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ABSTRACT

Convex clustering is an appealing approach to many classical
clustering problems. It stands out among standard methods
as it enjoys the existence of a unique global optimal solu-
tion. Despite this advantage, convex clustering has not been
widely adopted, due to its computationally intensive nature.
To address this obstacle, especially in the “big data” setting,
we introduce a Scalable cOnvex cLustering AlgoRithm via
Parallel Coordinate Descent Method (SOLAR-PCDM) that
improves the algorithm’s scalability by combining a paral-
lelizable algorithm with a compression strategy. This idea
is in line with the rise and ever increasing availability of high
performance computing systems built around multi-core pro-
cessors, GPU-accelerators, and computer clusters. SOLAR-
PCDM consists of two parts. In the first part, we develop a
method called weighted convex clustering to recover the so-
lution path by formulating a sequence of smaller equivalent
optimization problems. In the second part, we utilize the Par-
allel Coordinate Descent Method (PCDM) to solve a specific
convex clustering problem. We demonstrate the correctness
and scalability of our algorithm on both simulated and real
data examples.

Index Terms— Convex optimization, Parallel computing,
Sparsity, Unsupervised Learning

1. INTRODUCTION

Clustering is a fundamental problem in many scientific appli-
cations. Many clustering algorithms formulate the clustering
task as a non-convex optimization problem, for example the
widely used k-means method [1}/2]] and its various general-
izations to mixture models. A vexing challenge with solving
non-convex optimization problems is the presence of subop-
timal local minima in the objective function landscape which
can trap iterative solvers. These shortcomings have been mit-
igated but not completely eliminated by strategies that in-
clude clever initializations, e.g. [3]], and annealing schemes

GM acknowledges support from the National Institutes of Health
(ROIEB026936). ECC acknowledges support from the National Science
Foundation (DMS-1752692).

that steer solutions away from local minima [4H6]]. An al-
ternative but more direct approach to addressing the issue of
local minima is to pose the clustering task as a convex opti-
mization problem so that all local minima are global ones.

In this paper, we focus on a convex formulation of the
clustering problem introduced in [7H9]. Given n points
X1,...,Xy, in RP, we seek cluster centroids u; € RP for each
point x; that minimize the convex criterion
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where v is a nonnegative tuning parameter, w;; is a positive
weight that quantifies the similarity between x; and x;, £ is
a subset of all possible pairs i,j = 1,...,n, and U € RP*"
is the matrix whose ith column is u;. The sum of squares
data-fidelity term in [(T)] quantifies how well the centroids u;
approximate the data x;, while the sum of norms regulariza-
tion term penalizes the differences between pairs of centroids
u; and u;. The regularization term encourages sparsity in the
pairwise differences of centroid pairs.

The objective F,(U) inis strongly convex and conse-
quently possesses a unique minimizer U(y) for every value
of . The tuning parameter  trades off data fit and differ-
ences between pairs of centroids. When = 0, the minimum
is attained when u; = x;, namely when each point occupies a
unique cluster. As «y increases, the regularization term coerces
centroids to fuse together. Two points x; and x; with u; = u;
are said to belong to the same cluster. For sufficiently large
v, the u; fuse into a single cluster, namely u; = X, where
X is the average of {x;}7 ; [10,/11]. Moreover, the unique
global minimizer U (7) is a continuous function of the param-
eter v [12]; we refer to the continuous paths u;(7y), traced out
from each x; to X as = increases, collectively as the solution
path.

The solution path to [(T)] possesses several notable prop-
erties. First, simple data-driven choices for the weights w;;
ensure that the solution path is a tree and thus a valid hierar-
chical clustering of the data [13[]. Second, the solution path
is a 1-Lipschitz function of the data {x;}? ; [14] and conse-
quently small perturbations in the data cannot lead to dispro-
portionately large fluctuations in the recovered tree. Third,



hard clustering assignments obtained by selecting a single ~y
have also been shown to come with cluster recovery guaran-
tees [[11, 15H17].

