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ARTICLE INFO ABSTRACT
Keywords: Agricultural decision-making by different interest groups (e.g., farmers, development agents and policy makers)
Crop growth usually takes place on different scales (e.g., plot, landscape and country). Currently, tools to assist decision-
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making are either dedicated to small-scale management guidance or large-scale assessment, which ignore the
cross-scale linkages and interactions and thus may not provide robust and consistent guidance and assessment.
Here, we developed an advanced agricultural modeling framework by integrating the strengths of conventional
crop models in representing crop growth processes and management practices into a terrestrial biosphere model
(TBM), the Dynamic Land Ecosystem Model (DLEM), to meet the cross-scale application needs (e.g., adaptation
and mitigation). Specifically, dynamic crop growth processes, including crop-specific phenological development,
carbon allocation, yield formation, biological nitrogen fixation processes, and management practices such as
tillage, cover cropping and genetic improvements, were explicitly represented in DLEM. The new model was
evaluated against site-scale observations and the results showed that the model performed generally well, with
an average normalized root mean square error of 19.91% for leaf area index and 17.46% for aboveground
biomass at the seasonal scale and 14.42% for annual yield. Then the model was applied to simulate corn, soy-
bean, and winter wheat productions in the conterminous United States from 1960 to 2018. The spatial patterns of
simulated crop productions were consistent with ground survey data. Our model also captured both the long-
term trends and interannual variations of the total national productions of the three crops. This study demon-
strates the significance of fusing conventional crop modeling techniques into TBMs to establish a unified
modeling framework, which holds the potential to address climate impacts, adaptation and mitigation across
varied spatiotemporal scales.
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1. Introduction

Ensuring global food security while achieving sustainable agricul-
tural development is a grand challenge for human society (Davis et al.,
2016; Rosenzweig et al., 2014). During the past several decades, climate
change and associated environmental stressors (e.g., water scarcity, pest
prevalence, and soil degradation) have significantly impacted crop
growth and production and are likely to reduce the resilience of global
food systems (Bezner Kerr et al., 2022; Lesk et al., 2016; Wheeler and
von Braun, 2013). Agricultural activities (e.g., fertilization, irrigation,
and cropland expansion) have, in turn, exacerbated climatic and envi-
ronmental changes through pathways such as greenhouse gas (GHG)
emissions, groundwater extraction, and nutrient pollution (Giordano
and Villholth, 2007; Tian et al., 2016; Tian et al., 2020a). In view of the
increasing uncertainty in the agriculture-climate-environment system
caused by complex cross-sector interactions, effective climate change
mitigation and adaptation strategies in the agricultural sector are
needed to limit further changes in the climate system and reduce the
negative impacts of climate change on food production (Howden et al.,
2007; Vermeulen et al., 2012). Such mitigation and adaptation actions
occur on multiple scales and are intertwined in intricate ways (Bever-
idge et al., 2018; Klein et al., 2007; Tol, 2005). Specifically, stake-
holders’ adaptation decisions to sustain food production are usually
carried out on a small scale (e.g., field-farm-landscape scales) and
benefit local communities, as the influences of climate change on crop
growth and production are largely mediated by local environments and
local-specific adaptation strategies would be more effective (Hammer
et al., 2014; Ofgeha and Abshare, 2021). In contrast, agricultural miti-
gation measures (e.g., soil organic carbon sequestration and GHG miti-
gation) and their potential feedbacks to the environment and climate are
often implemented and assessed on a broader scale (e.g.,
regional-national-global scales), because effective mitigation requires
the participation of major GHG emitters globally and is primarily driven
by international agreements and ensuing national public policies
(Hansen and Jones, 2000; Klein et al., 2007; Locatelli, 2011). Therefore,
a unified tool that is capable of addressing cross-scale agricultural
application demands is needed (Beveridge et al., 2018; Peng et al.,
2020). Such a tool would enable a more consistent and robust prediction
and assessment of crop production and the concomitant environmental
and climatic tradeoffs.

Process-based crop models are commonly used to inform small-scale
farm adaptation decisions to sustain food production (Chenu et al.,
2017; Jones et al., 2017). A number of crop models that simulate crop
growth and yields as influenced by weather, soil, cultivar, and man-
agement strategies have been developed, such as DSSAT (Decision
Support System for Agrotechnology Transfer) (Jones et al., 2003),
APSIM (Agricultural Production Systems sIMulator) (Holzworth et al.,
2014; Keating et al., 2003), EPIC (Erosion Productivity Impact Calcu-
lator) (Williams et al., 1989), and CROPSYST (Cropping Systems
Simulation Model) (Stockle et al., 2003; Stockle et al., 2014). Physio-
logical mechanisms of crop development, growth, and yield formation
processes under biotic and abiotic stresses, and farming management
practices such as tillage and irrigation, are well-represented in these
models. However, since crop models are originally designed for farmer’s
decision support, they generally focus on field-scale yield simulation
over homogeneous plot conditions. Meanwhile, they typically have a
reduced-form representation of hydrologic, energy and biogeochemical
cycles. These properties limit their ability to simulate regional crop
production, assess mitigation potential in the agriculture sector, and
evaluate the environmental impacts of agricultural management
activities.

Terrestrial biosphere models (TBMs) with agricultural components
provide new insights for agricultural climate change mitigation and
adaptation on a broader scale (Bondeau et al., 2007; Lombardozzi et al.,
2020; McDermid et al., 2017). Most TBMs have included detailed hy-
drological, biophysical, and biogeochemical processes and can be
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further integrated with general circulation models for future climate
change impact projections (Alo and Wang, 2008; Fisher et al., 2014;
Schaphoff et al., 2006). Therefore, they can potentially be used to
simulate regional crop production under historical and future climate
scenarios, assess the mitigation potential of agricultural management
options, and quantify the exchange of carbon, water, nutrient and en-
ergy fluxes within the agriculture-climate-environment system. How-
ever, the representation of agriculture in most TBMs is relatively simple
(e.g., lacking or simplifying dynamic crop growth processes and man-
agement practices), with some TBMs even treating crops as natural
grasses though using different eco-physiological parameters as a
distinction (Betts, 2005; McDermid et al., 2017). Since crops have rather
different phenological development processes compared with natural
vegetation and often involve implementation of management practices
(e.g., irrigation and fertilization), such simplified schemes are unlikely
to be able to closely replicate observed yields under varying climatic and
environmental conditions across different spatiotemporal scales, which
limit their use for agricultural adaptation and mitigation assessments.

In view of the strengths and weaknesses of process-based crop
models and TBMs, it is highly desirable to integrate these two types of
models into a unified framework to complement each other (Peng et al.,
2020). Such a framework is capable of meeting cross-scale agricultural
application needs and providing more robust and consistent predictions
and assessments. Some recent developments of TBMs have attempted to
move in this direction, such as the Joint UK Land Environment Simulator
(JULES) (Van den Hoof et al., 2011), the Organizing Carbon and Hy-
drology in Dynamic Ecosystems Model (ORCHIDEE) (Wu et al., 2016),
the Lund Potsdam Jena managed Land model (LPJmL5) (Lutz et al.,
2019), and the Community Land Model (CLM) (Boas et al., 2021;
Lombardozzi et al., 2020; Peng et al., 2018). These augmented models
are not only conducive to yield simulation, but also improve the esti-
mation of regional-scale carbon, water and energy exchanges within the
agriculture-climate-environment system (Boas et al., 2021; Lokupitiya
etal., 2009; Song et al., 2013). However, despite these recent progresses,
most TBMs still lack a sound representation of crop-specific physiology
and/or agricultural land-use changes and management practices (e.g.,
tillage, cover cropping, and genetic improvement). Moreover, some
TBMs still fail to adequately represent the effects of multiple environ-
mental changes (e.g., CO5 fertilization, nitrogen (N) deposition, and
ozone pollution) on crop growth and development. Improvements in our
knowledge of the environmental and management factors influencing
crop growth and yield will further deepen our understanding of the
food-energy-water nexus and lead toward sustainable agricultural
systems.

In this study, we implemented such a unified framework in the
platform of the Dynamic Land Ecosystem Model v4.0 (hereinafter
referred to as the agricultural module of DLEM v4.0), which is well-
recognized for simulating coupled carbon-water-nutrient cycles (Pan
et al., 2021; Tian et al., 2010; Tian et al., 2020b; Yao et al., 2020).
Specifically, leveraging the strengths of DLEM v4.0 in representing hy-
drological, biophysical and biogeochemical processes under multiple
environmental changes, we incorporated explicit and mechanistic rep-
resentations of dynamic crop growth processes and agricultural man-
agement practices into it, including but not limited to crop-specific
phenological development, carbon allocation, yield formation, and
biological N fixation processes, as well as management practices such as
tillage, cover cropping, and crop genetic improvements. The perfor-
mance of the new agricultural module in reproducing the seasonal
variations and magnitudes of leaf area index (LAI), aboveground
biomass, and yield was evaluated against field observations. Using this
model, we also simulated corn, soybean, and winter wheat production in
the conterminous United States (U.S.) over 1960-2018 and examined
how they varied spatially and temporally.
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2. Materials and methods

DLEM v4.0 is a highly integrated TBM that is capable of quantifying
daily, spatially explicit carbon, water, and nutrient stocks and fluxes in
terrestrial ecosystems and inland water systems across site, regional, and
global scales (Pan et al., 2021; Tian et al., 2010, 2020b; Yao et al., 2020).
Five core components are included in DLEM v4.0 to simulate the
biogeochemical and biogeophysical processes within terrestrial ecosys-
tems: biophysics, plant physiology, dynamic vegetation, soil biogeo-
chemistry, and natural and anthropogenic disturbances. Through
coupling major biogeochemical-hydrological processes, DLEM is able to
simultaneously depict the biosphere-atmosphere exchanges of COq,
nitrous oxide (N2O) and methane (CHy) as driven by multiple environ-
mental forcings (e.g., climate, atmospheric COz concentration, N
deposition, tropospheric ozone pollution, and land use and land cover
change). This capability provides a powerful tool for supporting the
development of effective GHG mitigation options. DLEM has been
widely evaluated and applied to estimate CO2, CH4 and N2O fluxes at
multiple sites and regions like China (Ren et al., 2011; Tian et al., 2011),
the United States (Tian et al., 2012a; Zhang et al., 2012), North America
(Tian et al., 2015; Xu et al., 2012, 2010), and across the globe (Fried-
lingstein et al., 2020; Saunois et al., 2020; Tian et al., 2020a). In addi-
tion, a land-aquatic interface has also been coupled to DLEM (Pan et al.,
2021; Yao et al., 2020), which enhances its ability to simulate nutrient
loading from agroecosystems and investigate potential mitigation
strategies.

