
SCALABLE ALGORITHMS FOR CONVEX CLUSTERING

Weilian Zhou⋆ Haidong Yi† Gal Mishne‡ Eric Chi⋆

⋆ Department of Statistics, NC State Univeristy, Raleigh, NC 27607
† Department of Computer Science, UNC-Chapel Hill, Chapel Hill, NC 27599

‡ Halıcıoğlu Data Science Institute, UC San Diego, La Jolla, CA, 92093

ABSTRACT

Convex clustering is an appealing approach to many classical

clustering problems. It stands out among standard methods

as it enjoys the existence of a unique global optimal solu-

tion. Despite this advantage, convex clustering has not been

widely adopted, due to its computationally intensive nature.

To address this obstacle, especially in the ªbig dataº setting,

we introduce a Scalable cOnvex cLustering AlgoRithm via

Parallel Coordinate Descent Method (SOLAR-PCDM) that

improves the algorithm’s scalability by combining a paral-

lelizable algorithm with a compression strategy. This idea

is in line with the rise and ever increasing availability of high

performance computing systems built around multi-core pro-

cessors, GPU-accelerators, and computer clusters. SOLAR-

PCDM consists of two parts. In the first part, we develop a

method called weighted convex clustering to recover the so-

lution path by formulating a sequence of smaller equivalent

optimization problems. In the second part, we utilize the Par-

allel Coordinate Descent Method (PCDM) to solve a specific

convex clustering problem. We demonstrate the correctness

and scalability of our algorithm on both simulated and real

data examples.

Index TermsÐ Convex optimization, Parallel computing,

Sparsity, Unsupervised Learning

1. INTRODUCTION

Clustering is a fundamental problem in many scientific appli-

cations. Many clustering algorithms formulate the clustering

task as a non-convex optimization problem, for example the

widely used k-means method [1, 2] and its various general-

izations to mixture models. A vexing challenge with solving

non-convex optimization problems is the presence of subop-

timal local minima in the objective function landscape which

can trap iterative solvers. These shortcomings have been mit-

igated but not completely eliminated by strategies that in-

clude clever initializations, e.g. [3], and annealing schemes

GM acknowledges support from the National Institutes of Health

(R01EB026936). ECC acknowledges support from the National Science

Foundation (DMS-1752692).

that steer solutions away from local minima [4±6]. An al-

ternative but more direct approach to addressing the issue of

local minima is to pose the clustering task as a convex opti-

mization problem so that all local minima are global ones.

In this paper, we focus on a convex formulation of the

clustering problem introduced in [7±9]. Given n points

x1, . . . ,xn in R
p, we seek cluster centroids ui ∈ R

p for each

point xi that minimize the convex criterion

Fγ(U) =
1

2

n
∑︂

i=1

∥xi − ui∥
2
2 + γ

∑︂

(i,j)∈E

wij∥ui − uj∥2, (1)

where γ is a nonnegative tuning parameter, wij is a positive

weight that quantifies the similarity between xi and xj , E is

a subset of all possible pairs i, j = 1, . . . , n, and U ∈ R
p×n

is the matrix whose ith column is ui. The sum of squares

data-fidelity term in (1) quantifies how well the centroids ui

approximate the data xi, while the sum of norms regulariza-

tion term penalizes the differences between pairs of centroids

ui and uj . The regularization term encourages sparsity in the

pairwise differences of centroid pairs.

The objective Fγ(U) in (1) is strongly convex and conse-

quently possesses a unique minimizer U(γ) for every value

of γ. The tuning parameter γ trades off data fit and differ-

ences between pairs of centroids. When γ = 0, the minimum

is attained when ui = xi, namely when each point occupies a

unique cluster. As γ increases, the regularization term coerces

centroids to fuse together. Two points xi and xj with ui = uj

are said to belong to the same cluster. For sufficiently large

γ, the ui fuse into a single cluster, namely ui = x̄, where

x̄ is the average of {xi}
n
i=1 [10, 11]. Moreover, the unique

global minimizer U(γ) is a continuous function of the param-

eter γ [12]; we refer to the continuous paths ui(γ), traced out

from each xi to x̄ as γ increases, collectively as the solution

path.

