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ABSTRACTȷ It is now well established that changes in the zonal wind stress over the ACC do not lead to changes in its baroclinicity nor
baroclinic transport, a phenomenon referred to as “eddy saturation”. Previous studies provide contrasting dynamical mechanisms for this
phenomenonȷ on one extreme, changes in the winds lead to changes the efficiency with which transient eddies transfer momentum to the
sea floor; on the other, structural adjustments of the ACC’s standing meanders increase the efficiency of momentum transfer. In this study
the authors investigate the relative importance of these mechanisms using an idealized, isopycnal channel model of the ACC. Via separate
diagnoses of the model’s time-mean flow and eddy diffusivity, the authors decompose the model’s response to changes in wind stress into
contributions from transient eddies and the mean flow. A key result is that holding the transient eddy diffusivity constant while varying the
mean flow very closely compensates changes in the wind stress, whereas holding the mean flow constant and varying the eddy diffusivity
does not. This implies that “eddy saturation” primarily occurs due to adjustments in the ACC’s standing waves/meanders, rather than due
to adjustments of transient eddy behavior. The authors derive a quasi-geostrophic theory for ACC transport saturation by standing waves,
in which the transient eddy diffusivity is held fixed, and thus provides dynamical insights into standing wave adjustment to wind changes.
These findings imply that representing eddy saturation in global models requires adequate resolution of the ACC’s standing meanders, with
wind-responsive parameterizations of the transient eddies being of secondary importance.

1. Introduction

The response of the Southern Ocean to changes in

the atmospheric state and circulation has been the sub-

ject of extensive scientific study in recent decades (see

e.g. Mayewski et al. 2009; Rintoul 2018). This scientific

scrutiny is motivated by the central role of the Southern

Ocean, and particularly the Antarctic Circumpolar Current

(ACC), in connecting the major ocean basins (Nowlin Jr

and Klinck 1986; Olbers et al. 200») and closing the deep

cells of the global overturning circulation (Marshall and

Speer 2012; Talley 201«). Particular emphasis has been

placed on the strengthening and southward-shifting of the

southern hemisphere westerlies that occurs with increased

atmospheric CO2 concentrations, both as a consequence of

anthropogenic influence (Hazel and Stewart 2019; Thomp-

son and Solomon 2002) and naturally over paleoclimatic

time scales (Toggweiler et al. 2006; Toggweiler 2009).

It is now a well-established result, both based on ob-

servations (Böning et al. 2008) and model simulations

(Meredith and Hogg 2006; Hogg and Blundell 2006;

Meredith et al. 2012), that the baroclinic transport of the

ACC is approximately insensitive to changes in the westerly

winds. This phenomenon, referred to as “eddy saturation”

(Straub 199«; Hogg et al. 2008), apparently contradicts

the historical conception of the ACC as a primarily wind-

driven current (Munk and Palmén 1951; Nowlin Jr and

Klinck 1986). Indeed, idealized model experiments have

shown that the ACC transport may remain insensitive to
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winds even at the limit of zero wind stress (Munday et al.

201«), provided that mesoscale eddies are sufficiently well

resolved and that the meridional overturning circulation is

sufficiently weak (Youngs et al. 2019).

Figure 1 illustrates schematically the mechanism via

which eddy saturation occurs. This mechanism is most

clearly isolated in a quasi-latitudinal coordinate system that

follows mean streamlines of the ACC, which emphasizes

the role of mesoscale eddies, rather than time-mean flows

(Abernathey and Cessi 201»). In an equilibrium state, mo-

mentum is transferred from the winds into the upper ocean,

and is then transferred down to the deep ocean (and ulti-

mately the sea floor) via eddy interfacial form stress (IFS)

(Marshall and Radko 200«; Abernathey and Cessi 201»).

The eddy IFS results from baroclinic instabilities, which

draw energy from the baroclinicity of the ACC (Treguier

and McWilliams 1990; Youngs et al. 2017). “Eddy sat-

uration” refers to the response of this system to a change

in surface wind stressȷ increasing the surface wind stress

leads to a commensurate increase in the eddy IFS, while

the baroclinicity of the ACC remains unchanged. We note

that this characterization of “eddy saturation” in terms of

eddy IFS is equivalent (under quasi-geostrophic scaling)

to previous characterizations based on quasi-meridional

Ekman vs. eddy volume transports (e.g. Thompson and

Naveira Garabato 201»; Youngs et al. 2019).

