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Abstract— The convergence of an error-feedback algorithm
is studied for decentralized stochastic gradient descent (DSGD)
algorithm with compressed information sharing over time-
varying graphs. It is shown that for both strongly-convex and
convex cost functions, despite of imperfect information sharing,
the convergence rates match those with perfect information
sharing. To do so, we show that for strongly-convex loss
functions, with a proper choice of a step-size, the state of each
node converges to the global optimizer at the rate of O

(

T
−1

)

.
Similarly, for general convex cost functions, with a proper
choice of step-size, we show that the value of loss function
at a temporal average of each node’s estimates converges to the

optimal value at the rate of O(T−1/2+ε) for any ε > 0.

I. INTRODUCTION

Due to the emergence of big data analytics over large-

scale computing architectures, the study of multi-agent

(time-varying) networks has received significant attention

in various application domains, such as large-scale machine

learning [1], power control [2], and sensor networks [3], [4].

In general and in the absence of a central server, we deal with

decentralized computing nodes (agents) that are interested in

collaboratively solving optimization problems. Moreover, due

to privacy and data ownership concerns, each node performs

local and on-device computation on its own available data.

To ensure the convergence to an optimal solution of the

original problem, nodes exchange information over a (time-

varying) network. However, exchanging exact information

can potentially introduce a massive communication overhead

in the network. This communication overhead increases as the

number of the decision variables grows. In this paper, we study

distributed optimization problems and propose a gradient-

based distributed algorithm that addresses the limitation of the

communication load over time-varying graphs, by exchanging

compressed information. Surprisingly, the algorithm achieves

the same performance as one with exact information sharing.

Related Works. Various algorithms and methods have

been proposed for convex [5]–[7] and non-convex [8], [9]

distributed optimization problems, where various sub-gradient

methods with diminishing step-sizes have been used to show

convergence to a desired point. These works assume an exact

information sharing among nodes, i.e., each node is allowed to

communicate real-valued vectors with its neighbors. Various

compression approaches have been used in the literature to

mitigate the communication constraint [10]–[13].
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A DSGD algorithm with quantized information sharing

over a fixed graph is presented in [11]. It is shown that,

for strongly convex functions, the (time-invariant) step-sizes

of the algorithm can be tuned in terms of a given stopping

time (iteration) T , such that the algorithm reaches a point

within cT−1/2+ε-neighborhood of the optimum point, for

some c > 0 and any ε > 0 [11]. However, the theoretical

result only holds for T ≥ Tmin, where Tmin depends on ε,
and grows unboundedly as ε vanishes. In our recent work [14],

[15], a two time-scale DSGD algorithm, DIMIX, with two

vanishing step-sizes is proposed for time-varying networks

and imperfect information sharing. One time-scale suppresses

the noise induced by incoming information from neighboring

agents, and the other time-scale regulates the local loss

functions’ gradients. It is shown that for strongly convex

setting with a proper choice for step-sizes, each node finds

the optimal solution at the rate of O(T−1/2) [14]. A similar

result is presented in a parallel work [16], for time-invariant

networks. Although these proposed algorithms address noisy

information sharing over time-varying graphs, they offer a

reduced speed of convergence in comparison to the exact

information sharing methods. In this regard, an error-feedback

mechanism with diminishing step-size over fixed-network is

introduced in [10], and it is shown to achieve the convergence

rate of O(T−1) only for strongly convex functions. In another

related work [12], error-feedback is used for the push-sum

algorithm with fixed step-size (that depends on the stopping

time T ) over a fixed network. It is shown that the algorithm

stops at a point close to a desired point of the loss function.

Contributions. In this work, the distributed optimization

problem with quantized information sharing over time-varying

networks is studied. Each node updates a local state by

exploiting local computations and the quantized information

received from its neighbors. We extend the convergence

analysis of a novel decentralized stochastic gradient descent

algorithm that utilizes diminishing step-sizes and a feedback

mechanism to damp the quantization noise, proposed in [10].

