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Abstract—We study strongly convex distributed optimization
problems where a set of agents are interested in solving a sepa-
rable optimization problem collaboratively. In this article, we pro-
pose and study a two-time-scale decentralized gradient descent
algorithm for a broad class of lossy sharing of information over
time-varying graphs. One time-scale fades out the (lossy) incoming
information from neighboring agents, and one time-scale regu-
lates the local loss functions’ gradients. We show that assuming a
proper choice of step-size sequences, certain connectivity condi-
tions, and bounded gradients along the trajectory of the dynamics,
the agents’ estimates converge to the optimal solution with the

rate of O(T−1/2). We also provide novel tools to study distributed
optimization with diminishing averaging weights over time-varying
graphs.

Index Terms—Convex optimization, distributed multiagent sys-
tem, distributed optimization, gradient descent algorithms, time-
varying graphs.

I. INTRODUCTION

E
MERGENCE of Big Data analytics, modern computer architec-

tures, storage, and data collection have led to a growing interest in

the study of multiagent networked systems. These systems arise in var-

ious applications, such as sensor networks [1], [2], network routing [3],

large-scale machine learning [4], power control [5], and distributed

network resource allocations [6], [7], for which decentralized solutions

offer promising results. In general and in the absence of a central entity,

we are often dealing with a time-varying network of agents, each

can perform local and on-device computation. The information can

be shared throughout the network via local communication between

neighboring agents. This communication among agents, especially

when the dimension of the data is large, accounts for a significant delay

in the overall running time of the algorithm. In this article, we study

distributed optimization under those lossy and imperfect information

sharing scenarios, and propose and analyze a gradient-based distributed

algorithm that guarantees convergence to the optimum solution, in the

presence of communication constraints.

Related Works:Various methods have been proposed and studied

to solve distributed optimization problems in convex settings [8], [9],

[10], [11], [12], [13], [14], [15], strongly convex settings [13], [16],

[17], and nonconvex settings [18], [19]. For the convex objective

functions, a subgradient method with a fixed step-size was proposed
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over time-varying graphs in [20]. It is shown that the objective cost

function reduces at rates of O(T−1) until it reaches a neighbor of a

minimizer of the original problem. To achieve exact convergence to

a minimizer, various diminishing step-size subgradient methods have

been proposed and studied [10], [12], [18], [19], [21]. Considering

convex loss functions that are Lipschitz continuous and have bounded

gradients, a subgradient-push algorithm was proposed in [21]. There

it was shown that the objective cost function convergences at the

rate of O(T−1/2 lnT ) over uniformly strongly connected, directed

time-varying graphs. Under the same assumption and strong convexity

for loss functions, a better rate O(T−1 lnT ) for the objective loss

function plus squared consensus residual was shown in [21].

Almost all the aforementioned works on this domain consider dis-

tributed optimization with perfect sharing of information, i.e., the agents

are allowed to communicate real-valued vectors perfectly over per-

fect communication channels. However, exchanging exact information

among nodes initiates a massive communication overhead on the system

that considerably slows down the convergence rate of these algorithms

in real-world applications. Thus, it is reasonable to assume that each

agent has access to a lossy version of neighboring agents’ information.

To address lossy/noisy sharing of information, a (fixed step-size)

decentralized gradient descent method was proposed in [22]. Assuming

a fixed communication network and strongly convex local cost func-

tions, there it was shown that for a given iteration T , the algorithm’s

parameters (depending on T ) can be chosen such that the local estimate

of each agent at iteration T is (roughly) within c(T−1/2+ǫ)-distance of

the global optimal solution for some c > 0 and any ǫ > 0. Furthermore,

the result holds for a termination time T that is required to satisfy

T ≥ Tmin, where Tmin depends on ǫ as well as nonlocal parameters of

the underlying fixed graph. Specifically, as ǫ goes to zero,Tmin diverges

to infinity. In a closely related recent work [23], a two-time-scale

gradient descent algorithm has been presented for strongly convex

loss functions. Assuming a fixed topology for the underlying network,

uniform weighting of the local cost functions, and a specific scheme

for lossy sharing of information, it is shown that the expected objective

loss function achieves a rate of O(T−1/2(lnT )2). In another related

work [24], a two-time-scale gradient descent algorithm was presented

for distributed constrained and convex optimization problems over an

independent identically distributed (i.i.d.) communication graph with

noisy communication links, and subgradient errors. It is shown that

under certain conditions on the i.i.d. communication graph and proper

choices of time-scale parameters, the proposed dynamics results in

almost sure convergence of local states to the optimal point.

Contributions: We study distributed optimization problem for a

general class of lossy/noisy information sharing over time-varying

communication networks. The learning method relies only on local

computations and received imperfect information from neighboring

agents. We show that a two-time-scale gradient descent algorithm, with

a proper choice of parameters, reaches the global optima (in L2 and

hence, in probability) for every agent with a rate of O(T−1/2). To

achieve this, we make limiting assumptions including weight matrices
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admitting the same stationary distribution, B-connected communica-

tion network, and expected boundedness of the gradients along the

trajectories of the dynamics. Although weight matrices admitting the

same stationary distribution is a limiting assumption, but a stronger

assumption, namely having doubly stochastic weight matrices, is com-

monly assumed in the distributed optimization literature [10], [13],

[20], [22]. For the bounded gradient assumption, using a slightly more

sophisticated proof in the extended version of this work [25], we show

that the Lipschitz gradients result in expected bounded gradients for

strongly convex functions.

