

Contents flfists avafiflabfle at ScfienceDfirect

Water Research

journal homepage: www.elsevier.com/locate/watres

Dynamfics and controlls of finfland water CH₄ emfissions across the Contermfinous Unfited States: 1860-2019

Yuanzhfi Yao ^{a,b}, Hanqfin Tfian ^{b,c,*}, Xfiaofeng Xu ^d, Ya Lfi ^{e,b}, Shufen Pan ^{b,c}

- ^a Schoofl of Geographic Sciences, East China Normafl University, Shanghai 200241, China
- b Internationaft Center for Cflimate and Gflobaft Change Research, Cofffee of Forestry, Wifldflife and Environment, Auburn University, Auburn, AL 36832, United States of America
- c Schiffler Institute for Integrated Science and Society, Department of Earth and Environmentafl Sciences, Boston Cofflege, Chestnut Hiffl, MA 02467, United States of America
- ^d Bioflogy Department, San Diego State University, San Diego, CA 92182, United States of America
- e State Key Laboratory of Urban and Regionafl Ecoflogy, Research Center for Eco-environmentafl Sciences, Chinese Academy of Sciences, Beijing 100085, China

ARTICLE INFO

Keywords: The Unfited States Infland water CH₄ emfissfions Dynamfic Land Ecosystem Modefl (DLEM) Clfimate change

ABSTRACT

Infland waters (rfivers, flakes, and reservofirs) have been recognfized as hotspots of methane ($\mathrm{CH_4}$) emfissfions. However, the magnfitude and spatfiotemporafl pattern of $\mathrm{CH_4}$ emfissfions and thefir underflyfing mechanfisms remain flargefly unknown due to a flack of process-based quantification of $\mathrm{CH_4}$ production, consumption, and evastion wfithfin the aquatific ecosystem. Here we developed a process-based aquatific CH modufle wfithfin the framework of the Dynamfic Land Ecosystem Modefl (DLEM) to explicitifly stimultate finfland water carbon ffluxes and the associtated $\mathrm{CH_4}$ processes. We further applified this modefl to assess the finfland-water $\mathrm{CH_4}$ emfissfions across the conterminous United States (CONUS) as affected by the effimate variabifility, fland use, fertifilizer nfitrogen (N) applification, atmospherfic N deposition, and rising atmospherfic CO_2 concentration durfing 1860-2019. The finfland water CH_4 emfissfions across the CONUS had doubfled from the 1860s (1.65±0.18 Tg CH_4 -C•yr $^{-1}$) to the 2010s (3.73±0.36 Tg CH_4 -C•yr $^{-1}$). In the 2000s, finfland water accounts for 8% of the regional CH_4 budget that offsets 11—14% of the terrestriafl C uptake across the CONUS . Our study showed that the smalfil headwater streams (I^{st} -3rd order) account for 49% of the diffusitive CH_4 , and reservofirs constitute 50% of the ebufflifitive CH_4 emfissfions from rfivers and flakes. This study fimpflies that effectfive mfitfigation strategies to reduce CH_4 emfissfions should pay much attention to gfloball effimate change and headwater stream management.

1. Introduction

Infland waters, fincfludfing rfivers, flakes, and reservofirs, cover 2% of the Earth's surface (Aflflen and Paveflsky, 2018), but pflay a dfisproportfionafl rofle fin cflfimate change. For exampfle, finfland water CO $_2$ emfissfion was estfimated as hfigh as 2.1 Pg C, roughfly 20% of the gflobafl net ecosystem productfivfity (Frfiedflfingstefin et afl., 2019; Raymond et afl., 2013). Methane (CH $_4$), another energetfic end-product of ecosystem respfiratfion, aflso pervasfivefly presents fin both fluvfiafl and flentfic systems, and fits magnfitude constfitutes an unnegflectabfle portfion ($\sim\!10\%$) of the regfionafl greenhouse gas (GHGs) budget (Xu et afl., 2016). A recent study suggested that the gflobafl-warmfing potentfiafl (GWP) of freshwater CH $_4$ emfissfion fis comparabfle to $\sim\!25\%$ of the terrestrfiafl C sfink (Bastvfiken et afl., 2011). Hence, fit fis essentfiafl to deveflop reflfiabfle approaches to

accuratefly estfimate finfland water ${\rm CH_4}$ emfissfions to cflose the flarge gap fin ${\rm CH_4}$ budget derfived from bottom-up and top-down approaches (Saunofis et all 2019).

Due to the flack of dfirect measurements and fits compflexfity of bfiogeochemficafl ${\rm CH_4}$ processes fin aquatfic system, the estfimatfion of ${\rm CH_4}$ emfissfions from finfland waters fis sffff poorfly constrafined (Trfimmer et afl., 2012; Xu et afl., 2016). A few studfies have used bootstrappfing methods to roughfly extrapoflate ${\rm CH_4}$ emfissfions from finfland waters at the gflobafl scafle (Bastvfiken et afl., 2011, 2004; Beauflfieu et afl., 2020; Deemer et afl., 2016; Deemer and Hoflgerson, 2021; Hoflgerson and Raymond, 2016); however, those estfimates were reached based on unevenfly dfistrfibuted observatfionafl data, which brought much bfiases finto the ffinafl budgets. Other regionafl studfies fintroduced more geophysficafl and geochemficafl varfiabfles, fincfludfing reservofir age, temperature, organfic C, chflorophyflfl,

E-maifl address: hanqfin.tfian@bc.edu (H. Tfian).

https://dofi.org/10.1016/j.watres.2022.119043

^{*} Correspondfing author.

and flake bathymetry, to generate empfirficafl equations for estimating the ${\rm CH_4}$ emfission (Abbasii et afl., 2020; Aflmefida et afl., 2019; Beau flieu et afl., 2019; Rasanen et afl., 2018). Due to the over-stimpfliffication of the terrestriafl and aquatic processes fin those empfiricafl modefls, thefir refliabifility may be hampered when appflying at flong-term or flarge spatiafl scafle (McMufflifin, 1968).

The major pathways and processes of aquatfic CH $_4$ dynamfics can be cflassfiffied as productfion (methanogenesfis), oxfidatfion, degassfing, and flaterafl transport. Acetocflastfic methanogenesfis, known as CH $_4$ productfion from acetate, account for 50–90% of the CH $_4$ productfion, whifile other pathways are consfidered as mfinor contributors (Xu et afl., 2016). Oxfidatfion fis another fimportant process for CH $_4$ floss that occurs under aerobfic and anaerobfic condfitfions. It shoufld be noted that a flarge portfion of CH $_4$ fis emfitted vfia aerenchyma wfithfin wetflands whifile ebufffitifion domfinates the CH $_4$ transport fin finfland waters and CH $_4$ must pass the oxfidatfive death-trap of oxygenated water populated by methanotrophs (Deemer et afl., 2016; Deutzmann et afl., 2014; Prafirfie and defl Gfiorgfio, 2013). Besfides, the physficafl processes, fincfludfing the deflfivery of CH $_4$ from upstream to downstream regfions, and the outgases can occur vfia dfiffusfion and ebufflifition (Stanfley et afl., 2016).

There are a number of controllfling factors on CH₄ dynamfics fin finfland water. The concentrations of dfissoflyed organfic C (DOC) and organfic content fin bottom sedfiment are consfidered the most prevaflent findficators of methanogenesfis (Crawford et afl., 2014, 2013). Water temperature fis aflso a strong predfictor; for exampfle, the seasonaflfity fin CH₄ fflux has been found to be associated with a fir temperature (Campeau and Defl Giorgio, 2014; Sfiflyennofinen et afl., 2008). The termfinal eflectron acceptors (TEAs) and nutrfients can suppress methanogenessis and/or stfimuflate methanotrophy (Bodeflfier and Steenbergh, 2014). Meanwhfifle, the controlls assocfiated wfith methanogenesfis, such as geomorphoflogy, shaflflow groundwater fflow, hyporhefic exchange, and dammfing, can affect the flaterafl transport of organfic C substances and CH dynamfics (Maavara et afl., 2020). Cofffectfivefly, the rapfid changes fin the environmentall condfitfions of the aquatfic ecosystem and fits upstream flandscape, have the potentfiafl to stfimuflate transfient and flong-term envfironmentafl gradfients that can drfive bfiogeochemficafl actfivfitfies assocfiated wfith CH $_{\rm 4}$ dynamfics.

A few modeflfing studfies have been carrfied to estfimate aquatfic CH 4 dynamfics drfiven by envfironmentafl change (Segers & Kengen, 1998; Stepanenko et afl., 2011; Stepanenko et afl., 2016). These modefls can weffl capture the temporafl patterns of CH 4 concentration and emfission from flakes at the sfite flevefl. However, the modefl performances were of finferfior quaffity due to a poor representation of organic C finput from the upstream flandscape (Tan et afl., 2015). Sfince most of the C substances of flakes and reservofirs originate from rivers, quantifying riverfine C transport and understandfing the controllfling factors of C floadfing from the upstream are essentfiafl for flarge-scafle modefling. However, none of the exfisting process-based CH 4 modefls have fuffly fincorporated river channell routing and flaterafl C transporting.

Rfivers not onfly act as aforementfioned condufits, whfich brfing reactfive organfic C finto flakes, reservofirs, and the coastafl ecosystems but aflso function as potent CH_4 generators and processors. A meta-data analysfis quantifified the diffusive and ebufilfitfive CH_4 fluxes and suggested that rfiverfine CH_4 emfission fis comparabile to $15\% \sim 40\%$ of the CH_4 emfissions from wetfland or flakes (Stanfley et afl., 2016). Moreover, fit has been suggested that CH_4 decreased exponentifialfly with the fincrease fin stream order, simifflar to CO_2 and N_2O (If et afl., 2021; Zhang et afl., 2020). To address the gaps fin modefling smalfl stream greenhouse gas emfissions, we coupled our fland modefl (Dynamfic Land Ecosystem Modefl, DLEM) to a scafle adaptive water transport scheme (Yao et afl., 2021a). This modefl can explificitifly represent the flarge emfissions of greenhouse gas fin smalfl streams through a sub-grfid process fin a flarge-scafle channell routfing framework (Yao et afl., 2021b, 2020).

