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DIMIX: DIMINISHING MIXING FOR SLOPPY AGENTS*

HADI REISIZADEH\dagger , BEHROUZ TOURI\ddagger , AND SOHEIL MOHAJER\dagger 

Abstract. We study nonconvex distributed optimization problems where a set of agents collabo-
ratively solve a separable optimization problem that is distributed over a time-varying network. The
existing methods to solve these problems rely on (at most) one-time-scale algorithms, where each
agent performs a diminishing or constant step-size gradient descent at the average estimate of the
agents in the network. However, if possible at all, exchanging exact information, which is required to
evaluate these average estimates, potentially introduces a massive communication overhead. There-
fore, a reasonable practical assumption to be made is that agents only receive a rough approximation
of the neighboring agents' information. To address this, we introduce and study a two-time-scale de-
centralized algorithm with a broad class of lossy information sharing methods (which includes noisy,
quantized, and/or compressed information sharing) over time-varying networks. In our method,
one time-scale suppresses the (imperfect) incoming information from the neighboring agents, and
one time-scale operates on local cost functions' gradients. We show that with a proper choices for
the step-sizes' parameters, the algorithm achieves a convergence rate of \scrO (T - 1/3+\epsilon ) for nonconvex
distributed optimization problems over time-varying networks for any \epsilon > 0.

Key words. nonconvex optimization, time-varying graphs, distributed multiagent system, dis-
tributed optimization, gradient descent algorithms
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1. Introduction. Distributed learning serves as a learning framework where
a set of computing nodes/agents are interested in collaboratively solving an opti-
mization problem. In this paradigm, in the absence of a central node, the learn-
ing task solely depends on on-device computation and local communication among
the neighboring agents. With the appearance of modern computation architectures
and the decentralized nature of storage, large-scale distributed computation frame-
works have received significant attention due to data locality, privacy, data owner-
ship, and scalability to larger datasets and systems. These features of distributed
learning have led to applications in several domains including distributed deep net-
works [8, 1, 15], distributed sensor networks [28, 16], and network resource allocation
[31, 7].
Related works. Decentralized consensus or averaging-based optimization algorithms
have been studied extensively over the past few years [25, 22, 6, 39, 14]. It has been
shown that when a fixed step-size is utilized, the loss function decreases with the
rate of \scrO (1/T ) until the estimates reach a neighborhood of the (local) minimum of
the objective cost function [25]. However, with a fixed step-size, the local estimates
may not converge to an optimal point [39]. To remedy this, the diminishing step-size
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DIMIX: DIMINISHING MIXING FOR SLOPPY AGENTS 979

variation of the algorithm is introduced and studied for convex [26, 14] and nonconvex
problems [32, 34, 40].

A majority of the existing works in this area suffer from requiring large commu-
nication overhead, as a (potentially) massive amount of local information is needed to
be exchanged among the agents throughout the learning algorithm. In addition, such
a communication load can lead to a major delay in the convergence of the algorithm
and become a severe bottleneck when the dimension of the model is large. To mitigate
the communication overhead, several compression techniques are introduced to reduce
the size of the exchanged information. In particular, these techniques have been used
in the context of the distributed averaging/consensus problem [17, 25, 5], where each
node has an initial numerical value and aims at evaluating the average of all ini-
tial values using exchange of quantized information, over a fixed or a time-varying
network.

For distributed optimization, an inexact proximal gradient method with a fixed
step-size over a fixed network for strongly convex loss functions is proposed in [27].
In this algorithm, each node applies an adaptive deterministic quantizer on its model
and gradient before sending them to its neighbors. It is shown that under certain
conditions, the algorithm provides a linear convergence rate. In a related work [29],
the authors proposed a decentralized gradient descent method, named QuanTimed-
DSGD, with fixed step-sizes. In this algorithm, agents exchange a quantized version
of their models/estimates in order to reduce the communication load (see Remark 2.6
for more details). A time-varying version of this algorithm with vanishing step-sizes
is studied in [30] for strongly convex objective functions. To compensate the quanti-
zation error, a decentralized (diminishing) gradient descent algorithm is proposed in
[19, 18] using error-feedback. The proposed algorithm achieves the convergence rate
of \scrO (T - 1) and \scrO (T - 1/2) for strongly and nonconvex objective functions, respectively.
However, the nature of the algorithm restricts its use to time-invariant networks, and
in addition, the feedback mechanism cannot compensate communication noise be-
tween the nodes. In [33], a two-time-scale gradient descent algorithm was presented
for distributed constrained and convex optimization problems over an independent and
identically distributed (i.i.d.) communication graph with noisy communication links,
and subgradient errors. It is shown that if the random communication satisfies cer-
tain conditions, proper choices of the time-scale parameters result in the almost sure
convergence of the local states to an optimal point. Another interesting approach to
address exact convergence for distributed optimization with fixed gradient step-sizes
under a noiseless communication model is to use gradient tracking methods [10, 38].
Our contributions. We introduce and study a two-time-scale decentralized gradient
descent algorithm for a broad class of imperfect sharing of information over time-
varying communication networks for distributed optimization problems with smooth
nonconvex local cost functions. Here, one time-scale addresses the convergence of
the local estimates to a stationary point while the second time-scale is introduced to
suppress the noisy effect of the imperfect incoming information from the neighbors.

Our main result shows that with a proper choice of the parameters for the two
diminishing step-size sequences, the temporal average of the expected norm of the
gradients decreases with the rate of \scrO (T - 1/3+\epsilon ). To prove this result, we have es-
tablished new techniques to analyze the interplay between the two time-scales, in
particular in the presence of underlying time-varying networks.
Paper organization. After introducing some notation, we present the problem
formulation, the algorithm, the main result, and some of its practical implications
in section 2. To prove the main result, we first provide some auxiliary lemmas in
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980 HADI REISIZADEH, BEHROUZ TOURI, AND SOHEIL MOHAJER

section 3, whose proofs are presented in Appendix B. In section 4, we present the
proof of the main result. Finally, we conclude the paper in section 5.
Notation and basic terminology. Throughout this paper, we use [n] to denote
the set of integers \{ 1,2, . . . , n\} . In this paper, we are dealing with n agents that are
minimizing a function in \BbbR 

d. For notational convenience, throughout this paper, we
assume that the underlying functions are acting on row vectors, and hence, we view
vectors in \BbbR 

1\times d = \BbbR 
d as row vectors. The rest of the vectors, i.e., the vectors in

\BbbR 
n\times 1 = \BbbR 

n, are assumed to be column vectors. The \ell 2-norm of a vector x \in \BbbR 
d is

defined as \| x\| 2 =
\sum d

j=1 | xj | 2. The Frobenius norm of a matrix A\in \BbbR 
n\times d is defined as

\| A\| 2F =
\sum n

i=1 \| Ai\| 2 =
\sum n

i=1

\sum d
j=1 | Aij | 2. A vector r\in \BbbR 

n is called stochastic if ri \geq 0

and
\sum n

i=1 ri = 1. Similarly, a nonnegative matrix A\in \BbbR 
n\times d is called (row) stochastic

if
\sum d

j=1Aij = 1 for every i \in [n]. For a matrix A \in \BbbR 
n\times d, we denote its ith row and

jth column by Ai and Aj , respectively. Note that we deal with two types of vector
throughout the paper. For an n\times d matrix A and a strictly positive stochastic vector
r \in \BbbR 

n, we define the r-norm of A by \| A\| 2r =
\sum n

i=1 ri\| Ai\| 2. It can be verified that
\| \cdot \| r is a norm on the space of n\times d matrices. Finally, we write A \geq B if A - B (is
well-defined and) has only nonnegative entries.

2. Problem setup and main result. In this section, first we formulate non-
convex distributed optimization problems over time-varying networks and introduce
some standard assumptions on the underlying problem. After proposing our algo-
rithm, we state our main result. Finally, we discuss the implications of our result on
various important practical settings with imperfect information sharing.

2.1. Problem setup. This paper is motivated by stochastic learning problems
in which the goal is to solve

min
x

L(x) :=min
x

\BbbE \xi \sim \scrP [\ell (x, \xi )],(2.1)

where \ell : \BbbR d \times \BbbR 
p \rightarrow \BbbR is a loss function, x \in \BbbR 

1\times d = \BbbR 
d is the decision/optimization

row vector, and \xi is a random vector taking values in \BbbR 
p that is drawn from an

unknown underlying distribution \scrP . One of the key practical considerations that
renders (2.1) as a challenging task is that the underlying distribution \scrP is often
unknown. Instead, we have access to N independent realizations of \xi and focus on
solving the corresponding empirical risk minimization (ERM) problem, which is given
by

min
x

f(x) :=min
x

1

N

N
\sum 

j=1

\ell (x, \xi j),(2.2)

where f(x) is the empirical risk with respect to the data points \scrD = \{ \xi 1, . . . , \xi N\} .
We assume that \ell (\cdot , \cdot ) is a nonconvex loss function, which potentially results in a
nonconvex function f(\cdot ).

In distributed optimization, we have a network consisting of n computing nodes
(agents, or workers), where each node i observes a nonoverlapping subset of mi = riN
data points, denoted by \scrD i = \{ \xi i1, . . . , \xi imi

\} , where \scrD = \scrD 1 \cup \cdot \cdot \cdot \cup \scrD n. Here, ri
represents the fraction of the data that is processed at node i \in [n]. Note that
the vector r = (r1, . . . , rn) is a strictly positive stochastic vector, i.e., ri > 0 and
\sum n

i=1 ri = 1. Thus, the ERM problem in (2.2) can be written as the minimization of
the weighted average of local empirical risk functions fi for all nodes i \in [n] in the
network, i.e.,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o

w
n
lo

ad
ed

 0
6
/3

0
/2

3
 t

o
 1

2
8
.1

0
1
.1

6
7
.1

8
0
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



DIMIX: DIMINISHING MIXING FOR SLOPPY AGENTS 981

min
x

f(x) =min
x

n
\sum 

i=1

rifi(x) =min
x

1

N

n
\sum 

i=1

\sum 

\xi \in \scrD i

\ell (x, \xi ),(2.3)

where fi(x) :=
1
mi

\sum 

\xi \in \scrD i
\ell (x, \xi ) = 1

mi

\sum mi

j=1 \ell (x, \xi 
i
j). We can rewrite the ERM problem

in (2.3) as a distributed consensus optimization problem, given by

min
x1,...,xn

n
\sum 

i=1

rifi(xi) subject to x1 = x2 = \cdot \cdot \cdot = xn.(2.4)

Consider an n \geq 2 agents that are connected through a time-varying network. We
represent this network at time t \geq 1 by the directed graph \scrG (t) = ([n],\scrE (t)), where
the vertex set [n] represents the set of agents and the edge set \scrE (t)\subseteq \{ (i, j) : i, j \in [n]\} 
represents the set of links at time t. At each discrete time t\geq 1, agent i can only send
information to its (out-) neighbors in \scrE (t), i.e., all j \in [n] with (i, j)\in \scrE (t).

To discuss our algorithm (DIMIX) for solving (2.4) distributively, let us first discuss
its general structure and the required information at each node for its execution. In
this algorithm, at each iteration t\geq 1, agent i\in [n] updates its estimate xi(t)\in \BbbR 

d of
an optimizer of (2.3). To this end, it utilizes the gradient information of its own local
cost function fi(x) as well as a noisy/lossy average of its current neighbors estimates,
denoted by \^xi(t) :=

\sum n
j=1Wij(t)xj(t) + ei(t). Here, W (t) is a row-stochastic matrix

that is consistent with the underlying connectivity network \scrG (t) (i.e., Wij(t)> 0 only
if (j, i) \in \scrE (t)) and ei(t) \in \BbbR 

d is a random noise vector. Later, in section 2.4 we
discuss several noisy and lossy information sharing architectures (quantization and
noisy communication) that fit in this broad information structure.

Now we are ready to discuss the DIMIX algorithm. In this algorithm, using the
information available to agent i at time t, agent i updates its current estimate by
computing a diminishing weighted average of its own state and the noisy average
of its neighbors' estimates, and moves along its local gradient. More formally, the
update rule at node i\in [n] is given by

xi(t+ 1) = (1 - \beta (t))xi(t) + \beta (t)\^xi(t) - \alpha (t)\beta (t)\nabla fi(xi(t)),(2.5)

where \alpha (t) = \alpha 0

(t+\tau )\nu and \beta (t) = \beta 0

(t+\tau )\mu for some \mu ,\nu \in (0,1) are the diminishing step-
sizes of the algorithm, and \tau \geq 0 is an arbitrary shift, that is introduced to accelerate
the finite-time performance of the algorithm. For notational simplicity, let

X(t) :=

\left[ 

 

 

x1(t)
...

xn(t)

\right] 

 

 
, E(t) :=

\left[ 

 

 

e1(t)
...

en(t)

\right] 

 

 
, \nabla f(X(t)) :=

\left[ 

 

 

\nabla f1(x1(t))
...

\nabla fn(xn(t))

\right] 

 

 
.(2.6)

Since \^xi(x) =
\sum n

j=1Wij(t)xj(t)+ei(t), we can rewrite the update rule in (2.5) in
the matrix format

X(t+ 1) = ((1 - \beta (t))I + \beta (t)W (t))X(t) + \beta (t)E(t) - \alpha (t)\beta (t)\nabla f(X(t)).(2.7)

Let us discuss some important aspects of the above update rule. Note that both \alpha (t)
and \beta (t) are diminishing step-sizes. If \beta (t) = \beta 0 < 1 and \alpha (t) = \alpha 0 < 1 are both con-
stants, then the dynamics in (2.7) reduces to the algorithm proposed in [29] for both
convex and nonconvex cost functions. Alternatively, if \beta (t) = \beta 0 < 1 is a constant
sequence and E(t) = 0 for all t \geq 1, (2.7) would be reduced to the averaging-based
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982 HADI REISIZADEH, BEHROUZ TOURI, AND SOHEIL MOHAJER

distributed optimization with diminishing steps-sizes (for gradients), which is intro-
duced and studied in [26] for local convex cost functions fi(x). The newly introduced
time-scale/step-size \beta (t) suppresses the incoming noise ei(t) from the neighboring
agents. However, \beta (t) also suppresses the incoming signal level

\sum n
j=1Wij(t)xj(t) at

each node i. This casts a major technical challenge for establishing convergence-to-
consensus guarantees for the algorithm over time-varying networks. On the other
hand, the diminishing step-size for the gradient update is \^\alpha (t) = \alpha (t)\beta (t). We chose
to represent our algorithm in this way to ensure that the local mixing (consensus)
scheme is operated on a faster time-scale than the gradient descent.