Previous studies of the “eddy saturation” phenomenon

have proposed diverging mechanistic explanations. On

one extreme, “eddy saturation” has been posited to result

from changes in the efficiency of the transient eddy IFS

(or, equivalently, the horizontal eddy buoyancy flux), char-
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model to quantify the relative importance of transient eddy

versus standing wave adjustment in “eddy saturation”. In

Section 2 we describe our numerical configuration, pose a

decomposition of the eddy saturation response via the mo-

mentum balance along time-mean geostrophic streamlines,

and present a method of diagnosing the transient eddy dif-

fusivity. In Section « we examine the saturation response

simulated across a suite of model experiments, and ap-

ply our decomposition to distinguish the roles of transient

eddy versus standing wave adjustment. Motivated by these

findings, in Section » we pose a quasi-geostrophic standing

wave theory of eddy saturation, and use it to draw insights

into the dynamics of standing wave adjustment to wind

changes. Finally, in Section 5 we discuss our findings and

conclude.

2. Numerical modeling approach and diagnostics

a. Model configuration

We designed our model configuration to minimize phys-

ical complexity while capturing the “eddy saturation” phe-

nomenon, drawing inspiration from many previous studies

of ACC dynamics (Ward and Hogg 2011; Nadeau and Fer-

rari 2015; Howard et al. 2015; Constantinou and Hogg

2019; Youngs et al. 2019). Specifically, we simulate the

flow in a zonally re-entrant walled channel of zonal length

𝐿𝑥 = 3200km, meridional width 𝐿𝑦 = 1600km, and depth

𝐻 = 4000m. The channel is posed on a mid-latitude beta-

plane with Coriolis parameter 𝑓 = 𝑓0 + 𝛽(𝑦−𝐿𝑦/2), where

𝑓0 = −1×10−4 s−1 is the reference Coriolis parameter and

𝛽 = 1.5×10−11 m−1 s−1 is the Coriolis parameter gradient.

To obstruct the zonal flow through the channel, we im-

pose a single Gaussian bump in the sea floor (𝑧 = 𝜂b (𝑥))
at 𝑥 = 𝑋b = 1000km of height 𝐻b = 1000m and width

𝑊𝑏 = 150km,

𝜂b = −𝐻 +𝐻b exp

[
−
(
𝑥− 𝑋b

𝑊b

)2
]
. (1)

This geometry, shown in Figure 2, crudely represents the

presence of bathymetric obstacles that generate standing

meanders in the ACC (e.g. Thompson and Naveira Gara-

bato 201»; Nadeau and Ferrari 2015; Youngs et al. 2019).

The density stratification is represented by two layers,

each of constant density, as this is the minimum required

to allow the development of baroclinic instability (Val-

lis 2006). The isopycnal velocities and layer thicknesses

evolve according to conservation of momentum, which we

write for convenience as

𝜕

𝜕𝑡
(ℎ𝑘u𝑘) +∇ · (ℎ𝑘u𝑘u𝑘) + (−1)𝑘𝜔u★+ 𝑓 ẑ× ℎu

+ ℎ𝑘∇𝑀𝑘 = 𝛿1,𝑘

𝜏w

𝜌0

x̂− 𝛿2,𝑘

τb

𝜌0

+∇ ·σ𝑘 , (2)

and conservation of volume,

𝜕ℎ𝑘

𝜕𝑡
+∇ · (ℎ𝑘u𝑘) + (−1)𝑘𝜔 = 0. («)

We denote the isopycnal velocity in each layer as u𝑘 and

the corresponding layer thickness as ℎ𝑘 , where 𝑘 = 1 corre-

sponds to the upper layer and 𝑘 = 2 to the lower layer. We

make the rigid-lid approximation to exclude fast surface

gravity waves, so the Montgomery potential 𝑀𝑘 is defined

as

𝑀𝑘 = 𝜋 + 𝛿2,𝑘 𝑔
′𝜂. (»)

Here 𝜋 is the surface pressure (normalized by the reference

density), 𝜂 = −ℎ1 is the elevation of the interface between

the layers, 𝑔′ = 𝑔Δ𝜌/𝜌0 = 1× 10−2 ms−2 is the reduced

gravity, Δ𝜌 denotes the positive density difference between

the layers, 𝑔 is the gravitational constant, 𝜌0 = 1000kgm−3

is a reference density, and 𝛿 denotes the Kronecker delta.