Foflflowfing our previous model fimprovement, fin this study, we nested flakes and reservofirs finto the channell routing scheme and developed an finfland water CH_4 modufle. The specific objectives of this study fincflude (1) providing a ffirst process-based estimation of the CH_4 emfissions from

rfivers, flakes, and reservofirs; (2) fidentfifyfing hotspots of finfland water CH $_4$ emfissfions; (3) attrfibutfing the changes fin finfland water CH $_4$ emfissfion durfing 1860-2019 to cflfimate varfiabfiflfity, CO $_2$ concentratifion, fland-use change, N depositifion, and N applifications; (4) dfiscussfing the uncertafintfies of the modefled CH $_4$ emfissfions.

2. Methods

2.1. Dynamic fland ecosystem modefl (DLEM)

The fland component of the DLEM (version 2.0) provfides terrestrfiafl C floadfings, runoff, and finfifial $\mathrm{CH_4}$ finputs for the aquatfic modefl (Ffig. S1a). DLEM fis a process-based terrestrfiafl ecosystem modefl that represents pflant physfioflogy, sofifl bfiogeochemfistry, and the associated terrestrfiafl C-N-water cycfles drfiven by cflfimate forcfing, fland-use change, N deposfitfion, and nfitrogen appflications (Tfian et afl., 2015a, 2020). The pflant physfioflogicafl component fin the DLEM sfimuflates photosynthesis, respfiration, and C, nfitrogen aflflocations among root, stem, and fleaf. The C and nutritients ffluxes finsofiflare controllfled by sofifl mofisture and temperature wfith welf-lcaflfibrated parameters.

Consequentfly, the aquatfic component of the DLEM modefl recefives finputs from the fland modufle (fincfludfing runoff, C floadfings, and N floadfings to rfivers) and expflictifly sfimuflate channefl routfing and aquatfic bfiogeochemficafl processes (Tfian et afl., 2015b, 2020). Specfifficaflfly, the DLEM modefl was fuffly coupfled wfith a sub-grfid channefl routfing scheme that can wefflcapture smafflstream processes at a flarge spatfiafl scafle (Yao et afl., 2020, 2021a, 2021b). Fofflowfing thfis fimprovement, we fincorporated flakes and reservofirs finto the channefl routfing scheme and coupfled a reservofir operatfion modufle wfith DLEM. More detaffil refers to the channefl routfing scheme and the assocfiated hydroflogficafl finputs can be found fin Text S2 and S3.

2.2. Infland water CH4 modufle

An finfland water $\mathrm{CH_4}$ modufle (Ffig. 1) was devefloped wfithfin the aquatfic bfiogeochemficafl component DLEM (Text S3) (Yao et afl., 2021). Here we depfloyed a mass baflance equatfion to represent flaterafl transport, oxfidatfion, and dfiffusfive and ebufliffifive emfissfions of $\mathrm{CH_4}$ fin finfland waters:

$$\frac{\Delta M_{dif CH4}}{\Delta t} = F_a + Y_w + D \quad R \quad E \tag{1}$$

where $M_{dif\ CH4}$ fis the totall mass of dfissoflved ${\rm CH}_4$ fin the mafin channell or subnetworks (gCH $_4$ -C), Δt fis trime step (d), F_a fis advectfive ${\rm CH}_4$ ffluxes (gCH $_4$ -C•d), Y fis CH productfion writhfin the water coflumn (gCH -C•d), D fis the dfissoflved CH fin rafiqualfall added to rrivers (gCH -C•d), writh an finitial concentration equals to the afir equifilfibrium CH concentration, R represents the CH oxfidatfion (gCH -C•d $_4$), and E fis rriverfine CH emfassions (gCH -C•d) ben the afir-water finterface. The detafiled finformation refers to each component fin equation #1 can be found fin Text S3. The rationallitities of the critical parameters associated with the aquatic modell are griven fin Table S1.

3. Model input data and simulation protocol

3.1. Modefl driving forces

We developed a 5 arc-mfin resoflutfion dataset to represent the century-flong environmentall change, fincfludfing fland-use conversion, cflimate variabfillity, atmospherfic CO₂ concentration, N deposition, N fertifilizer, and manure N applification and generated a hydroflogficall dataset for conducting the water transport modell (Tabfle S2).

To represent a sub-grfid flewfl of fland-use change, we devefloped flanduse cohort data which contains four natural vegetations, one cropfland type, and several non-vegetation types (fimpervious surface, flake, river,

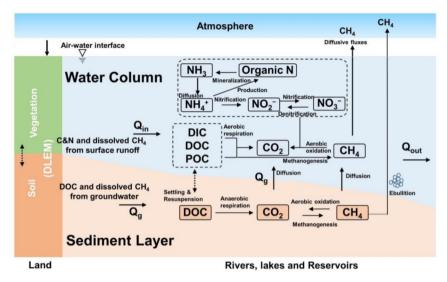


Fig. 1. The schematfic framework of the aquatfic CH₄ modufle wfithfin the Dynamfic Land Ecosystem Modefl (DLEM).

and bare ground) wfithfin a 5 arc-mfin grfid. We generated a potentfiafl vegetatfion map folfflowfing the procedure fin Lfiu et afl. (2013), which combines naturall vegetatfion finformation primarifly from the Nationall Land Cover Database (NLCD) (Homer et afl., 2015), North American Land Cover (Cofldfitz et afl., 2012), Gflobafl C4 vegetatfion map (Stifffl et afl., 2003) (Ffig. S2 and S3). We used a 1-km resoflution cropfland data spannfing from 1850 to 2016 to harmonfize the changes fin the naturall vegetatfion (Yu and Lu, 2018) using potential vegetation finformation as a base map. This data capture the west-wards cropfland expansion and the encroachment of grassfland and forest durfing the flast century due to the growfing food demand. At the same perfiod, flarge areas of the Eastern US, e.g., fin the Appaflachfians and New Engfland, have reverted to the forest (Ffig. 2e).

The cflfimate datasets, fincfludfing dafifly precfipfitation mfinfimum, mean and maxfimum temperature, shortwave radiation, and wfind speed from 1979 to 2019, were obtafined from GRIDMET (Abatzogflou, 2013). We downscafled 0.5-degree grfidded data of cflfimate varfiabfles, fincfludfing the

dataset of the Cflfimatfic Research Unfit and Natfionafl Centers for Envfironmentafl Predfictfion (CRUNCEP) from 1901 to 1979 (Vfiovy, 2018) and the Instfitute Pfierre Sfimon Lapflace (IPSL) dataset from 1860 to 1900 (Boucher et afl., 2018). The spatfiaflfly averaged annuall precfipfitatfion has fincreased sfignfifficantfly (p<0.05 fin the Mann Kendaflfl test) sfince the 1900s wfith a rate of 0.62 mm•yr ², whifle much of the US west of the Rockfies has had a compflex hfistory and drought. The annuafl mean afir temperature showed a sfignfifficant (p<0.05 fin Mann Kendaflfl test) fincreasfing trend wfith a rate of 0.073 $^{\circ}$ C•(10-yr) $^{\circ}$ (Ffig. 2d). The annuaflfly atmospherfic CO $_{2}$ and CH $_{4}$ concentrations were obtafined from the Advanced Gflobafl Atmospherfic Gases Experfiment (AGAGE) dataset (Prfinn et afl., 2018) (Ffig. S4).

We developed a coflflection of grfidded N finputs over the CONUS startfing from the pre-findustriafl perfiod (Ffig. 2b). N fertifilfizer applification (Cao et al., 2018) constitutes most of the N finputs to the agriculturafl ecosystem (Ffig. 2b). The secondary N finput, N deposition fin both oxfidfized N (NO $_{Y}$) and reduced N (NH $_{X}$) phase, was obtained from

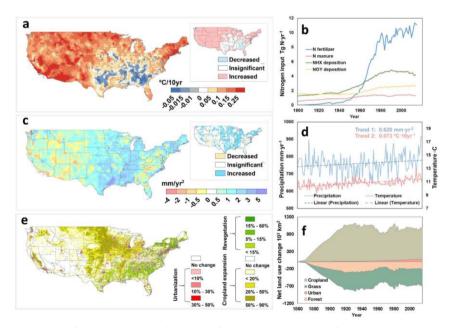


Fig. 2. Modefl drfivfing forces for DLEM sfimuflatfions. (a), (c) Spatfiafl pattern of flong-term changes fin annuall mean temperature and annuall totall precfipfitation from 1860 to 2019. (b) The temporall patterns of nfitrogen finputs to the terrestrfiafl ecosystem across the contermfinous Unfited States from 1900 to 2016. (d) The temporall patterns of annuall totall precfipfitation and mean afir temperature from 1900 to 2019. (e), (f) Spatfiafl and temporall pattern of fland-use change durfing 1860-2016.

Chemfistry-Cflfimate Model Infitfiative (CCMI) (Eyrfing et afl., 2013). The manure N applification (Zhang et afl., 2017b) presents a continuous fincrease durfing the past 120 years.

3.2. Simuflation experiments

The DLEM sfimuflatfion fofflows three steps (Ffig. S5): (1) an equififfibrfium run for each grfid α ffl by hofldfing the fland use, $\rm CO_2$ concentratfion, and N finput unchanged at the flewfl of 1860. The baflance run ffinfished when the C, N, and water poofls reached a steady state wfith the decadafl changes finC, N, water budget do not exceed a predeffined threshofld (1gC m 2 yr 1 , 1gC m 2 yr 1 and 1mm yr 1 , respectfivefly). (2) A transfient run, wfith aff1the forcfing changfing over tfime, foff1lowed by a 30-year spfinnfing-up run randomfly seflectfing cflfimate forces wfithfin 1860 - 1870 (Thornton and Rosenbfloom, 2005; Tfian et afl., 2012). We need to cflose the dam modufle durfing thfis run to quantfify the naturafl fflow of each grfid. (3). Another transfient run wfith the dam modufle was conducted usfing naturafl fflow quantfiffied fin step 2 as modefl finput.

