during the growing 
season of winter wheat indicates that the modeled β in the northwestern 
U.S. is very low (Fig. S10), with an average value less than 0.5, sug
gesting that soil water availability severely limits photosynthesis in this 
region and thus leads to the underestimated production. If we applied 
full irrigation over this region, the simulated pattern of winter wheat 
production better captures the USDA’s spatial pattern (Fig. S11). This 
result suggests that there is less water stress on winter wheat growth in 
this region than indicated by the model. Crop water supply may be 
enhanced by an abundant groundwater resource and snowmelt water in 
this region. However, these hydrological processes are 
under-represented in our model. In addition to water stress issues, the 
discrepancy in crop production patterns may also stem from the de
ficiencies of our model in representing the growth characteristics of 
winter wheat (e.g., frost tolerance and damage) and relevant farming 
practices (e.g., irrigation and fertilization). 

With respect to the simulation accuracy of different crops, we found 

that the accuracy of winter wheat production is lower than that of corn 
and soybean (Figs. 7 and 8). Winter wheat has a unique growth cycle (i. 
e., planted in fall and harvested in summer) compared with summer 
crops. Therefore, it may also have different response mechanisms to 
environmental stresses due to its frequent exposure to frost damage (Lu 
et al., 2017; Vico et al., 2014). Frost damage and its related processes are 
not considered in our model. Another possible reason for the lower ac
curacy of winter wheat production may be that we limited winter wheat 
to only three varieties. The varieties of winter wheat span a large range 
of latitudes, so there exists large spatial heterogeneity in the tempera
ture and precipitation regimes in which they grow that we have not fully 
captured (Zhang et al., 2020). The consideration of frost damage effects 
and a further subdivision of varieties may improve the estimation of 
winter wheat production in the future. 

The advances in crop genetic and breeding technologies, agricultural 
expansion and intensive management practices have led to a one to four- 
fold increase in crop production in the U.S. during the past several de
cades (USDA, 2018). Our model captured this trend (Fig. 9). Neverthe
less, despite the overall good performance, the model probably has not 
captured some effects of improvements in genetic and breeding tech
nologies on crop resistance to pests and diseases as well as adaptation to 
environmental stress (Bailey-Serres et al., 2019; Hammer et al., 2002). 
This deficiency may partly explain the high sensitivity of our model to 
extreme weather disasters. In addition, the high sensitivity may be 
attributed to human adaptive behaviors such as farmers’ preparedness 
and response strategies to extreme weather (Annan and Schlenker, 
2015), which are not considered in the model. 

In addition, we also compared the performance of the new model in 
simulating national crop production with a previous DLEM version, 
namely the DLEM-Ag2 (Fig. S12). Generally, our new model achieved 
higher simulation accuracy than the DLEM-Ag2, in which the NRMSE 
values reduced by 6.24%, 1.21%, and 2.18% for corn, soybean and 
winter wheat, respectively, and the R2 values increased by 0.13, 0.04, 
and 0.11, respectively. Meanwhile, the new model better captured the 
interannual variations and trends of national crop production as 
compared with the DLEM-Ag2. For example, the DLEM-Ag2 over
estimated national corn production in the 1960s and 1970s and sub
stantially underestimated corn production after the 2000s, however, the 
new model simulated the production changes well over the entire 
period. The improved performance of the new model also demonstrated 
the effectiveness of the newly incorporated crop growth processes and 
agricultural management practices. 

4.2. Parameter sensitivity analysis 

Since the new model involves a lot of parameters (Tables S4 and S5), 
we conducted global sensitivity analysis to quantify the relative 
importance of each model parameter to crop yield simulation using the 
Sobol’ method. The Sobol’ sensitivity analysis was implemented by 
evaluating the changes in simulated yield in response to variations in 
parameter values over a large amount of random parameter samples, 
which were generated using the Monte Carlo sampling scheme by 
assuming a uniform distribution for each parameter and randomly 
varying its value within 20% of the calibrated value (Tian et al., 2011). 
The number of parameters included in the analysis was 17, 19, and 26 
for corn, soybean, and winter wheat, respectively, and after sampling, a 
total of 18,432, 20,480, and 27,648 parameter samples were generated, 
respectively. In addition, we performed a resampling analysis over the 
generated parameter sample space to estimate the variability of the 
derived first-order (Si) and total-order (STi) sensitivity indices, and the 
resulting standard deviations of these indices are displayed as error bars 
in Figs. S13–S15. 