Given its desirable features, there has been a steady pro-
gression of approaches for solving efficiently ranging
from a variety of first order methods, [9,/10,/16], to second
order methods [18], as well as a novel algorithm regulariza-
tion path approach which remarkably is able to approximate
the solution path arbitrarily well with extremely inexact alter-
nating direction method of multiplier updates [[19].

In this paper, we propose a two component framework:
Scalable cOnvex cLustering AlgoRithm via Parallel Coordi-
nate Descent Method (SOLAR-PCDM) to efficiently com-
pute the solution path U(«y) in the big data setting.

The first component involves solving a sequence of
smaller Weighted Convex Clustering variants of Due to
the tree recovery properties of convex clustering under ap-
propriate w;; choices [13[], if two centroids coincide under
a tuning parameter -y, they will continue to coincide for all
v greater than 7. Thus, as v increases the number of dis-
tinct variables in @] decreases, and we can express @] as an
equivalent weighted convex clustering problem with a smaller
number of variables. Thus, as 7 increases, we solve a se-
quence of increasingly smaller optimization problems.

The second component involves solving the weighted
convex clustering problem with a stochastic parallel al-
gorithm, namely the Parallel Coordinate Descent Method
(PCDM) [20]. We derive a dual problem of weighted convex
clustering which has a partially separable structure, making
the dual problem a good candidate to be solved by the scal-
able algorithm PCDM which can be mapped naturally onto
high-performance computing architectures.

The rest of this paper is organized as follows. In
we derive the weighted convex clustering problem and
its dual. In[Section 3| we review PCDM and adapt PCDM for
our dual problem. In we present SOLAR-PCDM
by combining the results derived from the previous two sec-
tions. In[Section 5] we present numerical examples to demon-
strate the scalability of SOLAR-PCDM.

2. WEIGHTED CONVEX CLUSTERING

We first formulate the primal weighted convex clustering
problem and its dual. Due to space limitations, some details
of the derivation have been deferred to the supplement.

Suppose for a given tuning parameter + in[(T)] the data has
been clustered into K clusters C, ..., Ck. For each cluster
Cy, we have u; = 1y, for all x; € Cj, where G, represents
the centroid of the kth cluster. Then[(T)]can be written as
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where W, is the sum of all weights between points belonging
to Cy, Ci, X, = 16,7 Yox,ec, Xi» the mean of points in Cj,
and |Cy| denotes the number of points in Cj. The function
Féw) shares a similar form as the function F, in the only
difference is that the data-fidelity term in is a weighted
sum of squares as opposed to the unweighted sum of squares
in [(T)] We call problem [2)] a weighted convex clustering
problem.

In expressing the convex clustering problem [(T)] as an
equivalent weighted convex clustering problem the di-
mensions of U change from RPX" to RP*X_ Since K de-
creases rapidly as «y increases, the dimensions of the weighted
convex problem rapidly decreases as y increases.

Before deriving the dual problem to minimizing [2)} we
note that [9]] built this reweighting scheme into the updates of
subgradient updates for the same purpose as we do here. By
deriving the weighted objective function explicitly, however,
we can set up a dual constrained least squares problem that
can be solved by the more scalable PCDM algorithm.

2.1. Dual Problem of Weighted Convex Clustering

Problem can be equivalently formulated as the follow-
ing equality constrained problem by introducing variables for
pairwise differences vg; = U — T
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s.t. Vi = Ay,

where Ay, = (ex — ;)7 ® 1, ey is the kth standard basis

vector in R”, D = D ® I, and D is a diagonal matrix with

drr = /|Ck|. The vector X is obtained by stacking the Xy,

on top of each other; 1 is similarly obtained from the t.
The Lagrangian dual problem to|(3)|is

min D,(\) = J|Dx - D ATAR,
V(k,l) € €&,

“4)
s.t. Akill2 < Wiy,

where A is the matrix obtained by stacking the Aj; matrices
on top of each other and the vector X is the vector obtained
by stacking the vectors Ag; in a matching order.