We show that for strongly convex loss functions with a

proper choice of step-size, each node’s state converges to

the optimal point at a rate of O(T−1), which matches with

the convergence rate of the DSGD with perfect information

sharing [5]. Also, for convex loss functions, we show that

the loss associated with the temporal average of the states’

for each node converges to the optimal loss at the rate of

O(T−1/2+ε) for any ε > 0. To establish our results, we

analyze the convergence rate of the close-loop system with a

certain sum-product expression, then provide a novel analysis

for the asymptotic behavior and the convergence rate of
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the sum-product expression. Our simulations results strongly

support the tightness of the provided analysis.

Notation and Basic Terminology. We use [n] to denote

{1, 2, . . . , n}. Since we are dealing with minimizing a

function in R
d, we assume that the underlying functions

are acting on row vectors, i.e., x ∈ R
1×d = R

d. The rest

of the vectors, i.e., those in R
n×1 = R

n, are assumed to

be column vectors. The L2-norm of a vector x ∈ R
d is

defined by ‖x‖2 =
∑d

j=1 |xj |2, and the Frobenius norm of

a matrix A ∈ R
n×d is defined by ‖A‖2F =

∑n
i=1 ‖Ai‖2 =

∑n
i=1

∑d
j=1 |Aij |2, where Ai denotes the ith row of A. A

vector r ∈ R
n is called stochastic if ri ≥ 0 and

∑n
i=1 ri = 1.

A non-negative matrix A ∈ R
n×d is called (row) stochastic

if
∑d

j=1 Aij = 1 for every i ∈ [n].
For an n × d matrix A and a strictly positive stochastic

vector r ∈ R
n, we define the r-norm of A by ‖A‖2

r
=

∑n
i=1 ri ‖Ai‖2. It can be verified that ‖·‖

r
is a norm on the

space of n× d matrices.

II. PROBLEM SETUP AND MAIN RESULTS

In this section, we discuss the problem formulation and

the main results of this work.

A. Problem Setup

Consider a time-varying network of n ≥ 2 agents. Each

agent i has the cost function fi : R
1×d → R. The goal is to

minimize the function f(x) :=
∑n

i=1 rifi(x), or equivalently

solve the following consensus optimization problem

min
x1,...,xn∈Rd

n
∑

i=1

rifi(xi) s.t. x1 = x2 = · · · = xn, (1)

where r = (r1, . . . , rn) is a stochastic vector.

We represent the time-varying network at time t ≥ 1 by a

directed weighted graph G(t) = ([n], E ,W (t)), where the

vertex set [n] is the set of agents, the set E ⊆ [n]× [n]
is the set of edges/links connecting them, and the n × n
matrix W (t) represents the weight of the edges on the graph.

In our model, the entry Wij(t) is the weight that agent i
assigns to the incoming information from agent j. Here,

Wij(t) > 0 only if (j, i) ∈ E . Let N i
in := {j | (j, i) ∈ E}

and N i
out := {j | (i, j) ∈ E} be the sets of in-neighbors and

out-neighbors of node i ∈ [n], respectively.

To discuss our Perturbed Compressed Decentralized

Stochastic Gradient Descent (PCOM-DSGD) algorithm, let

xj(t) be the state of node j (of a global optimizer of (1) at

time t. We also use x̂j(t) to denote the estimate of xj(t),
reconstructed at every out-neighbors of node j. This estimate

can be reconstructed recursively. At time t, node j losslessly

broadcasts the quantized vector Q(xj(t)− x̂j(t−1)) to every

i ∈ N j
out. Then, node i updates its estimate of xj(t) as

x̂j(t) = x̂j(t−1) +Q(xj(t)− x̂j(t−1)). (2)

Next, each node i computes its local gradient ∇fi at xi(t),
and updates its local decision variable as

xi(t+1)=Wii(t)xi(t) +
∑

j∈N i
in

Wij(t)x̂j(t)−α(t)∇fi(xi(t)),

where α(t) = α0

(t+τ)ν is the diminishing gradient step-size.

Here, we assume ν ∈ (0, 1] and α0, τ ∈ R
+ are fixed

throughout the algorithm. For notational convenience, assume

that xi(t), x̂i(t), and ∇fi(xi(t)) are all row vectors and

consider matrices X(t), E(t),∇f(X(t)), whose ith rows are

xi(t), ei(t), and ∇fi(xi(t)), respectively. Thus, our update

algorithm

X(t+ 1) = W (t)X(t) + E(t)− α(t)∇f(X(t)), (3)

where E(t) := (W (t) − WD(t))(X̂(t) − X(t)) is the

accumulative perturbation matrix, and WD(t) is a diagonal

matrix with Wii(t) as its ith diagonal entry.