The solution path to (1) possesses several notable prop-

erties. First, simple data-driven choices for the weights wij

ensure that the solution path is a tree and thus a valid hierar-

chical clustering of the data [13]. Second, the solution path

is a 1-Lipschitz function of the data {xi}
n
i=1 [14] and conse-

quently small perturbations in the data cannot lead to dispro-

portionately large fluctuations in the recovered tree. Third,

hard clustering assignments obtained by selecting a single γ

have also been shown to come with cluster recovery guaran-

tees [11, 15±17].

Given its desirable features, there has been a steady pro-

gression of approaches for solving (1) efficiently ranging

from a variety of first order methods, [9, 10, 16], to second

order methods [18], as well as a novel algorithm regulariza-

tion path approach which remarkably is able to approximate

the solution path arbitrarily well with extremely inexact alter-

nating direction method of multiplier updates [19].

In this paper, we propose a two component framework:

Scalable cOnvex cLustering AlgoRithm via Parallel Coordi-

nate Descent Method (SOLAR-PCDM) to efficiently com-

pute the solution path U(γ) in the big data setting.

The first component involves solving a sequence of

smaller Weighted Convex Clustering variants of (1). Due to

the tree recovery properties of convex clustering under ap-

propriate wij choices [13], if two centroids coincide under

a tuning parameter γ0 they will continue to coincide for all

γ greater than γ0. Thus, as γ increases the number of dis-

tinct variables in (1) decreases, and we can express (1) as an

equivalent weighted convex clustering problem with a smaller

number of variables. Thus, as γ increases, we solve a se-

quence of increasingly smaller optimization problems.

The second component involves solving the weighted

convex clustering problem with a stochastic parallel al-

gorithm, namely the Parallel Coordinate Descent Method

(PCDM) [20]. We derive a dual problem of weighted convex

clustering which has a partially separable structure, making

the dual problem a good candidate to be solved by the scal-

able algorithm PCDM which can be mapped naturally onto

high-performance computing architectures.

The rest of this paper is organized as follows. In Sec-

tion 2, we derive the weighted convex clustering problem and

its dual. In Section 3, we review PCDM and adapt PCDM for

our dual problem. In Section 4, we present SOLAR-PCDM

by combining the results derived from the previous two sec-

tions. In Section 5, we present numerical examples to demon-

strate the scalability of SOLAR-PCDM.

2. WEIGHTED CONVEX CLUSTERING

We first formulate the primal weighted convex clustering

problem and its dual. Due to space limitations, some details

of the derivation have been deferred to the supplement.

Suppose for a given tuning parameter γ in (1), the data has

been clustered into K clusters C1, . . . , CK . For each cluster

Ck, we have ui = ūk for all xi ∈ Ck, where ūk represents

the centroid of the kth cluster. Then (1) can be written as

F (w)
γ (Ū) =

1

2

K
∑︂

k=1

|Ck|∥ūk−x̃k∥
2
2+γ

∑︂

(k,l)∈E

ŵkl∥ūk−ūl∥2,

(2)

where ŵkl is the sum of all weights between points belonging

to Ck, Cl, x̃k = 1
|Ck|

∑︁

xi∈Ck
xi, the mean of points in Ck,

and |Ck| denotes the number of points in Ck. The function

F
(w)
γ shares a similar form as the function Fγ in (1); the only

difference is that the data-fidelity term in (2) is a weighted

sum of squares as opposed to the unweighted sum of squares

in (1). We call problem (2) a weighted convex clustering

problem.

In expressing the convex clustering problem (1) as an

equivalent weighted convex clustering problem (2), the di-

mensions of U change from R
p×n to R

p×K . Since K de-

creases rapidly as γ increases, the dimensions of the weighted

convex problem rapidly decreases as γ increases.

Before deriving the dual problem to minimizing (2), we

note that [9] built this reweighting scheme into the updates of

subgradient updates for the same purpose as we do here. By

deriving the weighted objective function explicitly, however,

we can set up a dual constrained least squares problem that

can be solved by the more scalable PCDM algorithm.

2.1. Dual Problem of Weighted Convex Clustering

Problem (2) can be equivalently formulated as the follow-

ing equality constrained problem by introducing variables for

pairwise differences vkl = ūk − ūl

min
ū,vkl

1

2
∥D̃(x̄− ū)∥22 + γ

∑︂

(k,l)∈E

ŵkl∥vkl∥2,

s.t. vkl = Aklū,

(3)

where Akl = (ek − el)
T ⊗ I, ek is the kth standard basis

vector in R
n, D̃ = D ⊗ I, and D is a diagonal matrix with

dkk =
√︁

|Ck|. The vector x̄ is obtained by stacking the x̄k

on top of each other; ū is similarly obtained from the ūk.