In addition, in the existing works on distributed optimization [9],

[12], [13], [17], [18], [20], [21], [22], [23] (with perfect or imperfect

sharing of information), either the underlying communication network

is assumed to be fixed, or the nonzero elements of the averaging

weights are assumed to be uniformly bounded away from zero. In our

proposed method, however, the weights are not uniformly bounded

away from zero and they are evolving over an underlying time-varying

communication network. One of the key contributions of this article

is to develop tools and techniques to deal with diminishing averaging

weights for distributed optimization over time-varying networks.

Notation: We denote the set of integers {1, 2, . . . , n} by [n] and the

set of nonnegative real numbers by R
+. For a matrix A ∈ R

n×d, we

denote its ith row and jth column by Ai and Aj , respectively. For a row

vector x ∈ R
d, we use ‖x‖ to denote the 2-norm of x. For a positive

vector r ∈ R
n with

∑n
i=1 ri = 1, the r-norm of an n× d matrix A is

defined by ‖A‖2
r
=
∑n

i=1 ri‖Ai‖2. It can be verified that ‖ · ‖r is a

norm. We denote the Frobenius norm of A by ‖A‖F , where ‖A‖2F =
∑n

i=1

∑d
j=1 |Aij |2. Moreover, A ≥ B indicates that all the entries of

A−B are nonnegative. Finally, a nonnegative matrix A ∈ R
n×d is

called stochastic if
∑d

j=1 Aij = 1 for every i ∈ [n].

II. PROBLEM SETUP AND MAIN RESULT

In this section, we discuss the problem formulation and the main

result of this work.

A. Problem Setup

Consider a set of n ≥ 2 agents that are connected through a time-

varying network. Each agent i ∈ [n] has access to a local cost function

fi : R
d → R. The goal of this article is to minimize the function

f(x) :=
∑n

i=1 rifi(x), or equivalently solve

min
x1,...,xn∈Rd

n
∑

i=1

rifi(xi) s.t. x1 = x2 = · · · = xn (1)

where vector r = (r1, r2, . . . , rn) is a stochastic vector, i.e., ri ≥ 0
and

∑n
i=1 ri = 1.

We represent the time-varying topology at time t ≥ 1 by the directed

graph G(t) = ([n], E(t)), where the vertex set [n] represents the set of

agents and the edge set E(t) ⊆ {(i, j) : i, j ∈ [n]} represents the set

of links at time t. At each time t, agent i can only send messages

to its (out-)neighbors in E(t), i.e., all j ∈ [n] such that (i, j) ∈ E(t).
To achieve a consensus, the sequence {G(t)} should satisfy some

desirable long-term connectivity properties, which will be discussed

in Assumption 2.

To present our algorithm for solving (1) collaboratively, let us first

discuss the general framework for lossy/noisy sharing of information

that is considered in this work. We assume that each agent maintains

the sate xi(t) ∈ R
d, which is an estimate of the optimizer of (1),

and has access to its local cost function’s gradient information. More-

over, it has access to an imperfect weighted average of its neighbors

states at time t, denoted by x̂i(t). More precisely, agent i has access

to x̂i(t) =
∑n

j=1 Wij(t)xj(t) + ei(t), where W (t) = [Wij(t)] is a

row-stochastic matrix that is consistent with the underlying network

G(t) (i.e., Wij(t) > 0 if only if (j, i) ∈ G(t)) and ei(t) is a random

noise vector in R
d. Although this setting might look contrived, many

practical multiagent communication settings satisfy this structural as-

sumption. Later, we discuss two of such practical settings.

Now, we present our Diminishing Mixing (DIMIX) algorithm. In

this algorithm, each agent i updates its current estimate by computing a

diminishing convex combination of its own state and received noisy av-

erage estimate x̂i(t), moving along its local gradient. Mathematically,

at each node i ∈ [n], the update rule is given by

xi(t+1)=(1−β(t))xi(t)+β(t)x̂i(t)−α(t)β(t)∇fi(xi(t)) (2)

where α(t) = α0

tν
, β(t) = β0

tµ
, and µ, ν ∈ (0, 1) are the diminishing

step-sizes of the algorithm. A similar dynamics is independently pro-

posed and discussed for a particular subsetting (i.e., specific lossy

sharing mechanism, weight vector r, and a specific choice of ν, µ > 0)

of our framework for time-invarying networks in [23]. For simplicity

of notation, let

X(t) :=

⎡

⎢

⎣

x1(t)
...

xn(t)

⎤

⎥

⎦
, E(t) :=

⎡

⎢

⎣

e1(t)
...

en(t)

⎤

⎥

⎦
,∇f(X(t)) :=

⎡

⎢

⎣

∇f1(x1(t))
...

∇fn(xn(t))

⎤

⎥

⎦
.

Using this notation, we can rewrite the update algorithm (2) in the

compact matrix format as

X(t+ 1) = ((1− β(t))I + β(t)W (t))X(t) + β(t)E(t)

− α(t)β(t)∇f(X(t)). (3)

B. Assumptions

Here, we discuss the assumptions on the agent i’s neighbor average

state estimate x̂i(t), the stochastic weight matrix {W (t}), and local

objective functions fi, that we will use in the subsequent discussions.

Assumption 1 (Noise Assumption): We assume that the noise

sequence {ei(t)} satisfies

E [ei(t) | Ft] = 0 and E
[

‖ei(t)‖2 | Ft

]

≤ γ

for some γ > 0, all i ∈ [n], and all t ≥ 1. Here, {Ft} is the natural

filtration for the process {X(t)}.

As mentioned before, to provide guarantees on the working of our

algorithm, certain connectivity assumptions need to be satisfied among

the agents over time.

Assumption 2 (Connectivity Assumption): We assume that the

weight matrix sequence {W (t)} satisfies the following.