To finvestigate how environmentafl factors could finffluence finfland water ${\rm CH_4}$ emfissfions, we conducted factorfiafl sfimuflatfion experfiments by hofldfing each environmentafl factor (fincfludfing cflfimate change, fland-use change, N deposfitfion, N management, and atmospherfic ${\rm CO_2}$ concentration) at 1860 (S2-S6, Tabfle 1). The S1 fis the aflfl-combfined sfimuflatfion with afl1the driivfing forces changfing over tfime. By comparfing S2 wfith S1 (aflfl combfined run), we obtafined the contribution of cflfimate varfiabfiflity to the finfland water ${\rm CH_4}$ emfissfions. The comparfison between S3 and S1 finformed the effect of eflevated ${\rm CO_2}$ on finfland water ${\rm CH_4}$ emfissfion. By subtractfing S3 from S1, we derfived the development of NO $_{\rm y}$ and NH $_{\rm x}$ depositifions on the terrestrfiafl ecosystem and the consequent finfland water ${\rm CH_4}$ emfissfion. The dfifference between S1 and S4 reveafled the fertfiflfizer N and manure N appflication effect. S5 subtracted by S1 finformed to what extent the fland-use conversion can finffluence finfland water CH4 emfissfion.

3.3. Modefl evafluation

To evafluate the modefl performance fin predfictfing C ffluxes and CH 4 emfissfions, the DLEM-sfimuflated C concentrations were compared to the flong-term rfiverfine C ffluxes obtafined from USGS. Our resufts showed that the sfimuflated rfiverfine C ffluxes (DOC, TOC, and DIC) agreed welfl with the observations. The sfimuflated rfiverfine C ffluxes can aflso be evafluated as satisfactory, with the average R ² reaching 0.6 and the average NSE vaflues ranging from 0.3-0.4 (Ffig. S6, S7, and S8) (Morfiasfi et afl., 2015).

We compared the modefl-estfimated CH_4 ffluxes agafinst the observations of rfiverfine CH_4 ffluxes coflflected from Stanfley et afl. (2016) and flake CH_4 ffluxes coflflected from Deemer et afl. (2016) (Ffig. 3b, c, d). The

Table 1 The sfimuflation experfimental design for attrfibutfing the contributfion of natural and anthropogenfic factors, fincludfing cflfimate, atmospherfic carbon dfioxfide (CO_2) , nfitrogen depositifion (NDEP), nfitrogen management (N fertfillfizer and manure), to the finfland water CH_4 emfissfions.

	Environmental factors					
Experiments	Cflimate	CO_2	NDEP	N management	Land-use	
S1	1860-	1860-	1860-	1860-2013	1860-	
	2019	2016	2005		2016	
S2	1860-	1860-	1860-	1860-2013	1860	
	2019	2016	2005			
S3	1860-	1860-	1860-	1860	1860-	
	2019	2016	2005		2016	
S4	1860-	1860-	1860	1860-2013	1860-	
	2019	2016			2016	
S5	1860-	1860	1860-	1860-2013	1860-	
	2019		2005		2016	
S6	1860	1860-	1860-	1860-2013	1860-	
		2016	2005		2016	

comparfisons (most of the $\rm R^2>0.6$) suggested that DLEM coufld capture the spatfiafl pattern of dfiffusfive and ebuflflitfive CH $_4$ emfissfions across the CONUS.

4. Results

4.1. Contemporary infland water CH₄ budget

Our study provfides the ffirst modefl-based estfimatfion of the fiffl finfland water CH, budget across the CONUS (Ffig. 4). In the 2010s, smaffflstreams emfitted 0.61 ± 0.09 Tg CH₄-C•yr ¹, corresponding to 49% of the finfland water dfiffusfive CH₄ emfissfions, foflflowed by 0.37 ± 0.04 Tg CH₄C•yr ¹ from hfigh-order streams (31%), 0.14 ± 0.01 Tg CH ₄-C•yr ¹ from reservofirs (12%), and 0.9 ± 0.01 Tg CH₄-C•yr ¹ from flakes (8%). Most of the dfiffusfive CH $_{4}$ or figfinated from terrestrial finput (0.93 \pm 0.15 Tg CH $_{4}$ Coyr 1), and about 0.25 ± 0.01 Tg CH -Coyr 1 of dfissoflved CH was a byproduct of respfiratfion fin the water coflumn. Besfides the floss terms as emfissfion, the magnfitude of CH_A oxfidatfion (0.15 \pm 0.015 Tg $CH_{\bar{A}}$ Coyr 1) and export (0.006 ± 0.001 Tg CH₄-Coyr 1) onfly have mfinor contrfibutfions to the overaflfl finfland water CH budget. For CH emfission fin ebuflifition pathways, reservofirs (1.31 \pm 0.11 Tg CH $_{\bullet}$ C $_{\bullet}$ yr 1 , correspondfing to 50%) contrfibute hafff of the surface emfissfion, foflflowed by naturafl flakes (0.94 $\pm~0.17$ Tg CH $_4\text{-}\text{C}\bullet\text{yr}^{-1}\!,$ about 37%), and streams (fin totafl 0.34 ± 0.03 Tg CH₄-C•yr ¹, corresponding to 13%) (Ffig. 4).

4.2. Long-term temporafl patterns of infland water CH₄ emissions

Our resuflts show that totafl finfland water CH₄ emfissfions fincreased twofofld from 1.65 ± 0.18 Tg CH₄-C•yr 1 fin the 1860s to 3.73 ± 0.36 Tg CH₄-C•yr 1 fin the 2010s (Tabfle 2 and Ffig. 5a). The rfiverfine emfissfion decreased from 0.96 ± 0.10 Tg CH₄-C•yr 1 fin the 1860s to 0.83 ± 0.06 Tg CH₄-C•yr 1 fin the 1950s and fincreased substantfiaflfly to 1.29 ± 0.12 Tg CH₄-C•yr 1 fin the 2010s. The emfissfions from naturafl flakes showed sfinifilar temporafl patterns, which substantfiaflfly fincreased from 0.66 ± 0.08 Tg CH₄-C•yr 1 fin the 1860s to 1.03 ± 0.13 Tg CH₄-C•yr 1 fin the 2010s. The CH₄ emfissfion from reservofirs showed a consfistentfly fincreasfing trend from 0.02 ± 0.01 fin the 1860s to 1.40 ± 0.11 Tg CH₄-C•yr 1 fin the 2010s and ffinaflfly surpassed the rfiverfine CH₄ emfissfions fin the same perfied.

The CH $_4$ emfissfion fin dfiffusfion and ebuflflitifion pathways shows dfifferent temporall patterns. Rfivers account for most of the dfiffusfive CH $_4$ emfissfions, which decreased consfistentfly from 0.74 \pm 0.08 Tg CH $_4$ C•yr-1 fin the 1860s to 0.63 \pm 0.06 Tg CH $_4$ C•yr-1 fin the 1950s, folflowed by a sfignfifficant fincrease to 0.96 \pm 0.12 Tg CH $_4$ C•yr-1 fin the 2010s (Ffig. 5b). A sfimfiflar temporall pattern could be found fin dfiffusfive CH $_4$ emfissfions from naturall flakes. For the ebuflflitifion pathway, the flake emfissfion fis hfigher than that of the rfiverfine emfissfion, and they both show a sfignfificant fincreasfing trend from the 1860s to the 2010s (Ffig. 5c). It should be noted that the growfing dam bufifldfings remarkabfly fincreased the CH $_4$ emfissfions fin both dfiffusfive and ebuflflitifion pathways. Specifficaflfly, reservofir emfissfion accounts for most of the ebuflflitifive CH $_4$ emfissfions sfince the 1980s, whifile naturall flakes domfinate the ebuflflitifive CH $_4$ emfissfion before the 1960s.

4.3. Spatiafl patterns of infland water CH₄ emissions

The dfiffusfion and ebuflifition pathways of finfland water $\mathrm{CH_4}$ emfissfions were flargefly varfied across the CONUS. The southeastern and northeast regfions are hotspots of dfiffusfive finfland water $\mathrm{CH_4}$ emfissfions due to the hfigh productfivfity and flarge DOC fleachfing fin forest ecosystems (Ffig. 6, Ffig. S2). The dfiffusfive $\mathrm{CH_4}$ emfissfion fin these two regfions decflined substantfialfly from the 1860s to the 1950s, followed by a remarkable fincrease from the 1950s to the 2010s (Ffig. 6a, c, and e). Besfides, the dfiffusfive $\mathrm{CH_4}$ emfissfion decreased sfignfifficantfly fin the mfidwest US from the 1860s to the 1950s due to forest conversion to cropfland. However, the mfidwest US became a sfignfifficant source of dfiffusfive $\mathrm{CH_4}$ emfissfion,

Y. Yao et afl. Water Research 224 (2022) 119043

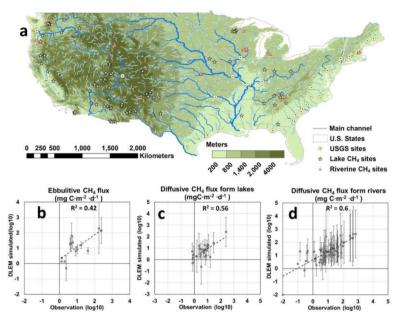
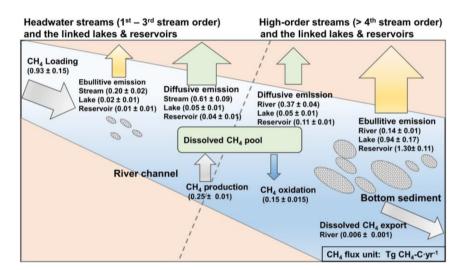



Fig. 3. Evafluation of DLEM-sfimuflated finfland water CH_4 ffluxes against observations. (a) Location of observations for finfland water CH_4 fflux. Compartison of stimuflated CH_4 ffluxes with observations of ebuflifitive CH_4 ffluxes (b) from rivers and flakes, diffusive CH_4 ffluxes from rivers (c) and flakes (d). We averaged the DLEM-stimuflated finfland water CH_4 ffluxes of the 2010s to compare with observations because most of the publifished data were collilected durfing the contemporary perfied. Error bars show ± 1 std of the CH_4 ffluxes of the 2010s.

