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Distributed Optimization over Time-Varying Networks:
Imperfect Information with Feedback is as Good as Perfect Information

Hadi Reisizadeh, Behrouz Touri, and Soheil Mohajer

Abstract— The convergence of an error-feedback algorithm
is studied for decentralized stochastic gradient descent (DSGD)
algorithm with compressed information sharing over time-
varying graphs. It is shown that for both strongly-convex and
convex cost functions, despite of imperfect information sharing,
the convergence rates match those with perfect information
sharing. To do so, we show that for strongly-convex loss
functions, with a proper choice of a step-size, the state of each
node converges to the global optimizer at the rate of O (T‘l).
Similarly, for general convex cost functions, with a proper
choice of step-size, we show that the value of loss function
at a temporal average of each node’s estimates converges to the
optimal value at the rate of O(7~/2*<) for any ¢ > 0.

I. INTRODUCTION

Due to the emergence of big data analytics over large-
scale computing architectures, the study of multi-agent
(time-varying) networks has received significant attention
in various application domains, such as large-scale machine
learning [1], power control [2], and sensor networks [3], [4].
In general and in the absence of a central server, we deal with
decentralized computing nodes (agents) that are interested in
collaboratively solving optimization problems. Moreover, due
to privacy and data ownership concerns, each node performs
local and on-device computation on its own available data.
To ensure the convergence to an optimal solution of the
original problem, nodes exchange information over a (time-
varying) network. However, exchanging exact information
can potentially introduce a massive communication overhead
in the network. This communication overhead increases as the
number of the decision variables grows. In this paper, we study
distributed optimization problems and propose a gradient-
based distributed algorithm that addresses the limitation of the
communication load over time-varying graphs, by exchanging
compressed information. Surprisingly, the algorithm achieves
the same performance as one with exact information sharing.
Related Works. Various algorithms and methods have
been proposed for convex [5]-[7] and non-convex [8], [9]
distributed optimization problems, where various sub-gradient
methods with diminishing step-sizes have been used to show
convergence to a desired point. These works assume an exact
information sharing among nodes, i.e., each node is allowed to
communicate real-valued vectors with its neighbors. Various
compression approaches have been used in the literature to
mitigate the communication constraint [10]—-[13].
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A DSGD algorithm with quantized information sharing
over a fixed graph is presented in [11]. It is shown that,
for strongly convex functions, the (time-invariant) step-sizes
of the algorithm can be tuned in terms of a given stopping
time (iteration) 7', such that the algorithm reaches a point
within ¢T'—1/?*€-neighborhood of the optimum point, for
some ¢ > 0 and any € > 0 [11]. However, the theoretical
result only holds for T' > T,,;,, where T,,;, depends on e,
and grows unboundedly as € vanishes. In our recent work [14],
[15], a two time-scale DSGD algorithm, DIMIX, with two
vanishing step-sizes is proposed for time-varying networks
and imperfect information sharing. One time-scale suppresses
the noise induced by incoming information from neighboring
agents, and the other time-scale regulates the local loss
functions’ gradients. It is shown that for strongly convex
setting with a proper choice for step-sizes, each node finds
the optimal solution at the rate of O(T~'/2) [14]. A similar
result is presented in a parallel work [16], for time-invariant
networks. Although these proposed algorithms address noisy
information sharing over time-varying graphs, they offer a
reduced speed of convergence in comparison to the exact
information sharing methods. In this regard, an error-feedback
mechanism with diminishing step-size over fixed-network is
introduced in [10], and it is shown to achieve the convergence
rate of O(T~1) only for strongly convex functions. In another
related work [12], error-feedback is used for the push-sum
algorithm with fixed step-size (that depends on the stopping
time 7') over a fixed network. It is shown that the algorithm
stops at a point close to a desired point of the loss function.
Contributions. In this work, the distributed optimization
problem with quantized information sharing over time-varying
networks is studied. Each node updates a local state by
exploiting local computations and the quantized information
received from its neighbors. We extend the convergence
analysis of a novel decentralized stochastic gradient descent
algorithm that utilizes diminishing step-sizes and a feedback
mechanism to damp the quantization noise, proposed in [10].
We show that for strongly convex loss functions with a
proper choice of step-size, each node’s state converges to
the optimal point at a rate of O(T~!), which matches with
the convergence rate of the DSGD with perfect information
sharing [5]. Also, for convex loss functions, we show that
the loss associated with the temporal average of the states’
for each node converges to the optimal loss at the rate of
O(T~Y/2%€) for any ¢ > 0. To establish our results, we
analyze the convergence rate of the close-loop system with a
certain sum-product expression, then provide a novel analysis
for the asymptotic behavior and the convergence rate of
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the sum-product expression. Our simulations results strongly
support the tightness of the provided analysis.

