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Distributed Optimization Over Time-Varying Graphs With Imperfect
Sharing of Information

Hadi Reisizadeh “”, Behrouz Touri

Abstract—We study strongly convex distributed optimization
problems where a set of agents are interested in solving a sepa-
rable optimization problem collaboratively. In this article, we pro-
pose and study a two-time-scale decentralized gradient descent
algorithm for a broad class of lossy sharing of information over
time-varying graphs. One time-scale fades out the (lossy) incoming
information from neighboring agents, and one time-scale regu-
lates the local loss functions’ gradients. We show that assuming a
proper choice of step-size sequences, certain connectivity condi-
tions, and bounded gradients along the trajectory of the dynamics,
the agents’ estimates converge to the optimal solution with the
rate of O(T~1/2). We also provide novel tools to study distributed
optimization with diminishing averaging weights over time-varying
graphs.

Index Terms—Convex optimization, distributed multiagent sys-
tem, distributed optimization, gradient descent algorithms, time-
varying graphs.

|. INTRODUCTION

MERGENCE of Big Data analytics, modern computer architec-

tures, storage, and data collection have led to a growing interest in
the study of multiagent networked systems. These systems arise in var-
ious applications, such as sensor networks [1], [2], network routing [3],
large-scale machine learning [4], power control [5], and distributed
network resource allocations [6], [7], for which decentralized solutions
offer promising results. In general and in the absence of a central entity,
we are often dealing with a time-varying network of agents, each
can perform local and on-device computation. The information can
be shared throughout the network via local communication between
neighboring agents. This communication among agents, especially
when the dimension of the data is large, accounts for a significant delay
in the overall running time of the algorithm. In this article, we study
distributed optimization under those lossy and imperfect information
sharing scenarios, and propose and analyze a gradient-based distributed
algorithm that guarantees convergence to the optimum solution, in the
presence of communication constraints.

Related Works:Various methods have been proposed and studied
to solve distributed optimization problems in convex settings [8], [9],
[10], [11], [12], [13], [14], [15], strongly convex settings [13], [16],
[17], and nonconvex settings [18], [19]. For the convex objective
functions, a subgradient method with a fixed step-size was proposed
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over time-varying graphs in [20]. It is shown that the objective cost
function reduces at rates of O(7~!) until it reaches a neighbor of a
minimizer of the original problem. To achieve exact convergence to
a minimizer, various diminishing step-size subgradient methods have
been proposed and studied [10], [12], [18], [19], [21]. Considering
convex loss functions that are Lipschitz continuous and have bounded
gradients, a subgradient-push algorithm was proposed in [21]. There
it was shown that the objective cost function convergences at the
rate of O(T~*/2InT) over uniformly strongly connected, directed
time-varying graphs. Under the same assumption and strong convexity
for loss functions, a better rate O(T ' InT') for the objective loss
function plus squared consensus residual was shown in [21].

Almost all the aforementioned works on this domain consider dis-
tributed optimization with perfect sharing of information, i.e., the agents
are allowed to communicate real-valued vectors perfectly over per-
fect communication channels. However, exchanging exact information
among nodes initiates a massive communication overhead on the system
that considerably slows down the convergence rate of these algorithms
in real-world applications. Thus, it is reasonable to assume that each
agent has access to a lossy version of neighboring agents’ information.

To address lossy/noisy sharing of information, a (fixed step-size)
decentralized gradient descent method was proposed in [22]. Assuming
a fixed communication network and strongly convex local cost func-
tions, there it was shown that for a given iteration 7', the algorithm’s
parameters (depending on 7") can be chosen such that the local estimate
of each agent at iteration T is (roughly) within c(7"~'/2+¢)-distance of
the global optimal solution for some ¢ > 0 and any € > 0. Furthermore,
the result holds for a termination time 7' that is required to satisfy
T > Thin, Where T, depends on € as well as nonlocal parameters of
the underlying fixed graph. Specifically, as € goes to zero, T,,;, diverges
to infinity. In a closely related recent work [23], a two-time-scale
gradient descent algorithm has been presented for strongly convex
loss functions. Assuming a fixed topology for the underlying network,
uniform weighting of the local cost functions, and a specific scheme
for lossy sharing of information, it is shown that the expected objective
loss function achieves a rate of O(T~/2(InT)?). In another related
work [24], a two-time-scale gradient descent algorithm was presented
for distributed constrained and convex optimization problems over an
independent identically distributed (i.i.d.) communication graph with
noisy communication links, and subgradient errors. It is shown that
under certain conditions on the i.i.d. communication graph and proper
choices of time-scale parameters, the proposed dynamics results in
almost sure convergence of local states to the optimal point.