2.2. Assumptions. In order to provide performance guarantees for DIMIX, we
need to assume certain regularity conditions on (i) the statistics of the (neighbors'
averaging) noise process \{ E(t)\} , (ii) the mixing properties of the weight sequence
\{ W (t)\} , and (iii) the loss function \ell (\cdot , \cdot ).

First, we discuss our main assumption on the noise sequence \{ E(t)\} .
Assumption 1 (neighbors state estimate assumption). We suppose that \{ X(t)\} is

adapted to a filtration \{ \scrF t\} on the underlying probability space (see, e.g., section 5.2
in [12]). We assume that there exists some \gamma > 0 such that for all i\in [n] and all t\geq 1,
the noise sequence \{ ei(t)\} satisfies

\BbbE [ei(t) | \scrF t] = 0 and \BbbE [\| ei(t)\| 2 | \scrF t]\leq \gamma .(2.8)

Note that the natural filtration of the random process \{ X(t)\} is one choice for
\{ \scrF t\} . Thus, (2.8) reduces to \BbbE [ei(t) | X(1), . . . ,X(t)] = 0 and \BbbE [\| ei(t)\| 2 | X(1), . . . ,
X(t)]\leq \gamma .

Next, we discuss the main assumption on the network connectivity which relates
to information mixing over the time-varying network.

Assumption 2 (connectivity assumption). We assume that the weight matrix
sequence \{ W (t)\} in (2.7) satisfies the following properties.

(a) Stochastic with common stationary distribution: For all t \geq 1, W (t) is non-
negative, W (t)1=1, and rTW (t) = rT , where 1 \in \BbbR 

n is the all-one vector,
and r> 0 is the weight vector.

(b) Bounded nonzero elements: There exists some \eta > 0 such that Wij(t) > 0
implies Wij(t)\geq \eta for all i, j \in [n] and t\geq 1.

(c) B-connected: For a fixed integer B \geq 1, the graph ([n],
\bigcup t+B

k=t+1 \scrE (k)) is
strongly connected for all t\geq 1, where \scrE (k) = \{ (j, i) | Wij(k)> 0\} .

Finally for the loss function \ell (\cdot , \cdot ), we make the following assumption.

Assumption 3 (stochastic loss function assumption). We assume that
(a) the function \ell (\cdot , \cdot ) is K-smooth with respect to its first argument, i.e., for any

x,y \in \BbbR 
d and \xi \in \scrD we have that \| \nabla \ell (x, \xi ) - \nabla \ell (y, \xi )\| \leq K\| x - y\| ;

(b) stochastic gradient \nabla \ell (x, \xi ) is unbiased and variance bounded, i.e.,

\BbbE \xi [\nabla \ell (x, \xi )] =\nabla L(x), \BbbE \xi [\| \nabla \ell (x, \xi ) - \nabla L(x)\| 2]\leq \sigma 2.

Note that Assumption 3(b) implies a homogeneous sampling, i.e., each agent
draws i.i.d. sample points from a data batch. In a related work [21], a stronger
assumption has been considered which allows for heterogeneous data samples.

2.3. Main result. Here, we characterize the convergence rates of our algorithm
for the K-smooth nonconvex loss functions. More precisely, we establish a rate for
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DIMIX: DIMINISHING MIXING FOR SLOPPY AGENTS 983

the temporal average of the expected norm of the gradients for various choices of the
time-scale parameters \nu ,\mu .

Theorem 2.1. Suppose that Assumptions 1--3 hold and let \alpha (t) = \alpha 0

(t+\tau )\nu and

\beta (t) = \beta 0

(t+\tau )\mu , where \alpha 0, \beta 0 \in (0,1), \tau \geq 0, and \nu ,\mu \in (0,1) are arbitrary constants

with \mu \not = 1/2 and 3\nu +\mu \not = 1. Then the weighted average estimates \=x(t) :=
\sum n

i=1 rixi(t)
generated by (2.5) satisfy

M\theta (\nu ,\mu ) :=

\Biggl[ 

1

T

T
\sum 

t=1

\Bigl( 

\BbbE [\| \nabla f(\=x(t))\| 2]
\Bigr) \theta 
\Biggr] 1/\theta 

=\scrO 
\Bigl( 

T - min\{ 1 - \nu  - \mu ,\mu  - \nu ,2\nu \} 
\Bigr) 

,(2.9)

where \theta \in (0,1) is an arbitrary constant.
Furthermore, for (\nu  \star , \mu  \star ) = ( 16 ,

1
2 ) we get the optimal rate of

M\theta (\nu 
 \star , \mu  \star ) =\scrO 

\Bigl( 

T - 1/3 lnT
\Bigr) 

.(2.10)

Remark 2.2. Note that the expectation operator \BbbE [\cdot ] is over the randomness of
the dataset \scrD and the compression/communication noise. Moreover, note that the
theorem above shows that the gradient of f(\cdot ) (which depends of the choice of \scrD ) at
the average state of x(t) (which also depends on \scrD ) vanishes at a certain rate. It is
worth mentioning that this is not the performance of the average trajectory for the
average function.

Remark 2.3. From (2.9), one has to maximize min\{ 1 - \nu  - \mu ,\mu  - \nu ,2\nu \} over \nu ,\mu \in 
(0,1) to achieve the fastest convergence for M\theta . This leads to (\nu  \star , \mu  \star ) = (1/6,1/2),
which none of the conditions \mu \not = 1/2 and 3\nu + \mu \not = 1 hold for. However, one can
choose (\nu ,\mu ) = (1/6 + \epsilon /2,1/2 + \epsilon /2) and obtain M\theta = \scrO (T - 1/3+\epsilon ) for any \epsilon > 0.
Nevertheless, note that (2.10) provides a faster convergence rate of \scrO (T - 1/3 lnT ) for
(\nu  \star , \mu  \star ) = (1/6,1/3).

Proposition 2.4. Under the conditions of Theorem 2.1, for the optimum choice
of (\nu  \star , \mu  \star ) = (1/6,1/3), we have

M1(\nu 
 \star , \mu  \star ) :=

1

T

T
\sum 

t=1

\BbbE [\| \nabla f(\=x(t))\| 2]\leq \scrO 
\Bigl( 

T - 1/3+\epsilon 
\Bigr) 

(2.11)

for any \epsilon > 0. Furthermore, in this case, for each agent i \in [n] the convergence rate
to consensus is given by

1

T

T
\sum 

t=1

\BbbE [\| xi(t) - \=x(t)\| 2]\leq \scrO 
\Bigl( 

T - 1/3+\epsilon 
\Bigr) 

.(2.12)

As a result, combining (2.11), (2.12), and Assumption 3, for all i\in [n], we have

1

T

T
\sum 

t=1

\BbbE [\| \nabla f(xi(t))\| 2]\leq \scrO 
\Bigl( 

T - 1/3+\epsilon 
\Bigr) 

.

Remark 2.5. We should comment that almost all the existing results and al-
gorithms on distributed optimization algorithms for time-varying graphs assume a
uniform positive lower bound on nonzero elements of the (effective) weight matrices
[9, 25, 23, 36, 35, 39, 34, 2]. Absence of such an assumption significantly increases the
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984 HADI REISIZADEH, BEHROUZ TOURI, AND SOHEIL MOHAJER

Fig. 1. A general architecture for lossy information model.

complexity of the convergence analysis of the algorithm. In our work, even though the
stochastic matrix sequence \{ W (t)\} is assumed to be B-connected, the effective aver-
aging weight sequence, given by \{ (1 - \beta (t))I+\beta (t)W (t)\} , has vanishing weights. One
of the major theoretical contributions of this work is to introduce tools and techniques
to study distributed optimization with diminishing weight sequences.

Remark 2.6. In a related work [29] on distributed optimization with compressed
information sharing among the nodes, authors considered a fixed step-size (zero time-
scale) version of our dynamics (2.5) with a fixed averaging matrix W . It is shown that
for a given termination time T , the algorithm's step-sizes can be chosen (depending
on T ) such that the temporal average (up to iteration T ) of the expected norm of
the gradient (i.e., M1 defined in (2.11)) does not exceed c(T - 1/3) (where c > 0 is a
constant). However, the algorithm needs to be re-executed with re-evaluated step-sizes
if one targets another termination time T \prime . In this work, we use vanishing step-sizes
\alpha (t) and \beta (t) (which do not depend on the termination time) and show that the same
temporal average vanishes at the rate of \scrO (T - 1/3+\epsilon ) for every iteration T and any
arbitrarily small \epsilon > 0.

2.4. Examples for stochastic noisy state estimation. The noisy informa-
tion in (2.5) is very general and captures several models of imperfect data used
in practice and/or theoretical studies. A rather general architecture that leads to
such noisy/lossy estimates is demonstrated in Figure 1: Once the estimate xj(t) of
node j at iteration t is evaluated, node j may apply an operation (such as compres-
sion/sparsification or quantization) on its own model to generate \~xj(t). This vector is
sent over a potentially noisy communication channel, and a neighbor node i receives
a corrupted version of \~xj(t), say, \~yi,j(t) from every neighbor node j. Upon collect-
ing all channel outputs from its neighbors, node i computes their weighted average
yi(t) =

\sum n
j=1Wij(t)\~yi,j(t) and decodes it to the approximate average model \^xi(t). In

the following we describe three popular frameworks, in which each node i can only use
an imperfect neighbors' average \^xi(t) to update its estimate. It is worth emphasizing
that these are just some examples that lie under the general model in (2.5).

Example 1 (stochastic quantizer with bounded trajectory). The stochastic quan-
tizer with a number of quantization levels s maps a vector x\in \BbbR 

d to a random vector
QS

s (x)\in \BbbR 
d, where its \ell th entry is given by

\bigl[ 

QS
s (x)

\bigr] 

\ell 
:= \| x\| \cdot sgn(x\ell ) \cdot \zeta (| x\ell | /\| x\| , s) , \ell \in [d],(2.13)

and \zeta (x, s) is a random variable taking values

\zeta (x, s) =

\biggl\{ 

\lceil sx\rceil /s w.p.sx - \lfloor sx\rfloor ,
\lfloor sx\rfloor /s w.p. \lceil sx\rceil  - sx.

(2.14)
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DIMIX: DIMINISHING MIXING FOR SLOPPY AGENTS 985

Note that random variables \{ \zeta (\cdot , \cdot )\} are independent across the coordinates, agents,
and time steps. Thus, in this case, the relationship between \~xj(t) and xj(t) in Figure
1 would be \~xj(t) = QS

s (xj(t)). Furthermore, the noisy channel is perfect, and the
decoder component is just an identity function, i.e., yi,j(t) = \~xj(t) and \^xi(t) = yi(t).
It is shown in [3] that the output of this quantizer for an input x \in \BbbR 

d with a

bounded norm \| x\| 2 \leq D satisfies \BbbE [QS
s (x)] = x and \BbbE [\| QS

s (x) - x\| 2]\leq min(
\surd 
d
s , d

s2 )D.
Therefore, the neighbors estimate for node i will be

\^xi(t) =

n
\sum 

j=1

Wij(t)Q
S
s (xj(t)) =

n
\sum 

j=1

Wij(t)xj(t) + ei(t),

where ei(t)=
\sum n

j=1Wij(t)(Q
S
b (xj(t)) - xj(t)) satisfies \BbbE [ei(t)| \scrF t] = 0 and

\BbbE [\| ei(t)\| 2| \scrF t] =min
\Bigl( \surd 

d/s, d/s2
\Bigr) 

D
n
\sum 

j=1

W 2
ij(t)\leq min

\Bigl( \surd 
d/s, d/s2

\Bigr) 

D,

provided that \| xj(t)\| 2 \leq D for every j \in [n] and every t\geq 1. Therefore, the conditions
of Assumption 1 are satisfied. Note that ei(t) and ej(t) might be correlated, especially
when nodes i and j have common neighbor(s). However, this does not violate the
conditions of Assumption 3. The bounded variance noise sequence, which is ensured by
bounded trajectory here, has been implicitly and explicitly assumed in many related
works [29, 37, 20, 11]. In addition, the above stochastic quantizer implicitly assumes
a bounded trajectory as, otherwise, the state norm (\| x\| , whose communication cost
is ignored) requires infinite bits to be transmitted.

Example 2 (noisy communication). The noisy neighbor estimate model may arise
due to imperfect communication between the agents. Consider a wireless network,
in which the computing nodes communicate with their neighbors over a Gaussian
channel, i.e., when node j sends its state xj(t) (without compression, i.e., \~xj(t) =
xj(t)) to its neighbor i, the signal received at node i is \~yi,j(t) = xj(t)+ zi,j(t), where
zi,j(t) is a zero-mean Gaussian noise with variance \zeta 2, independent across (i, j), and
t. Applying an identity map decoder at node i (i.e., \^xi(t) = yi(t)) we have

\^xi(t) =

n
\sum 

j=1

Wij(t) (xj(t) + zi,j(t)) =

n
\sum 

j=1

Wij(t)xj(t) +

n
\sum 

j=1

Wij(t)zi,j(t).

Therefore, we have ei(t) =
\sum n

j=1Wij(t)zi,j(t), from which we conclude \BbbE [ei(t)| \scrF t] = 0

and \BbbE [\| ei(t)\| 2| \scrF t] = \zeta 2
\sum n

j=1W
2
ij(t)\leq \zeta 2. Hence, the conditions of Assumption 1 are

satisfied.