The Lagrangian dual problem to (3) is

min
λ

Dγ(λ) =
1

2
∥D̃x̄− D̃

−1
A

T
λ∥22,

s.t. ∥λkl∥2 ≤ ŵklγ, ∀(k, l) ∈ E ,
(4)

where A is the matrix obtained by stacking the Akl matrices

on top of each other and the vector λ is the vector obtained

by stacking the vectors λkl in a matching order.

3. PARALLEL COORDINATE DESCENT METHOD

We have shown that the dimensions of the original problem

(1) will be reduced by reformatting it as the weighted ver-

sion (2). The effect of the dimension reduction, however, de-

pends on the tuning parameter γ. The scale of the problem

is still close to its original scale for small γ. Consequently,

the weighted convex clustering (2) still faces computational

challenges in ªbig dataº scenarios and motivates the need for

a scalable algorithm to solve the problem (2).

A highly scalable stochastic parallel coordinate descent

method is introduced in [20] for solving problems of the form

minimize f(λ) + Ω(λ), (5)

where f is a partially separable smooth convex function and

Ω is a simple separable function. We call a function f is par-

tially separable if f (x) =
∑︁

J∈J
fJ (x), where fJ (x) only

depends on a block of x. The basic idea is that a separa-

ble optimization problem presents an embarrassingly parallel

computational task. If the optimization is nearly separable, it

turns out that the optimization problem can be solved in par-

allel with some care. PCDM maps naturally to parallel archi-

tectures and can consequently greatly reduce the computing

time when using a multi-core computer. In this section, we

show the dual problem (4) can be solved by the PCDM.

3.1. PCDM on the Dual Problem

The dual problem (4) has the form defined in (5) with f(λ) =
Dγ(λ) and Ω(λ) =

∑︁

(k,l)∈E ιCkl
(λkl) where Ckl = {λkl :

∥λkl∥2 ≤ ŵklγ} and ιC(λ) is an indicator function which

vanishes when λ ∈ C and is infinity otherwise.

The details of the verification that f(λ) and Ω(λ) sat-

isfy the prerequisites of PCDM are in the supplement. Algo-

rithm 1 summarizes PCDM for solving the problem (2); we

give detailed commentary on Algorithm 1 in the supplement.

Algorithm 1 PCDM for weighted convex clustering

1: Initialize k = 1, λ(1) = 0 ∈ R
|E|p×1, ū(1) = x̄ ∈ R

np×1

and d(1) = |F
(w)
γ (Ū

(1)
)−Dγ(λ

(1))|
2: while d(k) > ϵ and k < nmax do

3: Randomly generate blocks S(k) ⊂ {1, 2, . . . , |E|}

4: Update λ
(k+1) = λ

(k) + (h(λ(k)))[S(k)]

5: Update ū
(k+1) = x̄− (D̃

T

D̃)−1
A

T
λ
(k+1)

6: Update d(k+1) = |F
(w)
γ (Ū

(k+1)
)−D(λ(k+1))|

7: k ← k + 1
8: end while

9: Calculate V

3.2. Computational Complexity of PCDM

The complexity for the PCDM [20] is O
(︂

|E|β
τ

1
ϵ
log

(︂

1
ρ

)︂)︂

,

where ϵ and ρ quantify the convergence of the result. For

each iteration, it would take O(np2|E|) operations to com-

pute A
T
λ in step 5 of Algorithm 1. However, the update in

λ only requires modifying a few coordinates, which means

that the vast majority of the intermediate terms in computing

the product AT
λ stay the same. This observation motivates a

simple way to efficiently update ū. Note that the matrix ver-

sion of step 5 is Ū = X̄ − ΛΦD
−2. Moreover, we have the

following identity,

ΛΦ = Λ[I](Φ
T

[I])
T +Λ[Ic](Φ

T

[Ic])
T,

where I is the set of column indices to be updated in the iter-

ation. Since Λ
(k)
Ic

(ΦT

Ic)
T is fixed during the iteration, we may

more efficiently update Ū in Algorithm 1 as follows:

Ū
(k+1)

= Ū
(k)
−H

(k)

[S(k)]
(ΦT

[S(k)])
T
D

−2,

where H
(k) is the matrix form of h(λ(k)). This update only

needsO(pnτ) operations. We will discuss τ in more detail in

Section 5.2, but briefly in this paper τ is the number of cores

used. Consequently, the more careful ū update is an obvious

improvement since typically we have τ ≪ |E|. Algorithm 2

summarizes the modified version of the PCDM algorithm.

