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Building social resilience in North Korea can
mitigate the impacts of climate change on
food security
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Adaptation based on social resilience is proposed as an effective measure to mitigate hunger and avoid food shocks caused
by climate change. But these have not been investigated comprehensively in climate-sensitive regions. North Korea (NK) and
its neighbours, South Korea and China, represent three economic levels that provide us with examples for examining climatic
risk and quantifying the contribution of social resilience to rice production. Here our data-driven estimates show that climatic
factors determined rice biomass changes in NK from 2000 to 2017, and climate extremes triggered reductions in production in
2000 and 2007. If no action is taken, NK will face a higher climatic risk (with continuous high-temperature heatwaves and pre-
cipitation extremes) by the 2080s under a high-emissions scenario, when rice biomass and production are expected to decrease
by 20.2% and 14.4%, respectively, thereby potentially increasing hunger in NK. Social resilience (agricultural inputs and popu-
lation development for South Korea; resource use for China) mitigated climate shocks in the past 20 years (2000-2019), even
transforming adverse effects into benefits. However, this effect was not significant in NK. Moreover, the contribution of social
resilience to food production in the undeveloped region (15.2%) was far below the contribution observed in the developed and
developing regions (83.0% and 86.1%, respectively). These findings highlight the importance of social resilience to mitigate

the adverse effects of climate change on food security and human hunger and provide necessary quantitative information.

daptive ability that depends on social-economic resilience is

consistently regarded as a crucial factor in coping with cli-

matic risk and safeguarding food security. Social-economic
resilience includes not only traditional financial assets and infra-
structure' but also demographic structure, resource utilization, tech-
nology, education, and attitudes and perceptions of risk to change
adaptive behaviours>. However, few studies have integrated social
resilience into the climate risk framework to quantify the contribution
to regional food production of inherently hard-to-quantify human
behaviour and risk perception. Moreover, little is known about the
potential of social-economic resilience to mitigate the adverse effects
of climate change and extreme events to ensure food security.

North Korea (NK), located in a climate-vulnerable region of
eastern Asia (Fig. 1), has been strongly affected by climate change.
Many meteorological disasters have induced more severe famine
over the past few decades, including typhoons, heavy precipitation
events and river floods’. According to reports, NK suffered from
a freezing disaster in 1993, hail in 1994, severe floods from 1995
to 1996, a typhoon and drought in 1997, and frost in 1998, among
other disasters’. Even in the twenty-first century, NK’s grain pro-
duction still cannot meet the population’s needs, and food deficits
still loom large and are even a growing trend®’.

The similar climatic conditions® but varying levels of economic
development of NK (an undeveloped region according to the World
Bank classification) and its neighbours (South Korea (SK), a devel-
oped region; and China, a developing region) provide a natural
example for investigating the impacts of climate extremes and their
link to social-economic resilience’. The similar climatic condi-
tions® of these areas also rule out uncertainties in social-economic
assessments due to differences in climate vulnerability. Comparing
economic vulnerability based on social resilience among the three
regions with natural adjustment for climate risk is a valuable
approach—that is, the ability to adapt to climate risk for food secu-
rity resulting from climate and economic vulnerability'®". Here we
study rice (Oryza sativa L.), as it is one of the most essential foods
in NK. Rice composes more than 60% of the total grain production
and directly affects food security for NK in terms of planting area
and production'”. Notably, the adverse impacts of climate change on
rice systems are increasing"’.

Obtaining reliable statistics and survey data from NK is dif-
ficult due to NK’s politics and economics. Therefore, this study
attempted to fully use remote sensing and climate data with openly
available statistical information to examine and assess climatic
risk and food security with the interaction between climate and
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Fig. 1| Spatial patterns of geographical and climatic distribution across NK, SK, and Liaoning and Jilin provinces of China. a, Climate zones

and rice planting intensity from 2000 to 2017. Cropping intensity values of 0.2-0.4 are considered low-frequency rice planting areas, 0.4-0.6 are
medium-frequency areas, 0.6-0.8 are high-frequency areas and greater than 0.8 are perennial planting areas. b, Geographic boundaries from Google Earth
images. BSk, arid and cold steppe; Cwa, temperate regions with dry winter and hot summer; Cfa, temperate regions with hot summer and without dry
season; Dwa, cold regions with dry winter and hot summer; Dwb, cold regions with dry winter and warm summer; Dwc, cold regions with dry winter and
cold summer; Dfa, cold regions with hot summer and without dry season; Dfb, cold regions with warm summer and without dry season®. CHN_1, Liaoning
Province of China; CHN_2, Jilin Province of China. The World Bank defines NK, SK and China as low-, high- and upper-middle-income countries/regions,

respectively, on the basis of income levels.

social-economic vulnerability for NK and its neighbours
(Supplementary Table 1 and Supplementary Fig. 1). In addition,
the method presented in this study can be used in regions of the
world that lack official information to evaluate climatic risk and
food security status (Supplementary Fig. 1). This research intends
to answer three interrelated questions: (1) How has climate change
(climate extremes) affected rice production in NK in the past? (2) To
what extent would projected climate change affect rice production
loss in NK in the future? (3) How have human activities (adapta-
tion based on social-economic resilience) exacerbated or amelio-
rated food deficits in NK and its neighbours? Specifically, we focus
on normal and extreme climate changes in NK over a recent past
18-year period (2000-2017), and we attribute rice biomass changes
to climatic factors resulting from high-frequency climate extremes
and increased vulnerability. The climate projections presented here
are based on 27 global climate models (GCMs). The GCMs are
derived from the Coupled Model Intercomparison Project Phase
6 (CMIP6) under two future shared socio-economic pathways
(SSPs; SSP245 represents SSP2 + RCP4.5, a medium-development
pathway; SSP585 represents SSP5+RCP8.5, a high-development
pathway). Moreover, we assess regional climate changes and result-
ing production losses from a climatic risk perspective. Finally, the
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effects of social resilience are preliminarily explored on the basis
of five factors (population development, resource use, science
and education, economic development, and agricultural inputs)
to mitigate climate shocks for rice production. Furthermore, the
contribution of social resilience to rice production is quanti-
fied by contrasting the differences between NK and its neigh-
bours (SK and China). More details on the data used, methods
and model robustness checks can be found in the Methods and
Supplementary Information.

Results

As the representative of the undeveloped and climate-vulnerable
regions, NK depends on rice production to feed approximately 25
million people. Our results show that climatic factors determined
rice biomass changes in NK from 2000 to 2017, and high-temperature
and precipitation extremes triggered reductions in production in
2000 and 2007. If no action is taken, enhanced climate extremes
will cause rice production to decrease by the 2080s, further resulting
in hunger in NK. Building adaptation based on social resilience in
NK, compared with its neighbours (SK, the developed region; and
China, the developing region), can mitigate the impacts of climate
change on food security.
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Fig. 2 | Simulating rice biomass and attributing the contribution of climatic variables on the basis of RF modelling in NK. a, Observed versus predicted
rice biomass from 2000 to 2017 (baseline period) in NK. The blue and red points represent the calibration and validation datasets, respectively. The
dashed and solid black lines are the 1:1 line and the linear trend, respectively. The marginal density in a represents the distribution of calibration and
validation points in predicted biomass (y axis) and observed biomass (x axis). b, Relative importance of climatic variables from RF modelling. See
Supplementary Table 3 for the detailed definitions of TS (total solar radiation), AAT, TP, TNn, TXx, TR20, SU30, FDO, R50, R25, R10 (count of days when
precipitation was >10 mm) and R1. R?., in b represents the goodness of fit from the fivefold cross-validation (Supplementary Table 4).