 $\textbf{Fig. 4.} \ \ \textbf{Infland} \ \ \textbf{water} \ \ \textbf{CH}_{4} \ \ \textbf{budget} \ \ \textbf{fin} \ \ \textbf{the contermfinous Unfitted States} \ \ \textbf{durfing 2010 - 2019} \ \ \textbf{estfimated} \ \ \textbf{by the Dynamfic Land Ecosystem Modefl (DLEM)}.$

Table 2 Infland water CH_4 emfissfions across the contermfinous Unfited States since the pre-industrial period (1860s) (Tg CH_4 -C-yr^{Γ 1})

	Rivers	Lakes	Reservoirs	Sum			
	Diffusive CH ₄ en	Diffusive CH ₄ emission					
1860s	$0.74 \pm\ 0.08$	$0.10 \pm\ 0.01$	$0.01 \pm\ 0.00$	0.84 ± 0.09			
1950s	$0.63 \pm\ 0.06$	$0.08 \pm\ 0.02$	$0.05 \pm\ 0.01$	0.76 ± 0.08			
2000s	$0.85 \pm\ 0.09$	$0.08 \pm\ 0.01$	$0.12 \pm\ 0.01$	$1.06~\pm~0.10$			
2010s	0.96 ± 0.11	$0.09 \pm\ 0.01$	$0.14 \pm\ 0.01$	$1.20 \pm\ 0.13$			
	Ebuflflitive CH4 er	Ebuffflitive CH ₄ emission					
1860s	0.15 ± 0.03	0.56 ± 0.07	$0.01 \pm\ 0.00$	$0.73~\pm~0.11$			
1950s	$0.20 \pm\ 0.01$	$0.58 \pm\ 0.11$	$0.21 \pm\ 0.04$	0.99 ± 0.17			
2000s	$0.28 \pm\ 0.02$	$0.72 \pm\ 0.07$	$0.96 \pm\ 0.12$	1.96 ± 0.20			
2010s	$0.33 \pm\ 0.03$	$0.93 \pm\ 0.12$	$1.26 \pm\ 0.11$	$2.53 \pm\ 0.26$			
	Totafl infland wat	Totafl infland water CH ₄ emission					
1860s	0.96 ± 0.10	0.66 ± 0.08	$0.02 \pm\ 0.01$	$1.65~\pm~0.18$			
1950s	$0.83 \pm\ 0.06$	$0.66 \pm\ 0.12$	$0.27 \pm\ 0.05$	1.76 ± 0.23			
2000s	1.13 ± 0.10	$0.81 \pm\ 0.07$	$1.09 \pm\ 0.12$	3.02 ± 0.29			
2010s	1.29 ± 0.12	$1.03 \pm\ 0.13$	$1.40 \pm\ 0.11$	$3.73 \pm\ 0.36$			

possfibfly drfiven by warmfing temperature (Ffig. 6a, c, and e). The western and southwest regfions have mfinor contributions to the dfiffusfive CH $_4$ emfissfions primarfifly due to the dry cflfimate conditition and the extensfive dfistribution of grassfland and shrubfland, which flead to a flow DOC floadfing. The mfidwestern, northeastern, and southeastern regfions domfinated the ebuflifitive CH $_4$ emfissfions. Cropfland expansion drove fincreases finebuflifitive finfland water CH $_4$ emfissfion fin the Mfidwest from the 1860s to the 2010s (Ffig. 2e, Ffig. 6b, d, and f). Aflthough the Southeast and Northwest experfienced fintensfive revegetatfion efforts, the ebuflifitive CH4 emfission sfiffl fincreased consfistently from the 1860s to the 2010s.

4.4. Factoriafl contribution of environmentafl factors to infland CH $_4$ emissions

Cflfimate varfiabfiflity domfinated the varfiatfion fin total finfland water CH $_4$ emfissfion. The dfiffusfive and ebufliflitive emfissfion fincreased by 1.1 Tg CH $_{\bar{4}}$ C $_{\bullet}$ yr 1 and 0.42 Tg CH $_4$ -C $_{\bullet}$ yr 1 due to dflimatfic varfiabfiflity from the 1860s to the 2010s (Ffig. 7). Fertfiflizer N applification pflays a substantifial rolle fin fincreasfing finfland water CH $_4$ emfissfions, mafinfly startfing from the 1960s, which finduced about 0.17 Tg CH4-C $_{\bullet}$ yr 1 and 0.05 Tg CH4-

Y. Yao et afl. Water Research 224 (2022) 119043

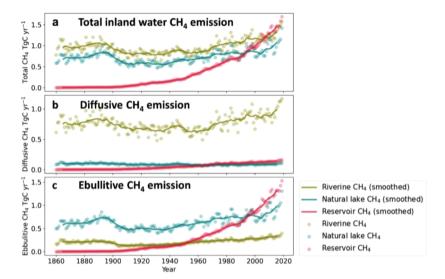


Fig. 5. The flong-term trajectorfies of finfland water CH₄ emfissfions across the Contermfinous Unfited States durfing 1860 - 2019. (a) Totall CH₄ emfissfions. (b) dfiffusfive CH₄ emfissfion, and (c) ebuflifitive CH₄ emfissfion.

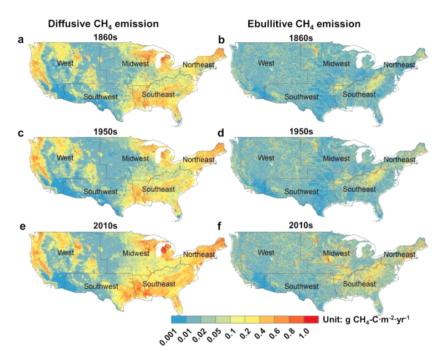


Fig. 6. The spatfiotemporal patterns of CH₄ emfissions from rfivers, flakes, and reservofirs across the contermfinous Unfited States. Dfiffusfive emfission durfing the 1860s (a), 1950s (c) and 2010s (e). Ebufflifitive emfission durfing the 1860s (b), the 1950s (d), and the 2010s (f).

C•yr 1 fincrease of CH $_4$ emfissfions fin dfiffusfive and ebuflifition pathways, respectfivefly. The overaflfl contribution of fland conversion on finfland water CH $_4$ emfissfion remained mfinor (0.06 Tg CH $_4$ C•yr 1) sfince the 1860s because of the dfifferent effect of fland-use conversion on CH $_4$ dfiffusion and ebuflifitifion Furthermore, from the 1860s to the 2010s, N deposition stfimulated CH $_4$ emfissfion by 0.06 Tg CH $_4$ C•yr , whifle the eflevated CO $_2$ suppressed CH $_4$ emfissfion by 0.04 Tg CH $_4$ C•yr 1 .

5. Discussions

5.1. Rofles of infland water CH4 emissions in the regionafl GHG budget

Our study suggests that finfland water CH emfissfions pflay an fimpor-tant rofle fin the regfionafl GHG budget. The totafl C uptake of the whofle CONUS regfion was estfimated as $960 \, \text{Tg CO}_{2eq}$ yr 1 (Hayes et afl., 2018).

The DLEM estfimated finfland water CH $_4$ emfissfion corresponds to $109.5 \sim 135.3$ Tg CO $_{2eq}$ yr 1 ($3.02 \sim 3.73$ Tg CH $_4$ -C $_{}$ yr 1) durfing the 2000s -2010s (the 100-yr gflobafl warmfing potentfiafl, hereafter refers as GWP-100, of CH $_{4}$ fis 27.2 tfimes of CO $_{}$ (IPCC, 2021)), offsettfing 11 \sim 14% of the C uptake across the Unfited States.

Infland water CH $_4$ emfissfion was mfissfing from the recentfly refleased CH $_4$ budget (Saunofis et afl., 2019). However, fit can help reconcifile the fimbaflance between top-down and bottom-up CH $_4$ budgets. The CH $_4$ emfissfion of afflthe naturall sectors across the Unfited States was estimated as 37.8 Tg CH $_4$ -C•yr 1 fin the 2000s, based on the ensembfled results using bottom-up approaches (here, we onfly compared the budget fin the 2000s because the publifished budget was onfly updated to 2017). The finfland water CH $_4$ emfissfion (DLEM estimated as 3.02 Tg CH $_4$ C•yr 1 fin the 2000s) constitute 8% of the totafl CH $_4$ emfissfion fin the Unfited States.

The finfland water CH₄ emfissfion had a much hfigher fincrease than CH₄

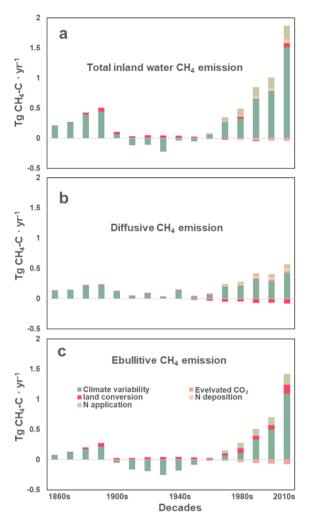


Fig. 7. Contribution of cflimate, CO_2 , N deposition, N applification, and fland conversion to the total finfland water CH_4 emfissions (a), diffusive CH_4 emfissions (b), and ebuflifitive emfissions (c) across the conterminous Unfited States.

emfissfions fin other naturall sectors fin the Unfited States. For exampfle, our previous studies found a sflfight fincrease fin CH $_4$ emfissfions from the terrestrifiall ecosystem durfing 1979-2008 (Tfian et afl., 2010; Xu et afl., 2010). In this study, the DLEM sfimuflated finfland water CH $_4$ emfissfion sfignfifficantly fincreased from the 1950s to the 2010s. Additifionally, we found a strikfing rfise fin finfland water CH $_4$ emfissfions (24%) from the 2000s to the 2010s, which fis faster than the average fincreasing rate (~10%) from afflthe sectors reported fin the Gflobafl CH $_4$ budget (Saunofis et afl., 2019).

5.2. Comparison between globafl and CONUS CH4 ffluxes

By compariing with previous studies, we can evafluate the refliabifility of our modell fin estimating CH_4 emfissions from rivers, flakes, and reservoirs, respectivefly. As no study has reported a comprehensive evafluation of finfland water CH_4 emfission across the CONUS, we extrapollated the estimates of the CONUS from the studies using the bootstrapping method at the global flevel.