We used Si and STi to measure the relative contribution of each 
parameter to the variance of simulated yield. For corn, the top three 
most influential parameters revealed by both Si and STi are the lower 
optimal cardinal temperature required for photosynthesis (Cardopt1), 
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maximum stomatal conductance (gmax), and maximum grain number per 
plant (GNmax) (Fig. S13). For soybean, there are slight differences in the 
ranking of influential parameters revealed by Si and STi (Fig. S14), but in 
general, the lower and upper optimal cardinal temperatures required for 
photosynthesis (Cardopt1 and Cardopt2) still play a dominant role, and 
gmax as well as the threshold of 10-day running average temperature for 
sowing (Tp

avg) also have a significant impact. For winter wheat, the lower 
cardinal temperature for heat stress to reduce grain number 
(HeatTempmin) and Tp

avg are identified as influential parameters by both Si 

and STi, whereas Cardopt1 is identified as a dominant parameter by STi but 
not by Si, suggesting that this parameter mainly affects output through 
interactions with other parameters. Overall, Cardopt1 was identified as 
the most influential parameter affecting yield simulation for all the three 
crops, as this parameter determines the critical point of temperature at 
which photosynthesis rate reaches the optimum. 

4.3. Uncertainties 

Despite the overall sound performance of our model, some limita
tions remain in this study. First, the representation of groundwater and 
irrigation practice (i.e., no consideration of the irrigation amount and 
frequency) in our model is relatively simple, which biased the simulated 
soil moisture and then crop production. Considering that some satellite- 
derived soil moisture products are available (e.g., SMAP and ESA-CCI 
datasets) (Dorigo et al., 2017; Entekhabi et al., 2010), we may solve 
this problem by assimilating soil moisture products into our model. 
Second, input data used to drive DLEM may introduce bias. For example, 
the crop-specific N fertilizer use rate was obtained from the state-level 
surveys, which cannot reflect the actual variations of fertilizer use in 
both magnitude and timing. Previous studies have developed some 
optimized fertilization schemes to better represent fertilization practice 
in models (Fu et al., 2020; Leng et al., 2016), which could be incorpo
rated into our model in the future. Third, cover cropping practices were 
not included in our regional-scale simulation due to the lack of an 
available spatialized dataset, which may also introduce biases in our 
results. Finally, as discussed in Section 4.2, crop yield simulations are 
sensitive to some parameters (e.g., Cardopt1 and gmax) so uncertainty in 
model parameters also constitutes a possible source of deviation in our 
results. In the long term, our goal is to develop a crop module applicable 
to all crop growing regions worldwide. Here, the parameterization and 
calibration schemes mainly focused on the three major crops grown in 
the U.S. Extending this parameterization effort to additional crops and 
varieties from other regions will likely be needed to make the model 
more broadly applicable. Addressing these limitations is critical to 
further improve the simulation performance of the new model at 
regional and global scales. 

4.4. Future research opportunities 

In this study, we focused on how a better mechanistic representation 
of the effects of environmental factors and management practices on 
crop growth processes improved model estimates of crop production and 
yield at both the site and regional scales. Applying this knowledge to 
future climate scenarios should improve our understanding of how 
climate change may impact crop production at the site scale and food 

security at the regional scale in the future. In addition, the model im
provements described in this study provide new ways to evaluate the 
effectiveness of potential climate mitigation and adaptation policies to 
sustain crop production and help protect food security. For example, 
climate-smart practices such as no-tillage and using cover crops have 
been widely advocated to promote soil carbon sequestration and GHG 
mitigation while sustaining or boosting crop production (FAO, 2010). 
The incorporation of different tillage and cover cropping effects on soil 
characteristics and crop growth into DLEM 4.0 allows the model to 
quantify the potential benefits of such climate-smart practices on GHG 
mitigation and crop production under future climate scenarios. Diver
sified crop rotations have also been advocated to reduce adverse envi
ronmental and climatic effects on crop production (Bowles et al., 2020). 
Rotations with legumes can further contribute to climate change miti
gation by reducing N fertilizer use (Ma et al., 2018). The inclusion of the 
dynamic crop rotation scheme in the new model allows us to explore the 
benefits of diversified crop rotations on crop production and climate. 
Besides quantifying the benefits of climate mitigation and adaptation 
policies, the new model can help identify unintended consequences of 
other management policies, such as changes in nutrient loading from 
agroecosystems to river networks (Pan et al., 2021; Yao et al., 2020). 