Algorithm 2 Modified PCDM for weighted convex clustering

1: Initialize k = 1, λ(1) = 0 ∈ R
|E|p×1, ū(1) = x̄ ∈ R

np×1

and d(1) = |F
(w)
γ (Ū

(1)
)−Dγ(λ

(1))|
2: while d(k) > ϵ and k < nmax do

3: Randomly generate blocks S(k) ⊂ {1, 2 · · · |E|}

4: Update λ
(k+1) = λ

(k) + (h(λ(k)))[S(k)]

5: Update Ū
(k+1)

= Ū
(k)
−H

(k)

[S(k)]
(ΦT

[S(k)])
T
D

−2

6: Update d(k+1) = |F
(w)
γ (Ū

(k+1)
)−D(λ(k+1))|

7: k ← k + 1
8: end while

9: Update: Difference matrix V

4. SOLAR-PCDM

The basic idea of SOLAR-PCDM is to iteratively formulate

a weighted convex clustering problem as γ increases and ap-

ply Algorithm 2 on it to get U and corresponding difference

matrix V. Clusters are identified from connected compo-

nents which are computed from V [10]. Algorithm 3 presents

SOLAR-PCDM. Steps 6 - 10 in Algorithm 3 detail the up-

dates for the corresponding quantities when cluster informa-

tion changes. A unique aspect of our algorithm is step 9, we

need to find the maximum weight between two clusters. This

quantity is used as a threshold to determine whether two clus-

ters have coalesced together.

5. EXPERIMENTAL RESULTS

In this section, we demonstrate (1): The consistency of the

solution paths recovered by SOLAR-PCDM; (2): PCDM’s

speedup factor; (3): SOLAR-PCDM’s scalability on large

real-world data.

Algorithm 3 SOLAR-PCDM

1: Initialize X
(0) = X ∈ R

p×n, n0 = n, clusters C
(0)
j =

{j}, cluster size: N
(0)
j = 1, for j = 1, 2 · · ·n0. Edge

weights: {ŵ
(0)
jk } = {wjk}, maximal weight between

clusters {w
⋆,(0)
jk } = {wjk}, for 1 ≤ j < k ≤ n0

2: for i = 0, . . . ,m− 1 do

3: Apply Algorithm 2 to problem (2) to compute

U(γi+1, {ŵ
(i)}) and V(γi+1,w

⋆,(i))
4: for j = 1, . . . , ni+1 do

5: Get connected components Ij in V(γi+1,w
⋆,(i))

6: Update clusters C
(i+1)
j = {l : l ∈ C

(i)
k , k ∈ Ij}

7: Update cluster size N
(i+1)
j =

∑︁

k∈ Ij
N

(i)
k

8: Update data matrix X
(i+1)
j = 1

N
(i+1)
j

∑︁

l∈C
(i+1)
j

Xl

9: Update maximum weight for j < k ≤ ni+1

w
⋆,(i+1)
jk = max

l1∈C
(i+1)
j

,l2∈C
(i+1)
k

wl1l2

10: Update edge weight for j < k ≤ ni+1

ŵ
(i+1)
jk =

∑︁

l1∈C
(i+1)
j

,l2∈C
(i+1)
k

wl1l2

11: end for

12: end for

5.1. Dentition of Mammals

To see if the solution paths of the convex clustering algorithm

and of SOLAR-PCDM coincide, we consider the problem of

clustering mammals based on dentition [10]. Eight different

kinds of teeth are tallied for each mammal: the number of

top incisors, bottom incisors, top canines, bottom canines, top

premolars, bottom premolars, top molars, and bottom molars.

We used sparse Gaussian kernel weights with five nearest

neighbors to set the weights between the nodes, namely

wij = ι
(5)
{i,j} exp

(︃

−
∥xi − xj∥

2
2

σ

)︃

, (6)

where ι
(5)
{i,j} is an indicator function that is 1 when jth point is

among the 5-nearest neighbors of ith point and is 0 otherwise.