The flow in the upper layer is forced by a zonal wind

stress 𝜏w (𝑦)x̂ whose latitudinal structure (see Figure 2(a))

is given by

𝜏w (𝑦) = 𝜏max
w sin2

(
𝜋𝑦

𝐿𝑦

)
, (5)

where x̂ denotes a unit vector in the 𝑥-direction. The flow

in the lower layer is retarded by frictional stress τb at the

sea floor. For all experiments described in the main text,

we adopt a quadratic formulation of this frictional stress,

τb = 𝜌0𝐶d |u2 |u2, (6)

where 𝐶𝑑 is the drag coefficient. We perform an analo-

gous set of experiments, results of which are presented in

Appendix B, using a linear formulation of the frictional

stress,

τb = 𝜌0𝑟bu2, (7)

where 𝑟b is the friction velocity. Over the northernmost

100km of the model domain we impose a diapycnal veloc-

ity

𝜔 =
𝜂−𝜂0

𝑇relax

, (8)

that serves to relax the layer interface toward a reference

elevation 𝜂0
= −1750m. The relaxation rate 𝑇−1

relax
varies

linearly from 1week−1 at the northern wall to zero at the

edge of the restoring region. This relaxation is not strictly

necessary in our model configuration because the flow can

be configured to be perfectly adiabatic, but it serves to pro-

duce a consistent stratification at the northern edge of the

domain across our experiments, without constraining the

isopycnal slope across the channel. The diapycnal velocity

also enters (2) in order to conserve momentum, multiplying

an effective isopycnal velocityu★ that is assigned based on

the layer that is “upwind” relative to the diapycnal velocity
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Fig. 2. Schematic of our model configuration. (a) Latitudinal profile of zonal wind stress applied to the upper isopycnal layer. (b) Snapshot

of potential vorticity in the upper isopycnal layer of our reference simulation. Shading indicates the location of the sponge/restoring region at the

northern boundary, while dark gray contours indicate the «750 m, «500 m and «250 m isobaths. (c) Zonal variation of the topographic elevation

(brown) and the meridionally-averaged isopycnal layer interface (blue) corresponding to the simulation snapshot shown in panel (b).

(LeVeque 2002),

u
★
=

{
u1, 𝜔 < 0,

u2, 𝜔 > 0.
(9)

Finally we dissipate grid-scale energy and enstrophy via a

biharmonic viscous stress tensor, ∇·σ𝑘 , using a Smagorin-

sky prescription of the viscosity with dimensionless coef-

ficient 𝐴Smag = 4 (Griffies and Hallberg 2000).

We solve (2)–(») via forward numerical integration us-

ing the AWSIM model (Stewart and Dellar 2016). We

adopt the same spatio-temporal numerical schemes as

those discussed by Stewart et al. (2021). We discretize

the model equations on a uniform horizontal grid of

𝑁𝑥 ×𝑁𝑦 = 512×256 points, corresponding to a grid spac-

ing of approximately 6km. The horizontal grid spacing is

chosen to be much smaller than the baroclinic deformation

radius, in order to ensure adequate resolution of mesoscale

eddies (Hallberg 201«). For our chosen model parameters

the baroclinic deformation radius is approximately 30km,

which is comparable to the first Rossby radius of deforma-

tion along the northern flank of the ACC (Chelton et al.

1998).