5. Conclusion 

To meet the multiscale agricultural application demands (e.g., farm- 
scale decision support and regional-scale climate change mitigation), we 
developed an advanced agricultural modeling framework on the plat
form of DLEM v4.0 through incorporating a more detailed representa
tion of crop growth processes and management practices, including but 
not limited to crop-specific phenological development, dynamic carbon 
allocation, yield formation, biological N fixation, and the implementa
tion of tillage, cover cropping, and crop genetic improvement practices. 
Comprehensive evaluations against site-scale observations generally 
show good performance of the new agricultural module in simulating 
the seasonal variations and magnitudes of LAI and aboveground biomass 
and annual yield. Regarding the regional-scale performance, the simu
lated spatial pattern of crop production is also consistent with ground 
survey data. Meanwhile, the national average crop production estimated 
by our model has increased by 1–4 times from the 1960s to the 2010s, 
which is consistent with the observed trend. Our new agricultural 
module holds the potential to better predict future crop production to 
deploy early-warning measures, and to assess the efficacy of potential 
agricultural climate change adaptation and mitigation strategies. 
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Appendix A. Dynamic crop growth processes in DLEM 

A1. Crop phenological development 

A1.1. Planting date determination 
The accumulated thermal time from the earliest sowing date to the current day (ATT) is calculated as: 

ATT =
∑current day

earliest day
dailyTT (A1)  

dailyTT =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if Tavg ≤ Cardmin or Tavg ≥ Cardmax

Tavg − Cardmin, if Cardmin < Tavg ≤ Cardopt1

Cardopt1 − Cardmin, if Cardopt1 < Tavg < Cardopt2
(
Cardmax − Tavg

)
×

(
Cardopt1 − Cardmin

)

Cardmax − Cardopt2
, if Cardopt2 < Tavg < Cardmax

(A2)  

where dailyTT is the daily thermal time; Tavg is the average air temperature; Cardmin, Cardopt1, Cardopt2, and Cardmax are the crop-specific minimum, 
lower optimal, upper optimal, and maximum air temperatures required for photosynthesis, respectively. 

A1.2. Biological days-based crop phenological development scheme 
The effects of temperature (tempfun), photoperiod (ppfun), vernalization (verfun), and environmental stresses (fstress) on crop development rate are 

calculated as: 

tempfun =
dailyTT

Cardopt1 − Cardmin
(A3)  

ppfun =

⎧
⎪⎨

⎪⎩

{
1 − ppsen × (CPP − PP), if PP < CPP

1, if PP ≥ CPP
(for long day crop)

{
1, if PP < CPP

1 − ppsen × (PP − CPP), if PP ≥ CPP
(for short day crop)

(A4)  

verfun =

{
1 − vsen × (VDSAT − CUMVERi), if CUMVERi < VDSAT

1, if CUMVERi ≥ VDSAT (A5)  

CUMVERi= {
CUMVERi− 1 + VERDAY − 0.5 × (Tmax − 30), if CUMVERi− 1〈10 and Tmax〉30

CUMVERi− 1 + VERDAY, other conditions (A6)  

VERDAY =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if Tavg ≤ Vermin or Tavg ≥ Vermax

Tavg − Vermin

Veropt1 − Vermin
, if Vermin < Tavg ≤ Veropt1

1, if Veropt1 < Tavg < Ver

Vermax − Tavg

Vermax − Veropt2
, if Veropt2 < Tavg < Vermax

(A7)  

fstress= {

max
(
fW , f min

W

)
, if sowing ≤ stage ≤ end juvenile

min
(
fW ,max

(
fN , f min

N

))
, if end juvenile ≤ stage ≤ flowering

1, for other stages
(A8)  