1) Stochastic with common stationary distribution: W (t) is nonneg-

ative and W (t)1 = 1 and rTW (t) = rT for all t ≥ 1, where

1 ∈ R
n is the all-one vector, and r > 0 is the stochastic weight

vector appearing in (1).

2) Bounded nonzero elements: There exists someη > 0 such that if for

some i, j ∈ [n] and t ≥ 1 we have Wij(t) > 0, then Wij(t) ≥ η.

3) B-connected: For a fixed integer B ≥ 1, the graph

([n],
⋃t+B

k=t+1 E(k)) is strongly connected for all t ≥ 1, where

E(k) = {(j, i) | Wij(k) > 0}.

The following assumptions hold for the objective functions.

Assumption 3 (Function Assumptions): We assume the following

properties on the function fi for all i.
1) The function fi is L-smooth, i.e., for any x,y ∈ R

d, we have that

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖.
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2) The function fi is ρ-strongly convex, i.e., for any x,y∈R
d, we

have 〈∇fi(x)−∇fi(y),x−y〉 ≥ ρ‖x−y‖2.

3) fi has uniformly bounded gradients along the trajectory of the

dynamics (3) {xi(t)}, i.e., there exists a scalar K > 0 such that

for all t ≥ 1 and all i ∈ [n]

‖∇fi(xi(t))‖2 ≤ K, xi(t) ∈ R
d. (4)

Remark 1: The properties of fis in Assumption 3 can be immedi-

ately translated to similar properties for f(x) =
∑n

i=1 rifi(x). More

precisely, the function f is also L-smooth and ρ-strongly convex, and

has a bounded gradient with ‖∇f(X(t))‖2
r
≤ K.

C. Main Result and Discussion

The main result of this article is the following theorem.

Theorem 1: If the conditions in Assumptions 1–3 are satisfied for

α(t) = α0

tν
and β(t) = β0

tµ
, and µ, ν ∈ (0, 1) when µ+ ν < 1, the

dynamics (3) satisfy

E

[

‖X(T )− 1x⋆‖2
r

]

≤ ξ1T
−min(µ,2ν)+ξ2 exp

(

−ξ3T
1−µ−ν

)

+ ξ4T
−min(µ−ν,2ν) (5)

for any iteration T ≥ max(T1, T2, T3, T4), where T1, T2, T3, and

T4 are given in (16), (21), (30), and (39), respectively, and

x⋆ := argmin f(x). Moreover, the constants ξℓ for ℓ ∈ {1, . . . , 4}
are evaluated in (42). Furthermore, under the same assumptions,

when µ+ ν = 1 and α0β0 ≥ ρ+L
ρL

min(2µ− 1, 2ν), the dynamics (3)

satisfy

E

[

‖X(T )−1x⋆‖2
r

]

≤ξ1T
−min(µ,2ν)+ ξ5T

−min(µ−ν,2ν) (6)

for any iteration T ≥ max(T1, T2, T3), where the constant ξ5 is deter-

mined in (43).

We refer to Section IV for the proof of Theorem 1.

Remark 2: Theorem 1 guarantees the exact convergence (in L2

sense) of each local state to the global optimal with diminishing

step-size even though the noises induced by random quantization and

gradients are not vanishing with iterations. To maximize the exponents

in the upper bounds (5) and (6), it can be verified that the solution is

µ = 3/4 and ν = 1/4. Replacing this in (6), we conclude

E

[

‖X(T )− 1x⋆‖2
r

]

≤ ξT−1/2

for any T ≥max(T1, T2, T3)=max((2/λβ0)
4, α0β0(ρ+L)/2) and

some constant ξ > 0. Our algorithm and the main result are inspired by

the fixed step-size variation of (3) proposed in [22] under the limited

setting of time-invarying networks, uniform weights r, and a particular

choice of lossy sharing of information. In that setting, it is shown that

for any given stopping time T ≥ Tmin and any ǫ > 0, the constant

step-sizes α0, β0 > 0 can be set such that

E

[

‖X(T )− 1x⋆‖2
r

]

≤ cT−1/2+ǫ

where c and Tmin are positive constants depending on the problem’s

parameters (note that this is established for a fixed T ). However,

Tmin → ∞ as ǫ → 0 [22]. Here, we provide a rigorous convergence rate

analysis that reduces to O(T−1/2) for every iteration T . In Theorem 1,

for the case µ+ ν = 1, the minimum number of required iterations is

finite.

Examples for Stochastic Noisy State Estimation: The noisy estima-

tion of the neighbors’ state used in (2) may appear in various practical

problem settings. In the following, we describe two of such scenarios.

Example 1: A practical scenario where the noisy average neighbor

estimate arises is when we deal with noisy communication chan-

nels between the agents. Consider a wireless medium, in which

the communication links between the agents are Gaussian chan-

nels, i.e., when node j sends its state xj(t) to its neighbor i,
the received signal at node i is xj(t) + zi,j(t), where zi,j(t)
is a zero-mean Gaussian noise with variance σ2, independent

across (i, j), and t. Then, we have x̂i(t) =
∑n

j=1 Wij(t)(xj(t) +
zi,j(t)). Therefore, in this case, x̂i(t) =

∑n
j=1 Wij(t)xj(t) + ei(t)

with ei(t) =
∑n

j=1 Wij(t)zi,j(t). In addition, E[ei(t)] = 0 and

E[‖ei(t)‖2] = σ2
∑n

j=1 Wij(t)
2 ≤ σ2. Hence, the conditions of

Assumption 1 are satisfied.