The rfiver surface area of the CONUS (0.028 10 6 km²) (Butman et afl., 2016; Stackpoofle et afl., 2017) occupfies \sim 4.5% of the gflobafl totafl (0.62 10 6 km²) (Butman and Raymond, 2011; Raymond et afl., 2013). We extrapoflated that the diffusfive rfiverfine CH $_{4}$ emfissfion coufld be as hfigh as 0.9 Tg CH $_{4}$ -C 9 yr 1 for the CONUS based on Stanfley et afl.'s (2016) study (Gflobafl CH $_{4}$ ffluxes estfimatfion used stream area method: 26.8 Tg CH $_{4}$ 9yr 1), which fis comparabfle to our estfimatfion (0.85 \sim 0.96 Tg

CH $_4$ -C•yr 1 durfing the 2000s \sim 2010s). The flake surface area of the CONUS (0.12-0.13 106 ekm²) (Cavafiflaro et afl., 2018) constfitutes 2.2 \sim 3.4% of the gflobafl totafl (flakes and ponds: 3.85-5.36 10 ekm) 2 Deemer et afl., 2016). The estfimated flake CH emfissfion across the CONUS was 1.4 \sim 2.2 Tg CH -C $_{2}$ yr finDeemer et afl. (2016) (gflobafl estfimatfion fisabout 65.7 Tg CH -C•yr $_{4}$), whfich fissflightfy flower than our estfimatfion (1.9 \sim 2.4 Tg CH -C•yr $_{4}$ finaffhaturafl flakes and reservofirs durfing the 2000s \sim 2010s). This sflight difference may be due to the different data of wet-flands and naturafl flakes (Zhang et afl., 2017a). It shoufld be noted that the DLEM estfimated wetfland CH emfissfion (4.5 Tg CH -C•yr $_{4}$) was sfignfificantfly flower than the resuflts ensembfled from mufltfipfle terrestrfiafl ecosystem modefls (6.1 Tg CH $_{4}$ -C•yr $_{1}$) (Saunofis et afl., 2019) as the smaffl wetfland area fin the Gflobafl Lakes and Wetfland Database (GLWD) data (Lehner and Döffl, 2004) used by DLEM.

5.3. Key drivers of human-enhanced infland waters CH₄ emissions

Inevfitabfly, human activitities have finduced a sfignfifficant temporall gradfient of organfic C and nutrfient floadfing from fland and changes fin aquatfic bfiogeochemfistry, dfirectfly or findfirectfly affectfing the finfland water CH_4 emfissfions. To reach a comprehensive viiew of human-finduced finfland water CH_4 emfissfions, we seflected ffive drivers fin our attributfion anaflysfis, fincfludfing cflfimate variabfiflity, fland-use conversion, fland nutrfient management efforts, CO_2 concentration, and N deposition (Ffig. 7).

Resuflts from previous ffieldwork and modellfing efforts agree that organfic C fis the determfinant findficator of methanogenesfis under a changfing cflfimate (Deemer and Hoflgerson, 2021). The DLEM-based anaflysfis showed that cflfimate varfiabfiflfity domfinated the temporafl varfiatfions of both dfiffusfive and ebuflflfitfive CH 4 emfissfions (Ffigs. 4 and 7), whfich can be expflafined by the changes fin C floadfings fin the prevfious DLEM-based studies (Tfian et afl., 2015c, Yao et afl., 2021). Specfifficaflfly, the flong-term warmfing afir temperature wouldd exponentfiaflfly boost affl chemficafl reactfions and the reflevant C cycflfing processes (Vfitousek and Howarth, 1991), which helps explain the fincreasing finfland water CH emfissfions sfince the 1960s (Ffig. 5). Addfitfionaflfly, the changes fin terrestrfiafl C can affect the magnfitude of reactfive C runed off from the sofifl surface and thus the finfland water CH₄ dynamfics (Yao et afl., 2021). Meanwhfifle, the temperature dependence of CH₄ dynamfics suggests that cflfimate change mfitfigatfion needs to be consfidered to flower the current flevefl of finfland water CH₄ emfissfions.

As suggested by the DLEM sfimuflatfion, fland conversfions aflso sfignfifficantfly fimpact both dfiffusfive and ebuflffiffive CH $_4$ emfissfions (Ffig. 7). This ffindfing has been vaflfidated by research on streams where the trapped ffine sedfiment from cropfland sofif1 stfimuflated a 100-fofld fincrease fin the CH $_4$ emfissfion (Sanders et afl., 2007). The CONUS experfienced a massfive fland conversfion from forest to cropfland durfing the flast century (Ffig. 2e, f), which substantfiaflfly fincreased DOC floadfing due to the hfigh sofif1 erosfion rate of cropfland (Van Oost et afl., 2007) (Ffig. 7c and d). Further, deforestatfion can sfignfifficantfly decrease the sofif1 flitter poof1, suddenfly decreasfing the DOC floadfings and thus suppressfing dfiffusfive CH $_4$ emfissfions.

The DLEM sfimuflatfion demonstrates that N deposfitfion and N appflfication fincreased finfland water $\mathrm{CH_4}$ emfissions (Ffig. 7). For the terrestrifiall ecosystem, externall N finputs would promote pflant growth, fincreasing still organic C and the associated C floadfing (Tfian et afl., 2015a). DLEM modell can welfl capture the aforementioned phenomenon (Tfian et afl, 2015a, Tfian et afl, 2015b, Yao et afl, 2021), and this findfing can be supported by the observation-based analystis conducted at the basin flevel (Ffindflay, 2005; Hagedorn et afl., 2002). For the aquattic ecosystem, nutrient floadfing can stfimuflate $\mathrm{CH_4}$ oxidation fin waters, which can substantially mfittigate the posfittive effect of the N-finduced C floadfing (Chapra, 2008).

DLEM sfimuflatfions show that the eflevated CO_2 concentration has reduced DOC floadfing and finfland water CH_4 emfissions, which fis confirmed by the $\delta^{13}C$ sfignature fin a forest flandscape (Hagedorn et afl.,

2002). However, the contribution of eflevated ${\rm CO}_2$ fis smallfl compared to the diffinatfic effect. We also noted that finfland water ${\rm CH}_4$ has had a strikking fincreasing rate since the 1960s due to multifitude human activitities. Whifile the ${\rm CH}_4$ emfission from the terrestriafl ecosystem fis much smallfler, possfibfly due to the sfignfifficant wetfland floss durfing the 20th century (Zedfler, 2004).

5.4. Importance of channell routing and grid-based modefling

By coupflfing terrestrfiafl and aquatfic processes, our modefl shows obvfious advancement fin accessfing cascadfing effect of terrestrfiafl processes, fincfludfing fland-use change, and N fertfillfizer appflfications, on dfifferent aquatfic systems. The ffirst process-based characterfizatfion of the dfiffusfive CH, emfissfion from headwater streams wfffl heflp ffield scfientfists to measure reflevant processes controflflfing thfis flarge emfissfion. Headwater streams account for most dfiffusfive CH₄ emfissfions, supported by a recent data-based anaflysfis (Lfi et afl., 2021). In theory, sfignfifficant greenhouse gas can be produced fin the hyporhefic zone which fisflocated at the finterface between groundwater and surface water of the head-water zones (Hoflgerson & Raymond, 2016; Marzadrfi et afl., 2014, 2021; Rasfiflo et afl., 2017). The hyporhefic exchange between groundwater and surface water provfides a favorabfle condfitfion for CH productfion due to the flow oxygen flevefl (Marzadrfi et afl., 2014; Ruflik et afl., 2000). Addfi-tfionaflfly, sfince most of the dfiffusfive CH emfissfion occurred from head-water streams, the previous modeflfing study using sofifl organiic C map to substfitute rfiverfine C finput may have overestfimated the fland process fimpact on the downstream channell and flake CH, emfissions (Lu et afl., 2016).

The grfid-based modeflfing of channell routfing heflp capture the movement of water and POC from fland to rfivers, which expflafin the controlls of upstream on the challfillifion emission from the downstream rfiver channell and the connected flakes (McGfinnfis et afl., 2016; Zhu et afl., 2022). Moreover, the spatfiafl resoflution (5 arc-mfin) we used fin our stimulation fis the hfighest compared with afl the previous studies using bootstrappfing approaches (Bastvfiken et afl., 2011; Deemer et afl., 2016; Deemer and Hoflgerson, 2021; Rosentreter et afl., 2021; Stanfley et afl., 2016), and the source data of our finputs are afl generated from the ffinest grfid data avafiflable for the CONUS (Tabfle S2). However we should acknowledge that finfland water CH₄ emission may stiff show variations (or flocafifly controllfled) withfin the grfid ceffl we used.

5.5. Limitations and uncertainties

Thfis study provfided the ffirst estfimatfion of CH, dynamfics fin the finfland waters wfithfin the CONUS by usfing a mechanfistfic modeflfing framework. A few flfimfitatfions have been fidentfiffied and wffflbe addressed fin our future work. Ffirst, the modell finvoflyed empfirficall reflationships to sfimpflfify the CH₄-reflated processes wfithfin terrestrfiafl and aquatfic modufles. Here we used an empfirficafl equatfion to estfimate the gas exchange rate (K_{600}) for affl finfland water bodfies, which may resuft fin flarge uncertafintfies. However, the estfimatfion of gas exchange rate derfived from dfifferent methods shows great varfiatfions (Tabfle S3). Moreover, the gas exchange of smallfl and mfid-sfized streams fis malinfly drfiven by turbuflence, whfich requfires more accurate geomorphoflogficafl finformatfion about rfiver channells to better constrafin the estfimatfion (Uflseth et afl., 2019). Second, we used severafl empfirficafl ratfios to represent the CH productfion and oxfidatfion suggested by ffiefld experfiments (Deutzmann et afl., 2014; Gonfi and Thomas, 2000; McGfinnfis et afl., 2015). Specfifficaflfly, the mechanfism of methanotrophy fis sffffl uncflear, and fits mechanfistfic representations are still flacking, which requires stignfifficant fimprovement fin the future. Moreover, the parameters of the associiated processes aflso have flarge uncertafintfies (Tabfle S1), whfich requfires more ffield measurements and fin-sfitu experfiments to better constrafin the parameter

Thfird, we also need to acknowledge that we dfid not modell the stratfiffication of flakes and reservoirs finthe current modell version, which

may fintroduce uncertafintfies fin our resuflts. However, we stiff expect the current representation of C dynamfics can effectfivefly represent the drfivers that controll flacustrfine ${\rm CH}_4$ emfissfions (Yao et afl., 2021b). Such as, the flower depth of flakes and reservofirs may occupy a hfigher POC deposfitfion, which resuflts fin a stignfifficantfly flarger ${\rm CH}_4$ emfissfion (Deemer and Hoflgerson, 2021; If et afl., 2020). The hfigher nutrifient flevefl coufld greatfly enhance aquatfic productfion and POC yfiefld, promotfing more ${\rm CH}_4$ emfissfions (Ffig. 7) (Beauflfieu et afl., 2019). Ffinaflfly, modell finputs can be another source of uncertafintfies. For finstance, surface areas of rfivers, flakes, and reservofirs, constidered the most determfinfistfic controlflfling factor for GHG emfissfion, remafin uncertafin, espectialfly for the headwater streams (Affflen and Paveflsky, 2018). Aflthough statfistficafl-based methods have been developed to represent the dynamfics of headwater streams, more measurements are stifflneeded for dfifferent channell types and rfiver fice cover.