where dailyTT denotes the daily thermal time, which is calculated using Eq. (A2) in Appendix A1.1; Cardmin and Cardopt1 denote the minimum and 
lower optimal air temperatures required for photosynthesis, respectively; ppsen is a cultivar-specific photoperiod sensitivity coefficient; PP is day
length; CPP is a cultivar-specific critical daylength parameter at which the rate of phenological development began to be restricted by daylength; vsen 
is a cultivar-specific vernalization sensitivity coefficient; VDSAT is the number of vernalization days needed to saturate the vernalization response; 
CUMVER denotes cumulative vernalization days; VERDAY denotes vernalization day, representing the contribution of each day to vernalization; Tmax 
denotes the maximum air temperature; Vermin, Veropt1, Veropt2, and Vermax are the minimum, lower optimal, upper optimal, and maximum air tem
peratures required for vernalization, respectively; fW and fN denote drought and N stresses, respectively, which are calculated using Eq. (A11) in 
Appendix A2; and fmin

W and fmin
N denote the minimum drought and N stresses, respectively (here set to be 0.5 (Peng et al., 2018)). In addition, the 

devernalization process is also considered in DLEM v4.0 when winter crops are exposed to high temperature, namely, if CUMVER is less than 10 days 
and the maximum air temperature is higher than 30 ℃, then CUMVER is decreased by 0.5 days per degree above 30 ℃; however, if CUMVER is larger 
than 10 days, no devernalization will occur. 

Daily crop leaf area index (LAI) is calculated as: 

LAI = min
(
Cleaf × SLA, LAImax

)
(A9) 
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where Cleaf denotes leaf carbon content; SLA is a cultivar-specific parameter representing the ratio of leaf area to leaf dry mass; and LAImax denotes the 
maximum LAI. 

Canopy height (Hcanopy) is estimated by scaling the maximum canopy height (Hcanopy, max) with LAI: 

Hcanopy = Hcanopy, max × min
[(

LAI
LAImax − 1

)

, 1
]2

(A10)  

A2. Carbon allocation strategy 

The effects of light (fL), nitrogen (fN), and water (fW) stresses on the carbon allocation process are calculated as: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fL = exp
(

− extcoef × LAI
)

fN = min
(

Nact

Nmax
, 1

)

fW =
∑10

i=1
frooti × βi

βi= {

0, if ψi ≤ ψclose

ψmax − ψi

ψmax − ψsat,i
, if ψclose < ψi < ψopen

1, if ψi ≥ ψopen

(A11)  

where extcoef denotes the canopy light extinction coefficient; LAI denotes the leaf area index; Nact denotes the actual N content in the vegetation pool; 
Nmax denotes the maximum N content in the vegetation pool; frooti denotes the root fraction in the soil layer i; βi is a soil matric potential-related factor; 
ψmax denotes the maximum water potential, which represents the wilting point potential of leaves (currently set to be − 1.5 × 105); ψ i denotes the 
water potential of layer i (mm H2O); and ψopen and ψclose denote the water potential under which the stomata fully opens and closes, respectively (mm 
H2O). 

The actual kernel weight at physiological maturity (AKW) is calculated as the product of daily crop development rate (dailyBD) and the potential 
kernel growth rate (pKGR), as well as heat and N stresses: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AKW = dailyBD × pKGR × fN × fheat

pKGR =
pKW

∑endgrainfill

startgrainfill
dailyBD

1, if Tavg ≤ HeatTempmin

fheat =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, if Tavg ≤ HeatTempmin

1 −
Tavg − HeatTempmin

HeatTempmax − HeatTempmin
, if HeatTempmin < Tavg ≤ HeatTempmax

0, if Tavg > HeatTempmax

(A12)  

where dailyBD is calculated from Eq. (2) in the main text; fN and fheat denote the N and heat stresses, respectively; pKW denotes the potential kernel 
weight, which is estimated as the ratio of potential kernel weight to the target BD during the grain filling period; HeatTempmin and HeatTempmax denote 
the minimum and maximum cardinal temperatures at which heat stress occurs. 