Notation and Basic Terminology. We use [n] to denote
{1,2,...,n}. Since we are dealing with minimizing a
function in R, we assume that the underlying functions
are acting on row vectors, i.e., X € R!*4 = R?. The rest
of the vectors, i.e., those in R®*1 = R"™, are assumed to
be column vectors. The Ls-norm of a vector x € R? is
defined by ||x||? = 2?21 |z;]2, and the Frobenius norm of
a matrix A € R"*? is defined by ||A|% = S0, [|Ai]? =
S Z?Zl |Ai;|?, where A; denotes the ith row of A. A
vector r € R™ is called stochastic if 7; > 0 and > "
A non-negative matrix A € R™*4 is called (row) stochastic
if ijl A;; =1 for every i € [n].

For an n x d matrix A and a strictly positive stochastic
vector r € R”, we define the r-norm of A by ||A||f =
ST | A;||%. It can be verified that |-, is a norm on the
space of n x d matrices.

II. PROBLEM SETUP AND MAIN RESULTS

In this section, we discuss the problem formulation and
the main results of this work.

A. Problem Setup

Consider a time-varying network of n > 2 agents. Each
agent i has the cost function f; : R'*¢ — R. The goal is to
minimize the function f(x) := > ", r; f;(x), or equivalently
solve the following consensus optimization problem

n
ZTifi(Xi) st X3 =X =" =Xp, (1)

=1

min

X1, ,Xn ERY
where r = (r1,...,7,) is a stochastic vector.

We represent the time-varying network at time ¢ > 1 by a
directed weighted graph G(t) = ([n],&, W (t)), where the
vertex set [n] is the set of agents, the set & C [n] X [n]
is the set of edges/links connecting them, and the n X n
matrix W (t) represents the weight of the edges on the graph.
In our model, the entry W;;(t) is the weight that agent ¢
assigns to the incoming information from agent j. Here,
Wi;(t) > 0 only if (j,i) € €. Let N\ := {j | (j,i) € €}
and NV, == {j | (i,j) € £} be the sets of in-neighbors and
out-neighbors of node i € [n], respectively.

To discuss our Perturbed Compressed Decentralized
Stochastic Gradient Descent (PCOM-DSGD) algorithm, let
x,(t) be the state of node j (of a global optimizer of (1) at
time ¢t. We also use X;(t) to denote the estimate of x;(t),
reconstructed at every out-neighbors of node j. This estimate
can be reconstructed recursively. At time ¢, node j losslessly
broadcasts the quantized vector Q(x;(t) —%;(t—1)) to every
i € Ny Then, node 7 updates its estimate of x;(t) as

Xj(t) = %;(t=1) + Q(x;(t) = %;(t=1)). 2

Next, each node ¢ computes its local gradient V f; at x;(t),
and updates its local decision variable as

i (1) =Wii (£)xi (1) +>_ Wi (8)%;(8) — () Vi (xi(1)),
JEN]

1T = 1.

where a(t) = (tfig)v is the diminishing gradient step-size.
Here, we assume v € (0,1] and ap,7 € RT are fixed
throughout the algorithm. For notational convenience, assume
that x;(t), x;(t), and V f;(x;(t)) are all row vectors and
consider matrices X (¢), E(t), Vf(X(t)), whose ith rows are
x;(t), ei(t), and V f;(x;(t)), respectively. Thus, our update
algorithm

X(t+1) = WOX(0) + E(t) - a)VIX (), O

where E(t) = (W(t) — Wp(t))(X(t) — X(t)) is the
accumulative perturbation matrix, and Wp(¢) is a diagonal
matrix with W;;(¢) as its ith diagonal entry.