Domination of climate over the past 18 years for NK. To attri-
bute changes in rice growth and major climate in NK (Fig. 1), the
phenology- and pixel-based paddy rice mapping algorithm was first
applied on the Google Earth Engine (GEE) cloud platform to extract
rice paddy map referencing used by Dong et al.'* in which they ade-
quately verified this algorithm and the accuracy of rice maps for
ensuring robust application in large-scale fields (Supplementary
Figs. 2 and 3 and Supplementary Table 2). Furthermore, we adopted
an ecosystem light use efficiency (eLUE) model to simulate the bio-
mass of the study areas from 2000 to 2017 and calibrated this model.
Supplementary Fig. 4 demonstrates that the eLUE model had good
robustness and accurately reproduced the LUE of ecosystems moni-
tored by eddy covariance (EC) towers (tenfold cross-validation:
coefficient of determination (R?)>0.75, normalized root mean
squared error (nRMSE)<0.4, P<0.01). Consequently, we rees-
tablished the distribution of gross primary productivity (GPP)
from 2000 to 2017 using this model for NK (Methods and
Supplementary Fig. 1).

The climatic variables that were screened by variance inflation
factors (VIFs) were incorporated in the analysis to determine the
climate attribution of rice GPP changes in NK over the past 18 years
(2000 to 2017) (Supplementary Table 3). More specifically, for NK,
climatic variables explained 80% of the GPP changes observed from
flux towers from 2000 to 2017 (the baseline period) (Fig. 2a). In
addition, temperature (especially temperature extremes) dominated
rice GPP changes (explaining nearly 50%) in NK over the expanded
period as seen by the four most important variables (TNn, mini-
mum value of the daily minimum temperature; TR20, count of days
when the minimum temperature was >20°C; FDO, count of days
when the minimum temperature was <0°C; and AAT, average air
temperature) being related to temperature (Fig. 2b). These results
are robust as indicated in the two validation methods (Fig. 2a and
Supplementary Table 4). Furthermore, in the 18 years from 2000 to
2017, our results show sudden drops in rice production in 2000 and
2007 (Supplementary Fig. 5). The potential climate shocks induced
by climate extremes can cause fluctuations in NK’s rice production.

| VOL 3| JULY 2022 | 499-511 | www.nature.com/natfood

Specifically, extreme heat events and precipitation caused the
fluctuations in rice production in 2000 and 2007 (respectively)
in NK, as seen by comparing the spatial anomalies of each cli-
matic variable with those in other years. An abnormal increase in
extreme heat index was observed in 2000 (TXx, maximum value
of the daily maximum temperature in Supplementary Fig. 6), and
long-term high temperatures triggered a heatwave that resulted
in warming for daytime and overnight periods (TR20 and SU30,
count of days when the maximum temperature was >30°C, in
Supplementary Fig. 6). The frequency of abnormal increases
in TXx, TR20, SU30 and FDO in 2000 accounted for 27%, 35%,
37% and 54%, respectively, of the entire region, especially in the
western and southern rice-growing areas (Supplementary Figs. 6
and 7). Substantial increases in rain and rainy days were observed
in the non-rice part of northeast NK. This did not alleviate the
reduction in production caused by the high temperatures and the
heatwave (Supplementary Fig. 6). In 2007, precipitation extremes
dominated, decreasing rice production in the west/southwest
rice-growing region (TP, total precipitation, and R50, count of
days when precipitation was >50 mm, in Supplementary Fig. 6).
Specifically, the abnormal increases in TP, R50 and R25 (count of
days when precipitation was >25mm) accounted for 87%, 72%
and 80%, respectively, of the entire region (Supplementary Fig. 7).
Furthermore, the long-term and substantial precipitation pro-
duced conditions that made plants highly susceptible to crop root
rot and flood damage. These precipitation extremes regulated
the surface temperatures, causing the maximum temperatures
to decrease and the minimum temperatures to increase (TXx
and TNn in Supplementary Fig. 6). Additionally, extreme heat
in 2000 and precipitation extremes in 2007 occurred during key
phenological stages of rice development—that is, heading-tiller-
ing stages that are usually sensitive to climate change and espe-
cially sensitive to high temperatures that can cause plant death
(Supplementary Fig. 6). In short, rice production in NK decreased
abruptly due to extreme weather events (temporally and spatially),
resulting in human hunger.
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Future climate change and production losses in NK. Here we show
the effects of climate change on rice production losses under two
climate scenarios (SSP245 and SSP585) based on an ensemble of
27 GCMs (Supplementary Table 5). The future climate would show
marked increases in temperature and precipitation in the vulner-
able climatic region of NK. Specifically, AAT, TNn and TXx would
increase by 2.96+0.93°C, 2.32+0.59°C and 3.81 +1.12°C, respec-
tively, under the SSP585 scenario in the 2080s (Supplementary
Fig. 8a,d,e). Most surprisingly, SU30 would increase by 97.6 +43.77%
and 221.94+77.09% under SSP245 and SSP585, respectively, in
the 2080s, indicating that the number of high-temperature days
would double and triple in the future compared with the 1979-2018
period (Supplementary Fig. 8g). Additionally, TP, R50 and R25
would increase by 19.93 +7.74%, 7.57 +12.53% and 13.42 +9.75%,
respectively, in the 2080s under SSP585, yet R1 (count of days
when precipitation was >1 mm) would decrease by 19.23 +0.86%
(Supplementary Fig. 8c,i,j). In general, no matter which climate
scenario is considered, the risk of high temperatures and extreme
rainfall due to future warming will increase.

Consequently, with extremely high temperatures and altered
precipitation in the future, rice biomass in NK would decrease by
18.9% under SSP245 and by 20.2% under SSP585 in the 2080s,
compared with the baseline period. Production would drop by 13%
under SSP245 and by 14.4% under SSP585 in the 2080s (Fig. 3a).
In NK, where vulnerability to climate is exceptionally high and the
frequency of extreme weather leads to low production, 20.2% bio-
mass losses may be conservatively estimated, and the fragile food
system may collapse, resulting in famine. In the future, the negative
impact caused by climate change on biomass will extend across NK
and show different decreasing trends among the regions. The most
serious failure of rice biomass was found in the southwest and on
the east coast (Fig. 3b), which are the breadbasket of NK (Fig. 1).
Despite sporadic increases in biomass, the overall biomass loss from
central NK to western coastal areas hides these inconsistent esti-
mates from different climate models. Rice biomass losses projected
by the 27 GCMs will become more consistent in the 2080s under
the SSP585 scenario (lower standard deviation), which means that
the breadbasket areas will be the most extreme hotspots in terms of
decreased rice production (Supplementary Fig. 9).

Analysis of adaptability in NK, China and SK. Although rice pro-
duction is generally subject to natural-environmental change from
the standpoint of a climatic risk framework, the adaptive capacity at
regional or national levels from social resilience is a greater deter-
minant of rice production losses. Social resilience is driven by
population, economics, technology and culture’. To quantify the con-
tribution of social resilience to rice production, we collected and used
economic statistics from the Food and Agriculture Organization
(FAO), the World Bank and an agricultural dataset of remote sensing
that involved five factors—population development, resource use, sci-
ence and education, economic development, and agricultural inputs
(Table 1 and Supplementary Table 6)—that together constituted
social resilience. Supplementary Figs. 10-12 indicate the correlations
between a single social-economic variable and rice production. NK
showed weaker correlations between each of the variables of social
resilience than SK and China (p <0.5 and no vital significance).
When the climate model incorporated social resilience, more sig-
nificant explanatory power was shown in SK (P<0.05) and China
(P<0.01), but this effect was not substantial in NK (Supplementary
Table 7). In addition, social resilience controlled more rice produc-
tion changes for SK and China (P <0.01), improving the contribu-
tion by more than 26% and 100%. Social resilience did not provide
additional assistance for NK, which meant that climate dominated
rice production changes (Supplementary Table 7). Furthermore,
social resilience mitigated climate shocks and even converted
adverse effects to benefits in SK and China. Specifically, the notably
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high temperature and heatwave (TR20, AAT, TXx and SU30) threat-
ened rice production in SK. However, regional nitrogen fertilizer
input, rural population and population aged 0-14 years reversed
these effects from climate shocks and even promoted higher rice
production (Fig. 4). A similar phenomenon was observed in China,
where resources for social resilience relieved damage from rainfall
extremes. Specifically, the changes in access to electricity mitigated
the negative influence caused by rainfall extremes (R25) (Fig. 4).
This significant moderating effect was not observed in NK, where
all interactions between climate shocks and social resilience did not
result in increased production (Fig. 4).