The bandwidth σ is a data-driven parameter. We want the

weight for two nodes in the same cluster to be large, whereas

the weight between nodes in different clusters should tend to

zero. In this experiment, our main focus is on the correctness

of the algorithm so we set σ = 2. Such weights ensure that

the solution path will be a tree [13].

We compute the solution path over a range of 100 equally

spaced values of γ between 0 and 43. To visualize results we

project the data and the solution paths onto the first two prin-

cipal components of the data. Figure 1 shows that the solution

paths recovered by SOLAR-PCDM (upper panel) and convex

clustering (lower panel) are virtually identical. To quantify

the differences between the two solution paths, Figure 2 plots

the computed the max element-wise difference of U(γ) com-

puted by each algorithm at each of the 100 values of γ. The

Fig. 1: Comparing the solution paths between convex and

weighted convex clustering

Fig. 2: Max difference of U(γ) in the solution path

differences are almost all entirely within the stopping con-

dition error tolerance (0.001), confirming that the weighted

convex clustering algorithm recovers the solution path gener-

ated by convex clustering within designed tolerances.

5.2. Simulated data

We next investigate the computational gains in using the

PCDM algorithm as a function of the number of cores used.

Two data sets with different graph structures are simulated in

this study. For each data set, we apply the PCDM algorithm

under two sampling schemes, τ -nice sampling and fully par-

allel sampling. For the τ -nice sampling scheme, we randomly

update τ edges (same as the number of cores) in each iteration

of PCDM and the number of cores varies in {1, 2, 4, 8, 16}.
For the fully parallel sampling, we do not have a large number

of cores to update every edge simultaneously. Nonetheless,

we can approximate the fully parallel sampling by updating

all edges in the same iteration with 16 cores. More specifi-

cally, we evenly assign |E| edges to 16 cores and each core

updates about [|E|16] edges each iteration.

Chain Graph: We sample 1000 points from a standard multi-

variate normal distribution in R
7, taking E to be a chain graph,

namely each node is connected to two nodes with node num-

bers immediately preceding and following its node number.

wij ∈ E is randomly assigned uniformly between 0 and 1.

Gaussian Mixture with kernel weights: We first sample

five vectors uniformly in [−10, 10]30 as the five cluster cen-

troids c1, . . . , c5 in a Gaussian mixture. We then sample

1000 points from a 5-component mixture as follows. For

each data point xi, we assign it to one of the 5 components

with equal probability, and each component is normally dis-

tributed centered in ck with an identity covariance matrix, so

xi ∼ N (ck, I), if xi was assigned to the kth cluster. We use a

5-nearest neighbors graph with kernel weights (6). Since the

expectation of square distance of two nodes is 60 in this case,

we set σ = 30.

For the two settings above, we repeat the simulation for

a given number of cores 10 times. We report the mean and

standard errors of the wall clock time and the number of it-

erations for the Chain Graph and Gaussian Mixture settings

respectively in Table 1 and Table 2. We observe an antici-

pated decrease in wall clock time and iteration number as the

number of cores increases. There is an approximate linear

trend in the number of iterations, which agrees with the the-

oretical speed-up factor for PCDM [20]. The wall clock time

exhibits an expected sublinear trend due to communication

costs incurred during parallel computing. The phenomenon

is especially severe when the computation task for each core

is not large. Both experiments illustrate the speed up gains of

applying the PCDM with larger number of cores.

Core Time (sec) Iteration

1 88.46 ± 3.84 6557.00 ±286.05

2 68.13 ± 4.18 3592.40 ± 200.59

4 54.41 ± 2.12 1816.20 ± 90.19

8 46.93 ± 2.12 905.60 ± 40.95

16 35.23 ± 1,75 442.80 ± 18.20

16 (fully) 27.28 ± 0.03 5.00 ± 0.00

Table 1: The computing time and the number of iterations for

different number of cores for the Chain Graph.

Core Time (sec) Iteration

1 831.83 ± 29.35 25991.20 ± 849.30

2 424.79 ± 10.11 12386.00 ± 207.79

4 233.89 ± 8.99 6130.40 ± 225.20

8 144.89 ± 2.00 3184.80 ± 42.21

16 90.27 ± 1.14 1578.80 ± 27.78

16 (fully) 74.88 ± 0.17 20.00 ± 0.00

Table 2: The computing time and the number of iterations for

different number of cores for the Gaussian Mixture.