Contributions: We study distributed optimization problem for a
general class of lossy/noisy information sharing over time-varying
communication networks. The learning method relies only on local
computations and received imperfect information from neighboring
agents. We show that a two-time-scale gradient descent algorithm, with
a proper choice of parameters, reaches the global optima (in Ly and
hence, in probability) for every agent with a rate of O(T~'/?). To
achieve this, we make limiting assumptions including weight matrices
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admitting the same stationary distribution, B-connected communica-
tion network, and expected boundedness of the gradients along the
trajectories of the dynamics. Although weight matrices admitting the
same stationary distribution is a limiting assumption, but a stronger
assumption, namely having doubly stochastic weight matrices, is com-
monly assumed in the distributed optimization literature [10], [13],
[20], [22]. For the bounded gradient assumption, using a slightly more
sophisticated proof in the extended version of this work [25], we show
that the Lipschitz gradients result in expected bounded gradients for
strongly convex functions.

In addition, in the existing works on distributed optimization [9],
[12], [13], [17], [18], [20], [21], [22], [23] (with perfect or imperfect
sharing of information), either the underlying communication network
is assumed to be fixed, or the nonzero elements of the averaging
weights are assumed to be uniformly bounded away from zero. In our
proposed method, however, the weights are not uniformly bounded
away from zero and they are evolving over an underlying time-varying
communication network. One of the key contributions of this article
is to develop tools and techniques to deal with diminishing averaging
weights for distributed optimization over time-varying networks.

Notation: We denote the set of integers {1,2,...,n} by [n] and the
set of nonnegative real numbers by R*. For a matrix A € R™*¢, we
denote its 7th row and jth column by A; and A7, respectively. For a row
vector x € R9, we use ||x|| to denote the 2-norm of x. For a positive
vector r € R™ with 2?:1 r; = 1, the r-norm of an n x d matrix A is
defined by ||A||2 =31 | ri||A;]|?. It can be verified that || - ||, is a
norm. We denote the Frobenius norm of A by ||A|| ¢, where || A]|% =
>t Z]d.zl |A;;]2. Moreover, A > B indicates that all the entries of
A — B are nonnegative. Finally, a nonnegative matrix A € R™*? is
called stochastic if ijl A;; = 1forevery i € [n].

Il. PROBLEM SETUP AND MAIN RESULT

In this section, we discuss the problem formulation and the main
result of this work.

A. Problem Setup

Consider a set of n > 2 agents that are connected through a time-
varying network. Each agent ¢ € [n] has access to a local cost function
fi :R® — R. The goal of this article is to minimize the function
f(x) := >0, i fi(x), or equivalently solve

n
xl,.?lifem Zzz:lnfz(xz) St X; = Xg = =X, )
where vector r = (71,72, ...
and Y0 7 =1

We represent the time-varying topology at time ¢ > 1 by the directed
graph G(t) = ([n], £(t)), where the vertex set [n] represents the set of
agents and the edge set £(t) C {(4,J) : ¢,7 € [n]} represents the set
of links at time ¢. At each time ¢, agent ¢ can only send messages
to its (out-)neighbors in £(t), i.e., all j € [n] such that (¢,7) € E().
To achieve a consensus, the sequence {G(t)} should satisfy some
desirable long-term connectivity properties, which will be discussed
in Assumption 2.

To present our algorithm for solving (1) collaboratively, let us first
discuss the general framework for lossy/noisy sharing of information
that is considered in this work. We assume that each agent maintains
the sate x;(¢) € R%, which is an estimate of the optimizer of (1),
and has access to its local cost function’s gradient information. More-
over, it has access to an imperfect weighted average of its neighbors

,7n) is a stochastic vector, i.e., 7; > 0

states at time ¢, denoted by %;(t). More precisely, agent ¢ has access
to X;(t) = >0, Wi (t)x,(t) + ei(t), where W (t) = [W;;(t)] is a
row-stochastic matrix that is consistent with the underlying network
G(t) (i.e., W;;(t) > 0 if only if (j,7) € G(¢)) and e;(t) is a random
noise vector in R<. Although this setting might look contrived, many
practical multiagent communication settings satisfy this structural as-
sumption. Later, we discuss two of such practical settings.