Example 2: In many applications, there are band-limited links

between the agents where the information to be sent needs to be quan-

tized (to a certain number of bits), before transmission. The difference

between the actual state and its quantized version can be modelled

as the estimation noise. A popular choice for such quantizers is the

stochastic quantizer [26]. In this case, it can be shown that we have

x̂i(t) =
∑n

j=1 Wij(t)xj(t) + ei(t), where ei(t) satisfies

E
[

‖ei(t)‖2|Ft

]

≤ min

(√
d

s
,
d

s2

)

D.

Therefore, the conditions of Assumption 1 are satisfied. See the ex-

tended version of this article [25] for more detailed discussion on this.

III. AUXILIARY LEMMAS

In this section, we present auxiliary lemmas that play crucial roles

in the proof of the main result, namely, Theorem 1 in Section IV. The

proofs of Lemmas 1–5 are provided in the extended version of this

article [25].

Lemma 1: Let {W (t)} satisfy the connectivity Assump-

tion 2 with parameters (B, η), and let {A(t)} be given by

A(t) = (1− β(t))I + β(t)W (t), where β(t) ∈ (0, 1] for all t, and

{β(t)} is a nonincreasing sequence. Then, for any matrix U ∈ R
n×d,

and all t > s ≥ 1, we have

∥

∥

(

A(t− 1)A(t− 2) · · ·A(s+ 1)− 1rT
)

U
∥

∥

2

r

≤ κ
t−1
∏

k=s+1

(1− λβ(k)) ‖U‖2
r

where λ := ηrmin

2Bn2 , κ := (1−Bλβ0)
−1 and β0 = β(1).

Lemma 2: For any pair of vectorsu,v, and any scalarθ > 0, we have

‖u+ v‖2 ≤ (1 + θ)‖u‖2 + (1 + θ−1)‖v‖2. Similarly, for matrices

U and V and any θ > 0, we get

‖U + V ‖2
r
≤ (1 + θ) ‖U‖2

r
+
(

1 + θ−1
)

‖V ‖
r
.

Lemma 3: For any 0 ≤ δ < 1 and 0 < a < 1, we have

t−1
∏

k=s

(

1− a

kδ

)

≤ exp

(

− a

1− δ

(

t1−δ − s1−δ
)

)

.

For δ = 1 and 0 ≤ a < 1, we have
∏t−1

k=s(1− a
k
) ≤ ( t

s
)−a.

Lemma 4: Let {β(t)} be a sequence in R and λ be a nonzero scalar.

Then, for all t ≥ 1

t−1
∑

s=1

β(s)
t−1
∏

k=s+1

(1− λβ(k)) =
1

λ
− 1

λ

t−1
∏

k=1

(1− λβ(k)) (7)
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As a result, for any sequence {β(t)} in [0,1] and λ > 0

t−1
∑

s=1

β(s)
t−1
∏

k=s+1

(1− λβ(k)) ≤ 1

λ
.

Lemma 5: For any 0 ≤ δ < min(1, σ), 0 < a ≤ 1, and every

t > τ := ( 2(σ−δ)
a

)
1

1−δ , we have

t−1
∑

s=1

[

1

sσ

t−1
∏

k=s+1

(

1− a

kδ

)

]

≤ A(a, σ, δ)t−(σ−δ)

where A(a, σ, δ) is given by

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

2σ max

{

1 + 2
a
, 1 + 1

σ−1

(

2(σ−δ)
a

)
σ−δ
1−δ

}

if σ > 1

2σ max
{

1 + 2
a
, 1 + 2

a
ln
(

2(1−δ)
a

)}

if σ = 1

2σ max
{

1 + 2
a
, 1 + 2(σ−δ)

a(1−σ)

}

if 0 < σ < 1.

Moreover, for δ = 1 and a− σ + 1 
= 0, we have

t−1
∑

s=1

[

1

sσ

t−1
∏

k=s+1

(

1− a

k

)

]

≤ A(a, σ, 1)t−min(σ−1,a)

where A(a, σ, 1) = 2σ
(

1 + 1
|a−σ+1|

)

.

IV. PROOF OF THEOREM 1

In this section, we provide the proof of the main result, namely,

Theorem 1. The proof is based on the auxiliary lemmas in Section III.

We prove the result in two steps. First, we bound the deviation of the

agents’ states from their average, and then, we analyze the distance of

the average state from the global optimal point.

A. State Deviation From the Average State

The dynamics (3) is a linear time-varying system

X(t+ 1) = A(t)X(t) + U(t) (8)

with A(t) = (1− β(t))I + β(t)W (t) and the control input U(t) =
β(t)E(t)− α(t)β(t)∇f(X(t)). Therefore,

X(t) =
t−1
∑

s=1

Φ(t : s)U(s) + Φ(t : 0)X(1) (9)

where Φ(t : s) = A(t− 1) · · ·A(s+ 1) with Φ(t : t− 1) = I is the

transition matrix of the linear system (8). We also define P (t : s) :=
β(s)(Φ(t : s)− 1rT ) for the notational simplicity. As a result of

Lemma 1, we have ‖P (t : s)U‖r ≤ π(t : s)‖U‖r, where π(t : s) is

defined by

π(t : s) := β(s)κ
1
2

t−1
∏

k=s+1

(1− λβ(k))
1
2 . (10)

Assuming X(1) = 0, the dynamic in (9) reduces to

X(t) =

t−1
∑

s=1

Φ(t : s)U(s). (11)

Moreover, multiplying both sides of (11) from the left by rT and using

the fact that rTA(t) = rT , we get

x̄(t) := rTX(t) =
t−1
∑

s=1

rTΦ(t : s)U(s) =
t−1
∑

s=1

rTU(s). (12)

Then, subtracting (12) from (11), and plugging the definition of U(s),
we have

X(t)− 1x̄(t) =
t−1
∑

s=1

(

Φ(t : s)− 1rT
)

U(s)

=
t−1
∑

s=1

β(s)
(

Φ(t : s)−1rT
)

[E(s)−α(s)∇f(X(s))]

=
t−1
∑

s=1

P (t : s)E(s)−
t−1
∑

s=1

α(s)P (t : s)∇f(X(s)).