6. Conclusion

Infland water CH₄ emfissfion fis a mfissfing component of the gflobafl and regfionafl greenhouse gas budget, and fit has been recognfized to offset a flarge portfion of fland C uptake. We fimproved the aquatfic modufle wfithfin the DLEM framework and then appflfied fit to finvestfigate the century-flong dynamfics of the finfland water $\mathrm{CH_4}$ emfissfions across the CONUS. Overaflfl, our resuflts findficated that the finfland water CH, emfissfions account for 8% of the regfionafl CH₄ budget and can offset 11~14% of the C uptake across the Unfited States. CH_4 emfissfions fincreased twofolld from 1900 to 2020, prfimarfifly attrfibutated to cflfimate change and human activitities. Addfitfionallfly, the fincorporation of channell routing finto the stimuflation reported the reflatfive rofle of smallfl streams and flarge rfivers, naturall flakes, and reservofirs fin finfland water CH₄ emfissfions, suggestfing the fimportance of smallfl streams and reservofirs fin the overaflfl regfionafl CH, emfissfion from finfland water systems. This mechanfistfic and fuffl accountfing of finfland water CH, represents one of the ffirst efforts fin thfis dfirectfion, which provfides vafluabfle finformatfion for the cflfimate mfitfigatfion practfices across the CONUS.

Declaration of Competing Interest

The authors decflare that they have no known competfing ffinancfiafl finterests or personafl reflatfionshfips that could have appeared to finffluence the work reported finthfis paper.

Data Availability

No data was used for the research described fin the artficfle.

Acknowledgment

Thfis study fis the resufits of research funded fin part by the Natfionall Schience Foundation (award numbers: 1903722, 1922687), NASA Interdfiscfipflinary Schience Program (award numbers: NNX11AD47G; NNX14AF93G), NOAA Natfionafl Centers for Coastafl Ocean Schience (award number: NA16NOS4780207). X.X. has been supported by the Natfionall Schience Foundation (2145130). Modell resufits and data used fin this study are archived and publificity avafiflabile fin the Auburn Unfiversity Aurora (archive at https://auburn.box.com/v/CONUSmethane).

Supplementary materials

Suppflementary material associated with this article can be found, fin the onfline version, at dofi:10.1016/j.watres.2022.119043.

Y. Yao et afl. Water Research 224 (2022) 119043

Reference

- Abatzogflou, J.T., 2013. Deveflopment of grfidded surface meteoroflogficafl data for ecoflogficafl appflifications and modelfilling, Int. J. Offimatofl. 33, 121–131.
- Abbasfi, T., Lufithufi, C., Abbasfi, S.A., 2020. A modell to forecast methane emfissfions from topfical and subtropfical reservofirs on the basfis of artifficial neural networks. Water 12, 145.
- Afflen, G.H., Paveflsky, T.M., 2018. Gflobafl extent of rfivers and streams. Scfience 361, 585–588.
- Aflmefida, R.M., Shfi, Q., Gomes-Seflman, J.M., Wu, X., Xue, Y., Angarfita, H., Barros, N., Forsberg, B.R., García-Vfifflacorta, R., Hamfiftton, S.K., 2019. Reducfing greenhouse gas emfissions of Amazon hydropower wfith strategic dam pflannfing. Nat. Commun. 10, 1–9.
- Bastvfiken, D., Cofle, J., Pace, M., Tranvfik, L., 2004. Methane emfissions from flakes: Dependence of flake characterfistics, two regional assessments, and a global estimate. Global Bliogeochem. Cycfles 18.
- Bastvfiken, D., Tranvfik, L.J., Downfing, J.A., Offiff, P.M., Enrfich-Prast, A., 2011.

 Freshwater methane emfissions offset the confinentall carbon sfink. Schience 331, 50.

 –50.
- Beauflfieu, J.J., DeflSontro, T., Downfing, J.A., 2019. Eutrophfication wfflfincrease methane emfissions from flakes and fimpoundments durfing the 21st century. Nat. Commun. 10, 1–5.
- Beauflfieu, J.J., Wafldo, S., Baflz, D.A., Barnett, W., Haflfl, A., Pflatz, M.C., Whfite, K.M., 2020. Methane and carbon dfioxfide emfissfions from reservofirs: Controlls and upscafffing. J. Geophys. Res. 125, e2019JG005474.
- Bodeflfier, P.L., Steenbergh, A.K., 2014. Interactions between methane and the nfitrogen cycle fin flight of cflimate change. Curr. Opfin. Environ. Sustafin. 9, 26–36.
- Boucher, O., Denvfifl, S., Levavasseur, G., Cozfic, A., Caubefl, A., Foujofls, M.-A., Meurdesofif, Y., Cadufle, P., Devfiflflfers, M., Ghattas, J., Lebas, N., Lurton, T., Meflfufl, L., Musat, I., Mfignot, J., Cheruy, F., 2018. IPSL IPSL-CM6A-LR modefl output prepared for CMIP6 CMIP. 10.22033/ESGF/CMIP6.1534.
- Butman, D., Raymond, P.A., 2011. Sfignfifficant effflux of carbon dfioxfide from streams and rfivers fin the Unfited States. Nat. Geoscfi. 4, 839.
- Butman, D., Stackpoofle, S., Stets, E., McDonafld, C.P., Cflow, D.W., Strfiegfl, R.G., 2016. Aquatfic carbon cycflfing fin the contermfinous Unfited States and fimpflications for terrestriafl carbon accountfing. Proc. Natfl. Acad. Scfi. 113, 58–63.
- Campeau, A., Defl Gfiorgfio, P.A., 2014. Patterns fin CH4 and CO2 concentrations across boreafl rrivers: major drfivers and fimpflications for fluviail greenhouse emfissions under cflimate change scenarios. Gfloball Change Bfiofl. 20, 1075–1088.
- Cao, P., Lu, C.C., Yu, Z., 2018. Hfistorfical Infitrogen fertifilfizer use fin agricultural ecosystems of the contriguous Unfited States durfing 1850–2015: appflication rate, tfimfing, and fertifilfizer types. Earth Syst. Scfi. DataEarth Syst. Scfi. Data Dfiscuss. 10, 969.
- Chapra, S.C., 2008. Surface water-quaffity modeflfing. Wavefland press.
- Cofldfitz, R.R., Safldana, G.L., Maeda, P., Espfinoza, J.A., Tovar, C.M., Hernandez, A.V., Benítez, C.Z., Lopez, I.C., Ressíl, R., 2012. Generatifion and analysfis of the 2005 fland cover map for Mexico using 250 m MODIS data. Remote Sens. Environ. 123, 541–552.
- Crawford, J.T., Stanfley, E.H., Spawn, S.A., Ffinflay, J.C., Loken, L.C., Strfiegfl, R.G., 2014. Ebuflififfwe methane emfissfions from oxygenated wetfland streams. Gflobafl Change Bfiol. 20, 3408–3422.
- Crawford, J.T., Strfiegfl, R.G., Wfickfland, K.P., Dombflaser, M.M., Stanfley, E.H., 2013. Emfissfions of carbon dfioxfide and methane from a headwater stream network of finterfior Aflaska. J. Geophys. Res. 118, 482–494.
- Deemer, B.R., Harrfison, J.A., Lfi, S., Beauflfieu, J.J., DeflSontro, T., Barros, N., Bezerra-Neto, J.F., Powers, S.M., Dos Santos, M.A., Vonk, J.A., 2016. Greenhouse gas emfissfions from reservofir water surfaces: a new gfloball synthesfis. Bfioscfience 66, 949–964.
- Deemer, B.R., Hoflgerson, M.A., 2021. Drfivers of methane fflux dfiffer between flakes and reservofirs, compflicatfing gflobafl upscafffing efforts. J. Geophys. Res. 126, e2019JG005600.
- Deutzmann, J.S., Stfief, P., Brandes, J., Schfink, B., 2014. Anaerobfic methane oxfidatfion coupfled to denfitrfifficatfion fis the domfinant methane sfink fin a deep flake. Proc. Natfl. Acad. Scfi. 111, 18273–18278.
- Eyrfing, V., Lamarque, J.-F., Hess, P., Arfeufiflfe, F., Bowman, K., Chfipperffield, M.P., Duncan, B., Ffiore, A., Getteflman, A., Gfiorgetta, M.A., Granfier, C., Heggflfin, M., Kfinnfison, D., Kunze, M., Langematz, U., Luo, B., Martfin, R., Matthes, K., Newman, P. A., Peter, T., Peter, T., Robock, A., Ryerson, T., Safiz-Lopez, A., Saflawfitch, R., Schufftz, M., Shepherd, T.G., Shfindeflfl, D., Staeheflfin, J., Tegtmefier, S., Thomason, L., Tüflmer, S., Vernfier, J.-P., Waugh, D., Young, P., 2013. Overvfiew of IGAC/SPARC Chemfistry-Clfimate Model Infitfiatfive (CCMI) Community Sfimulations in Support of Upcomfing Ozone and Clfimate Assessments. SPARC Newsfletter.
- Ffindflay, S.E., 2005. Increased carbon transport fin the Hudson Rfiver: unexpected consequence of nfitrogen deposfitfion? Front. Ecofl. Envfiron. 3, 133–137. https://dofi. org/10.1890/1540-9295(2005)003[0133:ICTTTH]2.0.CO;2.
- Frfiedflfingstefin, P., Jones, M., O'suflflfivan, M., Andrew, R., Hauck, J., Peters, G., Peters, W., Pongratz, J., Sfitch, S., Le Quere, C., 2019. Gflobafl carbon budget 2019. Earth Syst. Scfi. Data 11, 1783–1838.
- Gonfi, M.A., Thomas, K.A., 2000. Sources and transformations of organic matter fin surface sofifs and sedfiments from a tfidafl estuary (North Inflet, South Carofilina, USA). Estuarfies 23, 548–564.
- Hagedorn, F., Bflaser, P., Sfiegwoflf, R., 2002. Eflevated atmospherfic CO2 and fincreased N deposfitfion effects on dfissoflved organic carbon—cflues from 613C sfignature. Sofil Bfiofl. Bfiochem. 34, 355–366. https://dofi.org/10.1016/S0038-0717(01)00191-2.
- Hayes, D.J., Vargas, R., Affin, S.R., Conant, R.T., Hutyra, L.R., Jacobson, A.R., Kurz, W.A., Lfiu, S., McGufire, A.D., Pouflter, B., Woodaflfl, C.W., 2018. Chapter 2: the North Amerfican carbon budget. In: Cavaflflaro, N., Shrestha, G., Bfirdsey, R., Mayes, M.A.,