Now, we present our Diminishing Mixing (DIMIX) algorithm. In
this algorithm, each agent ¢ updates its current estimate by computing a
diminishing convex combination of its own state and received noisy av-
erage estimate X, (¢), moving along its local gradient. Mathematically,
at each node 7 € [n], the update rule is given by

xi(t+1)=(1=B(t))x:(t)+B()%:(t) —a(t) B()V fi(xi(t)) ()

where a(t) = 32, B(t) = fT‘j, and p,v € (0,1) are the diminishing
step-sizes of the algorithm. A similar dynamics is independently pro-
posed and discussed for a particular subsetting (i.e., specific lossy
sharing mechanism, weight vector r, and a specific choice of v, 1 > 0)
of our framework for time-invarying networks in [23]. For simplicity

of notation, let

x1(t) ei(t) Vfi(xi(1))

X(t):= VE(t)= VX)) :=

X (1) en(t) V fo (2 (8))

Using this notation, we can rewrite the update algorithm (2) in the
compact matrix format as

X(t+1) = (1= p@) + BOW(1)X(X) + A1) E(t)
—a(t)BOVF(X(2)). ©)

B. Assumptions

Here, we discuss the assumptions on the agent 7’s neighbor average
state estimate X;(t), the stochastic weight matrix {W (¢}), and local
objective functions f;, that we will use in the subsequent discussions.

Assumption 1 (Noise Assumption): We assume that the noise
sequence {e;(t)} satisfies

Efei(t) | Fi] =0andE [[le;(t)[* | 7] <

for some v > 0, all 7 € [n], and all ¢ > 1. Here, {F;} is the natural
filtration for the process { X (¢)}.

As mentioned before, to provide guarantees on the working of our
algorithm, certain connectivity assumptions need to be satisfied among
the agents over time.

Assumption 2 (Connectivity Assumption): We assume that the
weight matrix sequence {W (¢)} satisfies the following.

1) Stochastic with common stationary distribution: W (t) is nonneg-
ative and W(t)1 =1 and r"W (¢) = r7 for all ¢ > 1, where
1 € R™ is the all-one vector, and r > 0 is the stochastic weight
vector appearing in (1).

2) Bounded nonzero elements: There exists some 7 > 0 such that if for
some 4,5 € [n] and t > 1 we have W;;(¢) > 0, then W,;(t) > 7.

3) B-connected: For a fixed integer B > 1, the graph
([n], UZJ;?H E(k)) is strongly connected for all ¢ > 1, where
E(k) = {(j,1) | Wi (k) > 0}.

The following assumptions hold for the objective functions.

Assumption 3 (Function Assumptions): We assume the following
properties on the function f; for all 4.

1) The function f; is L-smooth, i.e., for any x,y € R?, we have that

IVFi(x) = V) < Llx =yl
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2) The function f; is p-strongly convex, i.e., for any x,y €RY, we
have (Vf;(x) = Vfi(y),x—y) > pllx—y|*.

3) f; has uniformly bounded gradients along the trajectory of the
dynamics (3) {x;(t)}, i.e., there exists a scalar K > 0 such that
forallt > 1andalli € [n]

V(x| < K, xi(t) € R%. (4)

Remark 1: The properties of f;s in Assumption 3 can be immedi-
ately translated to similar properties for f(x) = >_7_, r; fi(x). More
precisely, the function f is also L-smooth and p-strongly convex, and
has a bounded gradient with |V (X (¢))|2 < K.

C. Main Result and Discussion

The main result of this article is the following theorem.
Theorem 1: If the conditions in Assumptions 1-3 are satisfied for
a(t) = 72 and B(t) = %?, and p,v € (0,1) when p+v < 1, the

dynamics (3) satisfy
E [IX(T) = 1x7|2] < 67002 16, exp (—&T14)
+ §4T7 min(p—v,2v) (5)

for any iteration T > max(7y,7T»,13,Ty), where Ty, T», T3, and
T, are given in (16), (21), (30), and (39), respectively, and
x* := argmin f(x). Moreover, the constants &, for £ € {1,...,4}
are evaluated in (42). Furthermore, under the same assumptions,
when pu + v = 1and ap By > ’);L—LL min(2u — 1, 2v), the dynamics (3)
satisfy

E |:HX(T)71X*H§:| Sng— min(u,21/)+ £5T7 min(p—v,2v) (6)

for any iteration 7' > max (7}, T3, T3), where the constant & is deter-
mined in (43).