Using Lemma 2 with θ = 1, we get

‖X(t)− 1x̄(t)‖2
r

≤ 2

∥

∥

∥

∥

∥

t−1
∑

s=1

P (t : s)E(s)

∥

∥

∥

∥

∥

2

r

+2

∥

∥

∥

∥

∥

t−1
∑

s=1

α(s)P (t : s)∇f(X(s))

∥

∥

∥

∥

∥

2

r

= 2
t−1
∑

s=1

‖P (t : s)E(s)‖2
r
+ 2

∑

s 
=q

〈P (t : s)E(s), P (t : q)E(q)〉

+ 2

∥

∥

∥

∥

∥

t−1
∑

s=1

α(s)P (t : s)∇f(X(s))

∥

∥

∥

∥

∥

2

r

. (13)

Using facts that E(s) is measurable with respect to Fq for q > s and

E[E(q)|Fq] = 0, we have

E [〈P (t : s)E(s), P (t : q)E(q)〉]

= E [E [〈P (t : s)E(s), P (t : q)E(q)〉 |Fq]]

= E [〈P (t : s)E(s), P (t : q)E [E(q)|Fq]〉] = 0. (14)

Using a similar argument for q < s and conditioning on Fs, we con-

clude that (14) holds for all q 
= s. Therefore, taking the expectation of

both sides of (13) and noting the identity in (14), we get

E

[

‖X(t)− 1x̄(t)‖2
r

]

≤ 2

t−1
∑

s=1

E

[

‖P (t : s)E(s)‖2
r

]

+ 2E

⎡

⎣

∥

∥

∥

∥

∥

t−1
∑

s=1

α(s)P (t : s)∇f(X(s))

∥

∥

∥

∥

∥

2

r

⎤

⎦ . (15)

We continue with bounding the first term in (15). From Assump-

tion 1, we have

E

[

‖E(s)‖2
r

]

=E

[

E

[

‖E(s)‖2
r
|Fs

]]

=E

[

n
∑

i=1

riE
[

‖ei(s)‖2|Fs

]

]

≤ E

[

n
∑

i=1

riγ

]

= γ.

This together with Lemma 1 arrives at

t−1
∑

s=1

E

[

‖P (t : s)E(s)‖2
r

]

≤
t−1
∑

s=1

[

β2(s)κ

t−1
∏

k=s+1

(1− λβ(k))E
[

‖E(s)‖2
r

]

]

≤ γκ
t−1
∑

s=1

[

β2(s)
t−1
∏

k=s+1

(1− λβ(k))

]
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= γκ
t−1
∑

s=1

[

β2
0

s2µ

t−1
∏

k=s+1

(

1− λ
β0

kµ

)

]

.

Therefore, using Lemma 5 with parameters (σ, δ, τ) = (2µ, µ, T1), we

arrive at

t−1
∑

s=1

E

[

‖P (t : s)E(s)‖2
r

]

≤ ǫ1t
−µfor t ≥ T1 :=

⌈

(2µ/λβ0)
1

1−µ

⌉

.

(16)

To bound the second term in (15), using the triangle inequality for

norm ‖ · ‖r, we have

E

⎡

⎣

∥

∥

∥

∥

∥

t−1
∑

s=1

α(s)P (t : s)∇f(X(s))

∥

∥

∥

∥

∥

2

r

⎤

⎦

≤ E

⎡

⎣

(

t−1
∑

s=1

‖α(s)P (t : s)∇f(X(s))‖
r

)2
⎤

⎦

=
∑

1≤s,q≤t−1

E [α(s) ‖P (t : s)∇f(X(s))‖
r

× α(q) ‖P (t : q)∇f(X(q))‖
r
]

≤
∑

1≤s,q≤t−1

E [α(s)π(t : s) ‖∇f(X(s))‖
r

× α(q)π(t : q) ‖∇f(X(q))‖
r
]

=
∑

1≤s,q≤t−1

π(t : s)π(t : q)E [α(s) ‖∇f(X(s))‖
r

× α(q) ‖∇f(X(q))‖
r
] (17)

where the last inequality follows from Lemma 1 and π(t : s) is given

by (10). Using the inequality 2ab ≤ a2 + b2, we can further upper-

bound (17) to arrive at

E

⎡

⎣

∥

∥

∥

∥

∥

t−1
∑

s=1

α(s)P (t : s)∇f(X(s))

∥

∥

∥

∥

∥

2

r

⎤

⎦

≤ 1

2

∑

1≤s,q≤t−1

π(t : s)π(t : q)E
[

α2(s) ‖∇f(X(s))‖2
r

+α2(q) ‖∇f(X(q))‖2
r

]

=
∑

1≤s,q≤t−1

π(t : s)π(t : q)E
[

α2(s) ‖∇f(X(s))‖2
r

]

=

(

t−1
∑

q=1

π(t : q)

)(

t−1
∑

s=1

α2(s)π(t : s)E
[

‖∇f(X(s))‖2
r

]

)

(18)

But using
√
1− x ≤ 1− x/2 and Lemma 4, we have

t−1
∑

q=1

π(t : q) =
t−1
∑

q=1

⎡

⎣β(q)κ
1
2

t−1
∏

k=q+1

(1− λβ(k))
1
2

⎤

⎦ (19)