2.1. Development of the agricultural module of DLEM v4.0

The new agricultural module is developed based on previous agri-
cultural versions of DLEM (DLEM-Ag and DLEM-Ag2), which included
simplified crop growth processes and basic management practices (e.g.,
N fertilization, irrigation, and rotation) (Ren et al., 2012; Tian et al.,
2012b; Zhang et al., 2018). While DLEM-Ag and DLEM-Ag2 can achieve
a good performance at specific sites, their performance in regional-scale
simulations has been relatively poor (especially when simulating
long-term series of regional crop production) (Zhang et al., 2018).
Moreover, their ability in quantifying impacts of agricultural activities
on biosphere-atmosphere feedback is also limited.

To overcome the above shortcomings, the new agricultural module
in DLEM v4.0 has major improvements in five aspects: crop phenological
development, carbon allocation, yield formation, biological N fixation,
and management practices (Table S1). First, we included crop-specific
phenological development schemes, with phenology-stage-dependent
environmental stresses explicitly considered. Second, a new dynamic
carbon allocation scheme was implemented, where the allocation frac-
tion of net assimilates to different vegetation pools is determined by a
prescribed growth-stage dependent carbon allocation curve and modi-
fied by water, light, and N stresses. Third, the yield formation process
was improved by calculating crop yield as the balance between available
carbon supply to the reproduction pool and the actual carbon demand
for grain filling. The actual carbon demand for grain filling of different
crops was calculated using crop-specific methods derived from relevant
studies (Gaspar et al., 2017; Gregory and Atwell, 1991; Gregory et al.,
1995; Lei et al., 2010; Lokupitiya et al., 2009; Peart and Shoup, 2018;
Ritchie, 1991; Srivastava et al., 2006; Taylor et al., 1982; Wilhelm,
1998; Yamagata et al., 1987). Meanwhile, the translocation of dry
matter between the stem tissue and the reproduction pool to supplement
grain filling was also considered. Fourth, a new biological N fixation
scheme was included, where the N fixation rate is dependent on soil
temperature, soil moisture, N availability, substrate concentration, and
crop phenological stage. Finally, we incorporated several important
management practices (i.e., tillage, cover cropping, and crop genetic
improvements) in the new model and implemented a dynamic crop
rotation scheme through introducing time-varying crop rotation maps to
better reflect the interannual changes in distributions of different crop

Agricultural and Forest Meteorology 325 (2022) 109144

types.

2.1.1. Crop phenological development

The life cycle of a crop can be divided into several phenological
stages that influence the development of crop canopy structure (e.g., LAI
and canopy height), the allocation of carbon and nutrients among crop
tissues, and the biological N fixation process. Some of these phenological
stages are general to all crops, such as sowing, germination, emergence,
physiological maturity, and harvest; while other stages are crop-specific
such as the tassel initiation and silking stages of corn. DLEM-Ag uses
prescribed static LAI curves derived from satellite images to determine
phenology (Ren et al., 2012). DLEM-Ag2 divides the life cycle of all
crops into the same eight stages and does not consider environmental
stresses on phenological development (Zhang et al., 2018), which have
been shown to be critical for determining phenological stages (Gungula
et al., 2003; Uhart and Andrade, 1995; Wilhelm et al., 1993). Our new
model explicitly considers the phenological differences among crops as
well as phenology-stage-dependent environmental stresses. It also
adopts two separate schemes to determine phenological stages of
various crop types: a general crop scheme (GCS) for some crops
(currently including rice, peanuts, cotton, sorghum, barley, rye, cassava,
potato, rapeseed, sugarbeet and sugarcane, but can be flexibly expanded
if needed) and a specific crop scheme (SCS) for other crops (currently
including corn, soybean, and wheat). For the GCS, we used a unified
phenological development cycle similar to that in DLEM-Ag2 but
included more detailed phenological stages and the environmental
stresses (e.g., water and N) on phenological development. Crop life cycle
in the GCS is divided into ten stages: sowing, germination, emergence,
end of juvenile, floral initiation, flowering, beginning of grain filling,
end of grain filling, maturity, and harvest (Fig. 1). Each crop type using
the GCS is specifically parameterized. The SCS has the same basic
characteristics as the GCS, but it additionally includes crop-specific
phenological stages (Table S2), such as the tassel initiation and silking
stages for corn, beginning of pod growth and end of pod growth stages
for soybean, and terminal spikelet and end of ear growth stages for
winter wheat, and the main growth tissues also differ across the crops’
various phenological stages. Moreover, the SCS also includes
crop-specific physiological characteristics, such as photoperiodism and
biological N fixation for soybean, and vernalization for winter wheat.

The crop life cycle begins with seed sowing or planting. In DLEM-Ag
and DLEM-Ag2, crop sowing dates have been prescribed and remain
unchanged, which may lead to large errors in the simulated yields
considering that crop planting dates vary annually due to changing
weather conditions (Kucharik, 2006; Laux et al., 2010; Yang et al.,
2020). In contrast, sowing dates in the new model are dynamically
simulated rather than prescribed. To determine crop sowing dates,
sowing trigger criteria modified from CLM4.5 were used (Levis et al.,
2012). The original sowing trigger criteria in CLM4.5 include: (1) a
10-day running average of mean air temperature that exceeds a
threshold; (2) a 10-day running average of minimum air temperature
that exceeds a threshold; and (3) a 20-year running average of 8
°C-based growing degree-days (GDD) from April to September that ex-
ceeds a threshold. However, these criteria have been found to lead to
earlier sowing dates than the actual, because the GDD criterion is easily
met and thus the sowing date is in fact determined by the first two
criteria (Chen et al., 2015, 2018). To this end, we have modified the
GDD criterion to be the cumulative thermal time from the earliest
sowing date (defined by input data) that is greater than the crop-specific
threshold (Peng et al., 2018). Summarizing, the revised sowing trigger
criteria used in DLEM v4.0 are as follows:
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Fig. 1. Crop life cycle in the general crop scheme of the Dynamic Land Ecosystem Model v4.0. f{CBD_emer, fCBD_juve, fCBD _fini, f{CBD_flow, fCBD_bfill, fCBD _efill,
and fCBD_matu denote the target fraction of Cumulative Biological Days required to reach the phenological stages of emergence, end of juvenile, floral initiation,
flowering, beginning of grain filling, end of grain filling, and maturity, respectively.

SDateqie; < SDate < SDatey,

p 10d
Tivg < Tavg
10d (1)
T <T

min min

ATT,., <ATT

where SDate. s and SDatejq.s; denote the crop-specific prescribed
earliest and latest sowing dates, respectively, which are obtained from
input data; SDate denotes the simulated sowing date; Th,, and T,
denote the crop-specific thresholds of the 10-day running average and
minimum temperatures for sowing; T3% and Tp5%¢ denote the actual 10-
day running average and minimum air temperatures, respectively;
ATT,,;;, denotes the crop-specific threshold of minimum thermal time for
sowing; ATT denotes the accumulated thermal time from the earliest
sowing date to the current day, which is calculated using Eqs. (A1) and
(A2) in Appendix Al.1. If the above criteria are not met, crops will be
sown at the prescribed latest sowing date.

Seed germination is triggered if the number of days after the simu-
lated sowing date is larger than the crop-specific threshold. The initia-
tion and duration of the subsequent phenological stages (i.e., from
emergence to maturity) are determined according to the Biological Days
(BD)-based phenological development scheme (Soltani and Sinclair,
2012). Specifically, we first calculate the daily BD (i.e., an indicator of
daily development rate) using a 3-segment temperature response func-
tion, with the vernalization and photoperiod effects as well as envi-
ronmental stresses considered (Eqg. (2)); then the fraction of Cumulative
Biological Days (fCBD), an indicator of cumulative crop development
rate updated at a daily time-step, is calculated as the actual accumulated
BD from germination to the current day divided by the total BD required
for maturity (Eq. (3)). A phenological stage is predicted to occur when
the calculated fCBD reaches the target fCBD of that stage.

dailyBD = tempfun X ppfun X verfun X fiyess 2)

current day .
ngrminntioudallyBD (3)

CBD = -
TOBD = Sty i1y B>

where dailyBD denotes daily crop development rate; tempfun, ppfun,

verfun, and f.ss denote the inhibition of the potential crop development
rate by temperature, photoperiod, vernalization, and environmental
stresses, respectively, and are calculated using Egs. (A3)—(A8) in Ap-
pendix Al.2; fCBD denotes the fraction of accumulated dailyBD (i.e.,
from germination to the current day) to total BD required for maturity,
in which fCBD is equal to 0 at the germination stage and equal to 1 at the
maturity stage. The crop is harvested immediately after maturity or
when the growing season length of crops exceeds the crop-specific
longest growing days.