We conducted a more comprehensive analysis on the basis of
random forest (RF) regression of economics (RF,) to assess the dif-
ferences in the contributions of social resilience to rice production
among NK, SK and China. Of the 12 indexes of social resilience,
higher education, rural population and population ages 0-14 domi-
nated rice production variations in NK (P<0.05). Patent applica-
tions, population ages 0-14, gross domestic product (GDP) per
capita and energy use contributed to rice production variations in
SK (P <0.01). The variation in rice production in China was mainly
determined by population ages 0-14, rural population, net official
development assistance (ODA) received per capita and GDP per
capita (P<0.05) (Fig. 5a). Economic development and population
structure in both developed and developing regions played a more
critical role than in undeveloped regions, and science and education
in the developed area had a greater influence on rice production
than other factors (Fig. 5a). The RF, analysis further illustrated the
essential contribution of social resilience to rice production in SK
and China (explaining 83.0% and 86.1%, respectively, of interan-
nual rice production variation, P<0.05), which was much higher
than in NK (15.2%, P<0.05) (Methods and Fig. 5a). Rice produc-
tion in developed and developing regions is therefore controlled by
social-economic factors (Fig. 5a). In addition, the robust results
obtained in this study demonstrate the great potential of social resil-
ience to increase crop production and resist the harmful effects of
climate shocks and weather extremes on food security.

Rice production in NK exhibited a threshold-like response to
all four important variables influencing rice production, including
school enrolment, tertiary (Fig. 5b). Rice production declined when
school enrolment was higher than —0.6 units, presumably because
limited capital was invested in science education and reduced eco-
nomic investment and labour from family sources in agriculture.
The nonlinear response of rice production in China to population
development provided coherent evidence (Fig. 5b). Specifically,
rice production decreased with the increasing agricultural popula-
tion and population ages 0-14 in the undeveloped and developing
regions (NK and China) (Fig. 5b). The pressures from dietary needs
caused by population growth and the uncoordinated structure of
the population constrain economic development and production
increases in undeveloped regions'®. For instance, the rural areas with
relatively higher mechanization contribute to rice production and
require lower agricultural populations”. In contrast, the response
of rice production to population ages 0-14 was the opposite in the
developed region (SK), which might be explained by differences in
the structure of the population among districts. Developed regions
need to increase the proportion of adolescents in the population to
adjust for serious ageing'® so that an abundant agricultural labour
force is available to increase rice production. Energy use produced
an increase in rice production for the developing region (China).
Yet, the opposite result was observed for the developed region (SK),
owing to the capacity to import resources because of sufficient capi-
tal””. Social resilience probably results in various impacts on rice
production among NK, China and SK.

The nonlinear response of rice production to agricultural
inputs in the three regions is shown in Supplementary Fig. 13. The
response curves for nitrogen, phosphorus and irrigation showed
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Fig. 3 | Projected rice biomass and production losses under four future scenarios in NK. a,b, The relative change (biomass and production loss)

is assessed for the 2040s (2021-2060) and the 2080s (2061-2100) compared with the baseline (2000-2017). SSP245 is SSP2 +RCP4.5, an
intermediate-development pathway; SSP585 is SSP5+ RCP8.5, a high-development pathway. a, Box plots of projected rice biomass (left) and production
(right) losses under four different future scenarios. The box boundaries indicate the 25th and 75th percentiles across the 27 GCMs, and the whiskers to
the left and right of the box edges indicate the 10th and 90th percentiles, respectively. The black line within each box indicates the multi-model median.
b, Spatial hotspots of rice biomass and production losses under different future scenarios in which biomass changes were measured relative to the
baseline period (2000-2017) and production changes were measured relative to production statistics from FAO.

increasing trends in SK and China. However, in NK, the production
responses to the three agricultural practice inputs were expressed
as humps or concave curves (Supplementary Fig. 13). On the basis
of the RF model and its out-of-bag error, agricultural inputs (nitro-
gen, phosphorus and irrigation) explained —4.8%, 51% and 77% of
rice production changes for NK, SK and China, respectively. The
explanatory degree for NK was negative, and the three agricultural
practices cannot support the increase in rice production in the cur-
rent situation.

Discussion

Our results demonstrate that climate extremes reduced rice pro-
duction and that climate warming would contribute to famine in
NK. The high-temperature index (SU30) would increase 97.6%
and 221.94% under SSP245 and SSP585, respectively, by the 2080s
(Supplementary Fig. 8). The number of high-temperature days
per year would increase by nearly one month by the 2080s under
SSP245, and the number would increase by two months under
SSP585. This finding is also supported by results documented in
previous literature. Kawasaki and Uchida® indicated that the abnor-
mal temperature caused by global climate change had a severe nega-
tive impact on agricultural production and quality. And climate
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extremes will increase in frequency and intensity with rising tem-
perature in the future’. Our results also suggest that projected
GPP and production may decrease by 20.2% and 14.4% in NK in
the 2080s under the SSP585 scenario. However, this result may be
underestimated and could be even more severe for crops, because
we used the average GPP and harvest index for entire regions to
calculate relative changes in biomass. Climate extremes have been
known to have critical impacts on the resilience of the food supply
chain®. Temperature extremes observed in the past have contrib-
uted to increased yield variability, and extreme temperature events
will probably increase in the future®.

However, abnormal weather and climate extremes do not always
have negative consequences. Some studies relating to differing
weather conditions and intensity and target crops have reported
different results in various areas. For instance, Zhao et al.** indi-
cated that rice yields declined significantly with higher temperature
on the basis of simulations of field warming experiments, statistical
models and gridded crop models. These yield reductions exceeded
assessments by the International Food Policy Research Institute®.
Yet, in India, rice yield in the most agro-ecological zones would
benefit from climate change predicted by climate scenarios and
GCMs®. Furthermore, Lesk et al.*® argued that extreme hourly
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Table 1| The vulnerability indexes for social resilience

Factors of social Vulnerability indexes Abbreviation

resilience
Population Population ages 0-14 Pop. 0-14
development (S) (% of total population)
Population ages 15-64 Pop. 15-64
(% of total population)
Rural population RP
(% of total population)
Resource use (H) Energy use (kg of oil EU
equivalent per capita)
Access to electricity AE
(% of population)
Science and School enrolment, tertiary SE
education (S) (% gross)
Patent applications PA
Economic Net ODA received per capita ~ NOR
development (H) (current US$)
GDP per capita GDP
Agricultural inputs  Nitrogen fertilizer use N
(H Phosphorus fertilizer use P
Irrigation Irrigation

S, soft-adaptive measures; H, hard-adaptive measures.

rainfall (>50 mmhr~') caused severe damage to crop yield but that
crop growth benefited from heavy rain of 20mmbhr~'. Due to the
projected increases in temperature and rainfall intensification in the
future, the impact of climate extremes on crops remains somewhat
uncertain. It is difficult to identify major changes in climatic sensi-
tivity solely on the basis of production data over time because of the
infrequency of extreme weather”. Inductive analysis of the changes
in exposure and crop sensitivity to climate extremes is therefore a
prerequisite for food security assessment.