We refer to Section IV for the proof of Theorem 1.

Remark 2: Theorem 1 guarantees the exact convergence (in Lo
sense) of each local state to the global optimal with diminishing
step-size even though the noises induced by random quantization and
gradients are not vanishing with iterations. To maximize the exponents
in the upper bounds (5) and (6), it can be verified that the solution is
= 3/4 and v = 1/4. Replacing this in (6), we conclude

E [IX(T) - 1x°|}] < e71/2

for any T >max(Ty, Ty, T3) =max((2/180)*, aoBo(p+L)/2) and
some constant £ > 0. Our algorithm and the main result are inspired by
the fixed step-size variation of (3) proposed in [22] under the limited
setting of time-invarying networks, uniform weights r, and a particular
choice of lossy sharing of information. In that setting, it is shown that
for any given stopping time T > Ty, and any € > 0, the constant
step-sizes g, Bo > 0 can be set such that

E [|1X(T) - 1x°|}] < o 124

where ¢ and T},,;, are positive constants depending on the problem’s
parameters (note that this is established for a fixed 7°). However,
Tnin — 00 ase — 0[22]. Here, we provide a rigorous convergence rate
analysis that reduces to O(T~'/2) for every iteration T'. In Theorem 1,
for the case p + v = 1, the minimum number of required iterations is
finite.

Examples for Stochastic Noisy State Estimation: The noisy estima-
tion of the neighbors’ state used in (2) may appear in various practical
problem settings. In the following, we describe two of such scenarios.

Example 1: A practical scenario where the noisy average neighbor
estimate arises is when we deal with noisy communication chan-
nels between the agents. Consider a wireless medium, in which
the communication links between the agents are Gaussian chan-
nels, i.e., when node j sends its state x;(t) to its neighbor i,
the received signal at node 4 is x;(t) + z; ;(t), where z; ;(t)
is a zero-mean Gaussian noise with variance o2, independent
across (i,7), and t. Then, we have %, (t) = >°7_, Wi;(t)(x;(t) +
z; j(t)). Therefore, in this case, %;(t) = >_7_; Wi;(t)x;(t) + e;(t)
with el(t) = anl Wij (t)Zi,]' (t) In addition, E[ez (t)] =0 and
Eflle;(t)|I’] = o >=7_, Wi;(t)* < 0. Hence, the conditions of
Assumption 1 are satisfied.

Example 2: In many applications, there are band-limited links
between the agents where the information to be sent needs to be quan-
tized (to a certain number of bits), before transmission. The difference
between the actual state and its quantized version can be modelled
as the estimation noise. A popular choice for such quantizers is the
stochastic quantizer [26]. In this case, it can be shown that we have
%i(t) = 320 Wi (t)x;(t) + e;(t), where e;(t) satisfies

E [Jle:(t)|*|:] < min (” d) D.

Therefore, the conditions of Assumption 1 are satisfied. See the ex-
tended version of this article [25] for more detailed discussion on this.

IIl. AUXILIARY LEMMAS

In this section, we present auxiliary lemmas that play crucial roles
in the proof of the main result, namely, Theorem 1 in Section IV. The
proofs of Lemmas 1-5 are provided in the extended version of this
article [25].

Lemma 1: Let {W(t)} satisfy the connectivity Assump-
tion 2 with parameters (B,n), and let {A(t)} be given by
A(t) = (1= B)I + B(t)W (t), where B(t) € (0,1] for all ¢, and
{B(¢)} is a nonincreasing sequence. Then, for any matrix U € R"™*4,
and all t > s > 1, we have

[(A(t - 1At -2)--- A(s + 1) — 1e7) U

<x ] (=286 VI

k=s+1

where A 1= 228 k= (1 — BASy) " and Bp = B(1).

Lemma 2: For any pair of vectors u, v, and any scalar @ > 0, we have
lw+v|? < (1 +0)||uw|® + (1 + 6-1)||v|]?. Similarly, for matrices
U and V and any 6 > 0, we get

IU+VIZ<@+0) U+ @ +67) VI,

Lemma 3: Forany 0 < § < land 0 < a < 1, we have

t—1
H (1 — %) < exp (—%_6 (tl*‘s — 5176)> .
k=s

Ford =1and 0 < a < 1, we have [}, (1 — ) < (&)
Lemma4: Let {S(t)} be a sequence in R and A be a nonzero scalar.
Then, forallt > 1