Motivated by the previous finding that bottom

friction plays an important role in setting the

ACC transport, we conduct a suite of experi-

ments in which we co-vary the wind stress (𝜏max
w =

{0.01,0.013,0.017,0.022,0.03,0.039,0.05,0.07,0.1,0.13,

0.17,0.22,0.3,0.39,0.5}Nm−2) with either the quadratic

drag coefficient (𝐶d = {.5,1,1.5,2,2.5,3,3.5,4} × 10−3)

or the linear drag velocity (𝑟b = {2,3,4,5,6,7,8,9,10} ×
10−4 ms−1). All other model parameters are held

fixed. Each experiment is “spun up” at low resolution

(𝑁𝑥 × 𝑁𝑦 = 256 × 128 points) for either 200 years (for

𝜏max
w ≥ 0.05Nm−2) or »00 years (for 𝜏max

w < 0.05Nm−2),

because experiments with weak surface wind stress require

longer to reach a statistically steady state (Constantinou

and Hogg 2019). We then interpolate the model state to

the high-resolution grid (𝑁𝑥 ×𝑁𝑦 = 512×256 points) and

continue the spin-up for a further 100 years to re-establish

statistical equilibrium; over the last «0 years integration,

the linear trend in the annually-computed zonal transport

is not significant at the 5% level. Finally, we continue each

high-resolution run for a further «0 years, which serves as

the analysis period.

b. Zonal versus along-streamline momentum balance

In Section 1 we framed the “eddy saturation” phe-

nomenon in terms of the momentum balance of the ACC

(see Figure 1). In this subsection we show (consistent with

previous studies, c.f. Abernathey and Cessi (201»)), that

in streamline-following coordinates, eddy isopycnal form
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stress is almost entirely responsible for the downward trans-

fer of momentum. Therefore, in this coordinate system the

analysis of eddy saturation is simplified in that it requires

consideration of only the eddy (and not the mean) isopyc-

nal form stress term. We will take advantage of this result

in Section 2c to decompose the isopycnal form stress re-

sponse (which results in eddy saturation) into contributions

from changes in mean and transient motions.

We now provide reference diagnostics of the mean cir-

culation balance in our reference simulation, defined by a

wind stress maximum of 𝜏max
w = 0.1Nm−2, to match the

order of magnitude of the maximum wind stress over the

ACC (Large and Yeager 2009), and a quadratic bottom drag

coefficient of 𝐶𝑑 = 2× 10−3 (Gill 1982; Arbic and Scott

2008). Figure « shows the time-mean momentum balance

averaged zonally in both latitudinal and along-stream coor-

dinates, and taken either over the full ocean depth or just the

upper isopycnal layer. We separate “mean” versus “eddy”

contributions to the momentum advection via thickness-

weighted averaging (Young 2012; Aiki et al. 2016),

∇ ·
(
ℎ𝑘u𝑘u𝑘

)
= ∇ ·

(
ℎ𝑘û𝑘û𝑘

)

︸           ︷︷           ︸
mean advection

+∇ ·
(
ℎ𝑘

�
u
†
𝑘
u
†
𝑘

)

︸           ︷︷           ︸
eddy advection

. (10)

Here the overbar • denotes a time-average over the «0-year

simulation analysis period. The hat operator denotes a

thickness-weighted average, with daggers denoting fluctu-

ations,

û𝑘 =
ℎ𝑘u𝑘

ℎ𝑘
, u

†
𝑘
= u𝑘 − û𝑘 . (11)

We separate “mean” and eddy components of the pressure

gradient force (PGF) as

ℎ𝑘∇𝑀𝑘 = ℎ𝑘∇𝑀𝑘︸  ︷︷  ︸
mean PGF

+ℎ′
𝑘
∇𝑀 ′

𝑘︸  ︷︷  ︸
eddy PGF

, (12)

where primes denote deviations from the time-average, i.e.

•′ = •− •. The resulting averaged momentum equations

are given in full in Appendix A.

Figure «(b–c) shows the zonally-averaged, time-mean

zonal momentum balance. Consistent with previous stud-

ies (e.g. Treguier and McWilliams 1990; Abernathey and

Cessi 201»; Stewart and Hogg 2017), in this coordinate sys-

tem the wind-input momentum is transferred downward al-

most entirely via the action of mean IFS, and then removed

at the sea floor via topographic form stress (TFS),

𝜏w (𝑦)︸︷︷︸
wind stress

≈
〈
𝑝𝜂𝜕𝑥𝜂

〉
𝑥︸      ︷︷      ︸

mean IFS

≈ ⟨𝑝𝑏𝜕𝑥𝜂𝑏⟩𝑥︸       ︷︷       ︸
TFS

(1«)