Along with the development of phenology, crop LAI is updated at a
daily time step and increases until the beginning of the reproductive
phase. The daily LAI is calculated as a function of leaf carbon content
and specific leaf area (SLA; the ratio of leaf area to leaf dry mass) (Eq.
(A9) in Appendix Al.2). Meanwhile, following CLM 4.5 (Levis et al.,
2012), crop canopy height also varies with phenological stages and is
obtained by scaling the maximum canopy height by the daily LAI (Eq.
(A10) in Appendix A1.2).

2.1.2. Carbon assimilation and allocation

Photosynthetic processes in the agricultural module of DLEM v4.0
are inherited from a previous DLEM version (Tian et al., 2010). How-
ever, to improve the representation of C4 plant (e.g., corn and sorghum)
responses to environmental stresses (e.g., temperature, moisture, and
radiation), we further incorporated an enzyme-driven C4 photosynthesis
routine (Di Vittorio et al., 2010), which uses an enzyme-driven bundle
sheath CO, concentration to substitute the diffusion-driven internal CO,
concentration available to ribulose-1,5-bisphosphate carboxylase-ox-
ygenase (Rubisco) for carbon assimilation.

For daily carbon allocation, DLEM-Ag and DLEM-Ag2 do not
consider environmental stresses when allocating net carbon assimilates
to the leaf, stem, and reproduction pools. To overcome this limitation,
we implemented a new dynamic carbon allocation scheme in the agri-
cultural module of DLEM v4.0. The potential allocation ratios followed a
crop-specific dynamic carbon allocation curve across phenological
stages (Fig. S1) (Gaspar et al., 2017; Gregory and Atwell, 1991; Gregory
et al., 1995; Lei et al., 2010; Lokupitiya et al., 2009; Peart and Shoup,
2018; Ritchie, 1991; Srivastava et al., 2006; Taylor et al., 1982; Wil-
helm, 1998; Yamagata et al., 1987), which were further regulated by
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light, N, and water stresses (Song et al., 2013) to obtain the actual ratios:

Aty = Atearp
T ox B—fi —fu —fw)

A _ AA'tem.p +w X (1 _fL)
stem 1+wx (3 *fL *fN *fW) @

A _ Arom,p + o X (2 7fN 7fW)
T 0 x 3—fu—fv —fw)

A o min (Cavail X Arepr.ps Cdcmaml)
T Coar X L+ @ x (3= f1 — fy —fw))

where Apeqs, Astem> Aroor, and Argyr denote the actual carbon allocation
ratios for leaf, stem, root, and reproduction pools modified by envi-
ronmental stresses, respectively; Ajeqfp, Astemps Arootp, and Argyrp denote
the potential carbon allocation ratios for leaf, stem, root, and repro-
duction pools, respectively, which are derived from the prescribed
growth-stage dependent carbon allocation curve; w is a scaling param-
eter representing the sensitivity of an allocation ratio to changes in light,
N, and water stresses; fi, fy, and fy denote the light, N, and water
stresses, respectively, which are calculated using Eq. (A11) in Appendix
A2; Cgqp is the net carbon assimilates available for allocation; and
Clemand 1S the actual carbon demand for fulfilling grain filling, which is
calculated as:

Cemand = AKW X GN X Pensiry )

where AKW denotes the actual kernel weight at physiological maturity,
which is determined as the product of daily BD and potential kernel
growth rate (pKGR) and is subject to heat and N stresses (calculated
using Eq. (A12) in Appendix A2); GN denotes grain number per plant,
which is calculated using crop-specific methods (Fischer, 1985; Keating
et al., 2003; Vega et al., 2001; Zheng et al., 2014) (calculated using Eq.
(A13) in Appendix A2); and Pgensiyy denotes planting density (i.e., num-
ber of plants per square meter).

This dynamic carbon allocation scheme allows optimizing crop
growth processes across its phenological stages. During the emergence
stage, carbon stored in the seeds is allocated to the leaf pool and root
pool at a fixed ratio of 0.6 and 0.4, respectively; during the vegetative
phase, net assimilates are preferentially allocated to leaf, root, and then
stem to facilitate capture of solar radiation and uptake of nutrients and
water; and during the reproductive phase, the reproduction pool has the
highest priority of carbon allocation to fulfill grain filling.

2.1.3. Yield formation

In DLEM v4.0, the estimation of crop yield adopts a different algo-
rithm than DLEM-Ag and DLEM-Ag2. Specifically, in DLEM-Ag, crop
yield is estimated as the product of total aboveground biomass and a
constant harvest index, which may lead to deviation in the simulated
yields considering that harvest index actually varies with climate con-
ditions, farming practices, and environmental factors (Hay, 1995;
Porker et al., 2020; Sinclair, 1998). In DLEM-Ag2, crop yield is deter-
mined by the actual carbon demand for grain filling, where a single
empirical equation related to stem dry weight is used to calculate the
actual carbon demand of all crops, even though the grain filling char-
acteristics differ by crops. In DLEM v4.0, yield formation follows a
supply-demand relationship. That is, it is estimated as the balance be-
tween the available carbon assimilates supply to the reproduction pool
and the actual carbon demand for crop to fulfill grain filling (Jones et al.,
2003; Villalobos et al., 1996). Moreover, we use various methods
derived from relevant studies, with crop-specific grain filling charac-
teristics considered, to calculate the actual carbon demand of different
crops (Eq. (5)). The translocation of dry matter between the stem tissue
and the reproduction pool is also considered in the new model, allowing
up to 20% of carbon to be translocated from the stem pool to the
reproduction pool to supplement grain filling if the available carbon
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assimilates cannot satisfy the actual carbon demand. If excess assimi-
lates are available, the carbon that exceeds the actual carbon demand
will be re-translocated from the reproduction pool to the stem pool to
ensure mass balance.

2.1.4. Biological nitrogen fixation

Crops like soybeans are able to fix N to meet nutrient requirements
for growth. In DLEM-Ag and DLEM-Ag2, the biological N fixation is
determined by the prescribed PFT-specific annual N fixation rate and
CO5, concentration, which does not consider environmental stresses and
the effects of crop growth stages. In DLEM v4.0, the biological N fixation
process has been improved, which is calculated as a function of potential
N fixation rate, soil temperature, soil moisture, soil mineral N concen-
tration, substrate carbon concentration, and crop phenological stage
(Liu et al., 2011):

Nix = N, por X Jsoirr X fsonw X froiv X fsoitc X fphen (6)

where Ny, is the actual biological N fixation rate; Ny, po is the potential
N fixation rate; f;,;r is a soil temperature factor; f;,yw is a soil moisture
factor; fiouv is a soil mineral N factor; fic is a function of substrate
carbon concentration; and fyhe, is a factor of crop phenological stage
(calculated using Eq. (A14) in Appendix A3).

2.1.5. Agricultural management practices

Previous DLEM versions have incorporated common management
practices, including N fertilization, irrigation, and crop rotation. N
fertilization practice is represented by adding N directly to the soil
ammonium and nitrate pools to meet crop N demands through both
industrial fertilizer and manure application. Irrigation practice is
implemented by assuming that soil moisture would reach field capacity
when irrigated, in which irrigation timing is determined as the point
when soil moisture of the top layer dropped to 30% of maximum
available water (i.e., field capacity minus wilting point) during the
growing season (Ren et al., 2011). Crop rotation is implemented by
allowing different crop types to exist on the same soil during different
periods of growing/planting cycles (e.g., rotation of winter and summer
crops).

In the new model, besides including more management practices like
tillage and cover cropping, we also incorporated genetic improvement
options, as increased crop yields in the past decades can be largely
attributed to improvements in both management practices and crop
genetic breeding (Duvick, 1984; Duvick, 2005; Hammer et al., 2009;
Pingali, 2012). Four types of tillage practices (i.e., no-tillage, conser-
vation tillage, reduced tillage, and conventional tillage) are considered
in our model, based on the differences in tillage depth, mixing efficiency,
and the proportion of soil surface covered by residues after tillage
(Table S3) (Porwollik et al., 2019). Three aspects of tillage impacts on
the agroecosystem are represented: (1) changes in surface residue
coverage and the subsequent redistribution of soil organic matter (SOM)
and nutrients within the tilled soil layers due to tillage mixing (Egs.
(B1)—(B3) in Appendix B1.1); (2) changes in litter interception, bulk
density, soil moisture and other water-related effects on processes such
as nitrification, denitrification, and leaching (Eqs. (B4)-(B10) in Ap-
pendix B1.2); and (3) changes in the soil decomposition rate (Egs.
(B12)—(B20) in Appendix B1.3). Cover cropping is represented in the
new model through planting crops (e.g., winter rye and peas) during the
normal fallow period and leaving crop biomass in the field at the
beginning of the following main crop growing season (Huang et al.,
2020). The impacts of crop genetic improvements on yields are repre-
sented through two mechanisms: (1) increasing the photosynthesis rate
of crops (Long et al., 2015; Parry et al., 2011; Wu et al., 2019), and (2)
enhancing crop N uptake ability (Lu et al., 2018). Besides these new
considerations, we have also improved the representation of the existing
rotation practice, where a dynamic rotation scheme is incorporated into
the new model through introducing time-varying crop rotation maps,



Y. You et al.

rather than the static rotation map in previous versions.