Remark 1: Note that the dynamics in (3) with E(t) = 0
subsumes the decentralized gradient descent methods with

exact information sharing.

In the rest of this paper, we will show that under some

conditions, E(t) decays to zero, and consequently, the

proposed algorithm convergences to a desired optimal point.

B. Assumptions

We make the following assumptions on the quantizer, the

sequence of stochastic weight matrices {W (t)}, and the local

objective functions {fi : i ∈ [n]}.

Assumption 1 (Quantizer Assumption): The quantizer

Q(·) is a random quantizer, i.e., for any x ∈ R
d, Q(x) is a

random vector in R
d. Furthermore, it is an unbiased and has

a bounded average distortion (in L2-norm), i.e., for some

fixed ω ∈ (0, 1] and all x ∈ R
d,

E [Q(x)]=x, E
[

‖Q(x)− x‖2
]

≤ω‖x‖2. (4)

Finally, we assume that Q(·) is an independent

quantizer, i.e., the collection of random vectors

{Q(xi(t)− x̂i(t− 1)) : i ∈ [n], t ≥ 1} in (2) is an

independent collection of random vectors.

In the following, we assume that Assumption 1 holds for

some ω ≤ ω0, where ω0 depends on the problem parameters.

Let us discuss an (important) example of such a quantizer.

Example 1: Stochastic Quantizer. For a number of

quantization levels s (with log2(s) bits of communication per

dimension), and a vector x ∈ R
d, the stochastic quantizer

QS
s (x) is a random vector in R

d, where

[

QS
s (x)

]

j
= ‖x‖ · sgn(xj) · ζ

( |xj |
‖x‖ , s

)

, j ∈ [d], (5)

and ζj(x, s) is a random variable taking values in

{0, 1
s ,

2
s , . . . ,

s−1
s }, and we have1

ζ(x, s) =

{

	sx
/s w.p. sx− �sx�
�sx�/s w.p. 	sx
 − sx.

(6)

It is shown in [17] that the stochastic quantizer is unbiased

(i.e., E
[

QS
s (x)

]

= x) and satisfies

E
[

‖QS
s (x)− x‖2

]

≤ min
(

d/s,
√
d/s

)

‖x‖2.

1We define ζ(x, s) = x whenever sx is an integer.
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Therefore, for d < s2, the stochastic quantizer would satisfy

Assumption 1 with ω = d/s2. Note that we can always tune

the parameter s to guarantee ω ≤ ω0.

We need certain connectivity conditions for the underlying

network to guarantee the convergence of the algorithm.

Assumption 2 (Connectivity Assumption): We assume

that the weight matrix sequence {W (t)} in (3) satisfies the

following properties

(a) Stochastic with Common Stationary Distribution: W (t)
is row-stochastic and rTW (t) = rT for all t ≥ 1, where

r > 0 is the given weight vector.

(b) Bounded Nonzero Elements: There exists some η > 0
such that if for some i, j ∈ [n] and t ≥ 1 we have

Wij(t) > 0, then Wij(t) ≥ η.

(c) B-Connected: For a fixed integer B ≥ 1, the graph
(

[n],
⋃t+B

k=t+1 E(k)
)

is strongly connected for all t ≥ 1,

where E(k) = {(j, i) | Wij(k) > 0}.

The next assumption describes the properties of the loss

functions we study in this work.

Assumption 3 (Objective Function Assumptions): We

assume the following properties on the function fi for all i

(a) The function ∇fi is L-Lipschitz, i.e., for any x,y ∈ R
d

we have that ‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖.

(b) The function fi is μ-strongly convex, i.e., for any x,y ∈
R

d, we have 〈∇fi(x)−∇fi(y),x− y〉 ≥ μ‖x− y‖2.

(c) fis have bounded gradients, i.e., there exists a scalar

K > 0 such that ‖∇fi(x)‖2 ≤ K for all x ∈ R
d.