Differences in the quantitative attribution in rice production
between NK and its neighbours (SK and China) reflected the
importance of adaptation based on social resilience to mitigate the
adverse effects of extreme climate. Food security may benefit most
from changes in adaptive capacity under future climate change, such
as agricultural practices, economic development®, resource use
and social cognition”. Irrigation®, fertilization, conservation till-
age’' and crop breeding are being given much attention, with more
focus on increasing yields. For example, Challinor et al.** found
that anthropogenic adaptability increases the average yield of crops
by 7-15%. However, suppose the focus is only on increasing crop
yields. In that case, farmers will still suffer severe production losses
due to their low-risk perception concerning the effects of extreme
weather disturbances. Learning reflects the ability to produce,
absorb and transform new information about climate risk, adap-
tation and coping with uncertainty. This ability to learn and apply
further scientific knowledge is a mitigation mechanism applicable
to climate change®. Capital investment that depends on economic
development is a more direct approach. These investments include
building early warning systems and climate insurance, resource and
energy use, and international trade, as well as reducing poverty.
Insurance is a tool to mitigate climatic risk and restore livelihoods,
especially in response to climate extremes™. Still, if the insurance
structure is not correct, it has an inhibiting effect on risk reduc-
tion®. For regions that cannot compensate for losses through trade,
these years of low productivity can still be devastating. Undeveloped
countries are more vulnerable and less resilient to climate change.
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When the poor are struck, they have less support from friends, fam-
ily and the financial system. Policies meant to reduce poverty under
similar climatic risk conditions can also reduce the adverse impacts
of climate change’”. The interaction of social-economic factors
from many aspects is the key to decreasing economic vulnerability
and increasing social resilience to mitigate climate vulnerability. In
this study, social resilience was shown to be enormously important
for reducing hunger by contrasting the situation in three regions.
Moreover, the topography may limit future rice production poten-
tial in NK due to the poor-quality land that is not suitable for plant-
ing rice (Supplementary Section 1.1 and Supplementary Fig. 18).
Future planning for food security needs to consider climate change
and social-economic interactions and development.

This study provides critical insights into the contribution of
social resilience to food security. The regions of food insecurity in
the world are also the regions with limitations to necessary data due
to conflicts, war and climate extremes. A comprehensive evaluation
of the food security status in these regions is not only an imperative
requirement for sustainable development but also a necessary way
to decrease hunger. This study integrated meteorological reanalysis
products, openly available statistics and high-resolution imagery
to replace unavailable data and ensure robustness. These analyses
of food production and food security can therefore be extended to
other parts of the globe with ground-truth data limitations. The
platform employed in this study, coupled with distinctive regional
characteristics, can analyse the importance of social resilience to
food security. It has the potential to produce comprehensive assess-
ments of food security status in other regions of the world, such
as Africa, Latin America and Southeast Asia. Predictably, national
or regional food security is more attributable to social-economic
features. Given that food loss occurs from different causes and risks
beyond the climate risk framework, global food production is sub-
ject to the constraints imposed by exposure and adaptation. For
example, food insecurity in most areas of Africa is attributable to an
increase in violent conflict since 2014. However, production losses
are also attributable to locusts and drought. New insights regarding
food security can be obtained for specified regions by incorporating
different factors into exposure. This will enable us to further explore
the ability of social resilience to mitigate factors that destabilize food
security. With the future development of multivariate data (espe-
cially remote sensing data), study regions lacking reliable data will
have new opportunities for analysis and evaluation.

Our findings are subject to some limitations and should be con-
sidered with caution. First, the lack of sufficient ground-truth data
for vulnerable regions was the biggest challenge, particularly social-
economic data (only 20 years). Additionally, we do not resolve other
potential sources of uncertainty. For example, the lack of short-term
fertilization data and additional management data is a potential
source of uncertainty not considered in this study***. Second, soil
properties may also introduce uncertainty in the results*. The phys-
ical and chemical properties of soil were different in each region,
yet we do not include these in our model. Folberth et al.* found
that assessing the impact of climate change on yield depended on
soil type because soil characteristics and moisture buffer or amplify
climatic impacts”. This study also did not consider the effects of
rice genotype due to a lack of cultivar data, and therefore there may
be uncertainty regarding regional production differences*’. For GPP
loss estimation, we did not introduce carbon dioxide (CO,) con-
centration in our model due to the controversy regarding the abil-
ity of increasing CO, concentration to decrease crop water demand
and improve yield while reducing the nutritional content of grain®.
Not introducing CO, concentration effects may have affected reli-
able and robust climate and economic vulnerability estimates.
Finally, the rice maps and downscaling methods were also sources
of uncertainty. Specifically, uncertainties regarding rice maps may
have arisen from remote sensing data, poor weather, data quality
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and the number of images observed'**. This study generated future
daily meteorological data with statistical downscaling, but differ-
ent downscaling methods (such as the change factor method and
dynamical downscaling) produced different results”. In the future,
NK’s single-crop production is more likely to lead to food insecu-
rity (rice production accounts for more than 60% of the total food
production), leading to hunger. Switching agricultural structures
and increasing crop diversity may therefore be a critical path to
ensuring food security. The introduction of drought-tolerant and
heat-tolerant crops is expected to contribute to food security in vul-
nerable regions such as NK. Especially at the national level, increas-
ing crop diversity by planting multiple crop species can effectively
reduce the losses in national food production, thus ensuring the
overall food supply*. As one of the crucial components of food sys-
tem resilience, crop diversity can drive trade diversity, dietary diver-
sity and ecosystem services".

Climate change is expected to increase the frequency and inten-
sity of climate extremes, probably reducing global food production
and famines. An accurate assessment of food insecurity must be
valued in the deprived areas of the world because it is a vital link
in the world food system and is an essential component of the
United Nations” Millennium Development Goals. NK is represen-
tative of the world’s deprived areas, and it and its neighbours offer
an excellent example for studying food insecurity in undeveloped
regions. Our robust results suggest that social resilience provides
a reliable path for understanding and mitigating the detrimental
effects of extreme weather shocks in the future. Using this method,
we can clarify future food risks and provide quantifiable pathways
and goals for efforts. That will contribute to improved national risk
awareness, make up for weaknesses in food programmes and guide
adjustments to food strategies optimizing social-economic policies.

Methods

Workflow. The workflow presented in this study was designed to assess the
contribution of climate change (climate extremes) and social resilience to regional
food security. We can use flexible multisource data to extend the study to the rest
of the globe, where data availability is restricted (Supplementary Fig. 1). Regional
biomass was first simulated on the basis of an eLUE model using observations of
flux towers and a remote sensing index (with a 500 m spatial resolution and an
eight-day (8d) time step) from NK’s neighbours (Liaoning and Jilin provinces of
China (CHN_1_2)). We also conducted cross-validation for predicted biomass.
Second, we calculated 12 normal and extreme weather variables from ERA-5
reanalysis (with the original 0.1° spatial resolution and a daily step) for NK, SK
and CHN_1_2 during the rice growing seasons in 2000 to 2017. These weather
variables were used as predictor variables to build a RF model. Furthermore,
annual rice distribution was extracted by phenology- and pixel-based paddy

rice mapping and satellite products from the Moderate Resolution Imaging
Spectroradiometer (MODIS) to mask non-rice regions.