≤
t−1
∑

q=1

β(q)κ
1
2

t−1
∏

k=q+1

(

1− λ

2
β(k)

)

≤ 2

λ
κ

1
2 . (20)

Moreover, we can write

t−1
∑

s=1

α2(s)π(t : s)E
[

‖∇f(X(s))‖2
r

] (a)

≤ K
t−1
∑

s=1

α2(s)π(t : s)

(b)
= K

t−1
∑

s=1

α2(s)

[

β(s)κ
1
2

t−1
∏

k=s+1

(1− λβ(k))
1
2

]

(c)

≤ K
t−1
∑

s=1

α2(s)β(s)κ
1
2

t−1
∏

k=s+1

(

1− λ

2
β(k)

)

where (a) follows from Assumption 3(c), (b) uses the definition of π(t :
s) from (10), and the inequality in (c) follows from

√
1− x ≤ 1− x/2

for x ≤ 1. Therefore, using Lemma 5 with (σ, δ, τ) = (2ν + µ, µ, T2),
for

t ≥ T2 :=
⌈

(8ν/λβ0)
1

1−µ

⌉

(21)

we arrive at

t−1
∑

s=1

α2(s)π(t : s)E
[

‖∇f(X(s))‖2
r

]

≤ Kα2
0β0κ

1
2

t−1
∑

s=1

1

s2ν+µ

t−1
∏

k=s+1

(

1− λβ0

2

1

kµ

)

≤ ǫ2t
−2ν (22)

where ǫ2 := Kα2
0β0κ

1
2A(λβ0/2, 2ν + µ, µ). Plugging (22) and (19)

into (18) and using (17), we conclude

E

⎡

⎣

∥

∥

∥

∥

∥

t−1
∑

s=1

α(s)P (t : s)∇f(X(s))

∥

∥

∥

∥

∥

2

r

⎤

⎦ ≤ 2

λ
κ

1
2 ǫ2t

−2ν . (23)

Finally, using the bounds obtained in (16) and (23) in (15),

for ǫ3 := 2ǫ1 + 4κ
1
2 ǫ2/λ, we get

E

[

‖X(t)− 1x̄(t)‖2
r

]

≤ 2ǫ1t
−µ +

4

λ
κ

1
2 ǫ2t

−2ν

≤
(

2ǫ1 +
4

λ
κ

1
2 ǫ2

)

t−min(µ,2ν)

= ǫ3t
−min(µ,2ν). (24)

B. Average State Distance to the Optimal Point

Now, we derive an upper bound for the average distance between

the mean of the agents’ states and the global optimal point, i.e.,

Q(t) := E[‖x̄(t)− x⋆‖2], where x⋆ is the minimizer of the function

f(x). Recall that x̄(t) = rTX(t) =
∑n

i=1 rixi(t) andrTW (t) = rT .

Hence, multiplying both sides of (3) by rT , we get

x̄(t+ 1) = x̄(t) + β(t)rTE(t)− α(t)β(t)rT∇f(X(t)).

We define g(t) := rT∇f(X(t)) =
∑n

i=1 ri∇fi(xi(t)) and

ḡ(t) := ∇f(x̄(t)) =
∑n

i=1 ri∇fi(x̄(t)). Hence, we can write

E
[

‖x̄(t+ 1)− x⋆‖2|Ft

]

= E
[

‖x̄(t) + β(t)rTE(t)− α(t)β(t)g(t)− x⋆‖2|Ft

]

=‖x̄(t)−x⋆−α(t)β(t)g(t)‖2+E
[

‖β(t)rTE(t)‖2|Ft

]

(25)

where the last equality follows from the fact that X(t) is measurable

with respect toFt and Assumption 1, implying E[β(t)rTE(t)|Ft] = 0,

which leads to

2
〈

x̄(t)− α(t)β(t)g(t)− x⋆,E
[

β(t)rTE(t)|Ft

]〉

= 0.

Taking the expectation of both sides of (25), and using the tower rule,

we get

Q(t+ 1) = E
[

‖x̄(t+ 1)− x⋆‖2
]

=E
[

‖x̄(t)−x⋆−α(t)β(t)g(t)‖2
]

+E
[

‖β(t)rTE(t)‖2
]

. (26)
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In order to bound the first term in (25), we use Lemma 2 for vectors

u = x̄(t)− x⋆ − α(t)β(t)ḡ(t) and v = α(t)β(t)(ḡ(t)− g(t)), and

parameter θ = ρL
ρ+L

α(t)β(t). Hence, we can write

‖x̄(t)− x⋆ − α(t)β(t)g(t)‖2

= ‖x̄(t)−x⋆−α(t)β(t)ḡ(t) + α(t)β(t)ḡ(t)−α(t)β(t)g(t)‖2

≤
(

1 +
ρL

ρ+ L
α(t)β(t)

)

‖x̄(t)− x⋆ − α(t)β(t)ḡ(t)‖2

+ α(t)β(t)

(

α(t)β(t) +
ρ+ L

ρL

)

‖ḡ(t)− g(t)‖2. (27)