Remark 2: Using Assumptions 3-(a), 3-(c), and the mean-

value theorem for gi : [0, 1] → R given by gi(t) = fi(x +
t(y − x)), we can conclude that fi(x) is a

√
K-Lipschitz

function for all i ∈ [n].

C. Main Results and Discussion

With these preliminary discussions, we are ready to

present the main results of the paper. In the rest of this

paper, we refer to any quantity that does not depend on

iteration t simply as a constant. Such a constant can

possibly depend on the parameters of the problem, i.e.,

the network parameters (n,B, η, r), function parameters

(L, μ,K), dynamic parameters (α0, ν, τ), and quantizer

parameter ω.

Strongly Convex Objectives. For strongly convex loss

functions, we have the following result regarding the

convergence rate of each node’s estimate to the optimal point

defined by x� :=argmin f(x).
Theorem 1: Suppose that Assumptions 1–3 hold and let

α(t) = α0

(t+τ)ν . Then, if ν ∈ (0, 1) the dynamics in (3)

satisfies

E

[

‖X(T )− 1x�‖2
r

]

= O
(

T−ν
)

, (7)

provided that τ ≥ τ1. Moreover, if ν = 1, α0 ≥ μ+L
μL , and

τ ≥ τ2 we have

E

[

‖X(T )− 1x�‖2
r

]

= O
(

T−1
)

. (8)

Here, τ1 and τ2 are constant shift parameters.

This result follows from Proposition 1 and Proposition 2, and

its sketch is presented in Section III. We refer to the long

version of the paper [18] for its detailed proof.

Remark 3: Theorem 1 guarantees the exact convergence

(in L2 sense) of each local state to the global optimal with

diminishing step-size. When ν = 1 we get the maximum

exponent for the convergence rate as in (8), which recovers the

convergence rate of decentralized gradient descent method

with exact information sharing [19]. This shows that the

feedback mechanism suppresses the noise generated by the

random quantizer. Our algorithm is inspired by DIMIX [14]

(and a similar work in [16]), where a second vanishing time-

scale is used to damp the quantization noise without having

a feedback mechanism. The additional time-scale leads to a

slower convergence of O(T−1/2) as reported in [14].

Remark 4: In a related work [10], for strongly convex

loss functions, under the limited setting of time-invariant

networks, uniform weights r = 1, and a particular choice of

parameter ν = 1, an algorithm is proposed where achieves

the same convergence rate estimate O(T−1).
Convex Objectives. The next theorem shows the convergence

of the algorithm for general convex cost functions.

Theorem 2: Under Assumptions 1, 2, and Assuming 3-(a),

3-(c), and convexity for the local cost functions fi(·), the

dynamics (3) satisfies

Mθ(ν) :=

[

1

T

T
∑

t=1

[E [f(xi(t))]−f(x�)]θ

]

1

θ

=O
(

T−min{ν,1−ν}
)

,

for α(t) = α0

(t+τ)ν with ν ∈ (0, 1], ν �= 1/2, and all θ ∈ (0, 1),

provided that τ ≥ τ0. Moreover, for ν� = 1/2, we have the

optimal convergence rate of

Mθ(ν
�) = O

(

T−1/2 lnT
)

.

Corollary 1: Under the conditions of Theorem 2, for the

optimum choice of ν� = 1/2, we get

E

[

f

(

1

T

T
∑

t=1

xi(t)

)]

− f(x�) = O
(

T−1/2+ε
)

,

for any ε > 0.

Remark 5: In a related work [12], a quantized push-sum

algorithm is presented for convex objective loss functions

under a limited setting of time-invariant networks, uniform

weights r, and a fixed step-size, that depends on a the stopping

time T , and for some constant c > 0 it is shown that

E

[

f

(

1

T

T
∑

t=1

xi(t)

)]

− f(x�)≤cT−1/2.

III. PROOFS AND DISCUSSIONS

Here, we provide the proof sketches of the main results

presented in this paper. The proof of the main theorems are

built on four major lemmas. The details of these proofs are

far beyond the page limits of the current publication but they

are provided in [18]. First, we present a technical lemma that

plays an important role in the proof of the main results. We

refer to [18] for the proof of the lemma.