Here ⟨•⟩𝑥 denotes a zonal average, 𝑝𝜂 = 𝑝 |𝑧=𝜂 is the pres-

sure on the isopycnal interface, and 𝑝𝑏 = 𝑝 |𝑧=𝜂𝑏
is the

pressure at the sea floor. Note that the forms of the IFS and

TFS terms differ locally from those given in Appendix A,

but are equivalent when integrated over any closed contour

∮

C
𝜌0ℎ1∇𝑀1 ·ds =

∮

C
𝑝𝜂∇𝜂 ·ds, (1»a)

∮

C
𝜌0

∑︁

𝑘

ℎ𝑘∇𝑀𝑘 ·ds =

∮

C
𝑝𝑏∇𝜂𝑏 ·ds, (1»b)

where ds denotes an infinitesimal line element along the

closed contour C.

As noted by Abernathey and Cessi (201»), integration

along lines of constant latitude obscures the role of tran-

sient eddies. Figure «(d–e) shows the time-mean momen-

tum balance integrated along contours of mean sea surface

height, i.e. mean geostrophic streamlines, then divided by

the zonal domain length 𝐿𝑥 (see Appendix A). As we em-

ploy the rigid-lid approximation (see Section 2a), we define

an equivalent sea surface height via the surface pressure as

𝜁 = 𝜋/𝑔. In this coordinate system the mean IFS vanishes

identically, and the momentum balance approximately be-

comes (c.f. Johnson and Bryden 1989)

∮

𝜁=𝜁0

𝜏𝑤x̂ ·ds
︸            ︷︷            ︸

wind stress

≈
∮

𝜁=𝜁0

𝑝′𝜂∇𝜂′ ·ds
︸               ︷︷               ︸

eddy IFS

≈
∮

𝜁=𝜁0

𝑝𝑏∇𝜂𝑏 ·ds
︸               ︷︷               ︸

TFS

.

(15)

Here 𝜁0 denotes the mean sea surface height contour along

which the line integral is taken; the mean sea surface height

in our reference experiment is shown in Figure «.

c. Separating transient eddy and mean flow contributions

to eddy IFS

As discussed in Section 1, it remains unclear to what

extent “eddy saturation” occurs as a result of changes in

the efficiency of transient eddies in transferring momen-

tum downward via IFS versus adjustment of the ACC’s

standing meanders. To distinguish between these contribu-

tions, we relate the eddy IFS locally to the vertical gradient

of the mean flow (Greatbatch and Lamb 1990), which is

equivalent (in the quasi-geostrophic limit) to assuming a

down-gradient horizontal buoyancy flux (Gent et al. 1995),

τeddy ≡ 𝑝′𝜂∇𝜂′ ≡ 𝜅
𝜌0 𝑓

2

𝑔′
(û1 − û2) +∇𝐷. (16)

The first term on the right-hand-side of (16) is approx-

imately non-divergent (under quasi-geostrophic scaling,

and for slow spatial variations in 𝜅). We make the ansatz

that this term accounts for the rotational component of the

eddy IFS, and allow for an additional divergent compo-

nent of the eddy IFS, ∇𝐷 (see Marshall and Shutts 1981).
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Fig. «. Momentum balance in latitudinal vs. streamline-following coordinates. (a) Time-mean equivalent sea surface height (SSH) in our

reference simulation. The black contour indicates the core of the ACC, defined to be the median value of the SSH over the entire model domain.

Dark gray contours indicate the «750 m, «500 m and «250 m isobaths. (b) Depth-integrated and (c) upper-isopycnal layer momentum balances,

integrated along lines of constant latitude. (d) Depth-integrated and (c) upper-isopycnal layer momentum balances, integrated along contours of

constant time-mean SSH. Explicit definitions of all of the terms in the momentum budget are given in Appendix A. The black dashed line in panels

(b–e) corresponds to the median SSH, as shown in panel (a). The red dotted line in panel (e) is the eddy interfacial form stress reconstructed from

the time-mean flow and the diagnosed eddy diffusivity 𝜅 via (17).