2.2. Input data

To drive DLEM v4.0, long-term spatial datasets at a resolution of 5x5
arc-min were developed, including climate, atmospheric CO5 concen-
tration, N deposition, soil properties, land use and land cover change,
crop rotation, N fertilizer use rates, manure N application rates, irriga-
tion, tillage intensity, and the earliest and latest crop planting dates
(Table 1). Specifically, the historical daily climate dataset (including
precipitation, solar radiation, maximum, minimum and mean temper-
atures) from 1860 to 2018 was reconstructed from the North American
Land Data Assimilation System product (Mitchell et al., 2004; Xia et al.,
2012), the Climate Research Unit-National Centers for Environmental
Prediction dataset (Mitchell and Jones, 2005), and the IPSL Climate
Model dataset (Boucher et al., 2020), using a revised delta downscaling
method (Liu et al., 2013). Monthly atmospheric CO, concentration data
from 1860 to 2018 were obtained from the NOAA GLOBALVIEW-CO2
dataset derived from atmospheric and ice core measurements (www.
esrl.noaa.gov). Monthly atmospheric N deposition data from 1860 to
2018 were acquired from the International Global Atmospheric Chem-
istry (IGAC)/Stratospheric Processes and Their Role in Climate (SPARC)
Chemistry—Climate Model Initiative (CCMI) (Eyring et al., 2013). Soil
physical and chemical properties were obtained from the ISRIC-WISE
Harmonized Global Soil Profile dataset (Batjes, 2008). The annual land
use and land cover change dataset (including coverage fraction of
croplands) from 1860 to 2016 was obtained from Yu and Lu (2018). The
annual crop rotation dataset from 1910 to 2018 was developed by
combining the United States Department of Agriculture (USDA) Crop-
land Data Layer (CDL) product and the USDA-National Agricultural
Statistics Service (NASS) survey data of county-scale crop planting areas,
using the spatialization method implemented in Yu et al. (2018). The

Table 1
Input datasets to drive DLEM v4.0.
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annual crop-specific N fertilizer use data from 1910 to 2018 was
reconstructed using the state-level N fertilizer use rates from
USDA-NASS and the national-level commercial N fertilizer consumption
data from Mehring et al. (1957) and USDA-ERS (2019), following Cao
et al. (2018). The annual manure N application dataset from 1860 to
2018 was acquired from Bian et al. (2021). The annual crop-specific
irrigation dataset from 1950 to 2018 was downscaled from the
county-scale irrigation reanalysis dataset (McManamay et al., 2021) and
the USDA-NASS county-scale irrigated cropland area, using the MODIS
Irrigated Agriculture Dataset (MIrAD) (Brown and Pervez, 2014; Pervez
and Brown, 2010) as a base map. The annual tillage intensity dataset
from 1960 to 2018 was reconstructed from the county-scale tillage
practices survey data (1989-2011) obtained from the National Crop
Residue Management Survey (CRM) of the Conservation Technology
Information Center (https://www.ctic.org/CRM). Tillage maps for
missing years were kept the same as the nearest years when data were
available. The original five types of tillage practices in the CRM dataset
were reorganized into four types through combining the ridge tillage
and mulch tillage types in CRM to the conservation tillage type in DLEM
v4.0. The county-scale CRM dataset was combined with the CDL-derived
crop rotation map and the USDA-NASS crop planting area to estimate
historical spatial distributions of tillage practices. The state-level earliest
and latest crop planting dates were obtained from the USDA-NASS
survey report (NASS, 2010), which provides the planting and harvest-
ing windows in most of the historical years. Other auxiliary data such as
topography and river network data were obtained from our previous
studies (Tian et al., 2010; Tian et al., 2012b, 2020b; Xu et al., 2019).
In addition, to better represent crop growth characteristics across a
wide range of temperature and precipitation regimes, we divided corn,
soybean and winter wheat varieties in the U.S. into seven, seven, and
three groups, respectively (Fig. S2), based on the classification of rela-
tive maturity groups (Zhang et al., 2007, 2020). The spatial distribution

Dataset name Period Spatial Temporal Methods and data sources

resolution resolution

Climate (precipitation, solar 1860-2018 5 arc-min Daily Reconstructed from the North American Land Data Assimilation System product (

radiation, maximum, minimum Mitchell et al., 2004; Xia et al., 2012), the Climate Research Unit-National Centers for
and mean temperatures) Environmental Prediction dataset (Mitchell and Jones, 2005), and the IPSL Climate Model
dataset (Boucher et al., 2020), using a revised delta downscaling method (Liu et al., 2013)

CO;, concentration 1860-2018 5 arc-min Monthly Obtained from the NOAA GLOBALVIEW-CO2 data set (www.esrl.noaa.gov)

Nitrogen deposition 1860-2018 5 arc-min Yearly Acquired from the International Global Atmospheric Chemistry (IGAC)/Stratospheric
Processes and Their Role in Climate (SPARC) Chemistry—Climate Model Initiative (CCMI)
(Eyring et al., 2013)

Soil physical and chemical One time 5 arc-min One time Obtained from the ISRIC-WISE Harmonized Global Soil Profile dataset (Batjes, 2008)

properties (e.g., texture and pH)

Land use and land cover change (e. 1860-2016 5 arc-min Yearly Acquired from Yu and Lu (2018)

g., cropland fraction)

Crop rotation maps 1910-2018 5 arc-min Yearly Developed by combining the United States Department of Agriculture (USDA) Cropland
Data Layer (CDL) product, the USDA-National Agricultural Statistics Service (NASS)
survey data of county-scale crop planting area, and the Google Earth Engine cloud
computing platform, using the spatialization method implemented in Yu et al. (2018)

Crop-specific nitrogen fertilizer 1910-2018  State-level Yearly Reconstructed using the state-level N fertilizer use rates from USDA-NASS and the

use rate national-level commercial N fertilizer consumption data from Mehring et al. (1957) and
USDA-ERS (2019), following a method similar to that used in Cao et al. (2018)

Manure nitrogen application 1860-2018 5 arc-min Yearly Acquired from Bian et al. (2021)

Crop-specific irrigation map 1950-2018 5 arc-min Yearly Using the MODIS Irrigated Agriculture Dataset (MIrAD) (Brown and Pervez, 2014; Pervez
and Brown, 2010) as a base map, and then combining the county-scale irrigation
reanalysis dataset derived from the United States Geological Survey (USGS) (
McManamay et al., 2021) and the USDA-NASS county-scale irrigated cropland area to
extrapolate the spatially explicit irrigation map in historical years

Tillage map 1960-2018 5 arc-min Yearly Reconstructed from the county-scale tillage practices survey data obtained from the
National Crop Residue Management Survey (CRM) of the Conservation Technology
Information Center (https://www.ctic.org/CRM), where tillage maps for missing years
were kept consistent with the nearest years for which data were available

The earliest and latest crop One time State-level One time Obtained from the USDA-NASS survey report (NASS, 2010)

planting dates
Auxiliary data (e.g., topography One time 5 arc-min One time Obtained from previous DLEM studies (Tian et al., 2010, 2012b, 2020b; Xu et al., 2019)

and river network)
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of crop maturity groups remains relatively stable over time but differed
in several genetic characteristics, including the total CBD required for
maturity, the timing and duration of different phenological stages, and
photoperiod-related parameters (Table S4). The spatial distribution of
corn variety groups was adapted from the corn maturity zones provided
by the Elk Mound Seed Company (https://www.elkmoundseed.com/s
eed-corn/seed-corn-resources/), and we merged the zone with matu-
rity between 91 and 95 days and the zone with maturity between 95 and
100 days into one. The distribution of soybean variety groups was
derived from the revised optimum adaptation zones for soybean matu-
rity groups (Zhang et al., 2007). The distribution of winter wheat variety
groups was determined based on the wheat production map by the
National Association of Wheat Growers (https://www.wheatworld.
org/wheat-101/wheat-production-map/), and we divided the U.S.
winter wheat varieties into three groups, i.e., soft white winter wheat,
hard red winter wheat, and soft red winter wheat.

2.3. Model calibration and validation

We calibrated and validated the new model using data collected from
multiple sources, including the AmeriFlux Network, the Greenhouse Gas
Reduction through Agricultural Carbon Enhancement Network, the
Resilient Economic Agricultural Practices Project, the USDA-NASS, and
relevant literature. The values of the crop variety group parameters
(Table S4) and the general model parameters related to crop growth
processes (Table S5) were determined through model calibration within
a reasonable range of reported values in literature. Specifically, we first
used the default parameters to run the model, and then we adjusted the
parameters (within a +20% range of default values) to obtain a close
match between the observed and predicted values for LAI, aboveground
biomass, and grain yield. The parameter set obtaining the minimal bias
between the simulated and measured values across all sites was adopted.
In addition, we calibrated parameters related to crop genetic improve-
ments (Table S6), including N uptake capability (Nymax) and the
maximum carboxylation rate (Vcmqy). Specifically, we first calibrated the
temporal changes of Nypmax using the time series of Nypmax obtained from
Lu et al. (2018), in which a logistic equation was used to model the
impacts of crop genetic improvements in enhancing Nypmax. Then, a
linear regression model was used to estimate the temporal changes in
increasing rate of Vpq, to obtain the best match between the simulated
time series of national crop yields and the USDA-NASS records.

After model calibration, field observed LAI, aboveground biomass,
and yield data (excluding the data for model calibration), as well as the
regional-scale crop production survey data were used to evaluate the
new model performance. The distribution and description of these field
sites are presented in Fig. S3 and Tables S7-S9. Several metrics were
used to quantitatively evaluate the model performance, including the
coefficient of determination (Rz), the root mean square error (RMSE),
and the normalized root mean square error (NRMSE).