S B(s)

t—1 t—

1
[T a-as) =5 -

k=s+1 k

[un

(L=28(k) (D

1

> =
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As a result, for any sequence {3(¢)} in [0,1] and A > 0

Z/a H (1-2B(k)) <

k=s+1

S

Lemma 5: For any 0 <§ < min(l,0), 0<a <1, and every

t>71:= (@)ﬁ,wehave
t—1 1 t—1 1 _ A 5 ti(aié)
2 {kll( ~ )| < Awed)

where A(a, o, 9) is given by

2"max{1+ %,1—!— ﬁ (2("*6))f5}

27 max 1—|—2 1+21 (@)} ifo=1
27 max {1+ 2,1+ 2% if0<o<l

Moreover, for 6 = 1 and a — o + 1 # 0, we have

s [£ 1 0-9)

s=1 k=s+1

< 14(a7 o, 1)t7min(crfl,a)

where A(a,o,1) =27 (1 + m)

IV. PROOF OF THEOREM 1

In this section, we provide the proof of the main result, namely,
Theorem 1. The proof is based on the auxiliary lemmas in Section III.
We prove the result in two steps. First, we bound the deviation of the
agents’ states from their average, and then, we analyze the distance of
the average state from the global optimal point.

A. State Deviation From the Average State
The dynamics (3) is a linear time-varying system
X(t+1)=A®)XE@)+U(@1) (3)

with A(t) = (1 — B(t))I + B(t)W(t) and the control input U(t) =
B)E(t) — a(t)B(t)V f(X(t)). Therefore,

t—

X(t) =

where ®(t:s) = A(t—1)--- A(s+ 1) with ®(¢t : t — 1) = I is the
transition matrix of the linear system (8). We also define P(t : s) :=
B(s)(®(t : s) — 1rT) for the notational simplicity. As a result of
Lemma 1, we have ||P(t: s)U||, < 7w (t: s)||U|, where 7(t : s) is
defined by

-

O(t:s)U(s) +D(t:0)X(1) )

1

t—1

w(t:s) = ﬂ(s)/ﬁ% H (1—r8(k ))% (10)
k=s+1
Assuming X (1) = 0, the dynamic in (9) reduces to
-1
X(t)= O(t:s)U(s). (11)

s=1

Moreover, multiplying both sides of (11) from the left by r” and using
the fact that r7 A(t) = rT, we get

%(t) := = irT<I>(t :8)U(s) (12)

= i rTU(s)

Then, subtracting (12) from (11), and plugging the definition of U (s),
we have

t—1

Z (P(t:

s=1

= :g:: B(s

X(t) —1x(t) = s)—1r") U(s)

—1r ) [E(s)—a(s)Vf(X(s))]

t—1
:ZP(t:s Za P(t:s)Vf(X(s)).
s=1 s=1
Using Lemma 2 with 6 = 1, we get
I1X (8) = 1x(8)lI7
t—1 2 1 2
<2 ZP(t:s Z P(t:s)Vf(X(s))
s=1 s=1 r

Iz +2) (P(t:s)E(s)

s#q

,P(t:q)E(q))

= 22 IP(t: s)E(s)

P(t:s)Vf(X(s)) (13)

r

Using facts that E(s) is measurable with respect to F, for ¢ > s and
E[E(q)|F,] = 0, we have

E[(P(t: s)E(s), P(t: q)E(q))]
=EE[(P(t:s)E(s), P(t:q)E(q)) | Fq]]
=E[(P(t:s)E(s), P(t: QE [E(q)|F4])] =

Using a similar argument for ¢ < s and conditioning on F5, we con-
clude that (14) holds for all g # s. Therefore, taking the expectation of
both sides of (13) and noting the identity in (14), we get

(14)

E [|X () - 1%(0) ]<22E[npt $)E(s)|?]
+ 2E ia(s)P(t:s)Vf(X(s)) (15)

We continue with bounding the first term in (15). From Assump-

tion 1, we have
E [IE)I2] =E [E [IE@)I2 7]

riE [[lei(s)[?1 7]

=1

=E

This together with Lemma 1 arrives at

Sk (1Pt 9B

t—1

<> |8 IQH (1—rB(k

[nE(s)nfﬂ

s=1 k=s+1
<8y [5%) 11 (1—w<k>>}
s=1 k=s+t1
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=9k Z |:32“ ktl:]; (1152)} :

Therefore, using Lemma 5 with parameters (o, 0, 7) = (24, i, T1), we
arrive at

t—1
S E [||P(t : s)E(s)uf] < et Hort > Ty = {(QM/wo)ﬁ] .
s=1

(16)