Substituting (16) into (15), we obtain

∮

𝜁=𝜁0

τeddy ·ds =

∮

𝜁=𝜁0

𝜅︸︷︷︸
eddy

efficiency

· 𝜌0 𝑓
2

𝑔′
(û1 − û2) ·ds

︸                   ︷︷                   ︸
standing meander structure

(17)

In Section « we will use (17) to quantify the contri-

butions of transient eddies versus standing meanders in

adjusting the eddy IFS to changes in wind stress. To do

this, we require spatially-varying estimate of 𝜅, which is

defined implicitly by (16). We diagnose 𝜅 by taking the



7

curl of (16) to eliminate the divergent component of the

eddy IFS,

𝐽
(
𝑝′𝜂 , 𝜂′

)
≈ 𝜅

𝜌0 𝑓
2

𝑔′
∇× (û1 − û2) . (18)

Here we have additionally neglected spatial variations of 𝑓

and 𝜅, under the assumption that they vary slowly relative

to the mean flow. Although (18) could be used directly

to calculate 𝜅 at each point in the model domain, x = x0,

the result is excessively noisy. Instead, we invert (18)

for 𝜅 via least-squares linear regression of 𝐽 (𝑝′𝜂 , 𝜂′) on

(𝜌0 𝑓
2/𝑔′)∇ × (û1 − û2) over all points within a 200km

radius of x0. The linear fits are statistically significant

(𝑝-values typically many orders of magnitude smaller than

0.001) over almost all of the model domain.

Figure » shows the spatial distribution of 𝜅 in our refer-

ence simulation, as compared with the distribution of the

depth-averaged eddy kinetic energy (EKE),

EKE =
1∑
𝑘 ℎ𝑘

∑︁

𝑘

1
2
ℎ𝑘û†2

. (19)

Both the EKE and 𝜅 are elevated downstream of the bathy-

metric ridge, consistent with previous modeling studies and

observations (e.g. Bischoff and Thompson 201»; Mered-

ith 2016). This correspondence is visually evident in

the “storm track” region (Bischoff and Thompson 201»),

which we define as the uppermost quartile of the EKE over

the entire model domain (see Figure »(a)). In this region

there is generally little scatter in the linear regression that

we use to estimate 𝜅 (Figure »(c)), supporting our assump-

tion that 𝜅 is slowly-varying relative to the mean flow. Note

that the region within 200–«00 km of the northern bound-

ary also exhibits little scatter in the linear regression, but

that this is an artifact resulting from the tendency of the

sponge layer to create elongated zonal structures in both

𝐽 (𝑝′𝜂 , 𝜂′) and (𝜌0 𝑓
2/𝑔′)∇× (û1 − û2).

To further evaluate our approach to estimating 𝜅, we

compute the alongstream-averaged eddy IFS via (17). Fig-

ure «(e) shows that this reconstruction only slightly under-

estimates the diagnosed alongstream-averaged eddy IFS,

by around 10–20% over the SSH contours that cross the

bathymetric ridge (see Figure «(a)).

3. Saturation by transient eddies versus standing waves

In this section we utilize our suite of model experiments

(see Section 2a) to assess the extent to which adjustment

of transient eddy behavior versus mean flow structure is

responsible for “eddy saturation”. Briefly, we first show

that the model’s baroclinic transport is indeed saturated

in experiments with varying zonal wind stress, consistent

with previous studies. We then show that the diagnosed

variations in the transient eddy diffusivity (along with the

eddy kinetic energy) suggests that transient eddies are not

adjusting sufficiently rapidly to support the transport satu-

ration. Finally, we use our decomposition of the eddy IFS

(17) to verify that the saturation occurs primarily via ad-

justments of the standing waves, rather than of the transient

eddies.

To evaluate the extent to which our idealization of the

ACC is “eddy saturated”, we examine the sensitivity of

both the total transport and its barotropic/baroclinic com-

ponents, defined respectively as

𝑇tot =

〈∫ 𝐿𝑦

0

∑︁

𝑘

ℎ𝑘𝑢𝑘

〉

𝑥

, (20a)

𝑇bt =

〈∫ 𝐿𝑦

0

𝑢2

∑︁

𝑘

ℎ𝑘

〉

𝑥

, (20b)

𝑇bc = 𝑇tot −𝑇bt. (20c)

We define the lower-layer flow as the barotropic component

of the zonal flow, and then average the associated barotropic

transport zonally to obtain 𝑇bt, with 𝑇bc computed as a

residual.