2.4. Model implementation

The implementation of the agricultural module of DLEM v4.0 in-
cludes three major steps: an equilibrium run, a spin-up run, and a
transient run. The equilibrium run was driven by the average climate
data during the 1860s and other environmental factors in 1860. The
equilibrium state was assumed to be reached when the changes in car-
bon, N, and water pools between two consecutive 20 years period were
less than 0.5 g C m~2 year !, 0.5 g N m 2 year !, and 0.5 mm year *,
respectively. The spin-up run was driven by the detrended climate data
during the 1860s to eliminate model fluctuations due to the mode
transition from equilibrium run to transient run. Finally, the transient
run was driven by the historical data from 1860 to 2018.
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2.5. Parameter sensitivity analysis

The Sobol’ method, a variance-based global sensitivity analysis
method, was used to measure the sensitivity of simulated crop yield to
key model parameters. The Sobol’ method decomposes model output
variance into the contribution of each input parameter and their in-
teractions to calculate sensitivity index (Sobol, 1993):

Vy = ZV, + ZZVI'/‘ + ZZZVUA + o+ VI.Z.‘...n (7)
i i i i

i i i k)

where Vy represents the total variance of model output, V; represents the
variance explained by the ith input parameter, Vj; represents the vari-
ance explained by the interactions between the ith and jth input pa-
rameters, and n represents the number of input parameters. The first-
order sensitivity index is defined as S; = V;/Vy, the higher-order sensi-
tivity indices are defined as Sy = V;;/Vy, Sjc = Viik/Vv,..., S12....0.n =
Via.. .i..n/Vy, respectively, and the total-order sensitivity index Sy; of
the ith parameter is defined as the sum of its first-order sensitivity index
and all the higher-order sensitivity indices involving it. Among them, S;
measures the direct impact of each input parameter on the output
variance and St; measures the total impacts (i.e., the sum of direct and
indirect impacts). A large difference between S; and Sy; indicates that the
parameter mainly affects output through interactions. The Sobol’
method uses the Monte Carlo sampling scheme to generate random
parameter samples. To calculate sensitivity indices, it requires a
parameter set with a sample size of M x (2n + 2), where M represents
the number of base samples and n represents the number of input pa-
rameters. Here, M is set to 512 (You et al., 2019).

3. Results
3.1. Site-scale model performance

3.1.1. Evaluation of the simulated leaf area index

The performance of the LAI simulation was evaluated against 15 site-
years of field observations for corn, 6 site-years for soybean, and 10 site-
years for winter wheat. Generally, the simulated LAI was consistent with
the observed LAI (Fig. 2), with RMSE (NRMSE) values for corn, soybean,
and winter wheat being 1.26 m?2/m>? (20%), 0.87 m?2/m> (19%), and
0.66 m%/m? (21%), respectively, and R? values being 0.68, 0.66, and
0.57, respectively. The model also captured the seasonal dynamics of
LAI, for example, in the US-Ne3 corn-soybean rotation site, where the
model reproduced well the timing of LAl increase and decrease as well as
its amplitude (Fig. 3). However, some discrepancies still existed between
the simulated LAI and the observations. Specifically, the simulated LAI
underestimated the observed LAI at its low end, suggesting that the
simulated leaf onset slightly lags behind the actual leaf onset, which may
be due to the simulated planting date being later than the actual planting
date. For instance, our simulated planting date of corn in 2001 at the US-
Ne3 site is May 22, while the actual planting date was May 14. In
addition, at the US-Ne3 site, the simulated LAI of corn was slightly
overestimated during the late growing season compared with the ob-
servations, and the peak LAI of soybean was underestimated in the year
2002 and 2006 (Fig. 3). Such deviations also occurred at other sites
(Fig. S4).

3.1.2. Evaluation of the simulated aboveground biomass

Generally, the simulated aboveground biomass was in line with the
observed data (Fig. 4), where the RMSE (NRMSE) values between them
for corn, soybean, and winter wheat were 2912 kg/ha (12%), 658 kg/ha
(14%), and 278 kg/ha (27%), respectively, and the R? between them
were 0.82, 0.79, and 0.45, respectively. Meanwhile, similar to LAL the
modeled seasonal variations in aboveground biomass at each site was
well consistent with the observations (Figs. 5 and S5).
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Fig. 2. Site-scale comparisons between the simulated leaf area index (LAI) and field observations for corn (a), soybean (b), and winter wheat (c). Different colors
indicate different crop sites, and a detailed description of these sites are shown in Tables S7-S9.
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Fig. 3. The seasonal evolution of observed and simulated leaf area index (LAI) in a corn-soybean rotation rainfed site, US-Ne3, where corn is planted in odd years
(2001, 2003, 2005, and 2007) and soybean is planted in even years (2002, 2004, 2006).
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Fig. 4. Site-scale comparisons between the simulated aboveground biomass and field observations for corn (a), soybean (b), and winter wheat (c). Different colors
indicate different crop sites, and a detailed description of these sites are shown in Tables S7-S9.

3.1.3. Evaluation of the simulated crop yield winter wheat ranging from 351 to 1080 kg/ha, and the NRMSE values

The simulated yields agreed well with the observations of 94 site- ranging from 11% to 20%. Meanwhile, the R? values for all crops were
years for corn, of 87 site-years for soybean, and of 12 site-years for greater than 0.4. Compared to corn and soybean, the simulation accu-
winter wheat (Fig. 6), with the RMSE values for corn, soybean, and racy for winter wheat yield was lower, maybe partly due to the smaller
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Fig. 5. The seasonal evolution of observed and simulated aboveground biomass in a corn-soybean rotation rainfed site, US-Ne3, where corn is planted in odd years
(2001, 2003, 2005, and 2007) and soybean is planted in even years (2002, 2004, 2006).
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Fig. 6. Site-scale comparisons between the simulated yield and field observations for corn (a), soybean (b) and winter wheat (c). Different colors indicate different

crop sites, and a detailed description of these sites are shown in Tables S7-S9.

number of observations in correlation analysis.

3.2. Spatial patterns of simulated crop production

We used the calibrated model to simulate the production of corn,
soybean, and winter wheat in the conterminous U.S. from 1960 to 2018.
The simulation results show that corn and soybean had relatively high
production in the Midwest region but low production in the southern
region, while winter wheat had relatively high production in the
Southern Plains and northwestern regions (Fig. 7). Overall, the spatial
pattern of simulated mean annual crop production during 1960-2018
was consistent with the USDA-NASS survey data, and the decadal-
scale comparisons also showed good performance (Figs. S6-S8), which
suggest that our model is capable of reproducing the spatial pattern of
crop production across a wide range of temperature and precipitation
regimes. At the grid level, the simulated crop production was mostly
significantly correlated (P value < 0.05) with the USDA-NASS survey
data (Fig. S9). The areas with R? > 0.7 accounted for 88.91%, 97.51%
and 64.62% of the total planting areas of corn, soybean and winter
wheat, respectively.

In addition, we also used NRMSE and R? to quantitatively evaluate
the simulation accuracy of crop production at county scale (Fig. 8). The
NRMSE values between the DLEM-simulated crop production and the
USDA-NASS survey data for corn, soybean, and winter wheat were all

smaller than 5%, and the corresponding R? values were 0.93, 0.94, and
0.67, respectively. However, despite the overall good performance, it
should be noted that there were still some discrepancies between the
simulated production of winter wheat and the survey data (e.g., the
underestimated winter wheat production in the northwestern U.S.).

3.3. Temporal variations of simulated crop production

Temporal variations in simulated crop production at the national
scale was also examined (Fig. 9). From the 1960s to the 2010s, the na-
tional corn production almost tripled and the soybean production almost
quadrupled. Winter wheat production showed large interannual varia-
tions, increasing at first and then decreasing. Generally, the temporal
variations of national crop production simulated by DLEM agreed well
with the USDA-NASS survey data. The NRMSE values between them for
corn, soybean, and winter wheat ranged from 6.89% to 10.92%, and the
R? values between them were all greater than 0.7. Meanwhile, the re-
sults indicate that the new model was capable of capturing the re-
ductions in crop production caused by extreme weather disasters. For
example, the extreme drought event that occurred in 2012 swept most of
the contiguous U.S. (Mallya et al., 2013), leading to a significant
reduction in crop production, and our simulated results also showed a
large reduction. However, it should be noted that the simulated pro-
duction responded more severely to extreme weather events than the
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Fig. 7. Comparisons between the spatial patterns of average annual crop production simulated by the Dynamic Land Ecosystem Model (DLEM) and derived from the
United States Department of Agriculture-National Agricultural Statistics Service (USDA-NASS) during 1960-2018, as well as the differences between them. (a—c) Corn
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Fig. 9. Historical trends of national crop production simulated by the Dynamic Land Ecosystem Model (DLEM) and obtained from the United States Department of
Agriculture-National Agricultural Statistics Service (USDA-NASS) for corn (a), soybean (b) and winter wheat (c), respectively.
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observations. For instance, the corn production loss in 2012 estimated
by DLEM was about twice the actual loss relative to the average corn
production in 2011 and 2013.