Remark 1: Note that the dynamics in (3) with E(t) =0
subsumes the decentralized gradient descent methods with
exact information sharing.

In the rest of this paper, we will show that under some
conditions, E(t) decays to zero, and consequently, the
proposed algorithm convergences to a desired optimal point.

B. Assumptions

We make the following assumptions on the quantizer, the
sequence of stochastic weight matrices {W (¢)}, and the local
objective functions {f; : i € [n]}.

Assumption 1 (Quantizer Assumption): The  quantizer
Q(-) is a random quantizer, i.e., for any x € R4, Q(x)is a
random vector in R%. Furthermore, it is an unbiased and has
a bounded average distortion (in Lo-norm), i.e., for some
fixed w € (0,1] and all z € R,

EQx)]=x, E[lQ() —x|*]<wlx*. @

Finally, we assume that () is an independent
quantizer, i.e., the collection of random vectors
{Qxi(t) —%x;(t—1)):ie€n],t>1} in (2) is an
independent collection of random vectors.

In the following, we assume that Assumption 1 holds for
some w < wy, where wy depends on the problem parameters.
Let us discuss an (important) example of such a quantizer.

Example 1: Stochastic Quantizer. For a number of
quantization levels s (with log,(s) bits of communication per
dimension), and a vector x € R, the stochastic quantizer
Q?(x) is a random vector in R?, where

@260, =l -snte) ¢ ([Zs). deld ©)
and (j(z,s) is a random variable taking values in
{0,1,2,...,2=1} and we have!

_ [ T[sxl/s
C(w,5) = { |sz]/s

It is shown in [17] that the stochastic quantizer is unbiased
(ie., E[Qf (x)] = x) and satisfies

w.p. sz — |sz|
w.p. [sx] — sx.

(6)

E (105 (x) - x|[2] < min (d/s, Vd/s) |x|*

'We define ((x,s) = x whenever sz is an integer.
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Therefore, for d < s2, the stochastic quantizer would satisfy
Assumption | with w = d/s?. Note that we can always tune
the parameter s to guarantee w < wy.

We need certain connectivity conditions for the underlying
network to guarantee the convergence of the algorithm.

Assumption 2 (Connectivity Assumption): We  assume
that the weight matrix sequence {WW(¢)} in (3) satisfies the
following properties

(a) Stochastic with Common Stationary Distribution: W (t)
is row-stochastic and r” W (t) = rT for all ¢ > 1, where
r > 0 is the given weight vector.

(b) Bounded Nonzero Elements: There exists some 1 > 0
such that if for some 4,5 € [n] and ¢ > 1 we have
Wij (t) > 0, then Wij(t) > .

(c) B-Connected: For a fixed integer B > 1, the graph

[n], Z-J;?H & (k)) is strongly connected for all ¢ > 1,
where E(k) = {(4,1) | Wi;(k) > 0}.

The next assumption describes the properties of the loss
functions we study in this work.

Assumption 3 (Objective Function Assumptions): We
assume the following properties on the function f; for all ¢
(a) The function Vf; is L-Lipschitz, i.e., for any x,y € R?

we have that ||V £;(x) — V£i(y)]| < Lllx — y].

(b) The function f; is u-strongly convex, i.e., for any x,y €
R, we have (V fi(x) — V/i(y),x — y) > ulx -y

(¢) fis have bounded gradients, i.e., there exists a scalar
K > 0 such that |V f;(x)||? < K for all x € R%.

Remark 2: Using Assumptions 3-(a), 3-(c), and the mean-
value theorem for g; : [0,1] — R given by g¢;(t) = fi(x +
t(y — x)), we can conclude that f;(x) is a v/K-Lipschitz
function for all ¢ € [n].