Then, for climate shocks and future climatic risk, two steps were employed. In
Step 1, gridded climate variables and biomass in the rice regions from 2000 to 2017
were used as the baseline to build the RF model (RF,). We also validated the stability
of the model and calculated the importance of the variables. In Step 2, NK’s climatic
risk and biomass losses were projected on the basis of the model determined in
Step 1 with future climate data that were used for statistical downscaling with daily
climate data from ERA-5 (1979 to 2017) and 27 GCMs under SSP245 and SSP585
to assess NK’s food security status by the 2040s and the 2080s. Finally, this study
included social-economic variables (derived from FAO statistics) and climatic
variables (based on daily climatic products of ERA-5) at the national level from 2000
to 2019. The potential for social resilience to mitigate climate shocks in NK, SK
and China was explored using a moderation model. We also focused on nonlinear
responses of critical variables affecting rice production using an RF, model and
conducted time-series split cross-validation to further clarify the contribution of
social resilience to rice production and mitigating climate shocks.

Data sources. We used daily reanalysis data to analyse climate variables over the
years of the study. The daily reanalysis data were obtained from the European
Center for Medium-Range Weather Forecasts (ECMWF) gridded dataset at 0.1°
resolution. This dataset included daily 2-m temperature (24-hour maximum,
minimum and mean temperatures), precipitation and solar radiation from 1979

to 2018. See Supplementary Table 1 for more details. We selected the ECMWF’s
ERA-5 dataset for two reasons: (1) ground data are not readily available, and (2) by
using the global dataset, we can apply our methods to other areas with limited data
(Supplementary Table 1).
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Our primary analysis calculated three average and nine extreme climate
indexes for the 1979-2017 and 2021-2100 periods (Supplementary Table 3).
Climatic variables for 2000-2017 were used to attribute extreme weather,
modelling regression and prediction for NK. We projected future climatic risk and
production losses under different climate scenarios using variables from 2021~
2100. We also conducted statistical downscaling of the data from 1979 to 2017 to
project future climate change using ERA-5.

We employed the MODIS gridded mosaic for remote sensing information,
including 8d surface reflectance, 8d leaf area index and 8d GPP accessed from
GEE for 2000-2017 (Supplementary Table 1). We used MODIS surface reflectance
to calculate vegetation indexes—that is, normalized difference vegetation index
(NDVI), enhanced vegetation index (EVI), land-surface water index (LSWI) and
the near-infrared reflectance of vegetation (NIR,). The specific formulas are:

PNIR — PRed (1
Par + €1 X preq — Co X ppye + L

EVI=G

NDVI — PNIR ~ PRed 2
PNIR T PRed
LSWI — PNIR_— PSWIR 3)

PNIR T Pswir

NIR, = NDVI X pyp (4)

where pr.s Prio Pswir and Py are the surface reflectance values of the red band,
the near-infrared band, the shortwave-infrared band and the blue band in the
MODIS imagery; L is the canopy background adjustment that addresses nonlinear,
differential near-infrared and red radiant transfer through a canopy; C, and C, are
the coefficients of the aerosol resistance term, which uses the blue band to correct
for aerosol influences in the red band*. And G represents the gain factor. The
parameters in the EVI formula are, L=1, C,=6, C,=7.5,and G=2.5.

For geographic information, we also used the digital elevation model with
90-m spatial resolution from SRTM Digital Elevation Data Version 4 in the GEE
platform to calculate the slope for every grid cell. All datasets supporting the
results of this paper are freely available in Supplementary Table 1.

We accessed the observations of daily net ecosystem CO, exchange and
ecosystem respiration from two EC towers in the Chinese FLUX Observation
and Research Network from 2003-2010 to calibrate and simulate the biomass
of the study areas without meteorological inputs (except solar radiation). The
EC towers were located close to NK in Yucheng, Shandong province of China
(116°34'12.72" E, 36°49' 44.4" N) and at Changbai Mountain, Jilin province
of China (128°5'45"E, 42°24’ 9" N), with farmland and forest ecosystems,
respectively. We used the daily net ecosystem exchange and heterotrophic
respiration from the flux towers to calculate the gross ecosystem CO, exchange. We
refer to gross ecosystem CO, exchange as gross ecosystem primary productivity
(Supplementary Table 1).

The phenological periods of the main crops were obtained from the China
Meteorological Data Sharing Service System (http://cdc.cma.gov.cn/home.do)
in Panjin Plain, Liaoning province of China, to determine the rice growing and
transplanting seasons in the study areas (Supplementary Table 1). We redrew the
crop calendar on the basis of Supplementary Table 8 of Zhou et al.*. The reason
for choosing these sites was based on the similar climate zones in the study areas
(Fig. 1) and the lack of actual data from NK. All data were strictly examined to
meet the standards for further analysis, including cross-validation and comparison
with existing data.

The statistical data were obtained from FAO (rice production and
population), the United Nations Statistics Division (GDP and imports/exports of
goods and services) and the World Bank (population ages 0-14, population ages
15-64, rural population, energy use, access to electricity, school enrolment, patent
applications and net ODA received per capita) (Table 1 and Supplementary
Table 6). All data are based on the period 2000-2019 at the country level.
Nitrogen and phosphorus fertilizer applications for agriculture production were
provided by Lu and Tian*, who developed the global gridded data at 0.5° X 0.5°
resolution from 1961 to 2013 and published for free access. The statistical data
were used to analyse the social-economic attributions. FAO’s data quality is
generally divided into ten categories: ‘Unofficial figure, ‘Symbol for indigenous
or liveweight meat, ‘Official data, ‘Aggregate (may include official; semi-official;
estimated or calculated data)’ ‘Calculated, ‘FAO estimate, ‘Calculated data,

‘FAO data based on imputation methodology’, ‘Data not available’ and “Trend.
More than 95% of the data used in this study were from the ‘Official data’ and
‘Aggregate’ categories to ensure high quality.

For further analysis of non-climate attributions, we considered the effect of
irrigation on rice growth. We used the water consumption coefficient for rice
paddies to replace irrigation because of the lack of irrigation data over the study
areas and the large uncertainty in irrigation timing, amounts and methods. The
irrigation period for these maps was from 2001 to 2017, and we calculated the ratio
of evapotranspiration (from MOD16A2, Supplementary Table 1) to precipitation
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as the water consumption coefficient. Furthermore, we averaged the water
consumption coefficient for rice paddies in the study areas.

Rice paddy mapping and estimating biomass. Annual rice maps were used
to mask non-rice regions to improve the accuracy of the regression model. The
annual gridded rice paddy maps (from 2000 to 2017) were produced on the GEE
cloud platform on the basis of vegetation indexes (equations (1)-(3)) from MODIS
reflectance bands and the calculated rice phenological calendar (Supplementary
Table 8 and Supplementary Figs. 2 and 3). See Dong et al."* for clear steps and
complete verification. We used very high-resolution samples from Google Earth
images to validate the 2015 rice map and obtain high-accuracy rice distributions
over NK, SK and CHN_1_2 (Supplementary Table 2 and Supplementary Fig. 3).
Existing biomass products are usually calculated using meteorological data.
However, a misleading result can be obtained when analysing which climate
variables dominate biomass changes using these products—that is, the climate
variables that dominate biomass changes are highly correlated with the climate
factors used for the calculation. We therefore considered using a vegetation index
from MODIS (with a 500 m spatial resolution and an 8d step) with daily EC tower
observations from NK’s neighbours (CHN_1_2) to estimate 8d GPP without extra
climatic factors (such as temperature and precipitation) for NK. Traditional LUE
models need to assess the fraction of absorbed photosynthetically active radiation
(fAPAR) and actual LUE (¢) separately when calculating GPP. Furthermore, using
VIs X PARqq to evaluate GPP means that vegetation indexes (VIs) can be more
clearly used as a measure of eLUE (described as LUE based on photosynthetically
active radiation (PAR))™. eLUE is defined as the ratio between GPP and PAR at
top-of-canopy (PARqc):