3. Auxiliary lemmas. The following lemmas are used to facilitate the proof of
the main result of the paper. Lemma 3.1 follows from the Cauchy--Schwarz inequality
and the geometric-arithmetic inequality, and its proof is omitted here for the sake of
brevity. We present the proofs of Lemmas 3.2 and 3.5 in Appendix B.

Lemma 3.1. The inequality \| \bfitu + \bfitv \| 2 \leq (1 + \omega )\| \bfitu \| 2 + (1 + \omega  - 1)\| \bfitv \| 2 holds for
any pair of vectors \bfitu , \bfitv , and any scalar \omega > 0. Similarly, for matrices U and V and
any scalar \omega > 0, their r-norms satisfy \| U + V \| 2r \leq (1 + \omega )\| U\| 2r + (1+ \omega  - 1)\| V \| 2r.

Lemma 3.2. Let \{ \beta (t)\} be a sequence in [0,1] and \lambda > 0. Then

t - 1
\sum 

s=1

\beta (s)

t - 1
\prod 

k=s+1

(1 - \lambda \beta (k))\leq 1

\lambda 
,

T
\sum 

t=s+1

\beta (t)

t - 1
\prod 

k=s+1

(1 - \lambda \beta (k))\leq 1

\lambda 
.
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Lemma 3.3. For any \delta \in \BbbR , \tau \geq 0, and T \geq 1, we have

T
\sum 

t=1

(t+ \tau )\delta \leq 

\left\{ 

 

 

 

 

\tau 1+\delta 

| 1+\delta | if \delta < - 1,

ln
\bigl( 

T
\tau + 1

\bigr) 

if \delta = - 1,
21+\delta 

1+\delta (T + \tau )1+\delta if \delta > - 1.

(3.1)

Lemma 3.4. For any A\in \BbbR 
n\times m and B \in \BbbR 

m\times q, we have \| AB\| r \leq \| A\| r\| B\| F .
As we discussed in Remark 2.5, we cannot use the conventional results (e.g., in [9, 24,
25, 23, 36, 35, 39, 34, 2]) to bound the norm of a vector after averaging with matrices
with diminishing weights. The following lemma provides a new bounding technique,
which we will use in the proof of the main result of this work.

Lemma 3.5. Let \{ W (t)\} satisfy the connectivity assumption, Assumption 2, with
parameters (B,\eta ), and let \{ A(t)\} be given by A(t) = (1  - \beta (t))I + \beta (t)W (t), where
\beta (t) \in (0,1] for all t and \{ \beta (t)\} is a nonincreasing sequence. Then, for any matrix
U \in \BbbR 

n\times d, parameter \lambda = \eta r\mathrm{m}\mathrm{i}\mathrm{n}

2Bn2 , and all t > s\geq 1, we have

\bigm\| 

\bigm\| 

\bigl( 

A(t - 1)A(t - 2) \cdot \cdot \cdot A(s+ 1) - 1rT
\bigr) 

U
\bigm\| 

\bigm\| 

2

r
\leq \kappa 

t - 1
\prod 

k=s+1

(1 - \lambda \beta (k))\| U\| 2
r
,

where \kappa = (1 - B\lambda \beta 0)
 - 1 and \beta 0 = \beta (1).

4. Proof of Theorem 2.1. For our analysis, first we obtain an expression for
the average reduction of the objective function f(\cdot ) at the average of the states,
i.e., \=x(t) =

\sum n
i=1 rixi(t) = rTX(t). Recall that rTW (t) = rT for all t \geq 1. Hence,

multiplying both sides of (2.7) by rT , we get

\=x(t+ 1) = \=x(t) + \beta (t)rTE(t) - \alpha (t)\beta (t)rT\nabla f(X(t)).

From Assumption 3(a) and Lemma 3.4 in [4] we can conclude

f(\=x(t+ 1)) - f(\=x(t)) - \langle \nabla f(\=x(t)), \=x(t+ 1) - \=x(t)\rangle \leq K

2
\| \=x(t+ 1) - \=x(t)\| 2 ,

or equivalently,

f(\=x(t+ 1))\leq f(\=x(t)) + \beta (t)
\bigl\langle 

\nabla f(\=x(t)),rTE(t)
\bigr\rangle 

 - \alpha (t)\beta (t)
\bigl\langle 

\nabla f(\=x(t)),rT\nabla f(X(t))
\bigr\rangle 

+ \beta (t)2
K

2

\bigm\| 

\bigm\| rTE(t) - \alpha (t)rT\nabla f(X(t))
\bigm\| 

\bigm\| 

2
.

Since \{ X(t)\} is adapted to the filtration \{ \scrF t\} and using Assumption 1, we arrive at

\BbbE [f(\=x(t+ 1))| \scrF t]\leq f(\=x(t)) - \alpha (t)\beta (t)
\bigl\langle 

\nabla f(\=x(t)),rT\nabla f(X(t))
\bigr\rangle 

+ \beta 2(t)
K

2
\BbbE 

\Bigl[ 

\bigm\| 

\bigm\| rT (E(t) - \alpha (t)\nabla f(X(t)))
\bigm\| 

\bigm\| 

2 | \scrF t

\Bigr] 

.(4.1)

Using the identity 2\langle x - y\rangle = \| x\| 2 + \| y\| 2  - \| y - x\| 2, we can write

\bigl\langle 

\nabla f (\=x(t)) ,rT\nabla f(X(t))
\bigr\rangle 

= \| \nabla f (\=x(t))\| 2 + \| rT\nabla f(X(t))\| 2

 - 2\| rT\nabla f(X(t)) - \nabla f (\=x(t))\| 2.(4.2)
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DIMIX: DIMINISHING MIXING FOR SLOPPY AGENTS 987

Moreover, we have

\| rT\nabla f(X(t)) - \nabla f(\=x(t))\| 2 =
\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

n
\sum 

i=1

ri (\nabla fi(xi(t)) - \nabla fi(\=x(t)))

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

2

\leq 
n
\sum 

i=1

ri \| \nabla fi(xi(t)) - \nabla fi(\=x(t))\| 2

\leq K2
n
\sum 

i=1

ri\| xi(t) - \=x(t)\| 2=K2 \| X(t) - 1\=x(t)\| 
r
,(4.3)

where the first inequality holds as \| \cdot \| 2 is a convex function and r is a stochastic
vector, and the second inequality follows from Assumption 3(a).

Next, we analyze the last term in (4.1). Note that Assumption 1 implies that
\BbbE [E(t)| \scrF t] = 0, which leads to

\BbbE 

\Bigl[ 

\bigm\| 

\bigm\| rT (E(t) - \alpha (t)\nabla f(X(t)))
\bigm\| 

\bigm\| 

2 | \scrF t

\Bigr] 

=\BbbE [
\bigm\| 

\bigm\| rTE(t)
\bigm\| 

\bigm\| 

2 | \scrF t] +
\bigm\| 

\bigm\| \alpha (t)rT\nabla f(X(t))
\bigm\| 

\bigm\| 

2
.

(4.4)

For the first term in (4.4), we again exploit Assumption 1, which implies

\BbbE 

\Bigl[ 

\bigm\| 

\bigm\| rTE(t)
\bigm\| 

\bigm\| 

2 | \scrF t

\Bigr] 

= rT\BbbE [E(t)E(t)T | \scrF t]r\leq rT (\gamma 11T )r= \gamma ,(4.5)

where we used the fact that rT1= 1 and the inequality holds since

\bigl[ 

\BbbE [E(t)E(t)T | \scrF t]
\bigr] 

ij
=\BbbE [ei(t)ej(t)| \scrF t]\leq 

\sqrt{} 

\BbbE [\| ei(t)\| 2| \scrF t]\BbbE [\| ej(t)\| 2| \scrF t]\leq \gamma 

for all i, j \in [n]. Thus, the last term in (4.1) is upper bounded as

\BbbE 

\Bigl[ 

\bigm\| 

\bigm\| rT (E(t) - \alpha (t)\nabla f(X(t)))
\bigm\| 

\bigm\| 

2 | \scrF t

\Bigr] 

\leq \gamma + \alpha 2(t)\| rT\nabla f(X(t))\| 2.(4.6)

Therefore, replacing (4.2), (4.3), and (4.6) in (4.1) we get

\BbbE [f (\=x(t+ 1)) | \scrF t]

\leq f (\=x(t)) - \alpha (t)\beta (t)
\bigl\langle 

\nabla f (\=x(t)) ,rT\nabla f(X(t))
\bigr\rangle 

+ \beta 2(t)
K

2
\BbbE 

\Bigl[ 

\bigm\| 

\bigm\| rT [E(t) - \alpha (t)\nabla f(X(t))]
\bigm\| 

\bigm\| 

2 | \scrF t

\Bigr] 

\leq f (\=x(t)) - 1

2
\alpha (t)\beta (t)

\Biggl( 

\| \nabla f(\=x(t))\| 2+
\bigm\| 

\bigm\| rT\nabla f(X(t))
\bigm\| 

\bigm\| 

2 - 2K2
n
\sum 

i=1

ri \| \=x(t) - xi(t)\| 2
\Biggr) 

+ \beta 2(t)
K

2

\Bigl( 

\gamma + \alpha 2(t)
\bigm\| 

\bigm\| rT\nabla f(X(t))
\bigm\| 

\bigm\| 

2
\Bigr) 

= f (\=x(t)) - 1

2
\alpha (t)\beta (t)\| \nabla f(\=x(t))\| 2  - 1

2
\alpha (t)\beta (t) (1 - \alpha (t)\beta (t)K)

\bigm\| 

\bigm\| rT\nabla f(X(t))
\bigm\| 

\bigm\| 

2

+ \alpha (t)\beta (t)K2 \| X(t) - 1\=x(t)\| 2
r
+ \beta 2(t)

K

2
\gamma .

Taking the expectation of both sides leads to

\BbbE [f (\=x(t+ 1))]\leq \BbbE [f (\=x(t))] - 1

2
\alpha (t)\beta (t)\BbbE [\| \nabla f(\=x(t))\| 2]

 - 1

2
\alpha (t)\beta (t) (1 - \alpha (t)\beta (t)K)\BbbE [

\bigm\| 

\bigm\| rT\nabla f(X(t))
\bigm\| 

\bigm\| 

2
]

+ \alpha (t)\beta (t)K2
\BbbE [\| X(t) - 1\=x(t)\| 2

r
] + \beta 2(t)

K

2
\gamma .(4.7)
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988 HADI REISIZADEH, BEHROUZ TOURI, AND SOHEIL MOHAJER

4.1. State deviations from the average state: \BbbE [\| \bfitX (\bfitt ) - 1\=x(\bfitt )\| 2

r
]. Note

that the dynamics in (2.7) can be viewed as the linear time-varying system

X(t+ 1) =A(t)X(t) +U(t)(4.8)

with A(t) = ((1 - \beta (t))I + \beta (t)W (t)) and U(t) = \beta (t)E(t) - \alpha (t)\beta (t)\nabla f(X(t)). The
solution of (4.8) is given by

X(t) =
t - 1
\sum 

s=1

\Phi (t : s)U(s) + \Phi (t : 0)X(1),(4.9)

where \Phi (t : s) = A(t - 1) \cdot \cdot \cdot A(s+ 1) with \Phi (t : t - 1) = I is the transition matrix of
the linear system (4.8). For simplicity of notation, let us define

P (t : s) := \beta (s)(\Phi (t : s) - 1rT ) = \beta (s)
\bigl( 

A(t - 1) \cdot \cdot \cdot A(s+ 1) - 1rT
\bigr) 

.

As a result of Lemma 3.5, we have \| P (t : s)U\| r \leq \pi (t : s)\| U\| r, where

\pi (t : s) := \beta (s)\kappa 
1
2

t - 1
\prod 

k=s+1

(1 - \lambda \beta (k))
1
2 .(4.10)

Now consider the dynamic in (4.9). Assuming X(1) = 0, we get

X(t) =

t - 1
\sum 

s=1

\Phi (t : s)U(s).(4.11)

Multiplying both sides of (4.11) from the left by rT and using rTA(t) = rT , we get

\=x(t) = rTX(t) =
t - 1
\sum 

s=1

rT\Phi (t : s)U(s) =
t - 1
\sum 

s=1

rTU(s).(4.12)

Then, subtracting (4.12) from (4.11), and plugging in the definition of U(s) we have

X(t) - 1\=x(t) =

t - 1
\sum 

s=1

\Phi (t : s)U(s) - 
t - 1
\sum 

s=1

1rTU(s) =

t - 1
\sum 

s=1

(\Phi (t : s) - 1rT )U(s)

=

t - 1
\sum 

s=1

\beta (s)(\Phi (t : s) - 1rT )

\biggl[ 

E(s) - \alpha (s)\nabla f(X(s))

\biggr] 

=
t - 1
\sum 

s=1

P (t : s)E(s) - 
t - 1
\sum 

s=1

\alpha (s)P (t : s)\nabla f(X(s)).

Therefore, using Lemma 3.1 with \omega = 1, we get

\| X(t) - 1\=x(t)\| 2
r
=

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

t - 1
\sum 

s=1

P (t : s)E(s) - 
t - 1
\sum 

s=1

\alpha (s)P (t : s)\nabla f(X(s))

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

2

r

\leq 2

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

t - 1
\sum 

s=1

P (t : s)E(s)

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

2

r

+ 2

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

t - 1
\sum 

s=1

\alpha (s)P (t : s)\nabla f(X(s))

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

2

r

.
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DIMIX: DIMINISHING MIXING FOR SLOPPY AGENTS 989

By expanding \| \sum t - 1
s=1P (t : s)E(s)\| 2r, we get

\| X(t) - 1\=x(t)\| 2
r
= 2

t - 1
\sum 

s=1

\| P (t : s)E(s)\| 2
r
+ 2
\sum 

s \not =q

\langle P (t : s)E(s), P (t : q)E(q)\rangle 

+ 2

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

t - 1
\sum 

s=1

\alpha (s)P (t : s)\nabla f(X(s))

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

2

r

.(4.13)

Recall from Assumption 1 that \BbbE [E(q)| \scrF q] = 0. Moreover, since E(s) is measurable
with respect to \scrF q for q > s, we have

\BbbE [\langle P (t : s)E(s), P (t : q)E(q)\rangle ] =\BbbE [\BbbE [\langle P (t : s)E(s), P (t : q)E(q)\rangle ] | \scrF q]

=\BbbE [\langle P (t : s)E(s), P (t : q)\BbbE [E(q)| \scrF q]\rangle ] = 0.