2793

Authorized licensed use limited to: University of Minnesota. Downloaded on July 01,2023 at 00:08:39 UTC from IEEE Xplore.  Restrictions apply. 



Lemma 1: For any 0 ≤ δ < min(1, σ), and every

t > t0 := ( 2(σ−δ)
a )

1

1−δ , we have

t−1
∑

s=1

[

1

sσ

t−1
∏

k=s+1

(

1− a

kδ

)

]

≤ A(a, σ, δ)t−(σ−δ),

where A(a, σ, δ) is a constant that only depends on a, σ, and

δ. Moreover, for δ = 1 and a− σ + 1 �= 0, we have

t−1
∑

s=1

[

1

sσ

t−1
∏

k=s+1

(

1− a

k

)

]

≤ A(a, σ, 1)t−min(σ−1,a),

where A(a, σ, 1) = 2σ
(

1 + 1
|a−σ+1|

)

.

The following proposition bounds the deviation of each node’s

estimate from the average state. Let us denote the average

state by x̄(t) := rTX(t) =
∑n

i=1 rixi(t) for t ≥ 1.

Proposition 1: Under Assumptions 1, 2, and 3-(c) for

α(t) = α0

(t+τ)ν when ν ∈ (0, 1], the dynamics (3) satisfies

E

[

‖X(T )− 1x̄(T )‖2
r

]

≤ ξ1α
2(T ), (9)

for any T ≥ 1, provided that τ ≥ τ0. Here ξ1 is a constant.

Proof Sketch of Proposition 1: The proof is based

on establishing two recursive inequalities between

φ(t) := E
[

‖X(t)−1x̄(t)‖2
r

]

and ψ(t) :=E

[

‖X̂(t)−X(t)‖2
]

.

Using the linearity of (3), the fact that {E(t)} is a zero-mean

independent process, and {W (t)} admits a common

stationary distribution r, we can show

E

[

‖X(t)−1x̄(t)‖2
r

]

≤ 2E

⎡

⎣

∥

∥

∥

∥

∥

t−1
∑

s=1

α(s)P (t :s)∇f(X(s))

∥

∥

∥

∥

∥

2

r

⎤

⎦

+ 2

t−1
∑

s=1

E

[

‖P (t : s)E(s)‖2
r

]

, (10)

where P (t :s) := W (t−1) · · ·W (s+1)− 1rT . Furthermore,

the B-connectivity condition in Assumption 2 implies

that ‖P (t : s)U‖2
r
≤ κ(1− λ)t−s−1‖U‖2

r
for any matrix

U , where λ := ηrmin

2Bn2 , κ := (1−Bλ)
−1

. Using the

above contraction, and the bounded gradient condition in

Assumption 3-(c), for the first term in (10), we have

2E

⎡

⎣

∥

∥

∥

∥

∥

t−1
∑

s=1

α(s)P (t : s)∇f(X(s))

∥

∥

∥

∥

∥

2

r

⎤

⎦ ≤ ξ2α
2(t), (11)

where ξ2 is constant. Moreover, using the facts that

‖AB‖2
r
≤ ‖A‖2

r
‖B‖2F and ‖W (s)−WD(s)‖2

r
≤ 1, we can

write ‖E(s)‖2
r
≤ ‖X̂(s)−X(s)‖2. Hence, (10) leads to

φ(t) ≤ ξ2α
2(t) + 2κ

t−1
∑

s=1

(1− λ)t−s−1ψ(s). (12)

On the other hand, we have

ψ(t+ 1) = E

[

E

[

‖X̂(t+ 1)−X(t+ 1)‖2
∣

∣

∣
Ft

]]

(a)
= E

[

E

[

‖X̂(t)+Q(X(t+1)−X̂(t))−X(t+1)‖2
∣

∣

∣
Ft

]]

(b)

≤ ωE
[

‖X(t+ 1)− X̂(t)‖2
]

, (13)

where (a) follows from (2) and (b) follows from Assumption 1.