In terms of grain number (GN), previous studies have demonstrated that GN is strongly associated with the physiological status of a crop (e.g., plant 
growth rate and tissue biomass) during a critical period for seed set, in which the critical period for corn and wheat are around the flowering stage 
(Aluko and Fischer, 1988; Andrade et al., 1999; Bindraban et al., 1998; Early et al., 1967; Fischer, 1985; Zheng et al., 2014). For soybean, this period 
extends from the flowering stage to the beginning or middle grain filling stage (Board and Tan, 1995; Egli, 1998; Jiang and Egli, 1995; Vega et al., 
2001). In our model, GN of corn is calculated based on an exponential function related to plant growth rate from the end of juvenile stage to the silking 
stage, similar to the methods implemented in the APSIM model (Keating et al., 2003); GN of soybean is calculated based on an empirical linear model 
related to plant growth rate from the flowering stage to the start of grain filling stage (Vega et al., 2001); and GN of wheat and other crops are 
calculated from an empirical equation related to stem dry matter at anthesis (Fischer, 1985; Zheng et al., 2014): 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

GN =

⎧
⎪⎪⎨

⎪⎪⎩

GNmax × (1 − exp( − GNk × (PGR − PGRbase))), for corn

max(k1 + k2 × PGR, GNmax), for soybean

max(DMstem × GNgstem, GNmax), for wheat and other crops

PGR =
DMt1 − DMt0

Nday

(A13)  
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where GNmax is a cultivar-specific parameter representing the maximum grain number per plant; GNk and PGRbase are genotype parameters related to 
the GN of corn, which are set to 0.83 and 1.2, respectively (derived from the APSIM model); k1 and k2 denote the intercept and slope of the empirical 
linear model used to calculate the GN of soybean, which are set to 4.5 and 123.9, respectively (derived from Vega et al. 2001); DMstem denotes the stem 
dry weight at anthesis; GNgstem denotes the number of kernels per gram stem; PGR denotes the plant growth rate during the critical period for seed set 
and is calculated by dividing the accumulated shoot dry matter during this critical period (DMt1 − DMt0) by the number of days of this period (Nday), 
in which DMt1 and DMt0 denote the shoot dry matter at the end and beginning of this period, respectively. 

A3. Biological nitrogen fixation 

The influences of soil temperature (fsoilT), soil moisture (fsoilW), soil mineral N concentration (fsoilN), substrate carbon concentration (fsoilC), and crop 
phenological stage (fphen) on biological N fixation are calculated as: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fsoilT

{
fmax(0, Tsoil × Tsoil × (45 − Tsoil) × 0.0001), if Tsoil > 0

0, if Tsoil ≤ 0

fsoilW = fmin
(

1.82 ∗
θ

θsat
, 1

)

fsoilN = fmin(fmax(1 − 0.0784 × log(avn), 0), 1)

fsoilC = fmax
(

Csub

Csub + kc
, 0.01

)

fphen =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, for fCBD < fPhenmin

fCBD − fPhenmin

fPhenoptL − fPhenmin
, for fPhenmin < fCBD < fPhenoptL

1, for fPhenoptL < fCBD < fPhenoptH

fPhenmax − fCBD
fPhenmax − fPhenoptH

, for fPhenoptH < fCBD < fPhenmax

0, for fCBD > fPhenmax

(A14)  

where Tsoil denotes the soil temperature; θ and θsat denote the actual and saturated soil moisture contents, respectively; avn denotes the available soil N; 
Csub denotes the substrate carbon; kc denotes the Michaelis–Menten constant for CO2; fCBD denotes the cumulative crop development rate from 
germination to the current day; fPhenmin denotes the time before which no N fixation happens; fPhenoptL and fPhenoptH denote the beginning and end 
time within which the N fixation rate is not limited by crop phenological stage; fPhenmax denotes the time after which the N fixation ceases. The values 
of fPhenmin, fPhenoptL, fPhenoptH, and fPhenmax are set to 15%, 30%, 55%, and 75% of the crop life cycle (Cabelguenne et al., 1999). 

Appendix B. Agricultural management practices in DLEM 

B1. Tillage practice 

B1.1. Effects of tillage implement on soil organic matter and nutrients contents 
The effects of tillage practice on litter pools include the incorporation of surface residues into the soil and the redistribution of SOM and nutrients in 

the tilled soil layers. In DLEM v4.0, litter pool can be classified into two categories: aboveground litter pool (Litterag) and belowground litter pool 
(Litterbg). Both of the dead shoot biomass of crops due to turnover and the crop residues not removed from the field are directly added to Litterag, and 
the dead root biomass as well as the root residue are added to the Litterbg. Besides, part of Litterag will be transferred to Litterbg through bioturbation and 
tillage mixing practice, which is the same as that implemented in LPJmL5 (Lutz et al., 2019). For the bioturbation pathway, we assumed that 0.1897% 
of the Litterag is transferred to Litterbg per day to account for the vertical displacement of litter under no-tillage and natural vegetation conditions (Lutz 
et al., 2019); and for the tillage pathway, the amount of transfer depends on tillage intensity: 