4. Discussion
4.1. General performance of the agricultural module of DLEM

The site-scale validation results indicate that the DLEM-simulated
LAI, aboveground biomass, and yield were generally consistent with
the observations (Figs. 2-6), although part of the modeled LAI during
the late growing season was still overestimated and the peak LAI in some
years was underestimated. The deviations in the simulated LAI may be
partly due to the constant SLA used in our model. Specifically, daily LAI
in DLEM is calculated based on the leaf carbon and the constant SLA,
while SLA actually varies with the crop growth stage and is simulta-
neously regulated by environmental conditions (Danalatos et al., 1994;
Tardieu et al., 1999). However, the mechanism of how SLA responds to
changes in climate and environmental factors throughout the growing
season is still unclear (Drewniak et al., 2013), making it difficult to
include dynamic SLA in the model at this time. Another possible
explanation for the deviations in the simulated LAI might be the bias in
the modeled planting date and growing season length. Specifically, our
model tended to estimate later planting dates and longer growing sea-
sons than observations (Fig. 3), which cause the simulated LAI to
maintain a high value for a longer period than the actual duration and in
turn overestimates LAI during the late growing season. The accurate
simulation of plant phenology (e.g., planting date and growing season
length) has been shown to be critical for modeling productivity (Ana-
palli et al., 2005; Wallach et al., 2021; You et al., 2020). In our model, to
reduce model complexity and its associated uncertainty, only
temperature-derived metrics are used to determine planting date (Levis
et al., 2012). Given that planting date depends not only on temperature
but on other factors as well, for example, soil moisture, terrain condition
and factors that may affect farmers’ decisions such as labor and equip-
ment availability (Kucharik, 2006; Sacks et al., 2010), it is not surprising
that there are some discrepancies in the modeled phenology. Consid-
eration of these additional factors on planting date may help to improve
the simulation of crop phenology in the future.

The spatial pattern of crop production simulated by our model was
also comparable to survey data (Figs. 7 and S6-S8), although some
discrepancies still exist. The underestimated winter wheat production in
the northwestern U.S. may be partly due to the deficiency of our model
in simulating available soil water. A similar problem has also been re-
ported in the spatial pattern of winter wheat yield simulated by CLM 4.5
(Lu et al.,, 2017). In DLEM, we use a water regulation factor, B, to
represent the limitation of soil water on photosynthesis and other
water-related processes (Pan et al., 2015; Tian et al., 2010). A f value of
0 denotes complete water restriction, whereas a p value of 1 denotes no
water stress. The spatial pattern of DLEM-modeled p during the growing
season of winter wheat indicates that the modeled p in the northwestern
U.S. is very low (Fig. S10), with an average value less than 0.5, sug-
gesting that soil water availability severely limits photosynthesis in this
region and thus leads to the underestimated production. If we applied
full irrigation over this region, the simulated pattern of winter wheat
production better captures the USDA’s spatial pattern (Fig. S11). This
result suggests that there is less water stress on winter wheat growth in
this region than indicated by the model. Crop water supply may be
enhanced by an abundant groundwater resource and snowmelt water in
this region. However, these hydrological processes are
under-represented in our model. In addition to water stress issues, the
discrepancy in crop production patterns may also stem from the de-
ficiencies of our model in representing the growth characteristics of
winter wheat (e.g., frost tolerance and damage) and relevant farming
practices (e.g., irrigation and fertilization).

With respect to the simulation accuracy of different crops, we found
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that the accuracy of winter wheat production is lower than that of corn
and soybean (Figs. 7 and 8). Winter wheat has a unique growth cycle (i.
e., planted in fall and harvested in summer) compared with summer
crops. Therefore, it may also have different response mechanisms to
environmental stresses due to its frequent exposure to frost damage (Lu
etal., 2017; Vico et al., 2014). Frost damage and its related processes are
not considered in our model. Another possible reason for the lower ac-
curacy of winter wheat production may be that we limited winter wheat
to only three varieties. The varieties of winter wheat span a large range
of latitudes, so there exists large spatial heterogeneity in the tempera-
ture and precipitation regimes in which they grow that we have not fully
captured (Zhang et al., 2020). The consideration of frost damage effects
and a further subdivision of varieties may improve the estimation of
winter wheat production in the future.

The advances in crop genetic and breeding technologies, agricultural
expansion and intensive management practices have led to a one to four-
fold increase in crop production in the U.S. during the past several de-
cades (USDA, 2018). Our model captured this trend (Fig. 9). Neverthe-
less, despite the overall good performance, the model probably has not
captured some effects of improvements in genetic and breeding tech-
nologies on crop resistance to pests and diseases as well as adaptation to
environmental stress (Bailey-Serres et al., 2019; Hammer et al., 2002).
This deficiency may partly explain the high sensitivity of our model to
extreme weather disasters. In addition, the high sensitivity may be
attributed to human adaptive behaviors such as farmers’ preparedness
and response strategies to extreme weather (Annan and Schlenker,
2015), which are not considered in the model.

In addition, we also compared the performance of the new model in
simulating national crop production with a previous DLEM version,
namely the DLEM-Ag2 (Fig. S12). Generally, our new model achieved
higher simulation accuracy than the DLEM-Ag2, in which the NRMSE
values reduced by 6.24%, 1.21%, and 2.18% for corn, soybean and
winter wheat, respectively, and the R? values increased by 0.13, 0.04,
and 0.11, respectively. Meanwhile, the new model better captured the
interannual variations and trends of national crop production as
compared with the DLEM-Ag2. For example, the DLEM-Ag2 over-
estimated national corn production in the 1960s and 1970s and sub-
stantially underestimated corn production after the 2000s, however, the
new model simulated the production changes well over the entire
period. The improved performance of the new model also demonstrated
the effectiveness of the newly incorporated crop growth processes and
agricultural management practices.

4.2. Parameter sensitivity analysis

Since the new model involves a lot of parameters (Tables S4 and S5),
we conducted global sensitivity analysis to quantify the relative
importance of each model parameter to crop yield simulation using the
Sobol’ method. The Sobol’ sensitivity analysis was implemented by
evaluating the changes in simulated yield in response to variations in
parameter values over a large amount of random parameter samples,
which were generated using the Monte Carlo sampling scheme by
assuming a uniform distribution for each parameter and randomly
varying its value within 20% of the calibrated value (Tian et al., 2011).
The number of parameters included in the analysis was 17, 19, and 26
for corn, soybean, and winter wheat, respectively, and after sampling, a
total of 18,432, 20,480, and 27,648 parameter samples were generated,
respectively. In addition, we performed a resampling analysis over the
generated parameter sample space to estimate the variability of the
derived first-order (S;) and total-order (Sy;) sensitivity indices, and the
resulting standard deviations of these indices are displayed as error bars
in Figs. S13-S15.

We used S; and St; to measure the relative contribution of each
parameter to the variance of simulated yield. For corn, the top three
most influential parameters revealed by both S; and Sy; are the lower
optimal cardinal temperature required for photosynthesis (Cardgp),
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maximum stomatal conductance (gmqy), and maximum grain number per
plant (GNpy) (Fig. S13). For soybean, there are slight differences in the
ranking of influential parameters revealed by S; and St; (Fig. S14), but in
general, the lower and upper optimal cardinal temperatures required for
photosynthesis (Cardyy1 and Cardyy) still play a dominant role, and
8max as well as the threshold of 10-day running average temperature for
sowing (T‘ng) also have a significant impact. For winter wheat, the lower
cardinal temperature for heat stress to reduce grain number
(HeatTempy;,) and Tﬁvg are identified as influential parameters by both S;
and Sr;, whereas Card,, is identified as a dominant parameter by Sy; but
not by S;, suggesting that this parameter mainly affects output through
interactions with other parameters. Overall, Card,,, was identified as
the most influential parameter affecting yield simulation for all the three
crops, as this parameter determines the critical point of temperature at
which photosynthesis rate reaches the optimum.

4.3. Uncertainties

Despite the overall sound performance of our model, some limita-
tions remain in this study. First, the representation of groundwater and
irrigation practice (i.e., no consideration of the irrigation amount and
frequency) in our model is relatively simple, which biased the simulated
soil moisture and then crop production. Considering that some satellite-
derived soil moisture products are available (e.g., SMAP and ESA-CCI
datasets) (Dorigo et al., 2017; Entekhabi et al., 2010), we may solve
this problem by assimilating soil moisture products into our model.
Second, input data used to drive DLEM may introduce bias. For example,
the crop-specific N fertilizer use rate was obtained from the state-level
surveys, which cannot reflect the actual variations of fertilizer use in
both magnitude and timing. Previous studies have developed some
optimized fertilization schemes to better represent fertilization practice
in models (Fu et al., 2020; Leng et al., 2016), which could be incorpo-
rated into our model in the future. Third, cover cropping practices were
not included in our regional-scale simulation due to the lack of an
available spatialized dataset, which may also introduce biases in our
results. Finally, as discussed in Section 4.2, crop yield simulations are
sensitive to some parameters (e.g., Cardyy and gmax) SO uncertainty in
model parameters also constitutes a possible source of deviation in our
results. In the long term, our goal is to develop a crop module applicable
to all crop growing regions worldwide. Here, the parameterization and
calibration schemes mainly focused on the three major crops grown in
the U.S. Extending this parameterization effort to additional crops and
varieties from other regions will likely be needed to make the model
more broadly applicable. Addressing these limitations is critical to
further improve the simulation performance of the new model at
regional and global scales.

4.4. Future research opportunities

In this study, we focused on how a better mechanistic representation
of the effects of environmental factors and management practices on
crop growth processes improved model estimates of crop production and
yield at both the site and regional scales. Applying this knowledge to
future climate scenarios should improve our understanding of how
climate change may impact crop production at the site scale and food
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security at the regional scale in the future. In addition, the model im-
provements described in this study provide new ways to evaluate the
effectiveness of potential climate mitigation and adaptation policies to
sustain crop production and help protect food security. For example,
climate-smart practices such as no-tillage and using cover crops have
been widely advocated to promote soil carbon sequestration and GHG
mitigation while sustaining or boosting crop production (FAO, 2010).
The incorporation of different tillage and cover cropping effects on soil
characteristics and crop growth into DLEM 4.0 allows the model to
quantify the potential benefits of such climate-smart practices on GHG
mitigation and crop production under future climate scenarios. Diver-
sified crop rotations have also been advocated to reduce adverse envi-
ronmental and climatic effects on crop production (Bowles et al., 2020).
Rotations with legumes can further contribute to climate change miti-
gation by reducing N fertilizer use (Ma et al., 2018). The inclusion of the
dynamic crop rotation scheme in the new model allows us to explore the
benefits of diversified crop rotations on crop production and climate.
Besides quantifying the benefits of climate mitigation and adaptation
policies, the new model can help identify unintended consequences of
other management policies, such as changes in nutrient loading from
agroecosystems to river networks (Pan et al., 2021; Yao et al., 2020).