Rewriting X(t+ 1) from (3) we arrive at

X(t+ 1)− X̂(t) = WD(t)X(t) + (W (t)−WD(t))X̂(t)

− α(t)∇f(X(t))− X̂(t)

(c)
= (W (t)−WD(t)− I)(X̂(t)−X(t))

+ (W (t)−I)(X(t)− 1x̄(t))−α(t)∇f(X(t)),

where in (c) we used the fact that W (s)1 = 1 for every

s ≥ 1. Then, convexity of the norm implies that

‖X(t+ 1)− X̂(t)‖2

≤ 3‖W (t)−WD(t)− I‖2‖X̂(t)−X(t)‖2
+ 3‖W (t)−I‖2‖X(t)−1x̄(t)‖2+3α2(t)‖∇f(X(t))‖2

(d)

≤ 6n‖X̂(t)−X(t)‖2 + 3n‖X(t)−1x̄(t)‖2 + 3nKα2(t),

where (d) follows from Assumption 3-(c). Taking expectation

from both sides and plugging that into (13) we get

ψ(t+1)≤ 3nω
(

2ψ(t)+r
−1
minφ(t)+Kα2(t)

)

, (14)

in which we used the fact that ‖U‖2 ≤ r
−1
min‖U‖2

r
for any

matrix U . Next, having (12) and (14), we can use induction

on t to prove that φ(t) ≤ ξ1α
2(t) and ψ(t) ≤ ξ3α

2(t) for

every t ≥ 1. Due to the page limit, the induction details are

provided in [18]. It is worth noting that the condition ω ≤ ω0

is required to complete the induction. �

The next proposition bounds bounds the gap between the

average state and the optimal point of a strongly-convex

function, i.e., x� := argmin f(x).
Proposition 2: Let α(t) := α0

(t+τ)ν . Under Assumptions 1–

3, the dynamics (3) satisfies

E
[

‖x̄(T )− x�‖2
]

≤ξ4e
−ξ5(T+τ)1−ν

+ξ6(T+τ)−ν ,

for any iteration T ≥ 1, provided that ν ∈ (0, 1) and τ ≥ τ1.

Furthermore, if ν = 1 and α0 ≥ μ+L
μL , we get

E
[

‖x̄(T )− x�‖2
]

≤ ξ7(T+τ)−1,

for any T ≥ 1, assuming that τ ≥ τ2. Note that ξ4, ξ5, ξ6, ξ7
and as well as τ1 and τ2 are constant.

Proof Sketch of Proposition 2: Define x̄(t) = rTx(t),
g(t) :=rT∇f(X(t))=

∑

i ri∇fi(xi(t)) and V (t) :=‖x̄(t)−x�‖2.
Then, multiplying both sides of (3) by rT , subtracting x�,

and using the fact that rTW (t) = rT , we get

x̄(t+ 1)− x� = x̄(t)− x� − α(t)g(t) + rTE(t). (15)

Since, E [E(t)] = 0 (see Assumption 1), from (15) we have

E [V (t+ 1) | Ft] = E
[

‖x̄(t+ 1)− x�‖2
∣

∣Ft

]

=‖x̄(t)−x�−α(t)g(t)‖2+E
[

‖rTE(t)‖2
∣

∣Ft

]

. (16)

Letting ḡ(t) := ∇f(x̄(t)) =
∑n

i=1 ri∇fi(x̄(t)), we have

‖x̄(t)− x� − α(t)g(t)‖2
= ‖x̄(t)− x� − α(t)ḡ(t) + α(t)ḡ(t)− α(t)g(t)‖2
≤ (1 + ρ(t))‖x̄(t)− x� − α(t)ḡ(t)‖2
+ α2(t)(1 + 1/ρ(t))‖g(t)− ḡ(t)‖2 (17)
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for any ρ(t) > 0. Now, we can use [14, Lemma 7] for strongly

convex function f(·) and write

〈x̄(t)− x�, ḡ(t)− 0〉 ≥ c1‖ḡ(t)‖2 + c2‖x̄(t)− x�‖2, (18)

where c1 = 1
μ+L and c2 = μL

μ+L . Therefore, for the first term

in (17), we can write

‖x̄(t)− x� − α(t)ḡ(t)‖2

= ‖x̄(t)− x�‖2 + α2(t)‖ḡ(t)‖2 − 2α(t)(x̄(t)− x�)T ḡ(t)