3. PARALLEL COORDINATE DESCENT METHOD

We have shown that the dimensions of the original problem
[(T)] will be reduced by reformatting it as the weighted ver-
sion@} The effect of the dimension reduction, however, de-
pends on the tuning parameter . The scale of the problem
is still close to its original scale for small . Consequently,
the weighted convex clustering still faces computational
challenges in “big data” scenarios and motivates the need for
a scalable algorithm to solve the problem [(2)]



A highly scalable stochastic parallel coordinate descent
method is introduced in [20] for solving problems of the form

minimize f(A) + Q(\), )

where f is a partially separable smooth convex function and
) is a simple separable function. We call a function f is par-
tially separable if f (x) = >_ ;4 fs (x), where f; (x) only
depends on a block of x. The basic idea is that a separa-
ble optimization problem presents an embarrassingly parallel
computational task. If the optimization is nearly separable, it
turns out that the optimization problem can be solved in par-
allel with some care. PCDM maps naturally to parallel archi-
tectures and can consequently greatly reduce the computing
time when using a multi-core computer. In this section, we
show the dual problem |(4)|can be solved by the PCDM.

3.1. PCDM on the Dual Problem

The dual problem|(4)|has the form defined in[(5)|with f(X) =
D ()\) and Q()\) Z(k Hee //Ckl()‘kl) where Okl = {)\kl :
[IAkillz2 < @iy} and o (A) is an indicator function which
vanishes when A € C' and is infinity otherwise.

The details of the verification that f(X) and Q(\) sat-
isfy the prerequisites of PCDM are in the supplement.
summarizes PCDM for solving the problem we

give detailed commentary on in the supplement.

Algorithm 1 PCDM for weighted convex clustering
1: Initialize k = 1, A\ = 0 € RIEP*1 () = g ¢ Rrwx1

and 4 = |F(TY) — D, (AM)]
2: while d(k) > eand k < npax do

3:  Randomly generate blocks S*) C {1,2,...,|€|}
4 Update AFHD = A 4 (h()\(k)))[sm]

5:  Update a**1) =% — (f)Tf))_lAT)\(kH)

6 Update db+1) = |E() (@HFD) _ p(Ak+D))
7. kE+—k+1

8: end while

9: Calculate V

3.2. Computational Complexity of PCDM

The complexity for the PCDM [20] is O (@% log (%)),
where € and p quantify the convergence of the result. For
each iteration, it would take O(np?|€|) operations to com-
pute A"\ in step [5| of However, the update in
A only requires modifying a few coordinates, which means
that the vast majority of the intermediate terms in computing
the product AT X stay the same. This observation motivates a

simple way to efﬁmently update . Note that the matrix ver-
sion of step s U =X — A®D 2. Moreover, we have the

following identity,
AP = Ay (®0)" + Ape(®he),

where J is the set of column indices to be updated in the iter-
ation. Since A(k) (®,.)7 is fixed during the iteration, we may

more efﬁmently update U in|Algorithm 1|as follows:

ht) _ g _ g®

U [S(k)]( [S(k)])TD_

where H®) is the matrix form of h(A*)). This update only
needs O(pnr) operations. We will discuss 7 in more detail in
but briefly in this paper 7 is the number of cores
used. Consequently, the more careful @ update is an obvious
improvement since typically we have 7 < |£].
summarizes the modified version of the PCDM algorithm.

Algorithm 2 Modified PCDM for weighted convex clustering

I: Initialize k = 1, AV = 0 € RIE€IPx1 §(1) = x ¢ Rrpx1

and 4 = [F(0") — D, (AD)
2: while d*) > e and k < 1,4, do
3:  Randomly generate blocks S*)  {1,2---|£|}
4 Update AFHD =A%) 4 (n (/\(k)))[suq
5. Update 0% = o H(S)) (@500 TD
6 Update d+1) = [F)(@* D) — p(atk+D))
7. k< k+1
8: end while
9: Update: Difference matrix V

4. SOLAR-PCDM

The basic idea of SOLAR-PCDM is to iteratively formulate
a weighted convex clustering problem as v increases and ap-
ply on it to get U and corresponding difference
matrix V. Clusters are identified from connected compo-
nents which are computed from V [10]. presents
SOLAR-PCDM. Steps [0] - [I0] in detail the up-
dates for the corresponding quantities when cluster informa-
tion changes. A unique aspect of our algorithm is step [0 we
need to find the maximum weight between two clusters. This
quantity is used as a threshold to determine whether two clus-
ters have coalesced together.