5. Conclusion

To meet the multiscale agricultural application demands (e.g., farm-
scale decision support and regional-scale climate change mitigation), we
developed an advanced agricultural modeling framework on the plat-
form of DLEM v4.0 through incorporating a more detailed representa-
tion of crop growth processes and management practices, including but
not limited to crop-specific phenological development, dynamic carbon
allocation, yield formation, biological N fixation, and the implementa-
tion of tillage, cover cropping, and crop genetic improvement practices.
Comprehensive evaluations against site-scale observations generally
show good performance of the new agricultural module in simulating
the seasonal variations and magnitudes of LAI and aboveground biomass
and annual yield. Regarding the regional-scale performance, the simu-
lated spatial pattern of crop production is also consistent with ground
survey data. Meanwhile, the national average crop production estimated
by our model has increased by 1-4 times from the 1960s to the 2010s,
which is consistent with the observed trend. Our new agricultural
module holds the potential to better predict future crop production to
deploy early-warning measures, and to assess the efficacy of potential
agricultural climate change adaptation and mitigation strategies.
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Appendix A. Dynamic crop growth processes in DLEM
Al. Crop phenological development

Al.1. Planting date determination
The accumulated thermal time from the earliest sowing date to the current day (ATT) is calculated as:

current day
ATT = Z dailyTT (A1)
earliest day
Oa lj Tavg S Cardm[n or Tuvg Z Cardmax
Tavg - Cardmina lf Cardmin < Tavg < Cardoptl
dailyTT = Cardoy — Cardyin, if Cardopy < Tayy < Cardypp (A2)

(Cardye — Tavg) X (Cardopn — Cardyin)
Cardye. — Card,pn

) lf CardoptZ < Tavg < Cardmnx

where dailyTT is the daily thermal time; Ty, is the average air temperature; Cardmin, Cardop1, Cardopz, and Cardpgy are the crop-specific minimum,
lower optimal, upper optimal, and maximum air temperatures required for photosynthesis, respectively.

A1.2. Biological days-based crop phenological development scheme
The effects of temperature (tempfun), photoperiod (ppfun), vernalization (verfun), and environmental stresses (fsyess) on crop development rate are
calculated as:

dailyTT
d = Cord— — Card— A3
empfun Card,yn — Cardy, (A3)
1 — ppsen x (CPP — PP), if PP < CPP
(for long day crop)
1, if PP > CPP
ppfun = (A4)
1, if PP < CPP
(for short day crop)
1 — ppsen x (PP — CPP), if PP > CPP
[ 1—vsen x (VDSAT — CUMVER,), if CUMVER; < VDSAT
verfun = { 1, if CUMVER; > VDSAT (a5)
CUMVER,= {CUMVER,;l + VERDAY — 0.5 X (T — 30), if CUMVER;_{10 and T,,.)30 A6)

CUMVER;_| + VERDAY, other conditions

0, if Tavg < Veryin or Toyg > Verya
Tav - Verm,-n .
i Veruin < Tag < Vergm
Vervprl - VEVmin
VERDAY = (A7)
17 lf Vervprl < Tavg < Ver
Vermax - T(wg

if Verypp < Tae < Very
) opt. avg max
Ver max Ver opr2

max(fw7 "A’,’i”)7 if sowing < stage < end juvenile
Sotress= { min (fw,max(fN, A’,”i”)), if end juvenile < stage < flowering (A8)
1, for other stages

where dailyTT denotes the daily thermal time, which is calculated using Eq. (A2) in Appendix Al.1; Cardmi, and Card,y; denote the minimum and
lower optimal air temperatures required for photosynthesis, respectively; ppsen is a cultivar-specific photoperiod sensitivity coefficient; PP is day-
length; CPP is a cultivar-specific critical daylength parameter at which the rate of phenological development began to be restricted by daylength; vsen
is a cultivar-specific vernalization sensitivity coefficient; VDSAT is the number of vernalization days needed to saturate the vernalization response;
CUMVER denotes cumulative vernalization days; VERDAY denotes vernalization day, representing the contribution of each day to vernalization; Tyqx
denotes the maximum air temperature; Veryi,, Verop, Vergpo, and Verpq are the minimum, lower optimal, upper optimal, and maximum air tem-
peratures required for vernalization, respectively; fiy and fy denote drought and N stresses, respectively, which are calculated using Eq. (A11) in
Appendix A2; and fﬁ}m and f,’\’,ﬂ" denote the minimum drought and N stresses, respectively (here set to be 0.5 (Peng et al., 2018)). In addition, the
devernalization process is also considered in DLEM v4.0 when winter crops are exposed to high temperature, namely, if CUMVER is less than 10 days
and the maximum air temperature is higher than 30 °C, then CUMVER is decreased by 0.5 days per degree above 30 °C; however, if CUMVER is larger
than 10 days, no devernalization will occur.
Daily crop leaf area index (LAI) is calculated as:

LAI = min(Cey x SLA, LAl,) (A9)
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where Cyos denotes leaf carbon content; SLA is a cultivar-specific parameter representing the ratio of leaf area to leaf dry mass; and LAl denotes the

maximum LAIL
Canopy height (Hcanopy) is estimated by scaling the maximum canopy height (Heanopy, max) With LAT:

LAI :
Hz‘mmp_v = Hcanopy, max X min {(m) ) 1:| (A]-O)

A2. Carbon allocation strategy

The effects of light (f;), nitrogen (fy), and water (fiy) stresses on the carbon allocation process are calculated as:

o= exp( — €Xlooer X LAI)

. Nac
fv = min (Nrna:7 1)

10
fw= me(’fi X p;
=1

(A11)
0’ lf Vi S Yelose

Voiax — Vi .
= — ) tf Yeose < Yi < Y open
P v "

17 lfl//x Z Wopen

where ext,,s denotes the canopy light extinction coefficient; LAI denotes the leaf area index; N denotes the actual N content in the vegetation pool;
Nnax denotes the maximum N content in the vegetation pool; froot; denotes the root fraction in the soil layer i; f; is a soil matric potential-related factor;
Wmax denotes the maximum water potential, which represents the wilting point potential of leaves (currently set to be — 1.5 x 10°); y; denotes the
water potential of layer i (mm H»0); and /., and y,,, denote the water potential under which the stomata fully opens and closes, respectively (mm
H0).

The actual kernel weight at physiological maturity (AKW) is calculated as the product of daily crop development rate (dailyBD) and the potential
kernel growth rate (pKGR), as well as heat and N stresses:

AKW = dailyBD x pKGR X fy X frea
pPKW
Zendgmmﬁl! dallyBD

startgrainfill

PKGR =

17 lf Tavg S HeatTempmin
(A12)
1) lf Tavg S HeatTempmin

Frow = T,,, — HeatTemp,,,
heat —

1- , if HeatTemp,,;, < T,,, < HeatTemp,,,,
HeatTemp,,,. — HeatTemp,,;, if P &= P

0, if Tayg > HeatTemp .

where dailyBD is calculated from Eq. (2) in the main text; fy and fy.,, denote the N and heat stresses, respectively; pKW denotes the potential kernel
weight, which is estimated as the ratio of potential kernel weight to the target BD during the grain filling period; HeatTemp,;, and HeatTempy,, denote
the minimum and maximum cardinal temperatures at which heat stress occurs.

In terms of grain number (GN), previous studies have demonstrated that GN is strongly associated with the physiological status of a crop (e.g., plant
growth rate and tissue biomass) during a critical period for seed set, in which the critical period for corn and wheat are around the flowering stage
(Aluko and Fischer, 1988; Andrade et al., 1999; Bindraban et al., 1998; Early et al., 1967; Fischer, 1985; Zheng et al., 2014). For soybean, this period
extends from the flowering stage to the beginning or middle grain filling stage (Board and Tan, 1995; Egli, 1998; Jiang and Egli, 1995; Vega et al.,
2001). In our model, GN of corn is calculated based on an exponential function related to plant growth rate from the end of juvenile stage to the silking
stage, similar to the methods implemented in the APSIM model (Keating et al., 2003); GN of soybean is calculated based on an empirical linear model
related to plant growth rate from the flowering stage to the start of grain filling stage (Vega et al., 2001); and GN of wheat and other crops are
calculated from an empirical equation related to stem dry matter at anthesis (Fischer, 1985; Zheng et al., 2014):

GN,yox % (1 — exp( — GNk X (PGR — PGRy.))), for corn
GN = max(ky + ky X PGR, GN,.4,), for soybean
max(DMyem X GNggemy GNuax), for wheat and other crops (A13)
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where GNp,, is a cultivar-specific parameter representing the maximum grain number per plant; GNk and PGRy,;. are genotype parameters related to
the GN of corn, which are set to 0.83 and 1.2, respectively (derived from the APSIM model); k; and k. denote the intercept and slope of the empirical
linear model used to calculate the GN of soybean, which are set to 4.5 and 123.9, respectively (derived from Vega et al. 2001); DM, denotes the stem
dry weight at anthesis; GNgy.n denotes the number of kernels per gram stem; PGR denotes the plant growth rate during the critical period for seed set
and is calculated by dividing the accumulated shoot dry matter during this critical period (DM;; — DMyy) by the number of days of this period (Nday),
in which DM;; and DM, denote the shoot dry matter at the end and beginning of this period, respectively.