Next, we use [27, Th. 2.1.11] to bound the first term in (27). Note that

Assumptions 3(a) and 3(b) (and Remark 1) guarantee that the conditions

of [27, Th. 2.1.11] are satisfied. Thus, we have

〈x̄(t)− x⋆,∇f(x̄(t))〉 ≥ c1‖∇f(x̄(t))‖2 + c2‖x̄(t)− x⋆‖2

or equivalently,

〈x̄(t)− x⋆, ḡ(t)〉 ≥ c1‖ḡ(t)‖2 + c2‖x̄(t)− x⋆‖2 (28)

where c1 = 1
ρ+L

and c2 = ρL
ρ+L

. Therefore, for the first term in (27),

we can write

‖x̄(t)− x⋆ − α(t)β(t)ḡ(t)‖2

= ‖x̄(t)− x⋆‖2 + α2(t)β2(t)‖ḡ(t)‖2

− 2α(t)β(t) 〈x̄(t)− x⋆, ḡ(t)〉

≤ (1− 2c2α(t)β(t))‖x̄(t)− x⋆‖2

+ α(t)β(t)(α(t)β(t)− 2c1)‖ḡ(t)‖2. (29)

Let us set

T3 :=

⌈

(

α0β0

2c1

) 1
µ+ν

⌉

=

⌈

(

α0β0(ρ+ L)

2

) 1
µ+ν

⌉

(30)

such thatα(t)β(t) ≤ 2c1 for any t ≥ T3. Hence, for t ≥ T3, the second

term in (29) is nonpositive, and thus

‖x̄(t)−x⋆−α(t)β(t)ḡ(t)‖2 ≤ (1−2c2α(t)β(t))‖x̄(t)−x⋆‖2.

Taking expectation from both sides, we get

E

[

‖x̄(t)−x⋆−α(t)β(t)ḡ(t)‖2
]

≤ (1−2c2α(t)β(t))Q(t). (31)

The average of the second term in (27) can be bounded as

E
[

‖ḡ(t)− g(t)‖2
]

=E

⎡

⎣

∥

∥

∥

∥

∥

n
∑

i=1

ri ((∇fi(x̄(t))−∇fi(xi(t)))

∥

∥

∥

∥

∥

2
⎤

⎦

(a)

≤ E

[

n
∑

i=1

ri‖∇fi(x̄(t))−∇fi(xi(t))‖2
]

(b)

≤ L2

n
∑

i=1

riE
[

‖x̄(t)− xi(t)‖2
]

= L2
E

[

‖1x̄(t)−X(t)‖2
r

] (c)

≤ L2ǫ3t
−min(µ,2ν) (32)

where (a) follows from the convexity of ‖ · ‖2, (b) holds due to

Assumption 3(a), and we used (24) for (c).

Taking expectation from both sides of (27) and recalling that

c2 = ρL/(ρ+ L), we arrive at

E
[

‖x̄(t)− x⋆ − α(t)β(t)g(t)‖2
]

≤ (1 + c2α(t)β(t))E
[

‖x̄(t)− x⋆ − α(t)β(t)ḡ(t)‖2
]

+ α(t)β(t) (α(t)β(t) + 1/c2)E
[

‖ḡ(t)− g(t)‖2
]

(d)

≤ (1 + c2α(t)β(t))(1− 2c2α(t)β(t)Q(t)

+ α(t)β(t)(α(t)β(t) + 1/c2)L
2ǫ3t

−min(µ,2ν)

(e)

≤ (1− c2α(t)β(t))Q(t)

+ α(t)β(t)(α(t)β(t) + 1/c2)L
2ǫ3t

−min(µ,2ν) (33)

where the inequality in (d) follows from (31) and (32), and (e) holds

since

(1 + c2α(t)β(t))(1− 2c2α(t)β(t)) ≤ 1− c2α(t)β(t).

From Assumption 1, we get
[

E
[

E(t)E(t)T |Ft

]]

ij
= E

[

ei(t)e
T
j (t)|Ft

]

≤
√

E [‖ei(t)‖2|Ft]E [‖ej(t)‖2|Ft] ≤ γ (34)

for all 1 ≤ i, j ≤ n. Thus, for the second term in (25), we arrive at

E

[

∥

∥rTE(t)
∥

∥

2 |Ft

]

= rT E
[

E(t)E(t)T |Ft

]

r

≤ rT
(

γ11T
)

r = γ (35)

as rT1 = 1. Taking expectations from both sides of (35), and using the

tower rule, we arrive at

E

[

∥

∥rTE(t)
∥

∥

2
]

= E

[

E

[

∥

∥rTE(t)
∥

∥

2 |Ft

]]

≤ γ. (36)

Using (33) and (36) in (26), we can write

Q(t+ 1) ≤ (1− c2α(t)β(t))Q(t)

+ α(t)β(t)(α(t)β(t)+1/c2)L
2ǫ3t

−min(µ,2ν)

+ γβ2(t)

≤ (1− c2α(t)β(t))Q(t) + ǫ4t
−min(2µ,3ν+µ) (37)

where ǫ4 := α0β0(α0β0 + 1/c2)L
2ǫ3 + γβ2

0 and the last inequality

follows from

α(t)β(t)(α(t)β(t) + 1/c2)L
2ǫ3t

−min(µ,2ν) + γβ2(t)

≤ α0β0t
−ν−µ(α0β0+1/c2)L

2ǫ3t
−min(µ,2ν) + γβ2

0t
−2µ

= α0β0(α0β0 + 1/c2)L
2ǫ3t

−min(2µ+ν,3ν+µ) + γβ2
0t

−2µ

≤ (α0β0(α0β0 + 1/c2)L
2ǫ3 + γβ2

0)t
−min(2µ,3ν+µ).