GPP

PARIoc f(Vis) (5)

ELUETOC =
We averaged daily GPP (GPPy., gCm™d™") and daily PAR;,c (MJm=2d™")
from two EC towers as 8d values to calculate eLUE o (gCM]J ™). f(VIs) was
from the regression of eLUE . to VIs. Once eLUE . was estimated, the eLUE
relationship with PARq (equation (5)) was rearranged to predict GPP:

GPP = eLUEroc X PARtoc (6)

f(VIs) is the coupling relationship between eLUE and VIs. Past research has
focused on the linear model***'. However, multiple variables have nonlinear
relationships in the natural environment, and large-scale areas contain multiple
complex ecosystems. The performance of the linear model can no longer meet the
practical application in large-scale regions or be extended to other districts. We
converted f{VIs) into a nonlinear model (that is, an RF model) and incorporated
a variety of VIs into the model (NDVI, EVI, leaf area index and NIRv). RF models
have good performance and fewer parameters than other nonlinear models. In
recent years, RF models have been widely used in different regions to solve natural
science problems at the global scale®. For a more detailed explanation of RF
models, see Breiman™.

To establish the relationship between eLUE and VIs (calibrating the eLUE
model) and provide independent verification, we randomized EC tower data
(397 samples) and then divided the data into two subsets for calibration and
validation datasets. To evaluate nonlinear model performance, we used a stratified
tenfold cross-validation. We used R?., and nRMSE_, to evaluate the results of
the cross-validation, where the CV subscript represents the data obtained from
the cross-validation datasets’*. We used the Cal subscript to represent the data
obtained from the calibration datasets. These parameters were calculated as:

s o () = x) 0 () — )]
B S GO = o, 0 — ) )

n L h\2
MSE — izt (P4 = P (P:’ ) ®)
n C_p)2
RMSE = ] 2=i=t P4 Z P (p:’ pi) ©)
RMSE
nRMSE = = (10)

where y(i) and x(i) are the simulated and observed values, respectively; y,, and x,,
represent the mean value, respectively, from simulated and observed series; 7 is the
number of samples; pe; and p; are the observed and simulated values, respectively;
and pe; is the mean value of the observations.

Attributing predominant climate variables in NK. We downscaled 12 climatic

variables (originally 0.1°) to 500 m resolution and calculated biomass with 500 m
resolution for regional GPP from 2000 to 2017 over NK (see Supplementary
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Table 2 for details on the climatic variables). The climatic variables and biomass
were then incorporated into an RF model to determine the predominant climate
variables. Specifically, all gridded climatic variables with a resolution of 0.1° pixels
were resampled to 500 m resolution using the bilinear interpolation method to
match biomass. This study’s complex models and calculations utilized a large
amount of gridded data, resulting in a heavy computation burden and longer times.
Hence, we removed the climatic variables whose VIF was greater than 10 to check
the multi-collinearity and reduce the computational load and interference in the
attribution analysis. The VIF formula was:

1

VIF= ——
1-R

(11)

where R? represents the coefficient of determination between the ith independent
variable and other independent variables. Therefore, the variables for solar
radiation and rain were excluded from the RF, model.

Compared with linear regression, the nonlinear model explained the nonlinear
responses of the climate variables and unravelled the influence of related variables.
The process used rice maps to mask non-rice areas. The RF model generated
different regression trees using random multiple training sets and features, and
each regression tree was sampled independently and distributed identically™. Each
regression tree produced different results through branching, and the prediction
from the RF regression model was the average of all trees’. The unbiased estimate
of RF performance was from out-of-bag (OOB) error, and this result was similar to
k-fold cross-validation. For more details about the RF model, please see Breiman®
and Shi et al.”. Specifically, RF, models (Supplementary Table 9) were used to
determine the fit between biomass and climatic variables with the parameters
‘mtry, the square root of the variables; ntree, 500’ in the R program (version 4.0.2;
available at https://www.r-project.org) randomForest package (version 4.6-14;
available at https://cran.r-project.org/web/packages/randomForest). We further
used function importance to compute the variable contribution. The implication
of ‘importance’ is that the permutation of a variable changes the degree of model
accuracy—that is, the error rate calculated from samples that did not participate in
the training, usually called OOB error. In this study, an increase in MSE percentage
was adopted to measure the importance of a variable. Specifically, a variable is
permuted, but other variables of OOB samples are kept constant. The RF model is
then rerun to obtain new permuted results from OOB. The importance of variables
is the average difference between the permuted OOB samples and the original
OOB*. Mathematically, the importance of explanatory variables is defined as:

Z:\]:l i — y2i)

where y,, is calculated from the original OOB samples of RE, y, ; is calculated

from the permuted OOB samples and N,,.. is the number of trees of the RF model.

Commonly, larger VI indicates that the explanatory variables are more important.
For NK, SK and CHN_1_2, the percentage of variance explained was calculated

by OOB of the RF model as a goodness of fit to assess the response of the climatic

variables to biomass (equation (13))*. We validated the stability and accuracy of

models on the basis of fivefold cross-validation (Supplementary Section 1.2):

Vix = (12)

tree

MSEOOB

1
2
%

(13)

where 62 was computed with 7 as the divisor (rather than n— 1). MSE, is the
mean of squared residuals, calculated as:

1 N R 2
MSEoos = Z (}’i - )’?OB)
Niree 1

where 7098 is the average of the OOB predictions for the ith observation.

We calculated the bias between a specific year and other years during 2000 to
2017 in NK. The ratio of the difference between climatic variables from a specific
year and the mean value from other years to the standard deviation of the climatic
variables of other years was used to determine the climate anomaly for a specific
year. If the anomaly was >1 or <—1, we considered that the values were clearly
greater than or less than the others™. Specifically, we used the threshold of one
standard deviation by assuming that the variations of climatic factors under normal
conditions were generally located in the range of one standard deviation about the
multi-year mean™.

(14)

Projections of future climate and biomass losses. We used daily maximum and
minimum temperatures, precipitation, and solar radiation from 1979 to 2017 with
statistical downscaling and 27 GCMs to calculate climatic variables for different
climate scenarios in the future (2021 to 2100), and further calculated three average
and nine extreme variables (Supplementary Table 3). The RF, (Supplementary
Table 9) was then used to project annual rice losses under future climate change
conditions for spatial pixels over NK from 2000 to 2017. Specifically, we used

the statistical downscaling model NWAI-WG®” to downscale monthly gridded
data from GCMs to daily climate data for 1,299 grid points from meteorological
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reanalysis over NK. Statistical downscaling consisted of three major components:
spatial downscaling, bias correction and temporal downscaling. Spatial
downscaling used inverse distance-weighted interpolation based on the centre of
the nearest four grid points in GCMs to improve accuracy”, and we then applied
bias correction to generate bias-corrected monthly data using a relationship
between the observations and GCM data for a historical training period (in this
case, 1979-2018). Finally, the daily time series for maximum and minimum
temperatures, precipitation, and solar radiation for each pixel were downscaled
from the bias-corrected monthly GCM projections using a modified version of
the stochastic weather generator™. For a more detailed description of statistical
downscaling, please see Liu and Zuo™.

We downscaled 27 GCMs of CMIP6 (Supplementary Table 5) using the
statistical downscaling method as two future climate scenarios (SSP245 and
SSP585). Furthermore, the daily average and extreme climate variables were
calculated for two climate scenarios from 2021 to 2100 according to the climatic
index described above in Supplementary Table 3.