A3. Biological nitrogen fixation

The influences of soil temperature (f;,;7), soil moisture (f;,;w), soil mineral N concentration (fy,v), substrate carbon concentration (fy,c), and crop
phenological stage (fpre:) on biological N fixation are calculated as:

07 lf Twil S 0

0 71)

Osur

Sroin = fmin(fmax(1 — 0.0784 x log(avn), 0),1)

Coup
soillC = ——, 0.01
Jsouc = fmax (C:ub T ke )

f {fmax(07 Txail X T:oil X (45 - Tsoil) X 00001)7 lf Tsoil > 0
soilT

Jeoitw = fmin <1 82 %

(A14)
0, for fCBD < fPhen,,;,

CBD — fPhen,,
SfPhenypy, — fPhen,,
Johen = 1, for fPhen,,; < fCBD < fPhen,,y

fPhen,u., — fCBD
SfPhen,q. — fPhen

0, for fCBD > fPhen,, .

, for fPhen,,;, < fCBD < fPhen,,,

, Jor fPhen,,y < fCBD < fPhen,q,

where T;,; denotes the soil temperature; 6 and 6,5, denote the actual and saturated soil moisture contents, respectively; avn denotes the available soil N;
Cqp denotes the substrate carbon; kc denotes the Michaelis-Menten constant for CO,; fCBD denotes the cumulative crop development rate from
germination to the current day; fPheny,;; denotes the time before which no N fixation happens; fPhen,y, and fPheny, denote the beginning and end
time within which the N fixation rate is not limited by crop phenological stage; fPhennqx denotes the time after which the N fixation ceases. The values
of fPhenyin, fPhengp, fPhengpy, and fPhenpq,. are set to 15%, 30%, 55%, and 75% of the crop life cycle (Cabelguenne et al., 1999).

Appendix B. Agricultural management practices in DLEM

B1. Tillage practice

B1.1. Effects of tillage implement on soil organic matter and nutrients contents

The effects of tillage practice on litter pools include the incorporation of surface residues into the soil and the redistribution of SOM and nutrients in
the tilled soil layers. In DLEM v4.0, litter pool can be classified into two categories: aboveground litter pool (Litterqg) and belowground litter pool
(Litteryg). Both of the dead shoot biomass of crops due to turnover and the crop residues not removed from the field are directly added to Litteryg, and
the dead root biomass as well as the root residue are added to the Littery,. Besides, part of Litter,, will be transferred to Litters, through bioturbation and
tillage mixing practice, which is the same as that implemented in LPJmL5 (Lutz et al., 2019). For the bioturbation pathway, we assumed that 0.1897%
of the Litter,, is transferred to Littery, per day to account for the vertical displacement of litter under no-tillage and natural vegetation conditions (Lutz
et al., 2019); and for the tillage pathway, the amount of transfer depends on tillage intensity:

Litteryg . = Litteryg, + Litterag; X fnix (B1)
Litter g1 = Litter,g, X (1 — EF ;) (B2)
where Litteryy ., and Litterqg.,1 denote the belowground and aboveground litter pools in the (t 4-1)th day, respectively; Litter,s, and Litterqg; denote the
belowground and aboveground litter pools in the tth day, respectively; and EF,; denotes the mixing efficiency, with a value between 0 and 1.

The redistribution of SOM and nutrients among the tilled soil layers is calculated based on the methods adopted in the Agricultural Policy
Environmental EXtender (APEX) model (Williams et al., 2008):

Z— 7 2
Xi = Xy X (1= EFyig) == X EFyis X ) Xog (B3)

4 k=1
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where X; is the amount of SOM/nutrients in layer [ after mixing; X, is the original amount of SOM/nutrients in layer [ before mixing; EF;, denotes the
mixing efficiency; Z is the depth to the bottom of the tilled layer; D, is the tillage depth; M is the total number of soil layers affected by tillage operation;
and X,y is the original amount of SOM/nutrients in layer k before mixing.

B1.2. Effects of tillage implement on soil water processes

The impacts of tillage operation on soil water processes in DLEM are mainly reflected in two aspects: (1) changes in litter interception due to
reduced surface residue coverage and the accompanying changes in litter evaporation, soil evaporation and infiltration, as well as soil moisture
content; (2) changes in soil bulk density due to tillage mixing and the accompanying changes in soil moisture content at saturation and field capacity.

In DLEM, precipitation and irrigation water are either intercepted by crop canopy and surface litter or falls to the ground as throughfall, and will be
lost through evapotranspiration, soil infiltration and surface runoff. Crop canopy interception is calculated as the same process as in the natural
vegetation module of DLEM, which is estimated as the minimum of input water content and canopy water holding capacity (Tian et al., 2010). Litter
interception is determined as the balance of available input water content after canopy interception and actual water holding capacity of surface litter
(Whciit qce), in which whey o, is calculated as:

WhCiiaee = WhClimax X Jiit (B4)

where whcji max denotes the maximum water holding capacity of surface litter, which is obtained by multiplying Litter,, with a conversion factor of 2 x
10~3mm kg1, following Lutz et al. (2019) and Enrique et al. (1999); and f;; denotes the fraction of soil surface covered by litter, which is calculated
through adapting the equation from Gregory (1982):

ﬁit =1- E—A,,‘xLiner(,&, (BS)

where A,, denotes the area covered per dry matter of surface litter and is set to 0.004 in DLEM (Dadoun, 1993).

The calculation of litter evaporation (EVAPy;,) is similar to the calculation of soil evaporation (EVAPy,;) in DLEM, which is obtained by multiplying
the potential evaporation (PET) estimated from the Penman-Monteith equation with a LAI-adjusted item (Pan et al., 2020; Pan et al., 2015). Here, f;, is
also included in the calculation process of EVAPy, and EVAP;,; to account for the impacts of changes in surface litter coverage on evaporation:

EVAP,;, = PET};, x e "M x £, (B6)

EVAP,,y = PET,y x e "™ x (1—f;,) (B7)

Tillage practice generally leads to a reduction in bulk density through incorporating surface residues into the soil and promoting soil fragmentation
(Gueérif et al., 2001; Maharjan et al., 2018), which further results in the changes in soil moisture content at saturation and field capacity. Here, the
impacts of tillage implement on bulk density and the subsequent soil moisture effects are calculated as (Lutz et al., 2019):

SBpiitiap = fpuitt i pri — (fBDIiIIJ.pri - 0~667) X EF (B8)
gsal.lﬂfz =1- (1 - asat,l.pri) ><fBDn'IIJ.afr (Bg)
Oetai = Opeapri — 0.2 X (9:«11‘1.,»:' - esar,l,aﬂ) (B10)

where fpin1 o denotes the fraction of bulk density change after tillage in layer I; and fapyi prior denotes the density effect before tillage in layer I; Osq.) 45t
and 6 | o are the modified soil moisture content at saturation and field capacity after tillage in layer [; 64,1 and 6y 1,y are the original soil moisture
content at saturation and field capacity before tillage in layer I. In DLEM v4.0, the vertical soil profile is described by a ten-layer discretization of a 3 m
soil profile, and the layer thickness increases geometrically from top to bottom with values of 0.1 m, 0.1 m, 0.1 m, 0.2 m, 0.2 m, 0.2 m, 0.3 m, 0.4 m,
0.4 m, and 1 m, respectively. Soil water flow between different soil layers is calculated using the Darcy’s law, in which the water flow rate ¢ (mm/s) in
layer [ can be approximated as:

(W) — Y1) + (201 — 21)

11
(Z1+1 *Zl) (B11)

q = —k[zn4]

where k(zp, ] is the hydraulic conductivity at the depth of the interface of two adjacent layers (zp;), 2 is the depth of soil layer [, and ¥, is the soil matric
potential (mm).

B1.3. Effects of tillage implement on decomposition

In DLEM, the direct effect of tillage implement on the decomposition rate of litter pools is represented by a tillage scalar (f;), which has a value
greater than 1, indicating the promoting effect of tillage on decomposition (Huang et al., 2020). In addition, the indirect effect of tillage implement on
decomposition is also included, which is mainly reflected in its impacts on the amount of SOM, nutrient availability, actual soil moisture content, and
soil moisture content at saturation and field capacity. The actual decomposition rate of each litter pool (kpo;) within the tilled soil layers is calculated
as:

kpoot = kmax,oo X f(T) x f(W) % f(clay) X f(N) X fuu (B12)

f(T) — 4.89 x ¢ 3HBLHOIXTix(1-0.5xT50i1/36.9) (B13)
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(B14)

(B15)

(B16)

(B17)

(B18)

(B19)

(B20)

where kmax,, denotes the potential decomposition rate of each pool; f(T), f(W), f(clay), and f(N) denote the limitation of soil temperature, soil
moisture, soil texture, and N on decomposition; f; is a tillage scalar; Ty is soil temperature; 6, 65, and 65, denote the actual soil moisture content, soil
moisture content at saturation, and soil moisture content at field capacity, respectively; P, denotes the percentage of clay content; f(Np;) and f(Nim)
denote the limitation of N availability when mineralization and immobilization occur, respectively; avn and avn,,; denote the actual and optimum
available soil N, respectively; njzm» denotes the potential N immobilization estimated by the tentative decomposition procedure; f.; denotes the
cumulative effect of tillage at day i; EF,; denotes the mixing efficiency; 6 and 6, denote the actual and saturated soil moisture contents of a given soil
layer at day i. The decomposition rate is calculated separately in each soil layer, and f,; is only considered in those soil layers affected by tillage

practice.

Appendix C. Supplementary materials

Figs. S1-S15 and Tables S1-S9 can be found in the supplementary materials.
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