Litterbg,t+1 = Litterbg,t + Litterag,t × fmix (B1)  

Litterag,t+1 = Litterag,t × (1 − EFmix) (B2)  

where Litterbg,t+1 and Litterag,t+1 denote the belowground and aboveground litter pools in the (t +1)th day, respectively; Litterbg,t and Litterag,t denote the 
belowground and aboveground litter pools in the tth day, respectively; and EFmix denotes the mixing efficiency, with a value between 0 and 1. 

The redistribution of SOM and nutrients among the tilled soil layers is calculated based on the methods adopted in the Agricultural Policy 
Environmental EXtender (APEX) model (Williams et al., 2008): 

Xl = Xol × (1 − EFmix) +
Zl − Zl− 1

Dt
× EFmix ×

∑M

k=1
Xok (B3)  
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where Xl is the amount of SOM/nutrients in layer l after mixing; Xol is the original amount of SOM/nutrients in layer l before mixing; EFmix denotes the 
mixing efficiency; Z is the depth to the bottom of the tilled layer; Dt is the tillage depth; M is the total number of soil layers affected by tillage operation; 
and Xok is the original amount of SOM/nutrients in layer k before mixing. 

B1.2. Effects of tillage implement on soil water processes 
The impacts of tillage operation on soil water processes in DLEM are mainly reflected in two aspects: (1) changes in litter interception due to 

reduced surface residue coverage and the accompanying changes in litter evaporation, soil evaporation and infiltration, as well as soil moisture 
content; (2) changes in soil bulk density due to tillage mixing and the accompanying changes in soil moisture content at saturation and field capacity. 

In DLEM, precipitation and irrigation water are either intercepted by crop canopy and surface litter or falls to the ground as throughfall, and will be 
lost through evapotranspiration, soil infiltration and surface runoff. Crop canopy interception is calculated as the same process as in the natural 
vegetation module of DLEM, which is estimated as the minimum of input water content and canopy water holding capacity (Tian et al., 2010). Litter 
interception is determined as the balance of available input water content after canopy interception and actual water holding capacity of surface litter 
(whclit,act), in which whclit,act is calculated as: 

whclit,act = whclit,max × flit (B4)  

where whclit,max denotes the maximum water holding capacity of surface litter, which is obtained by multiplying Litterag with a conversion factor of 2 ×
10− 3mm kg− 1, following Lutz et al. (2019) and Enrique et al. (1999); and flit denotes the fraction of soil surface covered by litter, which is calculated 
through adapting the equation from Gregory (1982): 

flit = 1 − e− Am×Litterag (B5)  

where Am denotes the area covered per dry matter of surface litter and is set to 0.004 in DLEM (Dadoun, 1993). 
The calculation of litter evaporation (EVAPlit) is similar to the calculation of soil evaporation (EVAPsoil) in DLEM, which is obtained by multiplying 

the potential evaporation (PET) estimated from the Penman–Monteith equation with a LAI-adjusted item (Pan et al., 2020; Pan et al., 2015). Here, flit is 
also included in the calculation process of EVAPlit and EVAPsoil to account for the impacts of changes in surface litter coverage on evaporation: 

EVAPlit = PETlit × e− 0.6×LAI × flit (B6)  

EVAPsoil = PETsoil × e− 0.6×LAI × (1 − flit) (B7) 

Tillage practice generally leads to a reduction in bulk density through incorporating surface residues into the soil and promoting soil fragmentation 
(Guérif et al., 2001; Maharjan et al., 2018), which further results in the changes in soil moisture content at saturation and field capacity. Here, the 
impacts of tillage implement on bulk density and the subsequent soil moisture effects are calculated as (Lutz et al., 2019): 

fBDtill,l,aft = fBDtill,l,pri −
(
fBDtill,l,pri − 0.667

)
× EFmix (B8)  

θsat,l,aft = 1 −
(
1 − θsat,l,pri

)
× fBDtill,l,aft (B9)  