Using a similar argument for q < s and conditioning on \scrF s, we conclude that the
above relation holds for all q \not = s. Therefore, taking the expectation of both sides of
(4.13) and noting that the average of the second and forth terms is zero, we get

\BbbE [\| X(t) - 1\=x(t)\| 2
r
]\leq 2

t - 1
\sum 

s=1

\BbbE [\| P (t : s)E(s)\| 2
r
]+2\BbbE 

\left[ 

 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

t - 1
\sum 

s=1

\alpha (s)P (t : s)\nabla f(X(s))

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

2

r

\right] 

 .

(4.14)

We continue with bounding the first term in (4.14). First note that Assumption 1
implies

\BbbE [\| E(s)\| 2
r
] =\BbbE 

\Bigl[ 

\BbbE 

\Bigl[ 

\| E(s)\| 2
r
| \scrF s

\Bigr] \Bigr] 

=\BbbE 

\Biggl[ 

n
\sum 

i=1

ri\BbbE 
\bigl[ 

\| ei(s)\| 2| \scrF s

\bigr] 

\Biggr] 

\leq \BbbE 

\Biggl[ 

n
\sum 

i=1

ri\gamma 

\Biggr] 

= \gamma .

(4.15)

This together with Lemma 3.5 leads to

t - 1
\sum 

s=1

\BbbE [\| P (t : s)E(s)\| 2
r
]\leq 
\Biggl[ 

t - 1
\sum 

s=1

\beta 2(s)\kappa 

t - 1
\prod 

k=s+1

(1 - \lambda \beta (k))\BbbE [\| E(s)\| 2
r
]

\Biggr] 

\leq \gamma \kappa 
t - 1
\sum 

s=1

\Biggl[ 

\beta 2(s)

t - 1
\prod 

k=s+1

(1 - \lambda \beta (k))

\Biggr] 

.(4.16)

Using the triangle inequality for \| \cdot \| r, we can bound the second term in (4.14) as

\BbbE 

\Biggl[ 
\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

t - 1
\sum 

s=1

\alpha (s)P (t : s)\nabla f(X(s))

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

2

r

\Biggr] 

\leq \BbbE 

\left[ 

 

\Biggl( 

t - 1
\sum 

s=1

\| \alpha (s)P (t : s)\nabla f(X(s))\| 
r

\Biggr) 2
\right] 

 

=
\sum 

1\leq s,q\leq t - 1

\BbbE [\alpha (s)\| P (t : s)\nabla f(X(s))\| 
r
\alpha (q)\| P (t : q)\nabla f(X(q))\| 

r
].(4.17)

Using Lemma 3.5 and 2ab\leq a2 + b2, we can upper bound this expression as
\sum 

1\leq s,q\leq t - 1

\BbbE [\alpha (s)\| P (t : s)\nabla f(X(s))\| 
r
\alpha (q)\| P (t : q)\nabla f(X(q))\| 

r
]

\leq 
\sum 

1\leq s,q\leq t - 1

\BbbE [\alpha (s)\pi (t : s)\| \nabla f(X(s))\| 
r
\alpha (q)\pi (t : q)\| \nabla f(X(q))\| 

r
]
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990 HADI REISIZADEH, BEHROUZ TOURI, AND SOHEIL MOHAJER

=
\sum 

1\leq s,q\leq t - 1

\pi (t : s)\pi (t : q)\BbbE [\alpha (s)\| \nabla f(X(s))\| 
r
\alpha (q)\| \nabla f(X(q))\| 

r
]

\leq 1

2

\sum 

1\leq s,q\leq t - 1

\pi (t : s)\pi (t : q)\BbbE [\alpha 2(s)\| \nabla f(X(s))\| 2
r
+ \alpha 2(q)\| \nabla f(X(q))\| 2

r
]

=
\sum 

1\leq s,q\leq t - 1

\pi (t : s)\pi (t : q)\BbbE [\alpha 2(s)\| \nabla f(X(s))\| 2
r
]

=

\Biggl( 

t - 1
\sum 

q=1

\pi (t : q)

\Biggr) \Biggl( 

t - 1
\sum 

s=1

\alpha 2(s)\pi (t : s)\BbbE [\| \nabla f(X(s))\| 2
r
]

\Biggr) 

,(4.18)

where \pi (t : s) is given by (4.10). Using
\surd 
1 - x\leq 1 - x/2 and Lemma 3.2 we have

t - 1
\sum 

q=1

\pi (t : q)=

t - 1
\sum 

q=1

\left[ 

 \beta (q)\kappa 
1
2

t - 1
\prod 

k=q+1

(1 - \lambda \beta (k))
1
2

\right] 

 \leq 
t - 1
\sum 

q=1

\beta (q)\kappa 
1
2

t - 1
\prod 

k=q+1

\biggl( 

1 - \lambda 

2
\beta (k)

\biggr) 

\leq 2

\lambda 
\kappa 

1
2 .

(4.19)

Using this inequality in (4.18), we get

\BbbE 

\left[ 

 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

t - 1
\sum 

s=1

\alpha (s)P (t : s)\nabla f(X(s))

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

2

r

\right] 

 \leq 2

\lambda 
\kappa 

1
2

t - 1
\sum 

s=1

\Bigl[ 

\alpha 2(s)\pi (t : s)\BbbE [\| \nabla f(X(s))\| 2
r
]
\Bigr] 

.(4.20)

Finally, using the bounds obtained in (4.16) and (4.20) in (4.14) we arrive at

\BbbE [\| X(t) - 1\=x(t)\| 2
r
]\leq 2\gamma \kappa 

t - 1
\sum 

s=1

\Biggl[ 

\beta 2(s)

t - 1
\prod 

k=s+1

(1 - \lambda \beta (k))

\Biggr] 

+
4

\lambda 
\kappa 

1
2

t - 1
\sum 

s=1

\Bigl[ 

\alpha 2(s)\pi (t : s)\BbbE [\| \nabla f(X(s))\| 2
r
]
\Bigr] 

.(4.21)

4.2. Analysis of the overall deviation:
\sum 

\bfitT 

\bfitt =1
\bfitalpha (\bfitt )\bfitbeta (\bfitt )\BbbE [\| \bfitX (\bfitt ) - 1\=x(\bfitt )\| 2

r
].

Our goal here is to bound the overall weighted deviation of the states from their
average. First recall the bound for \BbbE [\| X(t) - \=x(t)1\| 2r], derived in section 4.1 for each
t. Our goal here is to bound

T
\sum 

t=1

\alpha (t)\beta (t)\BbbE [\| X(t) - 1\=x(t)\| 2
r
]\leq 2\gamma \kappa 

T
\sum 

t=1

\alpha (t)\beta (t)

t - 1
\sum 

s=1

\Biggl[ 

\beta 2(s)

t - 1
\prod 

k=s+1

(1 - \lambda \beta (k))

\Biggr] 

+
4

\lambda 
\kappa 

1
2

T
\sum 

t=1

\alpha (t)\beta (t)

t - 1
\sum 

s=1

\Bigl[ 

\alpha 2(s)\pi (t:s)\BbbE [\| \nabla f(X(s))\| 2
r
]
\Bigr] 

.(4.22)

Focusing on the first term in (4.22), we can write

T
\sum 

t=1

\Biggl[ 

\alpha (t)\beta (t)
t - 1
\sum 

s=1

\Biggl[ 

\beta 2(s)
t - 1
\prod 

k=s+1

(1 - \lambda \beta (k))

\Biggr] \Biggr] 

=

T - 1
\sum 

s=1

\Biggl[ 

\beta 2(s)

T
\sum 

t=s+1

\Biggl[ 

\alpha (t)\beta (t)

t - 1
\prod 

k=s+1

(1 - \lambda \beta (k))

\Biggr] \Biggr] 

\leq 
T - 1
\sum 

s=1

\Biggl[ 

\alpha (s)\beta 2(s)

T
\sum 

t=s+1

\Biggl[ 

\beta (t)

t - 1
\prod 

k=s+1

(1 - \lambda \beta (k))

\Biggr] \Biggr] 

\leq 1

\lambda 

T - 1
\sum 

s=1

\alpha (s)\beta 2(s),(4.23)
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DIMIX: DIMINISHING MIXING FOR SLOPPY AGENTS 991

where the first inequality is due to the fact that \alpha (t)\leq \alpha (s) for t > s, and the second
one follows from Lemma 3.2. Similarly, using the fact that \alpha (t) \leq \alpha (s) for t > s, for
the second term in (4.22), we have

T
\sum 

t=1

\Biggl[ 

\alpha (t)\beta (t)

t - 1
\sum 

s=1

\Bigl[ 

\alpha 2(s)\pi (t : s)\BbbE [\| \nabla f(X(s))\| 2
r
]
\Bigr] 

\Biggr] 

=

T - 1
\sum 

s=1

\Biggl[ 

\alpha 2(s)\BbbE [\| \nabla f(X(s))\| 2
r
]

T
\sum 

t=s+1

\alpha (t)\beta (t)\pi (t : s)

\Biggr] 

\leq 
T - 1
\sum 

s=1

\Biggl[ 

\alpha 3(s)\BbbE [\| \nabla f(X(s))\| 2
r
]

T
\sum 

t=s+1

\beta (t)\pi (t : s)

\Biggr] 

.(4.24)

Since \pi (t : s) = \beta (s)\kappa 
1
2

\prod t - 1
k=s+1(1 - \lambda \beta (k))

1
2 , using

\surd 
1 - x\leq 1 - x/2, we have

T
\sum 

t=s+1

\beta (t)\pi (t : s) =
T
\sum 

t=s+1

\Biggl[ 

\beta (t)\beta (s)\kappa 
1
2

t - 1
\prod 

k=s+1

(1 - \lambda \beta (k))
1
2

\Biggr] 

\leq \beta (s)\kappa 
1
2

T
\sum 

t=s+1

\Biggl[ 

\beta (t)

t - 1
\prod 

k=s+1

\biggl( 

1 - \lambda 

2
\beta (k)

\biggr) 

\Biggr] 

\leq 2

\lambda 
\beta (s)\kappa 

1
2 ,(4.25)

where the last inequality follows from Lemma 3.2. Then, (4.24) and (4.25) imply

T
\sum 

t=1

\Biggl[ 

\alpha (t)\beta (t)

t - 1
\sum 

s=1

\Bigl[ 

\alpha 2(s)\pi (t:s)\BbbE [\| \nabla f(X(s))\| 2
r
]
\Bigr] 

\Biggr] 

\leq 2\kappa 
1
2

\lambda 

T - 1
\sum 

s=1

\Bigl[ 

\alpha 3(s)\beta (s)\BbbE [\| \nabla f(X(s))\| 2
r
]
\Bigr] 

.

Therefore, plugging this and (4.23) into (4.22), we can conclude

T
\sum 

t=1

\alpha (t)\beta (t)\BbbE [\| X(t) - 1\=x(t)\| 2
r
]

\leq 2\gamma \kappa 

\lambda 

T
\sum 

t=1

\alpha (t)\beta 2(t) +
8\kappa 

\lambda 2

T
\sum 

t=1

\Bigl[ 

\alpha 3(t)\beta (t)\BbbE [\| \nabla f(X(t))\| 2
r
]
\Bigr] 

.(4.26)

4.3. Bounding \BbbE [\| \bfnabla \bfitf (\bfitX (\bfitt ))\| 2

r
]. In this part, we study \BbbE [\| \nabla f(X(t)\| r]2 to

provide an upper bound for it. Following [29], we can rewrite \nabla f(X(t)) as

\nabla f(X(t))=3

\biggl[ 

1

3
(\nabla f(X(t)) - \nabla f(1\=x(t))+

1

3
(\nabla f(1\=x(t)) - 1\nabla f(\=x(t))) + 1

3
1\nabla f(\=x(t))

\biggr] 

,

where \nabla f(\=x(t)) :=
\sum n

i=1\nabla fi(\=x(t)). Then, since \| \cdot \| 2r is a convex function, we have

\BbbE [\| \nabla f(X(t)\| 2
r
]\leq 3\BbbE [\| \nabla f(X(t)) - \nabla f(1\=x(t))\| 2

r
]

+ 3\BbbE [\| \nabla f(1\=x(t)) - 1\nabla f(\=x(t))\| 2
r
] + 3\BbbE [\| 1\nabla f(\=x(t))\| 2

r
].(4.27)

Next, we bound each term in (4.27). Using (4.3), we can write

\BbbE 

\Bigl[ 

\| \nabla f(X(t)) - \nabla f(1\=x(t))\| 2r
\Bigr] 

=\BbbE 

\Biggl[ 

n
\sum 

i=1

ri \| \nabla fi(xi(t)) - \nabla fi(\=x(t))\| 2
\Biggr] 

\leq K2
\BbbE 

\Bigl[ 

\| X(t) - 1\=x(t)\| 2
r

\Bigr] 

.(4.28)

Similarly, using the convexity of function \| \cdot \| 2, for the second term in (4.27) we have
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992 HADI REISIZADEH, BEHROUZ TOURI, AND SOHEIL MOHAJER

\BbbE [\| \nabla f(1\=x(t)) - 1\nabla f(\=x(t))\| 2
r
] =\BbbE 

\Biggl[ 

n
\sum 

i=1

ri \| \nabla fi(\=x(t)) - \nabla f(\=x(t))\| 2
\Biggr] 

=

n
\sum 

i=1

ri\BbbE 

\Biggl[ 

4

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

1

2

\Bigl( 

\nabla fi(\=x(t)) - \nabla L(\=x(t))
\Bigr) 