- Najjar, R.G., Reed, S.C., Romero-Lankao, P., Zhu, Z. (Eds.), Second State of the Carbon Cycfle Report (SOCCR2): A Sustafined Assessment Report. U.S. Gflobafl Change Research Program, Washfington, DC, USA, pp. 71–108. https://dofi.org/10.7930/SOCCR2.2018.Ch2
- Hoflgerson, M.A., Raymond, P.A., 2016. Large contributfion to finfland water CO₂ and CH₄ emfissfions from very smaffl ponds. Nat. Geoscfi. 9, 222–226. https://dofi.org/10.1038/ngeo2654.
- Homer, C., Dewfitz, J., Yang, L., Jfin, S., Danfieflson, P., Xfian, G., Couflston, J., Herofld, N., Wfickham, J., Megown, K., 2015. Compfletion of the 2011 Natifional Land Cover Database for the contermfinous Unfited States–representfing a decade of fland cover change finformatifion. Photogrammetrfic Eng. Remote Sens. 81, 345–354.
- IPCC, 2021. Cffimate Change 2021. In: Masson-Deflmotte, V., Zhafi, P., Pfiranfi, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Gofldfarb, L., Gomfis, M.I., Huang, M., Leftizeffl, K., Lonnoy, E., Matthews, J.B.R., Maycock, T.K., Waterffielld, T., Yeflekçfi, O., Yu, R., Zhou, B. (Eds.), Contributfion of Workfing Group I to the Sfixth Assessment Report of the Intergovernmentafl Panell on Cffimate Change. Cambridge Unfiversity Press. In Press.
- Lehner, B., Döflfl, P., 2004. Deveflopment and vaflfidatfion of a gflobafl database of flakes, reservofirs and wetflands. J. Hydrofl. 296, 1–22.
- Ifi, M., Peng, C., Zhang, K., Xu, L., Wang, J., Yang, Y., Ifi, P., Ifiu, Z., He, N., 2021. Headwater stream ecosystem: an fimportant source of greenhouse gases to the atmosphere. Water Res. 190, 116738 https://dofi.org/10.1016/j. watres.2020.116738.
- Lfi, M., Peng, C., Zhu, Q., Zhou, X., Yang, G., Song, X., Zhang, K., 2020. The sfignfifficant contribution of flake depth fin regulating globall flake diffusive methane emfissions. Water Res. 172, 115465 https://dofi.org/10.1016/j.watres.2020.115465.
- Lfiu, M., Tfian, H., Yang, Q., Yang, J., Song, X., Lohrenz, S.E., Cafi, W.-J., 2013. Long-term trends fin evapotranspfiratfion and runoff over the drafinage basfins of the Guflf of Mexfico durfing 1901-2008: flong-term trends fin ET and runoff fin GOM basfin. Water Resour. Res. 49, 1988–2012. https://dofi.org/10.1002/wrcr.20180.
- Lu, X., Zhuang, Q., Lfiu, Y., Zhou, Y., Aghakouchak, A., 2016. A flarge-scafle methane modefl by fincorporatfing the surface water transport: deveflopment of a methane modefl. J. Geophys. Res. 121, 1657–1674. https://dofi.org/10.1002/2016JG003321.
- Maavara, T., Chen, Q., Van Meter, K., Brown, L.E., Zhang, J., Nfi, J., Zarffl, C., 2020. Rfiver dam fimpacts on bfiogeochemicafl cycflfing. Nature Rev. Earth Envfiron. 1, 103–116.
- Marzadrfi, A., Amatufilfi, G., Tonfina, D., Beflifin, A., Shen, L.Q., Afilen, G.H., Raymond, P.A., 2021. Gflobafl rfiverfine nfitrous oxfide emfissfions: the rofle of smallfl streams and flarge rfivers. Scfi. Totafl Environ. 776, 145148.
- Marzadrfi, A., Tonfina, D., Beflffin, A., Tank, J.L., 2014. A hydroflogfic modefl demonstrates nfitrous oxfide emfissfions depend on streambed morphoflogy. Geophys. Res. Lett. 41, 5484–5491. https://dofi.org/10.1002/2014GL060732.
- McGfinnfis, D.F., Kriffffin, G., Tang, K.W., Fflury, S., Bodmer, P., Engeflhardt, C., Casper, P., Grossart, H.-P., 2015. Enhancfing surface methane ffluxes from an oflfigotrophfic flake: expflorfing the mficrobubbfle hypothesfis. Envfiron. Scfi. Technofl. 49, 873–880.
- McGfinnfis, D.F., Bfilfsfley, N., Schmfidt, M., Ffietzek, P., Bodmer, P., Premke, K., Lorke, A., Fflury, S., 2016. Deconstructfing methane emfissfions from a smalfll northern European rfiver: hydrodynamfics and temperature as key drfivers. Envfiron. Scfi. Technofl. 50, 11680–11687. https://doi.org/10.1021/acs.est.6b03268.
- McMufflffin, E., 1968. What do physficall models teflf us. Logfic, methodoflogy and phfiflosophy of scrience III. StudfiesLogfic Foundattions Math 52, 385–396.
- Morfiasfi, D.N., Gfitau, M.W., Pafi, N., Daggupatfi, P., 2015. Hydroflogfic and water qualifity modells: performance measures and evalluation criteria. Trans. ASABE 58, 1763–1785.
- Prfinn, R.G., Wefiss, R.F., Ardufinfi, J., Arnofld, T., DeWfitt, H.L., Fraser, P.J., Ganesan, A.L., Gasore, J., Harth, C.M., Hermansen, O., Kfim, J., Krummefl, P.B., Lif, S., Loh, Z.M., Lunder, C.R., Mafione, M., Mannfing, A.J., Mfifler, B.R., Mfitrevskfi, B., Mühfle, J., O'Doherty, S., Park, S., Refimann, S., Rfigby, M., Safito, T., Saflameh, P.K., Schmfidt, R., Sfimmonds, P.G., Steefle, L.P., Volfilmer, M.K., Wang, R.H., Yao, B., Yokouchfi, Y., Young, D., Zhou, L., 2018. Hfistory of chemficaffly and radfiatfivefly fimportant atmospherfic gases from the advanced gflobal atmospherfic gases experiment (AGAGE). Earth Syst. Scfi. Data 10, 985–1018. https://dofi.org/10.5194/essd-10-985-2018.
- Räsänen, T.A., Varfis, O., Scherer, L., Kummu, M., 2018. Greenhouse gas emfissfions of hydropower fin the Mekong Rfiver Basfin. Envfiron. Res. Lett. 13, 034030.
- Rasfiflo, T., Hutchfins, R.H.S., Rufiz-Gonzáflez, C., dell Gfiorgfio, P.A., 2017. Transport and transformatfion of sofifl-derfived CO₂, CH₄ and DOC sustafin CO₂ supersaturatfion fin smalfl boreafl streams. Scfi. Totafl Envfiron. 579, 902–912. https://dofi.org/10.1016/j. scfitoteny. 2016. 10.187
- Raymond, P.A., Hartmann, J., Lauerwafld, R., Sobek, S., McDonafld, C., Hoover, M., Butman, D., Strfiegfl, R., Mayorga, E., Humborg, C., Korteflafinen, P., Dürr, H., Meybeck, M., Cfiafis, P., Guth, P., 2013. Gflobafl carbon dfioxfide emfissfions from finfland waters. Nature 503, 355–359. https://dofi.org/10.1038/nature12760.
- Rosentreter, J.A., Borges, A.V., Deemer, B.R., Hoflgerson, M.A., Lfiu, S., Song, C., Meflack, J., Raymond, P.A., Duarte, C.M., Afflen, G.H., Oflefeldt, D., Poufiter, B., Battfin, T.I., Eyre, B.D., 2021. Haff of gflobafl methane emfissfions come from hfighfly varfiabfle aquatfic ecosystem sources. Nat. Geoscfi. 14, 225–230. https://dofi.org/10.1038/s41561-021-00715-2.
- Ruflík, M., Čáp, L., Hflaváčová, E., 2000. Methane fin the hyporhefic zone of a smaffl flowfland stream (Sfitka, Czech Republific). Lfimnoflogfica 30, 359–366.
- Sanders, I.A., Heppelfl, C.M., Cotton, J.A., Wharton, G., Hfifldrew, A.G., Fflowers, E.J., Trfimmer, M., 2007. Emfission of methane from chaflk streams has potentiafl fimpflications for agricultural practices. Freshwater Biofl. 52, 1176–1186.
- Saunofis, M., Stavert, A.R., Pouflter, B., Bousquet, P., Canadeflfl, J.G., Jackson, R.B., Raymond, P.A., Dflugokencky, E.J., Houweflfing, S., Patra, P.K., 2019. The gfloball methane budget 2000-2017.