≤ (1− 2c2α(t))‖x̄(t)− x�‖2 + α(t)(α(t)− 2c1)‖ḡ(t)‖2
=(1−2c2α(t))V (t)+α(t)(α(t)−2c1)‖ḡ(t)‖2. (19)

Hence, for sufficiently large t with α(t) ≤ 2c1 we have

‖x̄(t)−x�−α(t)ḡ(t)‖2 ≤ (1−2c2α(t))V (t). (20)

Moreover, convexity of ‖ · ‖2 and Assumption 3-(a) imply

E
[

‖g(t)−ḡ(t)‖2
]

≤E

[

n
∑

i=1

ri‖∇fi(xi(t))−∇fi(x̄(t))‖2
]

≤L

n
∑

i=1

riE
[

‖x̄(t)− xi(t)‖2
]

≤ Lξ1α
2(t), (21)

where the last inequality follows from Lemma 1. Taking

expectation from both sides of (17) and using (20) and (21)

with ρ(t) = c2α(t), we arrive at

E
[

‖x̄(t)− x� − α(t)g(t)‖2
]

(22)

≤ (1− c2α(t))E [V (t)] + Lξ1α(t)(α(t) + 1/c2)α
2(t)

≤ (1− c2α(t))E [V (t)] + Lξ1α0(α0 + 1/c2)α
2(t).

The second term in (16) can be also bounded as

E
[

E
[

‖rTE(t)‖2
∣

∣Ft

]]

≤ E
[

‖rTE(t)‖2
]

≤ ‖r‖2‖W (s)−WD(s)‖2E
[

‖X̂(t)−X(t)‖2
]

≤ ψ(t) ≤ ξ2α
2(t), (23)

where the last inequality is discussed in the proof of Lemma 1.

Taking expectation from both sides of (16) and using (22)

and (23), we arrive at the following recursive inequality

E [V (t+ 1)] = E [E [V (t+ 1) | Ft]] (24)

≤ (1− c2α(t))E [V (t)] + ξ8α
2(t),

where ξ8 := Lξ1α0(α0 + 1/c2) + ξ2. This leads to

E [V (t)] ≤
(

t−1
∏

s=T0

(1− c2α(s))

)

E [V (T0)]

+ ξ8

t−1
∑

s=T0

α2(s)

[

t−1
∏

�=s+1

(1− c2α(�))

]

.

Simplifying the latter expression using Lemma 1 we arrive

at the claim of the lemma. �

Next, we present a lemma that bounds the gap between

f(x̄) and f(x�) for a convex function.

Proposition 3: Let Assumptions 1, 2, 3-(a), and 3-(c) hold.

Then, assuming the convexity of local cost functions fi(·),
τ ≥ τ0, and for a constant ξ9 > 0, the dynamics (3) satisfies

T
∑

t=1

α(t) (E [f(x̄(t))]−f(x�))≤ 1

2
‖x�‖2+ξ9

T
∑

t=1

α2(t).

Proof Sketch of Proposition 3: Similar to the proof of

Proposition 2, we can arrive at (16). However, the inequality

in (18) does not hold when the function is only convex.

Alternatively, we can use the convexity of the function, and

write
n
∑

i=1

ri 〈∇fi(xi(t)),xi(t)− x�〉 ≥
n
∑

i=1

ri (fi(xi(t))−fi(x
�))

=

n
∑

i=1

ri (fi(xi(t))− fi(x̄(t))) + f(x̄(t))− f(x�)

≥
n
∑

i=1

ri 〈∇fi(x̄(t)),xi(t)− x̄(t)〉+ f(x̄(t))− f(x�).