C. Main Results and Discussion

With these preliminary discussions, we are ready to

present the main results of the paper. In the rest of this
paper, we refer to any quantity that does not depend on
iteration ¢ simply as a constant. Such a constant can
possibly depend on the parameters of the problem, i.e.,
the network parameters (n, B,n,r), function parameters
(L, p, K), dynamic parameters («g,v,7), and quantizer
parameter w.
Strongly Convex Objectives. For strongly convex loss
functions, we have the following result regarding the
convergence rate of each node’s estimate to the optimal point
defined by x*:=arg min f(x).

Theorem 1: Suppose that Assumptions 1-3 hold and let
a(t) = 7. Then, if v € (0,1) the dynamics in (3)

This result follows from Proposition 1 and Proposition 2, and
its sketch is presented in Section III. We refer to the long
version of the paper [18] for its detailed proof.

Remark 3: Theorem 1 guarantees the exact convergence
(in Ly sense) of each local state to the global optimal with
diminishing step-size. When v = 1 we get the maximum
exponent for the convergence rate as in (8), which recovers the
convergence rate of decentralized gradient descent method
with exact information sharing [19]. This shows that the
feedback mechanism suppresses the noise generated by the
random quantizer. Our algorithm is inspired by DIMIX [14]
(and a similar work in [16]), where a second vanishing time-
scale is used to damp the quantization noise without having
a feedback mechanism. The additional time-scale leads to a
slower convergence of O(T~'/2) as reported in [14].

Remark 4: In a related work [10], for strongly convex
loss functions, under the limited setting of time-invariant
networks, uniform weights r = 1, and a particular choice of
parameter v = 1, an algorithm is proposed where achieves
the same convergence rate estimate O(T~1).

Convex Objectives. The next theorem shows the convergence
of the algorithm for general convex cost functions.

Theorem 2: Under Assumptions 1, 2, and Assuming 3-(a),
3-(c), and convexity for the local cost functions f;(-), the
dynamics (3) satisfies

1
[

My(v):= :O(T—min{y,l—y}),

=S [ xa(t)] - F)

for a(t) = %7 withv € (0,1], v # 1/2,and all 6 € (0, 1),
provided that 7 > 7. Moreover, for v* = 1/2, we have the
optimal convergence rate of

My(v*) =0 (T7Y2InT).
Corollary 1: Under the conditions of Theorem 2, for the
optimum choice of v* = 1/2, we get

] (; ixiwﬂ — fx) =0 (T2,
t=1

for any € > 0.

Remark 5: In a related work [12], a quantized push-sum
algorithm is presented for convex objective loss functions
under a limited setting of time-invariant networks, uniform
weights r, and a fixed step-size, that depends on a the stopping
time T, and for some constant ¢ > 0 it is shown that

1 & * —1/2
f T;Xz(t) — f(x*)<cT )

E

E

(t+1)v
isfi
satisfies ITII. PROOFS AND DISCUSSIONS
* 112 —v
E [HX (T) —1x ||r:| =0 (T ) ) (7 Here, we provide the proof sketches of the main results
) ) Wil presented in this paper. The proof of the main theorems are
provided that 7 > 7;. Moreover, if v = 1, ap > T/77, and it on four major lemmas. The details of these proofs are
T > Ty we have far beyond the page limits of the current publication but they
% _ ided in [18]. First, we present a technical lemma that
]E{XT—l Q}ZOTl. 8 areprow. . :
1X(T) < ( ) ® plays an important role in the proof of the main results. We
Here, 71 and 75 are constant shift parameters. refer to [18] for the proof of the lemma.
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Lemma 1: For any 0 < § < min(1,0),
t>tg:= (Q(UT_(S))ﬁ, we have

le Hl (1-%)

s=1 k=s+1

and every

< A(a,0,8)t= (779,

where A(a,0,0) is a constant that only depends on a, o, and
0. Moreover, for d =1 and a — o + 1 # 0, we have