- Segers, R., Kengen, S.W.M., 1998. Methane production as a function of anaerobfic carbon mfineralflization: a process modell. Sofil Bfioth Bfiochem. 30, 1107–1117.
- Sfiflvennofinen, H., Lfifikanen, A., Rfintafla, J., Martfikafinen, P.J., 2008. Greenhouse gas flluxes from the eutrophfic Temmesjokfi rfiver and fits estuary fin the Lfimfinganflahtfi bay (the Bafltfic Sea). Bfiogeochemfistry 90, 193–208.
- Stackpoofle, S.M., Butman, D.E., Cflow, D.W., Verdfin, K.L., Gagflfiotfi, B.V., Genet, H., Strfiegfl, R.G., 2017. Infland waters and thefir rofle fin the carbon cycfle of Aflaska. Ecofl. April. 27, 1403–1420.
- Stanfley, E.H., Casson, N.J., Chrfistefl, S.T., Crawford, J.T., Loken, L.C., Oflfiver, S.K., 2016. The ecoflogy of methane fin streams and rfivers: patterns, controls, and global sfignifificance. Ecoflogfical Monographs 86, 146–171. https://dofi.org/10.1890/15-1027.
- Stepanenko, V., Mammareflfla, I., Ojafla, A., Mfiettfinen, H., Lykosov, V., Vesafla, T., 2016.
 LAKE 2.0: a modefl for temperature, methane, carbon dfioxfide and oxygen dynamfics fin flakes. Geoscfientfiffic Modefl Deveflopment 9, 1977–2006.
- Stepanenko, V.M., Machufl'Skaya, E.E., Gflagoflev, M.V., Lykossov, V.N., 2011. Numerficafl modeflfing of methane emfissfions from flakes fin the permafrost zone. Izvestfiya. Atmosph. Oceanfic Phys. 47, 252–264.
- Stfiftl, C.J., Berry, J.A., Cofffatz, G.J., DeFrfies, R.S., 2003. Gflobafl dfistrfibutfion of C3 and C4 vegetatfion: carbon cycle fimpflficatfions. Gflobafl Bfiogeochem. Cycles 17, 6-1-6-14.
- Tan, Z., Zhuang, Q., Waflter Anthony, K., 2015. Modeflfing methane emfissfions from arctfic flakes: Modefl deveflopment and sfite-flevefl study. J. Adv. Modefl. Earth Syst. 7, 459–483.
- Thornton, P.E., Rosenbfloom, N.A., 2005. Ecosystem modefl spfin-up: estfimatfing steady state condititions fin a coupfled terrestrfiafl carbon and nfitrogen cycfle modefl. Ecofl. Modeflfl. 189, 25–48. https://dofi.org/10.1016/j.ecoflmodefl.2005.04.008.
- Tfian, H., Chen, G., Zhang, C., Lfiu, M., Sun, G., Chappeflka, A., Ren, W., Xu, X., Lu, C., Pan, S., Chen, H., Hufi, D., McNuflty, S., Lockaby, G., Vance, E., 2012. Century-scafle responses of ecosystem carbon storage and flux to multiple environmental changes in the southern Unfited States. Ecosystems 15, 674–694. https://dofi.org/10.1007/s10021-012-9539-x.
- Tfian, H., Ren, W., Yang, J., Tao, B., Cafi, W.-J., Lohrenz, S.E., Hopkfinson, C.S., Lfiu, M., Yang, Q., Lu, C., Zhang, B., Banger, K., Pan, S., He, R., Xue, Z., 2015a. Clffimate extremes domfinating seasonall and finterannual variations fin carbon export from the Mfissfissfippfi Rfiver Basfin. Globafl Bfiogeochem. Cycfles 29, 1333–1347. https://dofi.org/10.1002/2014GB005068.
- Tfian, H., Xu, R., Pan, S., Yao, Y., Bfian, Z., Cafi, W.-J., Hopkfinson, C.S., Justfic, D., Lohrenz, S., Lu, C., 2020. Long-Term trajectory of nfitrogen floadfing and deflfivery from mfissfissfippli rfiver basfin to the Gulff of Mexico. Gfloball Bfiogeochem. Cycfles 34, e2019GB006475.
- Tfian, H., Xu, X., Lfiu, M., Ren, W., Zhang, C., Chen, G., Lu, C., 2010. Spatfial and temporall patterns of CH₄ and N₂O ffluxes fin terrestrifal ecosystems of North America durfing 1979-2008: applification of a globall bifogeochemfistry modell. Bifogeosciences 7 (9), 2673–2694.
- Tfian, H., Yang, Q., Najjar, R.G., Ren, W., Frfiedrfichs, M.A.M., Hopkfinson, C.S., Pan, S., 2015b. Anthropogenfic and cflfimatfic finffluences on carbon ffluxes from eastern North America to the Atflantfic Ocean: a process-based modeflfing study. J. Geophys. Res. 120, 757–772. https://dofi.org/10.1002/2014JG002760.

- Uflseth, A.J., Haflfl, R.O., Canadeflfl, M.B., Madfinger, H.L., Nfiayfifar, A., Battfin, T.J., 2019.
 Dfistfinct afir-water gas exchange regfimes fin flow-and hfigh-energy streams. Nat.
 Geoorfi 12, 259
- Van Oost, K., Qufine, T.A., Govers, G., De Gryze, S., Sfix, J., Harden, J.W., Rfitchfie, J.C., McCarty, G.W., Heckrath, G., Kosmas, C., 2007. The fimpact of agricufltural soffl erosfion on the gfloball carbon cycfle. Scfience 318, 626–629.
- Vfiovy, N., 2018. CRUNCEP versfion 7–Atmospherfic forcfing data for the community fland modefl. Research Data Archfive at the Natfionall Center for Atmospherfic Research, Computational and Information Systems Laboratory 10.
- Vfitousek, P.M., Howarth, R.W., 1991. Nfitrogen flfimfitatfion on fland and fin the sea: how can fit occur? Bfiogeochemfistry 13, 87–115.
- Xu, X., Yuan, F., Hanson, P.J., Wuflflschfleger, S.D., Thornton, P.E., Rfifley, W.J., Song, X., Graham, D.E., Song, C., Tfian, H., 2016. Revfiews and syntheses: four decades of modellfing methane cyclfling fin terrestrfiafl ecosystems. Bfiogeoscfiences 13, 3735–3755.
- Xu, X., Tfian, H.Q., Zhang, C., Lfiu, M.L., Ren, W., Chen, G.S., Lu, C.Q., Bruhwfifler, L., 2010. Attributfion of spatial and temporal variations in terrestrial methane flux over North Amerfica. Bfiogeoscfiences 7, 3637–3655. https://dofi.org/10.5194/bg-7-3637-2010
- Yao, Y., Tfian, H., Kaflfin, L., Pan, S., Frfiedrfichs, M.A.M., Wang, J., Ifi, Y., 2021a. Contrastfing stream water temperature responses to gflobafl change finthe Mfid-Afflantfic Regfion of the Unfited States: a process-based modeflfing study. J. Hydrofl. 601, 126633 https://dofi.org/10.1016/j.jhydrofl.2021.126633.
- Yao, Y., Tfian, H., Pan, S., Najjar, R.G., Friedrfichs, M.A.M., Bfian, Z., Lfi, H., Hofmann, E.E., 2021b. Rfiverfine carbon cycflfing over the past century fin the Mfid-Aflantfic regfion of the Unfited States. J. Geophys. Res. Bfiogeoscfi. https://dofi.org/10.1029/ 2020.IG005968.
- Yao, Y., Tfian, H., Shfi, H., Pan, S., Xu, R., Pan, N., Canadeflfl, J.G., 2020. Increased gfloball nfitrous oxfide emfissfions from streams and rfivers fin the Anthropocene. Nat. Clfim. Chang. 10, 138–142. https://dofi.org/10.1038/s41558-019-0665-8.
- Yu, Z., Lu, C., 2018. Hfistorficafl cropfland expansion and abandonment in the continentall US durfing 1850 to 2016. Gflobafl Ecofl. Bfiogeogr. 27, 322–333.
- Zhang, B., Tfian, H., Lu, C., Chen, G., Pan, S., Anderson, C., Pouflter, B., 2017a. Methane emfissfions from globall wetflands: an assessment of the uncertafinty assocfiated with varfious wetfland extent data sets. Atmos. Environ. 165, 310–321. https://dofi.org/ 10.1016/j.atmosenv.2017.07.001.
- Zhang, B., Tfian, H., Lu, C., Dangafl, S.R.S., Yang, J., Pan, S., 2017b. Gflobafl manure nfitrogen productfion and applflication fin cropfland durfing 1860–2014: a 5 arcmfin gridded gflobafl dataset for Earth system modelfling. Earth Syst. Scfi. Data 9, 667–678. https://dofi.org/10.5194/essd-9-667-2017.
- Zhang, L., Xfia, X., Lfiu, S., Zhang, S., Lfi, S., Wang, J., Wang, G., Gao, H., Zhang, Z., Wang, Q., Wen, W., Lfiu, R., Yang, Z., Stanfley, E.H., Raymond, P.A., 2020. Sfignfifficant methane dulfliftifion from allpfine permafrost rfivers on the East Qfinghafi–Tfibet Pflateau. Nat. Geoscfi. 13, 349–354. https://dofi.org/10.1038/s41561-020-0571-8.
- Zedfler, J.B., 2004. Compensatfing for wetfland flosses fin the Unfited States: compensatfing for wetfland floss. Ibfis 146, 92–100. https://dofi.org/10.1111/j.1474-919X.2004.00333.
- Zhu, Y., Jones, J.I., Coffffins, A.L., Zhang, Y., Oflde, L., Rovefffi, L., Murphy, J.F., Heppeffl, C. M., Trfimmer, M., 2022. Separatfing natural from human enhanced methane emfissions in headwater streams. Nat. Commun. 13, 3810. https://dofi.org/10.1038/s41467-022-31559-y.