Then, using the Cauchy-Schwarz inequality, we have

〈g(t), x̄(t)− x�〉 =
〈

rT∇f(X(t)), x̄(t)− x�
〉

=

n
∑

i=1

ri[〈∇fi(xi(t)), x̄(t)−xi(t)〉+〈∇fi(xi(t)),xi(t)−x�〉]

≥
n
∑

i=1

ri 〈∇fi(xi(t))−∇fi(x̄(t)), x̄(t)− xi(t)〉

+ f(x̄(t))− f(x�)

≥ −
n
∑

i=1

ri‖∇fi(xi(t))− fi(x̄(t))‖‖xi(t)− x̄(t)‖

+ f(x̄(t))− f(x�)

≥ −2K
1

2

n
∑

i=1

ri‖xi(t)− x̄(t)‖+ f(x̄(t))− f(x�). (25)

Moreover, from Assumption 3-(c) we get

‖g(t)‖2=
∥

∥

∥

n
∑

i=1

ri∇fi(xi(t))
∥

∥

∥

2

≤
n
∑

i=1

ri‖∇fi(xi(t))‖2≤K. (26)

Continuing from (16), and using (23), (25) and (26), we have

E[V (t+ 1)Ft] =‖x̄(t)−x�‖2 − α(t) 〈g(t), x̄(t)− x�〉
+ α2(t)‖g(t)‖2+E

[

‖rTE(t)‖2
∣

∣Ft

]

≤ ‖x̄(t)−x�‖2 + 2K
1

2α(t)

n
∑

i=1

ri‖xi(t)− x̄(t)‖

− α(t) (f(x̄(t))− f(x�)) + α2(t)K + ξ2α
2(t). (27)

Using Jensen’s inequality, we can show that

E

[

n
∑

i=1

ri‖xi(t)−x̄(t)‖
]

≤
(

E

[

‖X(t)−1x̄(t)‖2
r

])
1

2

=φ
1

2 (t),

which is upper bounded by ξ
1

2

1 α(t). Hence, taking

expectations from both sides of (27), we arrive at

E[V (t+ 1)] ≤ E[V (t)] + ξ9α
2(t)

− α(t) (E [f(x̄(t))]− f(x�)) , (28)
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where ξ9 := 2K
1

2 ξ
1

2

1 +K + ξ2. Note that unlike (24) where

we have a multiplicative contraction, the recursive relationship

in (28) can only possibly show an additive reduction. However,

a telescopic summation of (28) over t ∈ [T ] and noting that

V (1) = x� lead to the proposition’s claim. �

Proof Sketch of Theorem 1: Combining Proposition 1 and

Proposition 2 using the triangle inequality, and the fact that

ν ≤ 1 we readily arrive at the theorem’s claim. �

Proof Sketch of Theorem 2: First note that Proposition 1

guarantees that E
[

‖xi(t)− x̄(t)‖2
]

≤ r
−1
minξ1α

2(t). This

together with the fact that f is a
√
K-Lipschitz function,

implies that

E [f(xi(t))]− E [f(x̄(t))] ≤
√
KE [‖xi(t)− x̄(t)‖]

≤ (Kr
−1
minξ1)

1

2α(t). (29)

Multiplying both sides of (29) by α(t), summing up over t,
and using Proposition 3, we arrive at

T
∑

t=1

α(t)(E [f(xi(t))]−f(x�))≤max

(

‖x�‖2, ξ10
T
∑

t=1

α2(t)

)

,

where ξ10 := ξ9 + (Kr
−1
minξ1)

1

2 . Finally, we use Hölder’s

inequality [20, Theorem 6.2],

∑T

t=1
atbt ≤

(

∑T

t=1
apt

)
1

p
(

∑T

t=1
bqt

)
1

q

,

with at := (1/α(t))
θ
, bt := α(t)(E [f(xi(t))]− f(x�))θ,

and (p, q) =
(

1
1−θ ,

1
θ

)

to get the claim of the theorem. �

Proof Sketch of Corollary 1: The claim of the

corollary is a consequence of Theorem 2 and the

convexity of the loss function, which yields to

f
(

1
T

∑T
t=1 xi(t)

)

≤ 1
T

∑T
t=1 f(xi(t)). It is worth noting

that Theorem 2 cannot be directly applied for θ = 1. We

refer to [18] to address this subtle point. �

IV. EXPERIMENTAL RESULTS

Here, we provide a numerical experiment supporting our

theoretical results. We apply PCOM-DSGD (this work) to

a linear regression problem over a time-varying network,

and compare its performance against DSGD with perfect

information sharing [5] and DIMIX [14] algorithms. For the

sake of comparison, we are also providing the theoretical

upper bounds for these algorithms. Due to the page limit,

we refer to the extended version [18] for the details of the

experiment as well as more experimental results.
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