5. EXPERIMENTAL RESULTS

In this section, we demonstrate (1): The consistency of the
solution paths recovered by SOLAR-PCDM; (2): PCDM’s
speedup factor; (3): SOLAR-PCDM'’s scalability on large
real-world data.



Algorithm 3 SOLAR-PCDM

: Initialize X” = X € RP*", ng = n, clusters ") =

N =1, forj =12

weights: {ﬁvg(,?} = {w,;}, maximal weight between
clusters {W;]’C(O)} ={wjrl.forl <j<k<ng

2: fort:=0,..., m—1do

3. Apply [Algorithm 2] to problem to compute

U(yis1, {Ww}) and V (3541, w D)

{j}, cluster size: no. BEdge

4 forj=1,...,n;4; do
5 Get connected components I in V(%H, * (1)
6: Update clusters C (R ={l:le Ck ,k: e I}
7 Update cluster size N (D) - =3 ke I
+1
8: Update data matrix X§.Z ) = W Zlec;i+1) X
J
9: Update maximum weight for j < k& < n;yg
*(i+1) _ , _
ij = maX116051+1>,12€C,(€1+1) Wi,
10: Update edge weight for j < k < mn;y1
~ (41
ngk ) = Zl eC“*”l eC“*” Wil
11:  end for
12: end for

5.1. Dentition of Mammals

To see if the solution paths of the convex clustering algorithm
and of SOLAR-PCDM coincide, we consider the problem of
clustering mammals based on dentition [10]. Eight different
kinds of teeth are tallied for each mammal: the number of
top incisors, bottom incisors, top canines, bottom canines, top
premolars, bottom premolars, top molars, and bottom molars.

We used sparse Gaussian kernel weights with five nearest
neighbors to set the weights between the nodes, namely

2

S[z)j} exp (_Mﬁ”) : (6)

wij =

where ¢{>) | is an indicator function that is 1 when Jth point is
among t{he S5-nearest neighbors of ith point and is 0 otherwise.
The bandwidth o is a data-driven parameter. We want the
weight for two nodes in the same cluster to be large, whereas
the weight between nodes in different clusters should tend to
zero. In this experiment, our main focus is on the correctness
of the algorithm so we set o = 2. Such weights ensure that
the solution path will be a tree [13]].

We compute the solution path over a range of 100 equally
spaced values of v between 0 and 43. To visualize results we
project the data and the solution paths onto the first two prin-
cipal components of the data. shows that the solution
paths recovered by SOLAR-PCDM (upper panel) and convex
clustering (lower panel) are virtually identical. To quantify
the differences between the two solution paths, [Figure 2] plots
the computed the max element-wise difference of U(y) com-
puted by each algorithm at each of the 100 values of 7. The
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Fig. 1: Comparing the solution paths between convex and
weighted convex clustering
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Fig. 2: Max difference of U(7) in the solution path

differences are almost all entirely within the stopping con-
dition error tolerance (0.001), confirming that the weighted
convex clustering algorithm recovers the solution path gener-
ated by convex clustering within designed tolerances.

5.2. Simulated data

We next investigate the computational gains in using the
PCDM algorithm as a function of the number of cores used.
Two data sets with different graph structures are simulated in
this study. For each data set, we apply the PCDM algorithm
under two sampling schemes, 7-nice sampling and fully par-
allel sampling. For the 7-nice sampling scheme, we randomly
update T edges (same as the number of cores) in each iteration
of PCDM and the number of cores varies in {1,2,4,8,16}.
For the fully parallel sampling, we do not have a large number
of cores to update every edge simultaneously. Nonetheless,
we can approximate the fully parallel sampling by updating
all edges in the same iteration with 16 cores. More specifi-
cally, we evenly assign |£| edges to 16 cores and each core




updates about [%] edges each iteration.
Chain Graph: We sample 1000 points from a standard multi-
variate normal distribution in R7, taking £ to be a chain graph,
namely each node is connected to two nodes with node num-
bers immediately preceding and following its node number.
wj; € € is randomly assigned uniformly between 0 and 1.
Gaussian Mixture with kernel weights: We first sample
five vectors uniformly in [—10, 10]3° as the five cluster cen-
troids cy,...,c5 in a Gaussian mixture. We then sample
1000 points from a 5-component mixture as follows. For
each data point x;, we assign it to one of the 5 components
with equal probability, and each component is normally dis-
tributed centered in c; with an identity covariance matrix, so
x; ~ N (ck, I), if x; was assigned to the kth cluster. We use a
5-nearest neighbors graph with kernel weights (€). Since the
expectation of square distance of two nodes is 60 in this case,
we set 0 = 30.