t—1 1 t—1 a
>l I (-3)
s=1 k=s+1

where A(a,o0,1) =27 (1 + ﬁ

The following proposition bounds the deviation of each node’s

estimate from the average state. Let us denote the average

state by X(t) :==rT X (t) = Y1, rix;(t) for t > 1.
Proposmon 1: Under Assumptions 1, 2, and 3-(c) for

at) = when v € (0, 1], the dynamics (3) satisfies

< A(a70_’ 1)t—min((7—1,a,)7

(t+T)“
E[IX (1) - 1%(D)|}] < €1a*(T), ©

for any T' > 1, provided that 7 > 7. Here &; is a constant.
Proof Sketch of Proposition 1: The proof is based
on establishing two recursive inequalities between
o(t)=E [ X (1)~ 1x()||2] and v(t)= [1|X< )-X()1?.
Using the linearity of (3), the fact that { E(¢)} is a zero-mean
independent process, and {W(t)} admits a common
stationary distribution r, we can show
2

E || X()-1x(t)]3] < 2E P(t:5)V (X (5))
+2)°E [HP(t B, (10)
s=1
where P(t:s) := W (t—1)---W(s+1) — 1r”. Furthermore,

the B-connectivity condition in Assumption 2 implies
that ||P(t:s)U|? < k(1= N)!*71||U||2 for any matrix
U, where \ = 1225 x = (1—B)\)_1. Using the
above contraction, and the bounded gradient condition in

Assumption 3-(c), for the first term in (10), we have
2

P(t:s)VF(X(s)| | <&a*(t), (1)

r

where & is constant Moreover, using the facts that
2
IAB]|; < HAH ||B||F and [[W(s) — Wp(s)[l; <1, we can

where (a) follows from (2) and (b) follows from Assumption 1.
Rewriting X (¢ + 1) from (3) we arrive at

X(t+1)— X () =Wpt)X () + (W(t) — Wp(t)X(t)
—a(t)VF(X(8) - X (1)
(W) - Wp(t) - D)(X(t) - X(2))
+ (W () = D)(X(1) = 1%(8) —a(t) V(X (1)),

where in (c) we used the fact that W(s)1 = 1 for every
s > 1. Then, convexity of the norm implies that

X (t+1) = X()|?
< 3|W (1) = Wn(t) — I X (1) — X (1))
+3[[W () = IIP[1X (8) — 1x(8) | + 30> () V.f (X ()|

@ ,
< 6n[|X(8) = X (O] + 3nl| X (£) -

where (d) follows from Assumption 3-(c). Taking expectation
from both sides and plugging that into (13) we get

Y(t+1) <3nw (20(1) + 1, 0(0) + Ka?(1))
in which we used the fact that |U||> < r.L ||U]||? for any

matrix U. Next, having (12) and (14), we can use induction
on t to prove that ¢(t) < &a?(t) and ¥(t) < £3a2(t) for
every t > 1. Due to the page limit, the induction details are
provided in [18]. It is worth noting that the condition w < wy
is required to complete the induction. |

The next proposition bounds bounds the gap between the
average state and the optimal point of a strongly-convex
function, i.e., x* := argmin f(x )

Proposition 2: Let a(t) = =
3, the dynamics (3) satisfies

E [|R(T) — x*|?] <€ae™ T peg(T+7) 7,

for any iteration 7' > 1, provided that v € (0,1) and 7 > 1.
Furthermore, if v = 1 and o > £tE | we get

wl >
E [IIX(T) - x*|*] < &(T+7)7",

for any 7' > 1, assuming that 7 > 75. Note that &4, &5, 6, &7
and as well as 7 and 7o are constant.

Proof Sketch of Proposition 2: Define x(t) = rlx(t),
g(®) =r" V(X 0) =3, i Vfi(x(0) and V(1) := || x(t) —x*|*
Then, multiplying both sides of (3) by r”, subtracting x*,
and using the fact that r" W (t) = rT, we get

X(t+1) —x* = x(t) —x* —a(t)g(t) + T E(t).