To bound the second term in (15), using the triangle inequality for

norm || - ||, we have
2]
r

P(t:s)V(X ())r>

:ZIE[a

1<s,q<t—1

a(q) [Pt V(X (@),]

< Y Ela)n(tss) IVAX

1<s,q<t-1

-1

P(t:s)Vf(X(s))

JIP(E: $)VF(X ()],

(DIl

x a(g)r(t:q) V(X

- ¥

1<s,g<t—1

a(q) [VF(X()],]

where the last inequality follows from Lemma 1 and 7 (¢ : s) is given
by (10). Using the inequality 2ab < a® + b2, we can further upper-
bound (17) to arrive at

2]

r

=

<3 n(t: )t q)E [o2(s) [VS(X ()]

@)l.]
m(t:s)m(t: @B [a(s) [[VF(X(s))],

an

-1

P(t:s)Vf(X(s))

o*() IVF(X(@)]]
w(t: s)m(t: Q) [a2(s) VA (X (5))]2]

()

But using v/1 — z < 1 — x/2 and Lemma 4, we have

S)E [IVF(X(s >>||E]) as)

t—1 t—1 t—1

Sty =>" |B@rt [ 1-2r8(k)? (19)

g=1 q=1 k=q+1
- 1 1 A 2 1

<Ss@nr T (1-5609) <262 o)
q=1 k=q+1
Moreover, we can write

t—1

> a¥()n(t: $)E [|VA(X ()] <K2a n(t: )

s=1

where (a) follows from Assumption 3(c), (b) uses the definition of 7 (¢ :
s) from (10), and the inequality in (c) follows from /1 —z < 1 — x/2

for z < 1. Therefore, using Lemma 5 with (o, 9, 7) = (2v + u, p, T),
for

t> Ty = ’V(SV/)»ﬂo)ﬁ—‘ @1
we arrive at

Za S)E [IV (X ()]

0, 1 1 ABo 1
< KagBok?® Z S2vHn H (1 T e
s=1

k=s+1

< et (22)

where €5 1= Ka%ﬁon%A()»,Bo/Q, 2v + u, w). Plugging (22) and (19)
into (18) and using (17), we conclude

2

] <

=

Finally, using the bounds obtained in (16) and (23) in (15),
for €5 1= 2¢; + 4/&@/)», we get

-1
1 _
K2 €eql 2”.

>—’\l\.’>

P(t:s)Vf(X

(s)) (23)

4
E [||X(t) - 1>‘c(t)||f] < 2et7H Xm%egt*”

4 .
< <2€1 + XK%Q) ¢ min(p,2v)

= €3t min(p,2v) )

(24)

B. Average State Distance to the Optimal Point

Now, we derive an upper bound for the average distance between
the mean of the agents’ states and the global optimal point, i.e.,
Q(t) := E[||x(t) — x*||?], where x* is the minimizer of the function
f(x).Recallthatx(t) = 7 X (t) = Y1, 7ix;(t) andrT W (t) = rT.
Hence, multiplying both sides of (3) by r”, we get

%(t+ 1) = x(t) + Bt)rT E(t) — a(t)B(H)r" VF(X ().
We define  g(t) :=rTVF(X(t) =D, mVSfi(xi(t)) and
g(t) == Vf(x(t)) = >, r;Vfi(x(t)). Hence, we can write
E [|l%(t +1) — x*|*|7]
= E [|[x(t) + B(t)r" E(t) — a(t)B(t)g(t) — x*||*|F]
=|%(t)—x* —a®)Bt)gOIP+E [|BOr" EQ)*|F] (25

where the last equality follows from the fact that X (¢) is measurable

with respect to F; and Assumption 1, implying E[3(¢)rT E(t)|F:] = 0,
which leads to
2(x(t) — a()B(t)g(t) —x*,E [B(t)r" E(t)|F]) = 0.

Taking the expectation of both sides of (25), and using the tower rule,
we get

Q(t+1) =E [[|x(t+1) — x*|?]