 - 1

2

\Bigl( 

\nabla f(\=x(t)) - \nabla L(\=x(t))
\Bigr) 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

2
\Biggr] 

\leq 
n
\sum 

i=1

2ri\BbbE [\| \nabla fi(\=x(t)) - \nabla L(\=x(t))\| 2] + 2\BbbE [\| \nabla f(\=x(t)) - \nabla L(\=x(t))\| 2]

(a)
=

n
\sum 

i=1

2ri\BbbE 

\left[ 

 

 

1

m2
i

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

mi
\sum 

j=1

\bigl[ 

\nabla \ell (\=x(t), \xi ij) - \nabla L(\=x(t))
\bigr] 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

2
\right] 

 

 

+2\BbbE 

\left[ 

 

 

1

N2

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

N
\sum 

j=1

[\nabla \ell (\=x(t), \xi j) - \nabla L(\=x(t))]

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

2
\right] 

 

 

(b)
=

n
\sum 

i=1

2ri
m2

i

mi
\sum 

j=1

\BbbE [\| \nabla \ell (\=x(t), \xi ij) - \nabla L(\=x(t))\| 2]

+
2

N2

N
\sum 

j=1

\BbbE [\| \nabla \ell (\=x(t), \xi j) - \nabla L(\=x(t))\| 2]

(c)

\leq 
n
\sum 

i=1

2
mi

N

1

m2
i

mi\sigma 
2 +

2

N2
N\sigma 2 =

2(n+ 1)

N
\sigma 2,(4.29)

where in (a) we replaced the definitions of fi(\=x(t)) and f(\=x(t)) from (2.3) and (2.2),
respectively, the equality in (b) holds since \xi js are independent samples from the
underlying distribution, and (c) follows from Assumption 3(b) and the fact that ri =
mi/N for i\in [n]. Finally, for the third term in (4.27), we have

\BbbE [\| 1\nabla f(\=x(t))\| 2
r
] =\BbbE 

\Biggl[ 

n
\sum 

i=1

ri \| \nabla f(\=x(t))\| 2
\Biggr] 

=\BbbE 

\Bigl[ 

\| \nabla f(\=x(t))\| 2
\Bigr] 

.(4.30)

Plugging (4.28)--(4.30) into (4.27), we get

\BbbE [\| \nabla f(X(t)\| 2
r
]\leq 3K2

\BbbE [\| X(t) - 1\=x(t)\| 2
r
] +

6(n+ 1)

N
\sigma 2 + 3\BbbE [\| \nabla f(\=x(t))\| 2].(4.31)

Next, replacing this bound in (4.26), we arrive at

T
\sum 

t=1

\alpha (t)\beta (t)\BbbE 
\bigl[ 

\| X(t) - 1\=x(t)\| 2
r

\bigr] 

\leq 2\gamma \kappa 

\lambda 

T
\sum 

t=1

\alpha (t)\beta 2(t) +
8\kappa 

\lambda 2

T
\sum 

t=1

\Bigl[ 

\alpha 3(t)\beta (t)\BbbE [\| \nabla f(X(t))\| 2
r
]
\Bigr] 

\leq 2\gamma \kappa 

\lambda 

T
\sum 

t=1

\alpha (t)\beta 2(t) +
24\kappa K2

\lambda 2

T
\sum 

t=1

\alpha 3(t)\beta (t)\BbbE [\| X(t) - 1\=x(t)\| 2
r
]

+
48\kappa (n+ 1)\sigma 2

N\lambda 2

T
\sum 

t=1

\alpha 3(t)\beta (t) +
24\kappa 

\lambda 2

T
\sum 

t=1

\alpha 3(t)\beta (t)\BbbE [\| \nabla f(\=x(t))\| 2].(4.32)

Now, define \phi i,j(T ) :=
\sum T

t=1\alpha 
i(t)\beta j(t). Then, 2\gamma \kappa 

\lambda 

\sum T
t=1\alpha (t)\beta 

2(t) = \epsilon 1\phi 1,2(T )

and 48\kappa (n+1)\sigma 2

N\lambda 2

\sum T
t=1\alpha 

3(t)\beta (t) = \epsilon 2\phi 3,1(T ), where \epsilon 1 := 2\gamma \kappa 
\lambda and \epsilon 2 := 48\kappa (n+1)\sigma 2

N\lambda 2 .
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DIMIX: DIMINISHING MIXING FOR SLOPPY AGENTS 993

Furthermore, we set T0 := \lceil ( 14\alpha 0\kappa 
1
2 K

\lambda )
1
\nu \rceil such that 24\kappa K2

\lambda 2 \alpha 2(T0)\leq 24
196 < 1

2 . Then, for
T \geq T0 we can rewrite (4.32) as

T0
\sum 

t=1

\alpha (t)\beta (t)\BbbE [\| X(t) - 1\=x(t)\| 2
r
] +

T
\sum 

t=T0+1

\alpha (t)\beta (t)\BbbE [\| X(t) - 1\=x(t)\| 2
r
]

\leq \epsilon 1\phi 1,2(T ) + \epsilon 2\phi 3,1(T ) +
24\kappa 

\lambda 2

T
\sum 

t=1

\alpha 3(t)\beta (t)\BbbE [\| \nabla f(\=x(t))\| 2]

+
24\kappa K2

\lambda 2

\Biggl[ 

T0
\sum 

t=1

\alpha 3(t)\beta (t)\BbbE [\| X(t) - 1\=x(t)\| 2
r
] +

T
\sum 

t=T0+1

\alpha 3(t)\beta (t)\BbbE [\| X(t) - 1\=x(t)\| 2
r
]

\Biggr] 

\leq \epsilon 1\phi 1,2(T ) + \epsilon 2\phi 3,1(T ) +
24\kappa 

\lambda 2

T
\sum 

t=1

\alpha 3(t)\beta (t)\BbbE [\| \nabla f(\=x(t))\| 2]

+
24\kappa K2

\lambda 2

\Biggl[ 

T0
\sum 

t=1

\alpha 3(t)\beta (t)\BbbE [\| X(t) - 1\=x(t)\| 2
r
]

+\alpha 2(T0)

T
\sum 

t=T0+1

\alpha (t)\beta (t)\BbbE [\| X(t) - 1\=x(t)\| 2
r
]

\Biggr] 

\leq \epsilon 1\phi 1,2(T ) + \epsilon 2\phi 3,1(T ) +
24\kappa 

\lambda 2

T
\sum 

t=1

\alpha 3(t)\beta (t)\BbbE [\| \nabla f(\=x(t))\| 2]

+ \epsilon 3 +
1

2

T
\sum 

t=T0+1

\alpha (t)\beta (t)\BbbE [\| X(t) - 1\=x(t)\| 2
r
],

where \epsilon 3 := 24\kappa K2

\lambda 2

\sum T0

t=1\alpha 
3(t)\beta (t)\BbbE [\| X(t) - 1\=x(t)\| 2

r
] does not grow with T , and the

second inequality holds since \alpha (t) is a nonincreasing sequence. Therefore, we have

T
\sum 

t=1

\alpha (t)\beta (t)\BbbE [\| X(t) - 1\=x(t)\| 2
r
]

\leq 2

T0
\sum 

t=1

\alpha (t)\beta (t)\BbbE [\| X(t) - 1\=x(t)\| 2
r
] +

T
\sum 

t=T0+1

\alpha (t)\beta (t)\BbbE [\| X(t) - 1\=x(t)\| 2
r
]

\leq 2\epsilon 1\phi 1,2(T ) + 2\epsilon 2\phi 3,1(T ) + 2\epsilon 3 +
48\kappa 

\lambda 2

T
\sum 

t=1

\alpha 3(t)\beta (t)\BbbE [\| \nabla f(\=x(t))\| 2].(4.33)

4.4. Back to the main dynamics. Recall the dynamics in (4.7), that is,

\BbbE [f (\=x(t+ 1))]\leq \BbbE [f (\=x(t))] - 1

2
\alpha (t)\beta (t)\BbbE [\| \nabla f(\=x(t))\| 2] + K\gamma 

2
\beta 2(t)

 - 1

2
\alpha (t)\beta (t) (1 - \alpha (t)\beta (t)K)\BbbE [

\bigm\| 

\bigm\| rT\nabla f(X(t))
\bigm\| 

\bigm\| 

2
] +\alpha (t)\beta (t)K2

\BbbE [\| X(t) - 1\=x(t)\| 2
r
].

Summing (4.7) for t= 1,2, . . . , T and using (4.33) we get

\BbbE [f (\=x(T + 1))]\leq \BbbE [f (\=x(1))] - 1

2

T
\sum 

t=1

\alpha (t)\beta (t)\BbbE [\| \nabla f(\=x(t))\| 2] + K\gamma 

2

T
\sum 

t=1

\beta 2(t)

 - 1

2

T
\sum 

t=1

\alpha (t)\beta (t) (1 - \alpha (t)\beta (t)K)\BbbE [
\bigm\| 

\bigm\| rT\nabla f(X(t))
\bigm\| 

\bigm\| 

2
]
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994 HADI REISIZADEH, BEHROUZ TOURI, AND SOHEIL MOHAJER

+K2
T
\sum 

t=1

\alpha (t)\beta (t)\BbbE [\| X(t) - 1\=x(t)\| 2
r
]

\leq \BbbE [f (\=x(1))] - 1

2

T
\sum 

t=1

\alpha (t)\beta (t)\BbbE [\| \nabla f(\=x(t))\| 2] + K

2
\gamma \phi 0,2(T )

 - 1

2

T
\sum 

t=1

\alpha (t)\beta (t) (1 - \alpha (t)\beta (t)K)\BbbE [\| rT\nabla f(X(t))\| 2]

+K2

\Biggl[ 

2\epsilon 1\phi 1,2(T ) + 2\epsilon 2\phi 3,1(T ) + 2\epsilon 3 +
48\kappa 

\lambda 2

T
\sum 

t=1

\alpha 3(t)\beta (t)\BbbE [\| \nabla f(\=x(t))\| 2]
\Biggr] 

,(4.34)

where \phi 0,2(T ) =
\sum T

t=1 \beta 
2(t). Next, note that for t \geq T0 = \lceil ( 14\alpha 0\kappa 

1
2 K

\lambda )
1
\nu \rceil we have

\alpha (t)\beta (t)K \leq \alpha (T0)\beta (T0)K \leq \alpha (T0)K \leq \lambda 

14\kappa 
1
2

< 1, where the last inequality holds

since \lambda \leq 1 and \kappa > 1 (see Lemma 3.5). Therefore, the coefficient 1 - \alpha (t)\beta (t)K is
nonnegative for t\geq T0. Thus, for T \geq T0 we have

1

2

T
\sum 

t=1

\alpha (t)\beta (t) (1 - \alpha (t)\beta (t)K)\BbbE [\| rT\nabla f(X(t))\| 2]

\geq 1

2

T0
\sum 

t=1

\alpha (t)\beta (t) (1 - \alpha (t)\beta (t)K)\BbbE [\| rT\nabla f(X(t))\| 2] := \epsilon 4,(4.35)

where \epsilon 4 does not grow with T . Similarly, 48\kappa K2

\lambda 2 \alpha 2(T0) \leq 48
196\alpha 0 \leq 1

4 . Therefore, for
T > T0, the last summation in (4.34) can be upper bounded by

48\kappa K2

\lambda 2

T
\sum 

t=1

\alpha 3(t)\beta (t)\BbbE [\| \nabla f(\=x(t))\| 2]

=
48\kappa K2

\lambda 2

\Biggl[ 

T0
\sum 

t=1

\alpha 3(t)\beta (t)\BbbE [\| \nabla f(\=x(t))\| 2] +
T
\sum 

t=T0+1

\alpha 3(t)\beta (t)\BbbE [\| \nabla f(\=x(t))\| 2]
\Biggr] 

`

\leq \epsilon 5 +
48\kappa K2

\lambda 2
\alpha 2(T0)

T
\sum 

t=T0+1

\alpha (t)\beta (t)\BbbE [\| \nabla f(\=x(t))\| 2]

\leq \epsilon 5 +
1

4

T
\sum 

t=T0+1

\alpha (t)\beta (t)\BbbE [\| \nabla f(\=x(t))\| 2],(4.36)

where \epsilon 5 :=
48\kappa K2

\lambda 

\sum T0

t=1\alpha 
3(t)\beta (t)\BbbE [\| \nabla f(\=x(t))\| 2] does not depend on T . Next, plugging

(4.35) and (4.36) into (4.34), for T > T0, we get

\BbbE [f (\=x(T + 1))]\leq \BbbE [f (\=x(1))] +
K

2
\phi 0,2(T ) + 2K2 (\epsilon 1\phi 1,2(T ) + \epsilon 2\phi 3,1(T ) + \epsilon 3)

 - 1

2

T
\sum 

t=1

\alpha (t)\beta (t) (1 - \alpha (t)\beta (t)K)\BbbE [\| rT\nabla f(X(t))\| 2]

 - 1

2

T
\sum 

t=1

\alpha (t)\beta (t)\BbbE [\| \nabla f(\=x(t))\| 2]+ 48\kappa K2

\lambda 2

T
\sum 

t=1

\alpha 3(t)\beta (t)\BbbE [\| \nabla f(\=x(t))\| 2]

\leq \BbbE [f (\=x(1))] +
K

2
\phi 0,2(T ) + 2K2 (\epsilon 1\phi 1,2(T ) + \epsilon 2\phi 3,1(T ) + \epsilon 3) - \epsilon 4
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DIMIX: DIMINISHING MIXING FOR SLOPPY AGENTS 995

 - 1

2

T0
\sum 

t=1

\alpha (t)\beta (t)\BbbE [\| \nabla f(\=x(t))\| 2] - 1

2

T
\sum 

t=T0+1

\alpha (t)\beta (t)\BbbE [\| \nabla f(\=x(t))\| 2]

+ \epsilon 5 +
1

4

T
\sum 

t=T0+1

\alpha (t)\beta (t)\BbbE [\| \nabla f(\=x(t))\| 2]

\leq \BbbE [f (\=x(1))] +
K

2
\phi 0,2(T ) + 2K2 (\epsilon 1\phi 1,2(T ) + \epsilon 2\phi 3,1(T ) + \epsilon 3) - \epsilon 4

+ \epsilon 5  - 
1

4

T
\sum 

t=1

\alpha (t)\beta (t)\BbbE [\| \nabla f(\=x(t))\| 2].