Fig. 3: The computation time for MNIST data

5.3. MNIST handwritten digits

In this section, we use the MNIST handwritten data [21] to

show the performance of SOLAR-PCDM on computing the

solution path of the convex clustering problem. We compare

SOLAR-PCDM to the Fast Adaptive Shrinkage/Thresholding

Algorithm (FASTA) [22] applied to the dual problem (2).

We sample 10,000 images from the MNIST dataset. Each

sample in the MNIST data is an image data with 28×28 pix-

els and can be reshaped into a column-major vector in R
784.

We use a common strategy in pre-processing of MNIST data

and apply fast PCA [23] for dimensionality reduction [24],

reserving the first 20 principle components. We use the

wall clock time for the same solution path on the MNIST

data as the comparison measure, and we repeatedly com-

pute it 10 times. The solution path is computed over γ ∈
{5, 10, 30, 50, 70, 90, 110, 130}. For each γ, the algorithm

stops when the relative change of the primal function value

is less than 10−4. To get the best performance of PCDM, we

use the fully parallel sampling in step 3 of Algorithm 1.

We again use sparse Gaussian kernel weights but instead

of setting σ to be a fixed global scale parameter we use a

commonly used data-driven strategy of choosing a local scale

parameter σij that is pair dependent [25], namely

wij = ι
(k)
{i,j} exp

(︃

−
∥xi − xj∥

2
2

σij

)︃

.

We first compute a local measure of scale σi, which is the

median Euclidean distance between the ith point xi and its

5-nearest neighbors. We then set σij = σiσj .

Figure 3 shows the wall clock times for computing the

solution path by SOLAR-PCDM (blue) and FASTA (orange)

over 1, 2, 4, 8, and 16 cores. The shadow around each point

represents the variance of wall clock time from repeated ex-

periments. We see that when the number of cores becomes

large enough (4 in this case), SOLAR-PCDM outperforms

FASTA in wall clock time. Based on the scalable nature of the

PCDM the speed-up gains will be even bigger for machines

with additional cores.

6. REFERENCES

[1] James MacQueen, ªSome methods for classification

and analysis of multivariate observations,º in Proceed-

ings of the Fifth Berkeley Symposium on Mathematical

Statistics and Probability, Volume 1: Statistics, Berke-

ley, Calif., 1967, pp. 281±297, University of California

Press.

[2] Stuart P. Lloyd, ªLeast squares quantization in PCM,º

IEEE Transactions on Information Theory, vol. 28, no.

2, pp. 129±137, 1982.

[3] David Arthur and Sergei Vassilvitskii, ªK-means++:

The advantages of careful seeding,º in Proceedings of

the Eighteenth Annual ACM-SIAM Symposium on Dis-

crete Algorithms, USA, 2007, SODA ’07, p. 1027±1035,

Society for Industrial and Applied Mathematics.

[4] Hua Zhou and Kenneth L. Lange, ªOn the bumpy road

to the dominant mode,º Scandinavian Journal of Statis-

tics, vol. 37, no. 4, pp. 612±631, 2010.

[5] Jason Xu and Kenneth Lange, ªPower k-means cluster-

ing,º Long Beach, California, USA, 09±15 Jun 2019,

vol. 97 of Proceedings of Machine Learning Research,

pp. 6921±6931, PMLR.

[6] Saptarshi Chakraborty, Debolina Paul, Swagatam Das,

and Jason Xu, ªEntropy weighted power k-means clus-

tering,º 26±28 Aug 2020, vol. 108 of Proceedings of

Machine Learning Research, pp. 691±701, PMLR.

[7] K. Pelckmans, J. De Brabanter, J. Suykens, and

B. De Moor, ªConvex clustering shrinkage,º in PAS-

CAL Workshop on Statistics and Optimization of Clus-

tering Workshop, 2005.

[8] Fredrik Lindsten, Henrik Ohlsson, and Lennart Ljung,

ªJust Relax and Come Clustering! A Convexification of

k-Means Clustering,º Tech. Rep., LinkÈopings Univer-

sitet, 2011.

[9] Toby Hocking, Jean-Philippe Vert, Francis R. Bach, and

Armand Joulin, ªClusterpath: An algorithm for clus-

tering using convex fusion penalties,º Proceedings of

the 28th International Conference on Machine Learn-

ing, pp. 745±752, 2011.

[10] Eric C Chi and Kenneth Lange, ªSplitting methods

for convex clustering,º Journal of Computational and

Graphical Statistics, vol. 24, no. 4, pp. 994±1013, 2015.