=E [[|%(t) —x*—a(t)B(t)g(®)*] +E [|8(t)r" (26)

E@®)]?].
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In order to bound the first term in (25), we use Lemma 2 for vectors

u = X(t) —x* — a(t)B(1)g(t) and v = a(t)5(t)(3(t) — g(t)), and
parameter § = ’:LLL a(t)B(t). Hence, we can write

[%(t) = x* = a(t)B()g(t)]?
= [[%(t) —x" —a(t)B(1)g(t) + a(t)B(H)g(t) —a(t) B()g(1)]*
pL
<|14+——=
B ( p+L
p+L
+a@8() (ap) + 225 ) 190 - g0l
Next, we use [27, Th. 2.1.11] to bound the first term in (27). Note that
Assumptions 3(a) and 3(b) (and Remark 1) guarantee that the conditions
of [27, Th. 2.1.11] are satisfied. Thus, we have

(x(t) = x*, VI(x()) = ea[VF (%@ + ez %(t) — x|

or equivalently,

(%(t) —x*,3(t)) > ex|g(O]|* + e2]|%(t) —

a(t)ﬂ(t)) I%(t) — x* — a(t)B(1)7(1)]*

27

X*”Z

(28)

where ¢, =
we can write

I%(t) — x* — a(t) B(1)3(1)|*
= [[%(t) —x"||* + a*(®)8* (1) |3 (1) |*
—2a()B(t) (x(t) = %7, g(1))
< (1= 2c2a(t)B(1))[I%(t) — x|
+a(t)B()(at)B(t) — 2¢1)[g(1)]I*.

and cy = p':_LL. Therefore, for the first term in (27),

+L

(29)

Let us set

Ty = R“;ff)“i”l _ Raoﬂo(gﬂ%))“i“w (30)

suchthat a(t)B(t) < 2¢; forany ¢t > T3.Hence, fort > T3, the second
term in (29) is nonpositive, and thus

1%(t) —x"—a(®)B(HF1)|* < (1-2c2a(t)B(1))]|X(t)

Taking expectation from both sides, we get

E [I%() —x* —a(®B®I0)] < (1-2000)81)QE). (1)

The average of the second term in (27) can be bounded as
2}

E[lg(t) — g@®)|*] =E [ :

ZmHVfi(fc(t)) -

—x*2.

(Vf:(x(8)) =V fi(xi(1)))

Vfi(xi(t)) ||2]

<L22n [I1%(t) — % (t)]|?]

() .
— L°E [Hbz(t)—X(t)uf} < L2yt min(u2) (32)
where (a) follows from the convexity of |- ||?, (b) holds due to

Assumption 3(a), and we used (24) for (c).

Taking expectation from both sides of (27) and recalling that
co = pL/(p+ L), we arrive at

E [|l%(t) —x* *a( )B(t)g(t )H ]
< (1+c2a(t)B1)) E [|Ix(t) —x* — a(t)B()3(1)|]
+a(t)s() (a(t)ﬂ(t) + 1/62)IE [lg(t) — g(®)]?]

2 (14 2a(0B0) (1 — 2e20(DBOQ)
Fa()B) (D)) + 1) egt ™02

2 (1~ e20()B(1)Q)
+a(t)B(t)(a(t)B(t) + 1/c2) L? (33)

where the inequality in (d) follows from (31) and (32), and (e) holds
since

est™ min(p,2v)

(1+ c2a(t)B(t))(1 = 2c22()B(1)) < 1 — cox(t)B(1).
From Assumption 1, we get

[E [E0)EWT|F]], e (1)| 7]

< \/E [lle: ()12 7] E [lle; @)1 F:] <~

forall 1 <4, < n. Thus, for the second term in (25), we arrive at

(34)

E [ B@|P 7] = r"E [BE@)E@®T|F] x

T (wllT) r=-v

asrT1 = 1. Taking expectations from both sides of (35), and using the
tower rule, we arrive at

E [ @] =& [E [l 56| 17]] <.
Using (33) and (36) in (26), we can write
Qt+1) < (1 - ca(t)B(1))Q(2)
+a(t)B(t)(e(t)B(t)+1/c2) L*
+6%(t)
< (1= c2a(t)B(1)Q(8) + eqt™ M drtn)

where €4 := aofo(oBo + 1/c2)L%e3 + v532 and the last inequality
follows from

a(t)B(t) () B(t) + 1/ca) LPest™ ™" 02) 4 48(1)
< apfot ™" M (awBo+1/ca) LPegt ™M) 55120
= aofo(aofo + 1/ca) LPegt™ ™M CrtvSvtn) 4 yga=2n
< (o0 Bo(anfo + 1/ca)LPes +vB3)t~ min(2u,8vtu),

Consider a general dynamic Q(t) satisfying a recursive inequality
Q(t+1) <G)Q(t) + H(t) for every t > Ty := max(T1,T»,T3),
in which G(k) > 0 for all k. Then, we have