By rearrangement of the terms above, we get

T
\sum 

t=1

\alpha (t)\beta (t)\BbbE [\| \nabla f(\=x(t))\| 2]

\leq 4\BbbE [f(\=x(1))] - 4\BbbE [f(\=x(T+1))]+2K\phi 0,2(T )

+ 8K2(\epsilon 1\phi 1,2(T )+\epsilon 2\phi 3,1(T )+\epsilon 3) - 4\epsilon 4+4\epsilon 5

\leq 4\BbbE [f(\=x(1))] - 4\BbbE [f(x \star )]+2K\phi 0,2(T )

+ 8K2(\epsilon 1\phi 1,2(T ) + \epsilon 2\phi 3,1(T )+\epsilon 3) - 4\epsilon 4+4\epsilon 5

= \epsilon 6 + 2K\phi 0,2(T ) + 8K2\epsilon 1\phi 1,2(T ) + 8K2\epsilon 2\phi 3,1(T )

\leq \epsilon 6 + (2K + 8K2\epsilon 1\alpha 0)\phi 0,2(T ) + 8K2\epsilon 2\phi 3,1(T ),(4.37)

where \epsilon 6 := 8K2\epsilon 3 - 4\epsilon 4+4\epsilon 5+4\BbbE [f(\=x(1))] - 4\BbbE [f(x \star )] is a constant (does not depend
on T ), and the last inequality in (4.37) follows from the fact that

\phi 1,2(T ) =

T
\sum 

t=1

\alpha (t)\beta 2(t) = \alpha 0

T
\sum 

t=1

1

(t+ \tau )\nu 
\beta 2(t)\leq \alpha 0

T
\sum 

t=1

\beta 2(t) = \alpha 0\phi 0,2(T ).(4.38)

4.5. Bound on the moments of \BbbE [\| \bfnabla \bfitf (\=x(\bfitt ))\| 2] and \BbbE [\| \bfitX (\bfitt ) - 1\=x(\bfitt )\| 2

r
].

The inequality in (4.37) provides us with an upper bound on the temporal average of
\{ \alpha (t)\beta (t)\BbbE [\| \nabla f(\=x(t))\| 2]\} . However, our goal is to derive a bound on the temporal
average of \{ \BbbE [\| \nabla f(\=x(t))\| 2]\} . To this end, define the convergence measure

M\theta (\nu ,\mu ) :=

\Biggl[ 

1

T

T
\sum 

t=1

\Bigl( 

\BbbE [\| \nabla f(\=x(t))\| 2]
\Bigr) \theta 
\Biggr] 

1
\theta 

for a given \theta \in (0,1). Note that by H\"older's inequality [13, Theorem 6.2] for any
p, q > 1 with 1

p + 1
q = 1, and nonnegative sequences \{ at\} Tt=1 and \{ bt\} Tt=1, we have

\Biggl( 

T
\sum 

t=1

atbt

\Biggr) q

\leq 
\Biggl( 

T
\sum 

t=1

apt

\Biggr) 

q
p
\Biggl( 

T
\sum 

t=1

bqt

\Biggr) 

.(4.39)

Let (p, q) := ( 1
1 - \theta ,

1
\theta ) so that 1

p + 1
q = 1. Furthermore, define

at :=

\biggl( 

1

\alpha (t)\beta (t)

\biggr) \theta 

=
(t+ \tau )(\mu +\nu )\theta 

(\alpha 0\beta 0)\theta 
and bt :=

\Bigl( 

\alpha (t)\beta (t)\BbbE [\| \nabla f(\=x(t))\| 2]
\Bigr) \theta 

.(4.40)
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996 HADI REISIZADEH, BEHROUZ TOURI, AND SOHEIL MOHAJER

Then, applying H\"older's inequality (4.39), we arrive at

M\theta (\nu ,\mu )=

\Biggl[ 

1

T

T
\sum 

t=1

\Bigl( 

\BbbE [\| \nabla f(\=x(t))\| 2]
\Bigr) \theta 
\Biggr] 

1
\theta 

=

\Biggl( 

1

T

T
\sum 

t=1

atbt

\Biggr) q

\leq 1

T q

\Biggl( 

T
\sum 

t=1

apt

\Biggr) 

q
p
\Biggl( 

T
\sum 

t=1

bqt

\Biggr) 

.

(4.41)

It remains to upper bound the terms in the right-hand side (RHS) of (4.41). First,
using Lemma 3.3 we get

T
\sum 

t=1

apt =
1

(\alpha 0\beta 0)
\theta 

1 - \theta 

T
\sum 

t=1

(t+ \tau )
(\nu +\mu )\theta 
1 - \theta \leq 21+

(\nu +\mu )\theta 
1 - \theta 

(\alpha 0\beta 0)
\theta 

1 - \theta 

\Bigl( 

1 + (\nu +\mu )\theta 
1 - \theta 

\Bigr) (T + \tau )1+
(\nu +\mu )\theta 
1 - \theta .

Therefore,
\Biggl( 

T
\sum 

t=1

apt

\Biggr) 

q
p

\leq 2
1 - \theta 
\theta +(\nu +\mu )

\alpha 0\beta 0

\Bigl( 

1 + (\nu +\mu )\theta 
1 - \theta 

\Bigr) 

1 - \theta 
\theta 

(T + \tau )
1 - \theta 
\theta +\nu +\mu := \epsilon 7(\theta )(T + \tau )

1 - \theta 
\theta +\nu +\mu .(4.42)

Next, continuing from (4.37), for T \geq T0 we can write

T
\sum 

t=1

bqt =

T
\sum 

t=1

\alpha (t)\beta (t)\BbbE [\| \nabla f(\=x(t))\| 2]\leq \epsilon 6 + (2K + 8K2\epsilon 1\alpha 0)\phi 0,2(T ) + 8K2\epsilon 2\phi 3,1(T )

\leq max
\bigl\{ 

3\epsilon 6, (6K + 24K2\epsilon 1\alpha 0)\phi 0,2(T ),24K
2\epsilon 2\phi 3,1(T )

\bigr\} 

,(4.43)

where the last inequality follows from the fact that a+ b+ c\leq max\{ 3a,3b,3c\} . Then,
we can use Lemma 3.3 and the fact that 21 - 2\mu \leq 2 for 0 \leq \mu < 1, to bound \phi 0,2(T ),
as

\phi 0,2(T ) =

T
\sum 

t=1

\beta 2(t) =
1

\beta 2
0

T
\sum 

t=1

(t+ \tau ) - 2\mu \leq 

\left\{ 

 

 

 

 

 

 

\tau 1 - 2\mu 

\beta 2
0 | 1 - 2\mu | if \mu > 1/2,
1
\beta 2
0
ln
\bigl( 

T
\tau + 1

\bigr) 

if \mu = 1/2,
2(T+\tau )1 - 2\mu 

\beta 2
0(1 - 2\mu )

if 0\leq \mu < 1/2.

(4.44)

Similarly, applying Lemma 3.3 on \phi 3,1(T ), we get

\phi 3,1(T ) =

T
\sum 

t=1

\alpha 3(t)\beta (t) =
1

\alpha 3
0\beta 0

T
\sum 

t=1

(t+ \tau ) - 3\nu  - \mu \leq 

\left\{ 

 

 

 

 

 

 

\tau 1 - 3\nu  - \mu 

\alpha 3
0\beta 0| 1 - 3\nu  - \mu | if 3\nu + \mu > 1,
1

\alpha 3
0\beta 0

ln
\bigl( 

T
\tau + 1

\bigr) 

if 3\nu + \mu = 1,
2(T+\tau )1 - 3\nu  - \mu 

\alpha 3
0\beta 0(1 - 3\nu  - \mu )

if 0\leq 3\nu + \mu < 1,

(4.45)

in which 21 - 3\nu  - \mu is bounded by 2, for 0\leq 3\nu + \mu < 1. Note that the upper bound in
(4.43) is the maximum of a constant and two \phi \cdot ,\cdot (T ) functions. Moreover, depending
on the values of \mu and \nu , \phi \cdot ,\cdot (T ) functions can be upper bounded as in (4.44) and
(4.45). Figure 2 illustrates the four regions of (\mu ,\nu ). In the following we first, analyze
the interior of the four regions, and then study the boundary cases.

(Region \bfsansI ) \bfitmu > 1/2 and 3\bfitnu + \bfitmu > 1. Recall from (4.44) and (4.45) that \phi 0,2(T )
and \phi 3,1(T ) are both upper bounded by constants. Hence, in this regime, (4.43) leads
to

T
\sum 

t=1

bqt \leq max
\bigl\{ 

3\epsilon 6, (6K + 24K2\epsilon 1\alpha 0)\phi 0,2(T ),24K
2\epsilon 2\phi 3,1(T )

\bigr\} 

\leq max

\biggl\{ 

3\epsilon 6, (6K + 24K2\epsilon 1\alpha 0)
\tau 1 - 2\mu 

\beta 2
0 | 1 - 2\mu | ,24K

2\epsilon 2
\tau 1 - 3\nu  - \mu 

\alpha 3
0\beta 0| 1 - 3\nu  - \mu | 

\biggr\} 

:= \epsilon 8.(4.46)
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DIMIX: DIMINISHING MIXING FOR SLOPPY AGENTS 997

Fig. 2. Regions of (\mu ,\nu ).

Note that \epsilon 8 is a constant. Plugging (4.42) and (4.46) into (4.41), we arrive at

M\theta (\nu ,\mu )\leq 
1

T 1/\theta 
\epsilon 7(\theta ) \cdot (T + \tau )

1 - \theta 
\theta +\nu +\mu \cdot \epsilon 8 =\scrO 

\Bigl( 

T - (1 - \nu  - \mu )
\Bigr) 

.

(Region \bfsansI \bfsansI ) \bfitmu < 1/2 and 3\bfitnu + \bfitmu > 1. Note that (4.44) and (4.45) imply that
\phi 0,2(T ) and \phi 3,1(T ) are upper bounded by a polynomial (in T ) and a constant. Since
for sufficiently large T , a polynomial function beats any constant, we can write

T
\sum 

t=1

bqt \leq 
12K + 48K2\epsilon 1\alpha 0

\beta 2
0(1 - 2\mu )

(T + \tau )1 - 2\mu := \epsilon 9 \cdot (T + \tau )1 - 2\mu .(4.47)

This together with (4.41) and (4.42) implies

M\theta (\nu ,\mu )\leq 
1

T 1/\theta 
\epsilon 7(\theta )(T + \tau )

1 - \theta 
\theta +\nu +\mu \cdot \epsilon 9 \cdot (T + \tau )1 - 2\mu =\scrO 

\Bigl( 

T - (\mu  - \nu )
\Bigr) 

.

(Region \bfsansI \bfsansI \bfsansI ) \bfitmu > 1/2 and 3\bfitnu + \bfitmu < 1. Recall from (4.44) and (4.45) that
\phi 0,2(T ) and \phi 3,1(T ) are upper bounded by a constant and a polynomial function of
T , respectively. Therefore, for sufficiently large T , we get

T
\sum 

t=1

bqt \leq 
\biggl( 

48K2\epsilon 2
\alpha 3
0\beta 0(1 - 3\nu  - \mu )

\biggr) 

(T + \tau )1 - 3\nu  - \mu := \epsilon 10 \cdot (T + \tau )1 - 3\nu  - \mu .(4.48)

Therefore, plugging (4.48) and (4.42) into (4.41), we get

M\theta (\nu ,\mu )\leq 
1

T 1/\theta 
\epsilon 7(\theta )(T + \tau )

1 - \theta 
\theta +\nu +\mu \cdot \epsilon 10 \cdot (T + \tau )1 - 3\nu  - \mu =\scrO 

\bigl( 

T - 2\nu 
\bigr) 

.

(Region \bfsansI \bfsansV ) \bfitmu < 1/2 and 3\bfitnu + \bfitmu < 1. In this region, we can use (4.44) and
(4.45) to upper bound both \phi 0,2(T ) and \phi 3,1(T ) by polynomial functions. Thus, for
sufficiently large T , we get

T
\sum 

t=1

bqt \leq max

\biggl\{ 

12K + 48K2\epsilon 1\alpha 0

\beta 2
0(1 - 2\mu )

,
48K2\epsilon 2

\alpha 3
0\beta 0(1 - 3\nu  - \mu )

\biggr\} 

(T + \tau )max\{ 1 - 2\mu ,1 - 3\nu  - \mu \} 

:= \epsilon 11 \cdot (T + \tau )max\{ 1 - 2\mu ,1 - 3\nu  - \mu \} .(4.49)

Then, we can plug (4.49) and (4.42) into (4.41) to conclude

M\theta (\nu ,\mu )\leq 
1

T 1/\theta 
\epsilon 7(\theta )(T + \tau )

1 - \theta 
\theta +\nu +\mu \cdot \epsilon 11 \cdot (T + \tau )max\{ 1 - 2\mu ,1 - 3\nu  - \mu \} 

=\scrO 
\Bigl( 

T - min\{ \mu  - \nu ,2\nu \} 
\Bigr) 

.

The result of the four cases above concludes the first claim of Theorem 2.1.
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998 HADI REISIZADEH, BEHROUZ TOURI, AND SOHEIL MOHAJER

Recall that our goal is to find (\nu ,\mu ) that achieve the best convergence rate. This
is equivalent to optimizing the exponent of 1/T in each of the four (open) regions \sansI  - \sansI \sansV 

(shown in Figure 2). Interestingly, it turns out that the respective supremum value in
all four regions is 1/3, which corresponds to the boundary point (\nu  \star , \mu  \star ) = (1/6,1/2).
However, this point does not belong to any of the corresponding open sets, which
motivates the convergence analysis of M\theta for (\nu  \star , \mu  \star ) = (1/6,1/2).