For the two settings above, we repeat the simulation for
a given number of cores 10 times. We report the mean and
standard errors of the wall clock time and the number of it-
erations for the Chain Graph and Gaussian Mixture settings
respectively in [Table 1] and [Table 2] We observe an antici-
pated decrease in wall clock time and iteration number as the
number of cores increases. There is an approximate linear
trend in the number of iterations, which agrees with the the-
oretical speed-up factor for PCDM [20]]. The wall clock time
exhibits an expected sublinear trend due to communication
costs incurred during parallel computing. The phenomenon
is especially severe when the computation task for each core
is not large. Both experiments illustrate the speed up gains of
applying the PCDM with larger number of cores.

Core Time (sec) Iteration

1 88.46 +3.84 6557.00 +286.05
2 68.13 +4.18 359240 4 200.59
4 5441 +£2.12 181620 =£90.19
8 4693 +£2.12 90560 +40.95
16 3523 +1,75 44280 +£18.20
16 (fully) 27.28 +0.03 5.00 + 0.00

Table 1: The computing time and the number of iterations for
different number of cores for the Chain Graph.

Core Time (sec) Iteration

1 831.83 £29.35 25991.20 4 849.30
2 42479  +10.11 12386.00 +207.79
4 233.89 +8.99 6130.40 + 225.20
8 14489 +2.00 3184.80 +42.21
16 90.27 + 1.14 1578.80 +27.78
16 (fully) 74.88 +0.17 20.00 + 0.00

Table 2: The computing time and the number of iterations for
different number of cores for the Gaussian Mixture.
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Fig. 3: The computation time for MNIST data

5.3. MNIST handwritten digits

In this section, we use the MNIST handwritten data [21]] to
show the performance of SOLAR-PCDM on computing the
solution path of the convex clustering problem. We compare
SOLAR-PCDM to the Fast Adaptive Shrinkage/Thresholding
Algorithm (FASTA) [22] applied to the dual problem|[(2)]

We sample 10,000 images from the MNIST dataset. Each
sample in the MNIST data is an image data with 28 x28 pix-
els and can be reshaped into a column-major vector in R734.
We use a common strategy in pre-processing of MNIST data
and apply fast PCA [23] for dimensionality reduction [24]],
reserving the first 20 principle components. We use the
wall clock time for the same solution path on the MNIST
data as the comparison measure, and we repeatedly com-
pute it 10 times. The solution path is computed over 7 €
{5, 10, 30, 50, 70,90, 110,130}. For each =, the algorithm
stops when the relative change of the primal function value
is less than 10~%. To get the best performance of PCDM, we
use the fully parallel sampling in step [3] of

We again use sparse Gaussian kernel weights but instead
of setting o to be a fixed global scale parameter we use a
commonly used data-driven strategy of choosing a local scale
parameter o;; that is pair dependent [25]], namely

2
(k) i = =5l3
l’{i,j} exp < O'ij .

We first compute a local measure of scale o;, which is the
median Euclidean distance between the ith point x; and its
5-nearest neighbors. We then set 0;; = 0;0;.

Figure 3| shows the wall clock times for computing the
solution path by SOLAR-PCDM (blue) and FASTA (orange)
over 1, 2, 4, 8, and 16 cores. The shadow around each point
represents the variance of wall clock time from repeated ex-
periments. We see that when the number of cores becomes
large enough (4 in this case), SOLAR-PCDM outperforms
FASTA in wall clock time. Based on the scalable nature of the
PCDM the speed-up gains will be even bigger for machines
with additional cores.

wij =
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