(1) < (H G(k)) Q)+ 3 Hs) [ T )
k

k=Ty s=Tp =s+1

(35)

(36)

et min(p,2v)

(37

for any starting time 7. Therefore, (37) yields

k=T,

(k)Q(To)
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T—1 T—-1
+ €4 Z 5~ min(Zu3vtp) |: H (1- Cza(k)ﬁ(k))]
s=To k=s+1
T—1
_ cavoBo
- (1 ~ Zote ) Q(Ty)
k=To
T—1 T—-1 2003
—min(2p,3v+p) _ ©2%oro
-‘r@;Zs H w |:H <1 ot ):|
s=Tp k=s+1

T-1
<1

(1- 200 o)

k=T,
te Tz_lsfmin(Qu,SV‘Hl«) Tﬂl 1— 02060/60 (38)
4 fev+n ’
s=1 k=s+1

To further upper-bound the right-hand side of (38), we may distinguish
two individual cases. When p + v < 1, we can define

(2 min(p — v, 21/)) ST
T, = | (2R T EY) .
2000

Then, we can apply Lemmas 3 with § = p + v on the first term of (38),
and use Lemma 5 with (o, 0, 7) = (min(2y, 3v + p), v + p, Ty) for
the second term of (38). As aresult, forany 7' > max(7y, Ty ), we have

(39)

QUT) < exp (- 2200 (i 1) ) ()

—p—v

+ €4€5T7 min(p—v,2v) (40)

where €5 := A(caapfo, min(2u, 3v + p), v + p).

Next, when ¢ + v = 1, similar to the previous case, we use Lemma 3
to upper-bound the first term of (38), and apply Lemma 5 with
(0,6,7) = (min(2u, 3v 4+ w),1,T4) on its second term. This leads
to

ams [T (1-2%%) o)

ok
()]

T-1
+ey E s min(2p,3v4p)
s=1 k=s+1

T —c2a0B0
(7> Q(TO)+€4€5T7 min(2u—1,3v+p—1,c2a080)
To

T —ca00f0 )
— <?> Q(TO) +eses T min(pu-v,2v,c20080)
0

A

< (41)

(Toc2a050 Q(TO) + 6465) T min(p—v,2v)

where the last inequality holds as coag8p > min(u — v, 2v).

C. Total State Deviation From the Optimum Solution

Combining the above bounds, we can conclude the proof of Theo-
rem 1. In particular, for 4+ v < 1, we have

E [Ix(T) - 1% 2]
=E [||X(T) —1x(T) + 1%(T) — 1X*||§}

<2 (IE [HX(T) - 1>-<(T)||3] +E [Hli(T) - IX*Hf])

< 2€3T7 min(p,2v)

+2exp (_ 20000
l—p—v

+ 264E5T_ min(u—u,Qu).

(e - 1) ) ()

for every T > max(Ty,Ty) = max(Ty,T2,T3,Ty). This implies
Theorem 1 for it + v < 1. Note that

SKﬁagﬂoA

&1 = AyrB5A(MBo, 21, 1) + ;

(ABo/2,2v + 1, 1)

= apBopL 1-p—v
&y = 2exp <(1 - V)(p+L)TO . ) Q(To)
€y = apfBopL
Y T )t D)
1= (aoBoloBopL + p+ L)1 L/p+ 2v53)
x A (%,min@u, 3u+,u),u—|—y> . (42)

and A(, -, -) is defined in Lemma 5. Similarly, for u + v = 1,

E [IX(T) - 1x")7]

< 26 T2 9 (T5200 R0 Q(Ty) - eqes) T~ im0 —20),
for every T' > Ty = max(Ty, T», T3). This leads to (6), where

55 — QTgoﬁopL/(/H'L)Q(TO) + 54. (43)

V. CONCLUSION

‘We have studied distributed optimization over time-varying networks
suffering from noisy and imperfect sharing of information. Inspired by
the original averaging-based distributed optimization algorithm with
the diminishing step-size, we showed that for the class of strongly con-
vex cost functions, including a damping mechanism for the imperfect
incoming information from neighboring agents leads to convergence
to the optimizer in Lo sense for various choices of the damping and
diminishing step-size parameters. In addition, we obtained a conver-
gence rate as a function of these parameters. Optimizing the resulting
rate over the set of feasible parameters leads to the convergence rate
oO(T-1/?),
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