(Boundary case) \bfitmu = 1/2 and 3\bfitnu + \bfitmu = 1. First note that the two lines of
interest intersect at (\nu  \star , \mu  \star ) = (1/6,1/2), as shown in Figure 2. Applying Lemma 3.3
on \phi 0,2(T ) and \phi 3,1(T ) for (\nu  \star , \mu  \star ) = (1/6,1/2) we get \phi 0,2(T ) \leq 1

\beta 2
0
ln(T\tau + 1) and

\phi 3,1(T )\leq 1
\alpha 3

0\beta 0
ln(T\tau + 1). Therefore, (4.43) reduces to

T
\sum 

t=1

bqt \leq max

\biggl\{ 

6K + 24K2\epsilon 1\alpha 0

\beta 2
0

,
24K2\epsilon 2
\alpha 3
0\beta 0

\biggr\} 

ln

\biggl( 

T

\tau 
+ 1

\biggr) 

:= \epsilon 12 \cdot ln
\biggl( 

T

\tau 
+ 1

\biggr) 

.(4.50)

Plugging (4.50) and (4.42) into (4.41), we arrive at

M\theta 

\biggl( 

1

6
,
1

2

\biggr) 

\leq 1

T 1/\theta 
\epsilon 7(\theta )(T + \tau )

1 - \theta 
\theta + 2

3 \cdot \epsilon 12 \cdot ln
\biggl( 

T

\tau 
+ 1

\biggr) 

=\scrO 
\Bigl( 

T - 1/3 lnT
\Bigr) 

,(4.51)

which is the second claim of the theorem.

5. Conclusion. We have studied nonconvex distributed optimization over time-
varying networks with lossy information sharing. We proposed and studied a two-
time-scale decentralized algorithm including a damping mechanism for incoming in-
formation from the neighboring agents as well as local cost functions' gradients. We
presented the convergence rate for various choices of the diminishing step-size pa-
rameters. By optimizing the achieved rate over all feasible choices for parameters,
the algorithm obtains a convergence rate of \scrO (T - 1/3+\epsilon ) for nonconvex distributed
optimization problems over time-varying networks for any \epsilon > 0. Further work in this
area may include the constrained/projection variation of this work.

Appendix A. Proof of Proposition 2.4. First note that we cannot directly
conclude the proposition from Theorem 2.1, since the theorem only holds for \theta \in (0,1)
and not \theta = 1. In order to show the claim, for a vector y \in \BbbR 

T and some \theta \in (0,1) we
define1 \| y\| \theta := (| y1| \theta + | y2| \theta + \cdot \cdot \cdot + | yT | \theta )1/\theta . Then we have \| y\| 1 \leq \| y\| \theta since

\biggl( \| y\| \theta 
\| y\| 1

\biggr) \theta 

=
| y1| \theta + \cdot \cdot \cdot + | yT | \theta 
(| y1| + \cdot \cdot \cdot + | yT | )\theta 

=

T
\sum 

t=1

\biggl( | yt| 
| y1| + \cdot \cdot \cdot + | yT | 

\biggr) \theta 

\geq 
T
\sum 

t=1

| yt| 
| y1| + \cdot \cdot \cdot + | yT | 

= 1,

where the inequality holds since we have 0\leq | yt| /
\sum T

i=1 | yi| \leq 1, and \theta < 1.
Now, for the vector y with yt =\BbbE [\| \nabla f(\=x(t))\| 2], we have

M1=
1

T

T
\sum 

t=1

\BbbE [\| \nabla f(\=x(t))\| 2]= 1

T
\| y\| 1\leq 

1

T
\| y\| \theta =

1

T

\Biggl( 

T
\sum 

t=1

\Bigl( 

\BbbE [\| \nabla f(\=x(t))\| 2]
\Bigr) \theta 
\Biggr) 1/\theta 

=
1

T 1 - 1/\theta 

\Biggl( 

1

T

T
\sum 

t=1

\Bigl( 

\BbbE [\| \nabla f(\=x(t))\| 2]
\Bigr) \theta 
\Biggr) 1/\theta 

=
1

T 1 - 1/\theta 
M\theta .

1Note that for \| y\| \theta is not a norm, since it is not a subadditive function for \theta < 1.
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DIMIX: DIMINISHING MIXING FOR SLOPPY AGENTS 999

Then, from Theorem 2.1 for (\nu  \star , \mu  \star ) = (1/6,1/2) and \theta = 2
2+\epsilon , we get

M1 \leq 
1

T 1 - 1/\theta 
M\theta \leq 

1

T 1 - 1/\theta 
\scrO 
\Bigl( 

T - 1/3 lnT
\Bigr) 

= T \epsilon /2\scrO 
\Bigl( 

T - 1/3 lnT
\Bigr) 

=\scrO 
\Bigl( 

T - 1/3+\epsilon 
\Bigr) 

,

(A.1)

where the last equality holds since lnT = \scrO (T \epsilon /2) for any \epsilon > 0. Similarly, for the
vector z\in \BbbR 

T with zt :=\BbbE [\| X(t) - 1\=x(t)\| 2r] and any \theta \in (0,1) we have

1

T

T
\sum 

t=1

\BbbE [\| X(t) - 1\=x(t)\| 2
r
] =

1

T
\| z\| 1 \leq 

1

T
\| z\| \theta =

1

T

\Biggl[ 

T
\sum 

t=1

\Bigl( 

\BbbE [\| X(t) - 1\=x(t)\| 2
r
]
\Bigr) \theta 
\Biggr] 

1
\theta 

=
1

T 1 - 1/\theta 

\Biggl[ 

1

T

T
\sum 

t=1

\Bigl( 

\BbbE [\| X(t) - 1\=x(t)\| 2
r
]
\Bigr) \theta 
\Biggr] 

1
\theta 

.(A.2)

We need to bound the RHS of (A.2). Let at :=(\alpha (t)\beta (t)) - \theta = (t+ \tau )2\theta /3/(\alpha 0\beta 0)
\theta and

ct := (\alpha (t)\beta (t)\BbbE [\| X(t) - 1\=x(t)\| 2r])\theta . Then, using the H\"older's inequality in (4.39) for
(p, q) = ( 1

1 - \theta ,
1
\theta ) we can write

\Biggl[ 

1

T

T
\sum 

t=1

\Bigl( 

\BbbE [\| X(t) - 1\=x(t)\| 2
r
]
\Bigr) \theta 
\Biggr] 

1
\theta 

=

\Biggl( 

1

T

T
\sum 

t=1

atct

\Biggr) q

\leq 1

T q

\Biggl( 

T
\sum 

t=1

apt

\Biggr) 

q
p
\Biggl( 

T
\sum 

t=1

cqt

\Biggr) 

.

(A.3)

Note that (
\sum T

t=1 a
p
t )

q
p is bounded in (4.42). Moreover, for

\sum T
t=1 c

q
t we can write

T
\sum 

t=1

cqt =

T
\sum 

t=1

\alpha (t)\beta (t)\BbbE [\| X(t) - 1\=x(t)\| 2
r
]

(A.4)

(a)

\leq 2\epsilon 1\phi 1,2(T ) + 2\epsilon 2\phi 3,1(T ) + 2\epsilon 3 +
48\kappa 

\lambda 2

T
\sum 

t=1

\alpha 3(t)\beta (t)\BbbE [\| \nabla f(\=x(t))\| 2]

(b)

\leq 2\epsilon 1\phi 1,2(T ) + 2\epsilon 2\phi 3,1(T ) + 2\epsilon 3 +
48\kappa \alpha 2

0

\lambda 2

T
\sum 

t=1

\alpha (t)\beta (t)\BbbE [\| \nabla f(\=x(t))\| 2]

(c)

\leq 2\alpha 0\epsilon 1\phi 0,2(T )+2\epsilon 2\phi 3,1(T )+2\epsilon 3+
48\kappa \alpha 2

0

\lambda 2

\bigl( 

\epsilon 6+K(2+8K\alpha 0\epsilon 1)\phi 0,2(T )+8K2\epsilon 2\phi 3,1(T )
\bigr) 

\leq 2\epsilon 3+
48\kappa \alpha 2

0\epsilon 6
\lambda 2

+

\biggl( 

2\alpha 0\epsilon 1+
96\kappa \alpha 2

0K(1 + 4K\alpha 0\epsilon 1)

\lambda 2

\biggr) 

\phi 0,2(T )

+

\biggl( 

2\epsilon 2+
384\kappa \alpha 2

0K
2\epsilon 2

\lambda 2

\biggr) 

\phi 3,1(T )

(d)

\leq 2\epsilon 3 +
48\kappa \alpha 2

0\epsilon 6
\lambda 2

+

\biggl( 

2\alpha 0\epsilon 1
\beta 2
0

+
96\kappa \alpha 2

0K(1 + 4K\alpha 0\epsilon 1)

\lambda 2\beta 2
0

\biggr) 

ln

\biggl( 

T

\tau 
+ 1

\biggr) 

+

\biggl( 

2\epsilon 2
\alpha 3
0\beta 0

+
384\kappa K2\epsilon 2
\lambda 2\alpha 0\beta 0

\biggr) 

ln

\biggl( 

T

\tau 
+ 1

\biggr) 

(e)

\leq \epsilon 13 \cdot ln
\biggl( 

T

\tau 
+ 1

\biggr) 

,

where (a) follows from (4.33), (b) holds since \alpha 2(t) =
\alpha 2

0

(t+\tau )1/3
\leq \alpha 2

0, the inequality

in (c) follows from (4.37) and (4.38), we have used a bounds in (4.44) and (4.45) for
(\nu  \star , \mu  \star ) = (1/6,1/2) in (d), and (e) holds since the constant term 2\epsilon 3+48\kappa \alpha 2

0\epsilon 6/\lambda 
2 is
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1000 HADI REISIZADEH, BEHROUZ TOURI, AND SOHEIL MOHAJER

upper bounded by ln(T/\tau +1) for large enough T . Next, plugging (4.42) for \nu  \star +\mu  \star =
2/3 and (A.4) into (A.3) and (A.2) and setting \theta = 2

2+\epsilon we arrive at

1

T

T
\sum 

t=1

\BbbE 

\Bigl[ 

\| xi(t) - \=x(t)\| 2
\Bigr] 

\leq 1

rmin

\Biggl[ 

1

T

T
\sum 

t=1

\BbbE [\| X(t) - 1\=x(t)\| 2r]
\Biggr] 

\leq 1

rmin

1

T 1 - 1/\theta 

1

T 1/\theta 
\epsilon 7(\theta )(T + \tau )

1 - \theta 
\theta + 2

3 \cdot \epsilon 13 \cdot ln
\biggl( 

T

\tau 
+ 1

\biggr) 

=\scrO 
\Bigl( 

T - 1/3+\epsilon 
\Bigr) 

,(A.5)

where the last equality holds since lnT = \scrO (T \epsilon /2) for any \epsilon > 0. Finally, combining
(2.11) and (2.12) and using Assumption 3 and Lemma 3.1 (for \omega = 1) we have

1

T

T
\sum 

t=1

\BbbE 

\Bigl[ 

\| \nabla f(xi(t))\| 2
\Bigr] 

\leq 2

T

T
\sum 

t=1

\Bigl\{ 

\BbbE 

\Bigl[ 

\| \nabla f(xi(t)) - \nabla f(\=x(t))\| 2
\Bigr] 

+\BbbE 

\Bigl[ 

\| \nabla f(\=x(t))\| 2
\Bigr] \Bigr\} 

\leq 2

T

T
\sum 

t=1

\Bigl\{ 

K2
\BbbE 

\Bigl[ 

\| xi(t) - \=x(t)\| 2
\Bigr] 

+\BbbE 

\Bigl[ 

\| \nabla f(\=x(t))\| 2
\Bigr] \Bigr\} 

\leq \scrO (T - 1/3+\epsilon )

for every i\in [n]. This concludes the proof of Proposition 2.4.

Appendix B. Proof of the auxiliary lemmas. In this section, we provide
the proofs of the auxiliary lemmas presented in section 3.

Proof of Lemma 3.2. Let g=
\sum t - 1

s=1 \beta (s)
\prod t - 1

k=s+1(1 - \lambda \beta (k)). Then, we have

\lambda g=

t - 1
\sum 

s=1

\lambda \beta (s)

t - 1
\prod 

k=s+1

(1 - \lambda \beta (k)) =

t - 1
\sum 

s=1

(1 - (1 - \lambda \beta (s)))

t - 1
\prod 

k=s+1

(1 - \lambda \beta (k))

=

t - 1
\sum 

s=1

\Biggl[ 

t - 1
\prod 

k=s+1

(1 - \lambda \beta (k)) - 
t - 1
\prod 

k=s

(1 - \lambda \beta (k))

\Biggr] 

= 1 - 
t - 1
\prod 

k=1

(1 - \lambda \beta (k)) ,

which follows from the fact that the corresponding sum is a telescopic sum. Di-
viding both sides by \lambda > 0 and noticing that \beta (k) \in [0,1], we arrive at the first
desired inequality. To show the second inequality, we utilize the same idea for
h=
\sum T

t=s+1 \beta (t)
\prod t - 1

k=s+1(1 - \lambda \beta (k)), where we have

\lambda h=

T
\sum 

t=s+1

\Biggl[ 

t - 1
\prod 

k=s+1

(1 - \lambda \beta (k)) - 
t
\prod 

k=s+1

(1 - \lambda \beta (k))

\Biggr] 

=

s
\prod 

k=s+1

(1 - \lambda \beta (k)) - 
t
\prod 

k=s+1

(1 - \lambda \beta (k)) = 1 - 
T
\prod 

k=s+1

(1 - \lambda \beta (k)) .

Again, dividing both sides by \lambda > 0 and noting \beta (k)\in [0,1] conclude the proof.