We ran the RF, model on the basis of gridded climate variables and biomass
over NK to project future annual biomass and production losses. Before this,
multi-collinearity analysis was conducted on the climate variables (equation (11)).
More details about the RF model appear in the previous sections. Two validations
were used to examine the robustness of the regression model. First, 75% of the
random climate and biomass data from 2000 to 2017 were used as training data,
and 25% of the data were used as validation data to test the model performance.
The R? values were used to evaluate the results of validation and calibration
(equation (7)). Second, fivefold cross-validation was conducted (Supplementary
Section 1.2 and Supplementary Table 4).

We finally assessed climate change and production loss in the future for the
2040s (2021-2060) and the 2080s (2061-2100). Specifically, for climate change
in the future, the relative changes of temperature (AAT, TXx and TNn) were
calculated by subtracting the means of the historical period (1979-2017) from the
future temperature. For biomass, TS, TP, TR20, SU30, FDO, R50, R25, R10 and R1
(see Supplementary Table 3 for the detailed definitions), the relative changes were
derived from the ratio of future means to historical means. For production losses
in the future, we obtained the inferred mean value of the conversion coefficient
(noted as a) from FAO statistical production (production;) and estimated regional
biomass (that is, « as the ratio of biomass to production). The formulas are:

B
Py, = Zﬂ Xa; X A (15)
a;
Omean = Z:l:n ;’ (16)

where P, is statistical production from FAO, Zfl represents the sum of each
gridded biomass (GPP projected by the RF, model), &, represents the conversion
coefficient for every year, a,,.,, is the average conversion coefficient calculated by
a, for every year (2000 to 2017), n is the number of years and A is the pixel area
(500 m X 500 m).

Future production was projected by using the mean conversion coefficient and
predicted GPP by the RF, model:

B
Ppre = th X Amean X A (17)

where P, is future production and 3" represents the sum of each predicted GPP.
Finally, we used future and historical GPP and production to calculate relative

changes as the losses.

The contribution of social resilience to rice production. For NK, SK and China,
we examined the contribution of social resilience to mitigating climate shocks and
rice production based on national-level climate variables (Supplementary Table 3)
and social-economic variables (Table 1 and Supplementary Table 6) from 2000

to 2019. In addition, the nonlinear responses of the four crucial variables to rice
production; was explored by the partial dependence for NK, SK and China to
describe how social resilience affected rice production changes.

The selection of these variables was based on evidence from previous studies
demonstrating that social resilience depends on these economic and social
characteristics. A vital understanding of resilience is that the system may transition
to another state once a threshold is exceeded, and it is difficult to return to the
original state. Thus, resilience is generally regarded as the ability to persist or
absorb change while maintaining the same structure and function, and it is
described as the magnitude of system change that can be absorbed or that will
result in disruption. Social resilience is based on the interdependent relationship
between human activities and ecosystems. People are generally more adaptive
to social change when they have access to various financial, technological and
service resources and to assets. Asset-based societies are usually more adaptive
to environmental changes than poor societies, and the rich are more resilient
than the poor. Education in social resilience is the key to explaining increasing
productivity and income, and a large part of the demographic dividend is derived
from the education dividend. In addition, changing population structure is a

| VOL 3| JULY 2022 | 499-511 | www.nature.com/natfood

direct socio-economic challenge for predicting mitigation and adaptation to
inevitable climate change, in which ageing and labour force changes are identified
as fundamental socio-economic issues. Energy is a fundamental factor in social-
economic development and its ability to eradicate poverty. The preamble of the
United Nations’ Millennium Development Goals recommends “universal access
to affordable, reliable and sustainable energy” and recognizes that “social and
economic development depends on the sustainable management of the earth’s
natural resources” (https://sdgs.un.org/goals/goal7). This study further considered
necessary management practices for crop production to resist external stress. The
relevant variable references are displayed in Supplementary Table 6. The social
resilience data were characterized as one of two types to fully reveal the real social
situation: soft-adaptive and hard-adaptive™ (Table 1).

We interpolated missing statistics from FAO and the World Bank (national
level) from 2000 to 2019 on the basis of linear regression due to discontinuous
economic data (four social-economic variables: energy use, school enrolment,
access to electricity and patent applications). The range and the filed and
interpolated results of the missing data are shown in Supplementary Fig. 14.
Specifically, discontinuous economic data for NK were interpolated using
regression models to estimate the missing values (energy use, school enrolment,
access to electricity and patent applications) (Supplementary Fig. 14; the R* values
are 0.70, 0.99, 0.99 and 0.92, respectively; the P values are all <0.01).

A moderation model was used to explore the effects of social resilience on
mitigating climate shocks®. First, we averaged all gridded climate variables
(Supplementary Table 3) for NK, SK and China (here using the climatic data in
CHN_1_2 as the replacement) to obtain the region-scale value and match the
socio-economic variables. Second, all variables were normalized to better compare
the positive and negative effects of rice production changes. Furthermore, we
screened all adverse climate shocks and positive social resilience to rice production
changes on the basis of the linear regression model. The screened negative climate
shocks (as independent variables) and positive social resilience (as moderators)
were used for pairwise combinations to build a potential production moderation
model. Finally, we introduced the interaction between independent variables
and moderators in the potential models to explore the mitigation effects of social
resilience. Specifically, if the relationship (the direction and size of the slope of the
regression) between two variables of interest (the dependent, Y, and independent
variables, X) depends on a third moderating variable (the moderator, Z),
moderation is said to occur. Here we considered the simple moderating model—
that is, the following relationship—for hypothesis testing:

Y=aX+bZ+cXZ+¢ (18)
where Y, X, Z and XZ represent the dependent variables (rice production), the
independent variables (negative climate shocks), the moderator (positive social
resilience) and the moderating terms, respectively; a, b and c are the coefficients

of each regression term; and ¢ is error. If coefficient ¢ is significant (P <0.1), then

Z represents a significant moderating effect. Analysis of variance was used to
examine the significance of different combinations of variables.

Given that the effects of social resilience on rice production; are often nonlinear,
RF, was expected to perform well in assessing the nonlinear relationship. This study
modelled the relationship between social-economic variables and rice production;
on the basis of the RF, model (Supplementary Table 9) and tested significance for
a single variable and the full model using the A3 package (reference, version 1.0.0;
available at https://cran.r-project.org/web/packages/A3) in R. Details about the RF
regression model and its parameters were provided in the previous section. The
parameters of nonlinear models (ntree and mtry) were set as 500 and the number
of the square root of the variables, respectively. The increase in MSE percentage and
variance explained were further used as indexes to evaluate variable importance
and goodness of fit measures for rice production; (see equations (8), (13) and (14)
and the previous section). The partial dependence (that is, marginal effect) was
constructed to assess the nonlinear response between rice production; and each of
the first four variables. This process was accomplished using the partialPlot function
of the randomForest package in R. The threefold time-series split cross-validation
was applied to examine the robustness of the RF, model for NK, SK and China
(Supplementary Table 10). We divided the training and validation sets along with
time series compared with the original cross-validation. The data from 2000 to 2012
were a test of the first fold, and the data from 2013 to 2014 were the validation of the
first fold; the data were further expanded at the two-year step.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

All original MODIS reflectance and other MODIS products that NASA LP
DAAC provided at the USGS EROS Center in this study are freely accessible on
the GEE platform at https://developers.google.cn/earth-engine/datasets. The
observational, Digital Elevation Model and reanalysis data are publicly available
from the following sources: the EC data are at http://www.cnern.org.cn/index.
jsp, the ERAS5 reanalysis is at https://cds.climate.copernicus.eu/cdsapp#!/dataset/
sis-agrometeorological-indicators and the Digital Elevation Model data are at

509


https://sdgs.un.org/goals/goal7
https://cran.r-project.org/web/packages/A3
https://developers.google.cn/earth-engine/datasets
http://www.cnern.org.cn/index.jsp
http://www.cnern.org.cn/index.jsp
https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-agrometeorological-indicators
https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-agrometeorological-indicators
http://www.nature.com/natfood

https://srtm.csi.cgiar.org/. The 27 downscaled GCMs of CMIP6 were provided by
D.L.L. and H. Zuo”, who downscaled them on the basis of the original CMIP6 at
https://esgf-node.llnl.gov/projects/cmip6/. The statistical data are freely available
from the following sources: data on rice production, rice imports and exports,
fertilizer application, and population from FAO are at http://www.fao.org/faostat/

en/; data on GDP from the United Nations Statistics Division are at https://unstats.

un.org/unsd/snaama/Basic; and data on population ages 0-14, population ages
15-64, rural population, energy use, access to electricity, school enrolment, patent
applications and net ODA received per capita from the World Bank are at
https://data.worldbank.org/. Source data are provided with this paper.