θfc,l,aft = θfc,l,pri − 0.2 ×
(
θsat,l,pri − θsat,l,aft

)
(B10)  

where fBDtill,l,aft denotes the fraction of bulk density change after tillage in layer l; and fBDtill,prior denotes the density effect before tillage in layer l; θsat,l,aft 

and θfc,l,aft are the modified soil moisture content at saturation and field capacity after tillage in layer l; θsat,l,pri and θfc,l,pri are the original soil moisture 
content at saturation and field capacity before tillage in layer l. In DLEM v4.0, the vertical soil profile is described by a ten-layer discretization of a 3 m 
soil profile, and the layer thickness increases geometrically from top to bottom with values of 0.1 m, 0.1 m, 0.1 m, 0.2 m, 0.2 m, 0.2 m, 0.3 m, 0.4 m, 
0.4 m, and 1 m, respectively. Soil water flow between different soil layers is calculated using the Darcy’s law, in which the water flow rate q (mm/s) in 
layer l can be approximated as: 

ql = − k
[
zh,l

]
[

(Ψl − Ψl+1) + (zl+1 − zl)

(zl+1 − zl)

]

(B11)  

where k[zh,l] is the hydraulic conductivity at the depth of the interface of two adjacent layers (zh,l), zl is the depth of soil layer l, and Ψl is the soil matric 
potential (mm). 

B1.3. Effects of tillage implement on decomposition 
In DLEM, the direct effect of tillage implement on the decomposition rate of litter pools is represented by a tillage scalar (ftill), which has a value 

greater than 1, indicating the promoting effect of tillage on decomposition (Huang et al., 2020). In addition, the indirect effect of tillage implement on 
decomposition is also included, which is mainly reflected in its impacts on the amount of SOM, nutrient availability, actual soil moisture content, and 
soil moisture content at saturation and field capacity. The actual decomposition rate of each litter pool (kpool) within the tilled soil layers is calculated 
as: 

kpool = kmaxpool × f (T) × f (W) × f (clay) × f (N) × ftill (B12)  

f (T) = 4.89 × e− 3.432+0.1×Tsoil×(1− 0.5×Tsoil/36.9) (B13)  
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f (W)= {

1 − e− θ/θsat

1 − e− θfc/θsat
, if θ ≤ θfc

1.0044 −
0.0044

e
− 5×

(
θ/θsat − θfc/θsat

1− θfc/θsat

), if θ > θfc

(B14)  

f (clay) = 1 − 0.75 × Pclay
/

100 (B15)  

f (N)= {
f (Nmi), if mineralization occurs
f (Nim), if immobilization occurs (B16)  

f (Nmi)= {

1 −
avn − avnopt

avnopt
, if avn > avnopt

1, if avnopt
/

2 ≤ avn ≤ avnopt

1 +
0.5avnopt − avn

avnopt
, if avn ≤ avnopt

/

2

(B17)  

f (Nim) = avn/nimm (B18)  

ftill,i = 1 + fcm,i (B19)  

fcm,i= {

(
3 + 5 × e− 5.5×Pclay

)
×

EFmix

EFmix + e1− 2×EFmix
, i = 1

fcm,i− 1 ×

(

1 − 0.02 ×
θ

θsat

)

, i > 1
(B20)  

where kmaxpool denotes the potential decomposition rate of each pool; f(T), f(W), f(clay), and f(N) denote the limitation of soil temperature, soil 
moisture, soil texture, and N on decomposition; ftill is a tillage scalar; Tsoil is soil temperature; θ, θsat and θfc denote the actual soil moisture content, soil 
moisture content at saturation, and soil moisture content at field capacity, respectively; Pclay denotes the percentage of clay content; f(Nmi) and f(Nim)

denote the limitation of N availability when mineralization and immobilization occur, respectively; avn and avnopt denote the actual and optimum 
available soil N, respectively; nimm denotes the potential N immobilization estimated by the tentative decomposition procedure; fcm,i denotes the 
cumulative effect of tillage at day i; EFmix denotes the mixing efficiency; θ and θsat denote the actual and saturated soil moisture contents of a given soil 
layer at day i. The decomposition rate is calculated separately in each soil layer, and ftill is only considered in those soil layers affected by tillage 
practice. 

Appendix C. Supplementary materials 

Figs. S1–S15 and Tables S1–S9 can be found in the supplementary materials. 
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