1x(t)||? + 3nKa?(t),

(14)

. Under Assumptions 1-

(15)

write || E(s)]; < |[X(s) = X(s)|*. Hence, (10) leads to Since, E [E(t)] = 0 (see Assumption 1), from (15) we have
o) < o) + 2630~ N, () EVEEDFI=EIRC 1) X Pl
=1 =[x(t) —x"—aOgOI*+E[[x"EO?| 7] 16)
On the other hand, Awe have Letting g(t) := Vf(x(t)) = Y1, 7V fi(X(t)), we have
¥+ 1) = E[E[I%C+1) - X+ DP|7] () "~ a(tt)°
@ E[E [||X(t)+Q(X(t+1)_X(t))_ 1)||2‘]-'tH = [I%(t) — x* — a(t)g(t) + a(t)g(t) — a(t)g(t)|?
(b) ) < (L+p®) %) —x* — a(t)g ()|
< WE [|X(t+1) - X)), (3) +a%(B)(L+1/p(t) a(t) - 3(1)° a7
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for any p(t) > 0. Now, we can use [14, Lemma 7] for strongly
convex function f(-) and write

(x(t) = x*,5(t) = 0) > c1]|g@)I* + eal|%(2) — x|, (18)

_ L

Therefore, for the first term
p+L:

where ¢; = L and ¢y
in (17), we can write

I%(t) —x* — a(t)g(®)]?

= [%(t) = x| + () lg®)|* — 2a(t)(x(t) — x*)"5(t)
< (1= 2c2a(t) [%(t) = x*[|* + a(t)(a(t) — 2c1) g(1)]*
=(1=2c2a() V(1) +a(t)(a(t) —2¢1)|g(6)|*. (19)

Hence, for sufficiently large ¢ with «(t) < 2¢; we have

I%(t) —x* —a(t)g(t)]”

Moreover, convexity of | - ||?

< (1—2co0(t))V(t). (20)

and Assumption 3-(a) imply

n

Do rillVilxi(t) = V(@)1

=1

E[llg(t)—g(t)|*| <E

n

<LY rE[Ix() - (0] < Lewa? (1), @1)

i=1

where the last inequality follows from Lemma 1. Taking
expectation from both sides of (17) and using (20) and (21)
with p(t) = caa(t), we arrive at

E [[%(t) - x* = a()g(®)I’] (22)
O)EV(®)] + Lera()(alt) +1/e2)a (1)
(D)E[V(t)] + L&rao (g + 1/c2)a’(2).
The second term in (16) can be also bounded as
E[E [l E@)IF]] <E[I"EGI]
< [l (s) = Wo () IPE [IX (1) - X(@)]
< (1) < L2a®(1), (23)

<(1-ca

<(1-c

where the last inequality is discussed in the proof of Lemma 1.

Taking expectation from both sides of (16) and using (22)

and (23), we arrive at the following recursive inequality
EViE+1D]=E[E[V(t+1)]|F]

< (1 - c2a(t)E[V (1) + &a®(t),

where &g := L& ap(ag + 1/¢3) + &. This leads to

(24)

E[V(1)] < ( o 0204(8))> E[V(T)]

s=Ty
t—1 t—1
+& Y a*(s) l IT a —0204(6))] :
s=To l=s5+1

Simplifying the latter expression using Lemma | we arrive
at the claim of the lemma. ]

Next, we present a lemma that bounds the gap between
f(x) and f(x*) for a convex function.