Code availability

The first and corresponding authors are prepared to respond to reasonable requests

for code.
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All original MODIS reflectance and other MODIS products that were provided by NASA LP DAAC at the USGS EROS Center in this study are freely accessible on the
GEE platform (https://developers.google.cn/earth- engine/datasets).

The observational, DEM, and reanalysis data are publicly available from the following sources:

-EC data (http://www.cnern.org.cn/index.jsp)

-ERAS reanalysis(https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-agrometeorological-indicators)

-DEM data (https://srtm.csi.cgiar.org/)

The downscaled 27 GCMs of CMIP6 were kindly provided by the co-authors of Liu et al. who downscaled them based on the original CMIP6 ( https://esgf-
node.lInl.gov/projects/cmip6/)

The statistical data are freely available from the following sources:

-rice production, rice imports and exports, fertilizer application, and population from FAQ (http://www.fao.org/faostat/en/)

-GDP from United Nations Statistics Division (https://unstats.un.org/unsd/snaama/Basic)

-Population ages 0-14, Population ages 15-64, Rural population, Energy use, Access to electricity, School enrollment, Patent applications, and Net ODA received per
capita from World Bank (https://data.worldbank.org/)
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Sample size Describe how sample size was determined, detailing any statistical methods used to predetermine sample size OR if no sample-size calculation
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Data exclusions | Describe any data exclusions. If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.

Replication Describe the measures taken to verify the reproducibility of the experimental findings. If all attempts at replication were successful, confirm this
OR if there are any findings that were not replicated or cannot be reproduced, note this and describe why.

Randomization | Describe how samples/organisms/participants were allocated into experimental groups. If allocation was not random, describe how covariates
were controlled OR if this is not relevant to your study, explain why.

Blinding Describe whether the investigators were blinded to group allocation during data collection and/or analysis. If blinding was not possible,
describe why OR explain why blinding was not relevant to your study.

Behavioural & social sciences study design
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Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional,
quantitative experimental, mixed-methods case study).

Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic
information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For
studies involving existing datasets, please describe the dataset and source.

Sampling strategy Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and
what criteria were used to decide that no further sampling was needed.

Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper,
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample
cohort.
Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the

rationale behind them, indicating whether exclusion criteria were pre-established.
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Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Adaption based on social resilience is proposed as an effective measure to mitigate hunger and avoid disasters caused by climate
change. But these have not been investigated comprehensively in climate sensitive regions, especially regarding the necessary
quantitative paths. North Korea (NK, undeveloped) and its neighbors (South Korea, developed; China, developing) represent three
economic levels that provide us with examples for examining climatic risk and quantifying the contribution of social resilience to rice
production. Our data-driven estimates showed that climatic factors determined rice biomass changes in NK, and climate extremes
triggered reductions in production. If no action is taken, NK will face a higher climatic risk (with continuous high temperature
heatwaves and precipitation extremes) by the 2080s under a high emission scenario when rice biomass and production are expected
to decrease by 20.2% and 14.4%, respectively, thereby potentially increasing hunger in NK. Social resilience (agricultural inputs and
population development for South Korea; resource use for China) mitigated climate shocks, even transforming adverse effects into
benefits. However, this effect was not significant in NK. Moreover, the contribution of social resilience to food production in the
undeveloped region (15.2%) was far below the contribution observed in the developed and developing regions (83.0% and 86.1%,
respectively). These findings highlight the importance of social resilience to mitigate the adverse effects of climate change on food
security and human hunger and provide necessary quantitative information.
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Research sample The observed climate data were used to analyze climatic risk of rice biomass and production during 2000-2017.The GCM data under
SSP245 and SSP585 for future years (2021-2100) were split into two parts (2021-2060 and 2061-2100) for rice biomass and
production simulations, which was a standard practice in the field of climate change studies. Other datasets including remote sensing
index, site observation, crop calendar, DEM, and statistics were collected from various publicly available datasets on environment
and society, which was described in the Method section.

Sampling strategy To include as many samples as possible, all the regional rice observations over North Korea and all the social-economic variables
during 2000-2019 were used for the regression. Additionally, to project future biomass losses, the 75% baseline data were randomly
sampled as training data sets. The machine learning techniques for building models and analyzing results in this study were tested
based on k-fold cross validation, reporting in the supplementary information.

Data collection Y. Shi collected data from various publicly available datasets on environment and society, and downloaded vegetation index and
other MODIS products from Google Earth Engine platform. Liu used a statistical downscaling (SD) method to generate future daily
climate data.

Timing and spatial scale  Timing scale: the historical meteorological reanalysis and the future projection ranged over 1979-2018, 2021-2060 and 2061-2100,
respectively. The environmental variables for assessing rice biomass were collected during 2000-2017, and social-economic variables
were from datasets published during 2000-2019.
Spatial scale: original meteorological reanalysis with 0.5° X 0.5° resolution were downscaled as 500m X 500m resolution to match
biomass with similar resolution.

Data exclusions No data were excluded from the analyses
Reproducibility All data will be publicly available to reproduce the results. We can provide code and technical help if readers are interested.
Randomization Our work was based on random forest models simulations, and this model already had excellent randomization. Additionally, to

project future biomass losses, the 75% baseline data were randomly sampled as training data sets. The machine learning techniques
in this study were tested based on k-fold cross validation for meeting randomization.

Blinding We used open-historical records, so blinding was not relevant to this study.

Did the study involve field work? [ ] Yes X No

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).
Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Access & import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,
the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.
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system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
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Antibodies

Antibodies used Describe all antibodies used in the study, as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) State the source of each cell line used.
Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.
Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for

mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines | Name any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,

export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research
Laboratory animals For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory animals.
Wild animals Provide details on animals observed in or captured in the field, report species, sex and age where possible. Describe how animals were

caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released,
say where and when) OR state that the study did not involve wild animals.

Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.




Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, gender, genotypic
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study
design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern
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Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:
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ChlP-seq

Data deposition
|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,
May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.
Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
(e.g. UCSC) enable peer review. Write "no longer applicable" for "Final submission" documents.
Methodology
Replicates Describe the experimental replicates, specifying number, type and replicate agreement.
Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and

whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChiP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot
number.

Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files

used.
Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.
Software Describe the software used to collect and analyze the ChlP-seq data. For custom code that has been deposited into a community

repository, provide accession details.

Flow Cytometry

Plots

Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell

population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state, event-related or block design.
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Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial

or block (if trials are blocked) and interval between trials. 8
c
Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used D
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across ©
subjects). o
=5
=id
o
Acquisition o
Imaging type(s) Specify: functional, structural, diffusion, perfusion. D
©
Qo
Field strength Specify in Tesla =
>
(@]
Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, A
slice thickness, orientation and TE/TR/flip angle. =
3
Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined. @
<
Diffusion MRI [ ] used [ ] Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | Whole brain [ | ROI-based [ | Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).
Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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