[11] Kean Ming Tan and Daniela Witten, ªStatistical proper-

ties of convex clustering,º Electronic Journal of Statis-

tics, vol. 9, pp. 2324±2347, 2015.

[12] Eric C. Chi, Genevera I. Allen, and Richard G. Bara-

niuk, ªConvex biclustering,º Biometrics, vol. 73, no. 1,

pp. 10±19, 2017.

[13] Eric C. Chi and Stefan Steinerberger, ªRecovering trees

with convex clustering,º SIAM Journal on Mathematics

of Data Science, vol. 1, no. 3, pp. 383±407, 2019.

[14] Eric C. Chi, Brian J. Gaines, Will Wei Sun, Hua Zhou,

and Jian Yang, ªProvable convex co-clustering of ten-

sors,º Journal of Machine Learning Research, vol. 21,

no. 214, pp. 1±58, 2020.

[15] Changbo Zhu, Huan Xu, Chenlei Leng, and Shuicheng

Yan, ªConvex optimization procedure for clustering:

Theoretical revisit,º in Advances in Neural Information

Processing Systems 27, Z. Ghahramani, M. Welling,

C Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds.,

pp. 1619±1627. 2014.

[16] Ashkan Panahi, Devdatt Dubhashi, Fredrik D. Johans-

son, and Chiranjib Bhattacharyya, ªClustering by sum

of norms: Stochastic incremental algorithm, conver-

gence and cluster recovery,º Sydney, Australia, 06±11

Aug 2017, vol. 70 of Proceedings of Machine Learning

Research, pp. 2769±2777, PMLR.

[17] Binhuan Wang, Yilong Zhang, Will Wei Sun, and Yixin

Fang, ªSparse convex clustering,º Journal of Computa-

tional and Graphical Statistics, vol. 27, no. 2, pp. 393±

403, 2018.

[18] Yancheng Yuan, Defeng Sun, and Kim-Chuan Toh, ªAn

efficient semismooth Newton based algorithm for con-

vex clustering,º in Proceedings of the 35th Interna-

tional Conference on Machine Learning, Jennifer Dy

and Andreas Krause, Eds., StockholmsmÈassan, Stock-

holm Sweden, 10±15 Jul 2018, vol. 80 of Proceedings

of Machine Learning Research, pp. 5718±5726, PMLR.

[19] Michael Weylandt, John Nagorski, and Genevera I.

Allen, ªDynamic visualization and fast computation for

convex clustering via algorithmic regularization,º Jour-

nal of Computational and Graphical Statistics, 2019.

[20] Peter RichtÂarik and Martin TakÂač, ªParallel coordinate

descent methods for big data optimization,º Mathemat-

ical Programming, vol. 156, no. 1, pp. 433±484, Mar

2016.

[21] Yoshua Bengio Yann LeCun, LÂeon Bottou and Patrick

Haffner, ªGradient-based learning applied to document

recognition,º Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278±2324, 1998.

[22] Tom Goldstein, Christoph Studer, and Richard Bara-

niuk, ªA Field guide to forward-backward splitting with

a FASTA implementation,º 2016.

[23] Huamin Li, George C. Linderman, Arthur Szlam,

Kelly P. Stanton, Yuval Kluger, and Mark Tygert, ªAn

implementation of a randomized algorithm for principal

component analysis,º ACM Trans. Math, 2017.

[24] Ariel Jaffe, Yuval Kluger, George C. Linderman, Gal

Mishne, and Stefan Steinerberger, ªRandomized near-

neighbor graphs, giant components and applications in

data science,º Journal of Applied Probability, vol. 57,

no. 2, pp. 458, 2020.

[25] Lihi Zelnik-Manor and Pietro Perona, ªSelf-tuning

spectral clustering,º in Advances in Neural Informa-

tion Processing Systems 17, L. K. Saul, Y. Weiss, and

L. Bottou, Eds., pp. 1601±1608. MIT Press, 2005.

	 Introduction
	 Weighted Convex Clustering
	 Dual Problem of Weighted Convex Clustering

	 Parallel Coordinate Descent Method
	 PCDM on the Dual Problem
	 Computational Complexity of PCDM

	 SOLAR-PCDM
	 Experimental Results
	 Dentition of Mammals
	 Simulated data
	 MNIST handwritten digits

	 References