Proof of Lemma 3.3. In order to prove the lemma, we separately analyze the cases
\delta < - 1, \delta = - 1,  - 1< \delta < 0, and \delta \geq 0. Note that for \delta < 0, the function h(t) := (t+\tau )\delta 

is a decreasing function, and thus we have
\sum T

t=1(t+\tau )\delta \leq 
\int T

0
(t+\tau )\delta dt. In the following

we upper bound the latter integral for each regime of \delta . When \delta < - 1 we have

T
\sum 

t=1

(t+ \tau )\delta \leq 
\int T

0

(t+ \tau )\delta dt=
\tau 1+\delta  - (T + \tau )1+\delta 

 - 1 - \delta 
\leq \tau 1+\delta 

 - 1 - \delta 
,(B.1)
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DIMIX: DIMINISHING MIXING FOR SLOPPY AGENTS 1001

which does not grow with T . For \delta = - 1, we get

T
\sum 

t=1

(t+ \tau ) - 1 \leq 
\int T

0

(t+ \tau ) - 1dt= ln(T + \tau ) - ln(\tau ) = ln

\biggl( 

T

\tau 
+ 1

\biggr) 

.(B.2)

When  - 1< \delta < 0, we arrive at

T
\sum 

t=1

(t+ \tau )\delta \leq 
\int T

0

(t+ \tau )\delta dt=
(T + \tau )1+\delta  - \tau 1+\delta 

1 + \delta 
\leq (T + \tau )1+\delta 

1 + \delta 
\leq 21+\delta 

1 + \delta 
(T + \tau )1+\delta ,

(B.3)

where the last inequality follows from 21+\delta \geq 20 = 1. Finally, for \delta \geq 0, the function
h(t) is an increasing function. Hence, we can write

T
\sum 

t=1

(t+ \tau )\delta \leq 
\int T+1

1

(t+ \tau )\delta dt=
(T + \tau + 1)1+\delta  - (\tau + 1)1+\delta 

1 + \delta 
\leq 21+\delta 

1 + \delta 
(T + \tau )1+\delta ,

(B.4)

where the last step follows from T + \tau + 1\geq 2(T + \tau ) for any T \geq 1 and \tau \geq 0.

Proof of Lemma 3.4. Recall that the (i, j)th entry of the matrix product AB is
the inner product between the ith row of A and the jth column of B. Thus, using the
Cauchy--Schwarz inequality, we have | [AB]ij | = | \langle Ai,B

j\rangle | \leq \| Ai\| \| Bj\| . Therefore,

\| [AB]i\| 2 =
m
\sum 

j=1

| [AB]ij | 2 =
m
\sum 

j=1

| 
\bigl\langle 

Ai,B
j
\bigr\rangle 

| 2 \leq \| Ai\| 2
m
\sum 

j=1

\bigm\| 

\bigm\| Bj
\bigm\| 

\bigm\| 

2 \leq \| Ai\| 2 \| B\| 2F .

Using this inequality and the definition of r-norm, we get

\| AB\| 2
r
=

n
\sum 

i=1

ri \| [AB]i\| 2 \leq 
n
\sum 

i=1

ri \| Ai\| 2 \| B\| 2F = \| A\| 2
r
\| B\| 2F .

Proof of Lemma 3.5. Due to the separable nature of \| \cdot \| r, i.e., \| U\| 2r=
\sum d

j=1\| U j\| 2r,
without loss of generality, we may assume that d= 1. Thus, U = \bfitu \in \BbbR 

n\times 1 =\BbbR 
n is a

column vector. Define Vr :\BbbR 
n \rightarrow \BbbR 

+ by Vr(\bfitu ) := \| \bfitu  - 1rT\bfitu \| 2r =
\sum n

i=1 ri(ui  - rT\bfitu )2.
For notational simplicity, let \bfitu (s)=\bfitu =(u1, u2, . . . , un)

T , and \bfitu (k+1) =A(k+1)\bfitu (k).
Also with a slight abuse of notation, we denote Vr(\bfitu (k)) by Vr(k) for k = s, . . . , t.
Using Lemma 3 in [36], we have

Vr(t) = Vr(s) - 
t
\sum 

k=s+1

\sum 

i<j

Hij(k)(ui(k) - uj(k))
2,(B.5)

where H(k) =AT (k)diag(r)A(k). Note that A(k) is a nonnegative matrix, and hence
we have H(k) \geq rminA

T (k)A(k) for k = s + 1, . . . , t. Also, note that since A(k) =
(1  - \beta (k))I + \beta (k)W (k), then Assumption 2(b) implies that the minimum nonzero
elements of A(k) are bounded below by \eta \beta (k). Therefore, since \beta (k) is nonincreasing,
on the window k = s+ 1, . . . , s+B, the minimum nonzero elements of A(k) for k in
this window are lower bounded by \eta \beta (s+B). Without loss of generality, assume that
the entries of \bfitu are sorted, i.e., u1 \leq \cdot \cdot \cdot \leq un; otherwise, we can relabel the agents
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1002 HADI REISIZADEH, BEHROUZ TOURI, AND SOHEIL MOHAJER

(rows and columns of A(k)s and \bfitu to achieve this). Therefore, by Lemma 8 in [24],
for (B.5), we have

Vr(s+B)\leq Vr(s) - rmin

s+B
\sum 

k=s+1

\sum 

i<j

[AT (k)A(k)]ij(ui(k) - uj(k))
2

\leq Vr(s) - 
\eta rmin

2
\beta (s+B)

n - 1
\sum 

\ell =1

(u\ell +1  - u\ell )
2.(B.6)

We may comment here that although Lemma 8 in [24] is written for doubly sto-
chastic matrices, and its statement is about the decrease of Vr(x) for the special case
of r= 1

n1, in fact it is a result on bounding
\sum s+B

k=s+1

\sum 

i<j [A
T(k)A(k)]ij(ui(k) - uj(k))

2

for a sequence of B-connected stochastic matrices A(k) in terms of the minimum
nonzero entries of stochastic matrices A(s+ 1), . . . ,A(s+B).

Next, we use an argument similar to that in the proof of Theorem 18 in [24] to
show that

\sum n - 1
\ell =1 (u\ell +1  - u\ell )

2 \geq n - 2Vr(\bfitu ). For \bfitv \in \BbbR 
n with Vr(\bfitv ) > 0, define the

quotient

h(\bfitv ) =

\sum n - 1
\ell =1 (v\ell +1  - v\ell )

2

\sum n
i=1 ri(vi  - rT\bfitv )2

=

\sum n - 1
\ell =1 (v\ell +1  - v\ell )

2

Vr(\bfitv )
.(B.7)

Note that h(\bfitv ) is invariant under scaling and translations by the all-one vector, i.e.,
h(\omega \bfitv ) = h(\bfitv ) for all nonzero \omega \in \BbbR and h(\bfitv + \omega 1) = h(\bfitv ) for all \omega \in \BbbR . Therefore,

min
v1\leq v2\leq \cdot \cdot \cdot \leq vn

V\bfr (\bfitv ) \not =0

h(\bfitv ) = min
v1\leq v2\leq \cdot \cdot \cdot \leq vn

r
T
\bfitv =0,V\bfr (\bfitv )=1

h(\bfitv ) = min
v1\leq v2\leq \cdot \cdot \cdot \leq vn
r
T
\bfitv =0,V\bfr (\bfitv )=1

n - 1
\sum 

\ell =1

(v\ell +1  - v\ell )
2.(B.8)

The facts that r is a stochastic vector, v1 \leq \cdot \cdot \cdot \leq vn, and rT\bfitv = 0 imply v1 \leq rT\bfitv = 0\leq 
vn. Moreover, from Vr(\bfitv ) =

\sum n
i=1 riv

2
i = 1 we can conclude max(| v1| , | vn| ) \geq 1/

\surd 
n.

Let us consider the difference sequence \^v\ell = v\ell +1  - v\ell for \ell = 1, . . . , n - 1, for which
we have

\sum n - 1
i=1 \^v\ell = vn - v1 \geq vn \geq 1\surd 

n
. Therefore, for the optimization problem (B.8)

we have

min
v1\leq v2\leq \cdot \cdot \cdot \leq vn

V\bfr (\bfitv ) \not =0

h(\bfitv ) = min
v1\leq v2\leq \cdot \cdot \cdot \leq vn

r
T
\bfitv =0,V\bfr (\bfitv )=1

n - 1
\sum 

\ell =1

(v\ell +1 - v\ell )
2 \geq min

\^v1,...,\^vn - 1\geq 0
\sum n - 1

i=1 \^vi\geq 1
\surd 

n

n - 1
\sum 

\ell =1

\^v2\ell 
(a)

\geq 1

n(n - 1)
\geq 1

n2
,

where the inequality in (a) follows from the Cauchy--Schwarz inequality which im-
plies (

\sum n - 1
\ell =1 \^v2\ell )(

\sum n - 1
\ell =1 12)\geq (

\sum n - 1
\ell =1 \^v\ell )

2\geq 1
n . Therefore, we have

\sum n - 1
\ell =1 (v\ell +1  - v\ell )

2 \geq 
n - 2Vr(\bfitv ) for v1 \leq \cdot \cdot \cdot \leq vn (note that this inequality also holds for \bfitv \in \BbbR 

n with
Vr(\bfitv ) = 0). Using this fact in (B.6) implies

Vr(s+B)\leq 
\Bigl( 

1 - \eta rmin

2n2
\beta (s+B)

\Bigr) 

Vr(s).(B.9)

Applying (B.9) for \Delta := \lfloor t - 1 - s
B \rfloor steps recursively, we get

Vr(s+\Delta B)\leq 
\Delta 
\prod 

j=1

\Bigl( 

1 - \eta rmin

2n2
\beta (s+ jB)

\Bigr) 

Vr(s).
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DIMIX: DIMINISHING MIXING FOR SLOPPY AGENTS 1003

Then, since (1 - x)1/B \leq 1 - x/B and \{ \beta (k)\} is a nonincreasing sequence, we have

1 - \eta rmin

2n2
\beta (s+ jB) =

B
\prod 

\ell =1

\Bigl( 

1 - \eta rmin

2n2
\beta (s+ jB)

\Bigr) 1/B

\leq 
B
\prod 

\ell =1

\Bigl( 

1 - \eta rmin

2Bn2
\beta (s+ jB)

\Bigr) 

\leq 
B
\prod 

\ell =1

(1 - \lambda \beta (s+ jB + \ell )) .

Since Vr(\cdot ) is nonincreasing (see (B.5)), for s+\Delta B \leq t - 1< s+ (\Delta + 1)B we have

Vr(t - 1)\leq Vr(s+\Delta B)\leq 
\Delta 
\prod 

j=1

\Bigl( 

1 - \eta rmin

2n2
\beta (s+ jB)

\Bigr) 

Vr(s)

\leq 
\Delta 
\prod 

j=1

B
\prod 

\ell =1

(1 - \lambda \beta (s+ jB + \ell ))Vr(s)

=

s+(\Delta +1)B
\prod 

k=s+B+1

(1 - \lambda \beta (k))Vr(s)\leq 
t - 1
\prod 

k=s+B+1

(1 - \lambda \beta (k))Vr(s).(B.10)

Next, since \{ \beta (k)\} is a nonincreasing sequence, we have \beta (k)\leq \beta (1) = \beta 0. Thus,

s+B
\prod 

k=s+1

(1 - \lambda \beta (k))\geq 
s+B
\prod 

k=s+1

(1 - \lambda \beta 0) = (1 - \lambda \beta 0)
B \geq 1 - B\lambda \beta 0.(B.11)

Therefore, combining (B.10) and (B.11), we get

Vr(t - 1)\leq 
t - 1
\prod 

k=s+B+1

(1 - \lambda \beta (k))Vr(s)\leq 
\prod s+B

k=s+1 (1 - \lambda \beta (k))

1 - B\lambda \beta 0

t - 1
\prod 

k=s+B+1

(1 - \lambda \beta (k))Vr(s)

=
1

1 - B\lambda \beta 0

t - 1
\prod 

k=s+1

(1 - \lambda \beta (k))Vr(s).(B.12)

Now, we define \Phi (t : s) =A(t - 1) \cdot \cdot \cdot A(s+1) for t\geq s with \Phi (t : t - 1) = I. Note that
Assumption 2(a) and A(k)= (1  - \beta (k))I + \beta (k)W (k) imply rT\Phi (t : s) = rT . Then,
setting \bfitu (s) =\bfitu =U and \bfitu (t - 1) =\Phi (t : s)\bfitu (s) = \Phi (t : s)U , we can write

\bigl( 

\Phi (t : s) - 1rT
\bigr) 

U =\Phi (t : s)U  - 1rTU =\Phi (t : s)U  - 1rT\Phi (t : s)U

=\bfitu (t - 1) - 1rT\bfitu (t - 1).

Therefore, using (B.12), we conclude the desired result by noticing

\bigm\| 

\bigm\| 

\bigl( 

\Phi (t : s) - 1rT
\bigr) 

U
\bigm\| 

\bigm\| 

2

r
=
\bigm\| 

\bigm\| \bfitu (t - 1) - 1rT\bfitu (t - 1)
\bigm\| 

\bigm\| 

2

r
= Vr(t - 1)

\leq 1

1 - B\lambda \beta 0

t - 1
\prod 

k=s+1

(1 - \lambda \beta (k))Vr(s)

=
1

1 - B\lambda \beta 0

t - 1
\prod 

k=s+1

(1 - \lambda \beta (k))
\bigm\| 

\bigm\| \bfitu  - 1rT\bfitu 
\bigm\| 

\bigm\| 

2

r

\leq 1

1 - B\lambda \beta 0

t - 1
\prod 

k=s+1

(1 - \lambda \beta (k))\| \bfitu \| 2
r
=

1

1 - B\lambda \beta 0

t - 1
\prod 

k=s+1

(1 - \lambda \beta (k))\| U\| 2
r
,(B.13)
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where the second inequality follows from \| \bfitu  - 1rT\bfitu \| 2r + \| 1rT\bfitu \| 2r = \| \bfitu \| 2r. Applying
(B.13) on each column of a matrix U , we get the same result for matrices.
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