Consider a general dynamic Q(t) satisfying a recursive inequality

Q(t+ 1) ≤ G(t)Q(t) +H(t) for every t ≥ T0 := max(T1, T2, T3),
in which G(k) ≥ 0 for all k. Then, we have

Q(T ) ≤

⎛

⎝

T−1
∏

k=T0

G(k)

⎞

⎠Q(T0) +

T−1
∑

s=T0

H(s)

[

T−1
∏

k=s+1

G(k)

]

.

for any starting time T0. Therefore, (37) yields

Q(T ) ≤
T−1
∏

k=T0

(1− c2α(k)β(k))Q(T0)
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+ ǫ4

T−1
∑

s=T0

s−min(2µ,3ν+µ)

[

T−1
∏

k=s+1

(1− c2α(k)β(k))

]

=
T−1
∏

k=T0

(

1− c2α0β0

kν+µ

)

Q(T0)

+ ǫ4

T−1
∑

s=T0

s−min(2µ,3ν+µ)

[

T−1
∏

k=s+1

(

1− c2α0β0

kν+µ

)

]

≤
T−1
∏

k=T0

(

1− c2α0β0

kν+µ

)

Q(T0)

+ ǫ4

T−1
∑

s=1

s−min(2µ,3ν+µ)

[

T−1
∏

k=s+1

(

1− c2α0β0

kν+µ

)

]

. (38)

To further upper-bound the right-hand side of (38), we may distinguish

two individual cases. When µ+ ν < 1, we can define

T4 :=

⌈

(

2min(µ− ν, 2ν)

c2α0β0

) 1
1−µ−ν

⌉

. (39)

Then, we can apply Lemmas 3 with δ = µ+ ν on the first term of (38),

and use Lemma 5 with (σ, δ, τ) = (min(2µ, 3ν + µ), ν + µ, T4) for

the second term of (38). As a result, for any T ≥ max(T0, T4), we have

Q(T ) ≤ exp

(

− c2α0β0

1− µ− ν

(

T 1−µ−ν − T 1−µ−ν
3

)

)

Q(T0)

+ ǫ4ǫ5T
−min(µ−ν,2ν) (40)

where ǫ5 := A(c2α0β0,min(2µ, 3ν + µ), ν + µ).
Next, whenµ+ ν = 1, similar to the previous case, we use Lemma 3

to upper-bound the first term of (38), and apply Lemma 5 with

(σ, δ, τ) = (min(2µ, 3ν + µ), 1, T4) on its second term. This leads

to

Q(T )≤
T−1
∏

k=T0

(

1− c2α0β0

k

)

Q(T0)

+ ǫ4

T−1
∑

s=1

s−min(2µ,3ν+µ)

[

T−1
∏

k=s+1

(

1− c2α0β0

k

)

]

≤
(

T

T0

)−c2α0β0

Q(T0)+ǫ4ǫ5T
−min(2µ−1,3ν+µ−1,c2α0β0)

=

(

T

T0

)−c2α0β0

Q(T0) + ǫ4ǫ5T
−min(µ−ν,2ν,c2α0β0)

≤
(

T c2α0β0

0 Q(T0) + ǫ4ǫ5

)

T−min(µ−ν,2ν) (41)

where the last inequality holds as c2α0β0 ≥ min(µ− ν, 2ν).

C. Total State Deviation From the Optimum Solution

Combining the above bounds, we can conclude the proof of Theo-

rem 1. In particular, for µ+ ν < 1, we have

E

[

‖X(T )− 1x⋆‖2
r

]

= E

[

‖X(T )− 1x̄(T ) + 1x̄(T )− 1x⋆‖2
r

]

≤ 2
(

E

[

‖X(T )− 1x̄(T )‖2
r

]

+ E

[

‖1x̄(T )− 1x⋆‖2
r

])

≤ 2ǫ3T
−min(µ,2ν)

+ 2 exp

(

− c2α0β0

1− µ− ν

(

T 1−µ−ν − T 1−µ−ν
0

)

)

Q(T0)

+ 2ǫ4ǫ5T
−min(µ−ν,2ν).

for every T ≥ max(T0, T4) = max(T1, T2, T3, T4). This implies

Theorem 1 for µ+ ν < 1. Note that

ξ1 := 4γκβ2
0A(λβ0, 2µ, µ) +

8Kκα2
0β0

λ
A(λβ0/2, 2ν + µ, µ)

ξ2 := 2 exp

(

α0β0ρL

(1− µ− ν)(ρ+ L)
T 1−µ−ν
0

)

Q(T0)

ξ3 :=
α0β0ρL

(1− µ− ν)(ρ+ L)

ξ4 :=
(

α0β0(α0β0ρL+ ρ+ L)ξ1L/ρ+ 2γβ2
0

)

×A

(

α0β0ρL

ρ+ L
,min(2µ, 3ν + µ), µ+ ν

)

. (42)

and A(·, ·, ·) is defined in Lemma 5. Similarly, for µ+ ν = 1,

E

[

‖X(T )− 1x⋆‖2
r

]

≤ 2ǫ3T
−min(µ,2ν)+2

(

T c2α0β0

0 Q(T0)+ǫ4ǫ5

)

T−min(µ−ν,2ν).

for every T ≥ T0 = max(T1, T2, T3). This leads to (6), where

ξ5 := 2T
α0β0ρL/(ρ+L)
0 Q(T0) + ξ4. (43)

V. CONCLUSION

We have studied distributed optimization over time-varying networks

suffering from noisy and imperfect sharing of information. Inspired by

the original averaging-based distributed optimization algorithm with

the diminishing step-size, we showed that for the class of strongly con-

vex cost functions, including a damping mechanism for the imperfect

incoming information from neighboring agents leads to convergence

to the optimizer in L2 sense for various choices of the damping and

diminishing step-size parameters. In addition, we obtained a conver-

gence rate as a function of these parameters. Optimizing the resulting

rate over the set of feasible parameters leads to the convergence rate

O(T−1/2).
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