Proposition 3: Let Assumptions 1, 2, 3-(a), and 3-(c) hold.
Then, assuming the convexity of local cost functions f;(),
T > 79, and for a constant £y > 0, the dynamics (3) satisfies

T T
Yo alt) B R -f(x)) < %IIX*II2+£9Za2(t)

Ig;olof Sketch of Proposition 3: Similar to t]i1_e1 proof of
Proposition 2, we can arrive at (16). However, the inequality
in (18) does not hold when the function is only convex.
Alternatively, we can use the convexity of the function, and
write

Zri (Vfi(xi(t),xi(t) —x*) > Zri (fi(xi(t)) — fi(x¥))
= Zn‘ (fi(xi(t)) = fi(x(1))) + f(x(t)) — f(x7)

Then, using the Cauchy-Schwarz inequality, we have
(9(t),x(t) —x") = (rTV (X (1)), x(t) —x")
:ZTivai(Xi(t))a X(t) =i (1)) +(Vfi(xi(t)), % (t) —x")]

> Z ri (Vfi(xi(t)) = Vfi(x(1)), %(t) — xi(t))
+ (%) = F(x7)
> =Y il Vilxa(t) = fix@)lIxi() — (@)l

=1
+ F(x(D) - F(x)
> 2 Y () - %O + &) - Fx). @)

Moreover, from Assumption 3-(c) we get
n 2 n
lo@2=||>rivsiea )] <D rIVAG)IP < K. ©6)
i=1 i=1

Continuing from (16), and using (23), (25) and (26), we have
E[V(t+1)F] =[x(t) —x*[> = a(t) (g(t), x(t) — x*)

o*(®)llgOI* +E [[lr" E()||*| 7]
< [[%(t)—x*|* + 2K 2a(t) Z rillxi(t) = x(8)]]
—a(t) (X)) = f(x)) + * () K + &0a>(t). 27)

Using Jensen’s inequality, we can show that

n

E Zmnxz-(t)—x(t)n] < (Ellx®-1x)3]) =0t @),
i=1
which is upper bounded by 51% a(t). Hence, taking
expectations from both sides of (27), we arrive at
E[V(t +1)] < E[V(1)] + &a(t)
—a(t) (E[f(x()] - f(x),  (28)
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where &y := 2K %51% + K + &5. Note that unlike (24) where
we have a multiplicative contraction, the recursive relationship
in (28) can only possibly show an additive reduction. However,
a telescopic summation of (28) over ¢ € [T'] and noting that
V(1) = x* lead to the proposition’s claim. [ |

Proof Sketch of Theorem 1: Combining Proposition | and
Proposition 2 using the triangle inequality, and the fact that
v < 1 we readily arrive at the theorem’s claim. ]

Proof Sketch of Theorem 2: First note that Proposition 1|
guarantees that E [[|x;(t) — %(t)[|?] < rpi,&a?(t). This
together with the fact that f is a v/K-Lipschitz function,
implies that

E [f(xi(t)] — E[f(x(1))] < VKE [[lx;(t) — x(t)]]

< (Krphé)falt).  (29)

Multiplying both sides of (29) by «(t), summing up over ¢,
and using Proposition 3, we arrive at

T T
D) (B [f(xi(0)]— f(x*)) Smax|[Ix*]%, &10)_a®(t) |,

t=1

where &9 := & + (Kr;ﬂ}nfl)%. Finally, we use Holder’s
inequality [20, Theorem 6.2],

; ;
ZtT:1 arbe < (Zj—l af) (Zj—l bg) ’

with a; == (1/a(t)’, b = a(t)E[f(x(D)] — F(x))",
and (p,q) = ﬁ, 7 ) to get the claim of the theorem. M

Proof Sketch of Corollary 1: The claim of the
corollary is a consequence of Theorem 2 and the
convexity of the loss function, which yields to
f (% Zle xi(t)) <% Ethl f(x;(t)). It is worth noting
that Theorem 2 cannot be directly applied for § = 1. We
refer to [18] to address this subtle point. |

IV. EXPERIMENTAL RESULTS

Here, we provide a numerical experiment supporting our
theoretical results. We apply PCoM-DSGD (this work) to
a linear regression problem over a time-varying network,
and compare its performance against DSGD with perfect
information sharing [5] and DIMIX [14] algorithms. For the
sake of comparison, we are also providing the theoretical
upper bounds for these algorithms. Due to the page limit,
we refer to the extended version [18] for the details of the
experiment as well as more experimental results.
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