In Figure 5 we plot the dependence of these transports

on the wind stress maximum and the quadratic drag co-

efficient. The total volume transport is generally sub-

stantially lower than the observed transport of the ACC

(Whitworth and Peterson 1985; Donohue et al. 2016), but

is of the correct order of magnitude, and is comparable

to previously-reported transports in channel model simu-

lations (e.g. Stewart and Hogg 2017; Youngs et al. 2019).

Fig 5 shows that the baroclinic transport is approximately

independent of wind stress, whereas the barotropic trans-

port increases with wind stress, and thus so does the total

transport. This is consistent with some previous model-

ing studies (Nadeau and Ferrari 2015; Youngs et al. 2019),

whereas others have found that the total transport is ap-

proximately independent of the wind stress (Munday et al.

201«; Marshall et al. 2017). Similar to Marshall et al.

(2017), the total, barotropic and baroclinic transports all

increase with quadratic drag coefficient, although for drag

coefficients ≳ 2× 10−3 this sensitivity is relatively weak.

For the strongest wind stresses and weakest bottom fric-

tion coefficients examined here, the barotropic transport

actually begins to decrease with wind stress, and may even

become negative. This flow reversal appears to be associ-

ated with extreme strengthening of deep gyres in the lee of

the ridge (Nadeau and Ferrari 2015), but the specific mech-

anism via which it occurs and its relevance to the dynamics

of the ACC are left as a topic for future investigation.

To obtain preliminary insights into how transient ed-

dies and standing meanders/waves change while preserv-

ing the baroclinic flow, we now examine the response of

the transient eddy and standing wave activity to variations

in the wind stress. Figure 6(a) shows the sensitivity of 𝜅,
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Fig. ». Diagnostics of eddy activity in our reference simulation. (a) Depth-averaged eddy kinetic energy (EKE), (b) estimated transient eddy

diffusivity, and (c) variance explained by our linear regression-based estimate of 𝜅 (see Section 2c). In all panels the black contour bounds the

fourth quartile of the EKE, which defines our “storm track” region. The gray contours indicate the 3750m, 3500m and 3250m isobaths.

spatially averaged over the “storm track” region in each

simulation, to changes in the wind stress maximum and

quadratic drag coefficient. Least squares logarithmic fits

over all of our simulations yield approximate scalings of
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Fig. 5. Dependence of the (a) total transport, (b) barotropic transport

and (c) baroclinic transport on the wind stress maximum and on the

quadratic drag coefficient in our channel model simulations. Note the

nonlinear abscissa.

𝜅 ∼ 𝜏0.6
w and EKE ∼ 𝜏0.7

w . Including random multiplicative

errors with average magnitudes of 10% in the estimate of 𝜅,

motivated by our comparison between the diagnosed and

reconstructed eddy IFS in Figure 2, does not change the

scaling of 𝜅 with 𝜏w to within one decimal place. In con-

trast, residual-mean theory (Marshall and Radko 200«) pre-

dicts that 𝜅 must scale linearly with 𝜏w in order to preserve

Fig. 6. Sensitivity of transient eddies and standing waves to the wind

stress maximum and the quadratic drag coefficient. (a) Transient eddy

diffusivity 𝜅 averaged over the “storm track” region (see Figure »), (b)

domain-averaged eddy kinetic energy, and (c) domain-averaged standing

wave energy.

the baroclinic transport. Thus our diagnostics suggest that

adjustments in the efficiency of downward transient eddy

momentum transfer (i.e. of 𝜅) are not sufficient to pro-

duce the “eddy saturation” response in these simulations.

Figure 6(c) shows the sensitivity of the domain-averaged

standing wave kinetic energy (SKE), which we simply es-
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timate as the depth-averaged mean kinetic energy,

SKE =
1∑
𝑘 ℎ𝑘

∑︁

𝑘

1
2
ℎ𝑘û𝑘

2
. (21)

In contrast to the EKE, the SKE scales approximately lin-

early with wind stress, with SKE ∼ 𝜏1.1. This is qualita-

tively consistent with “flexing” of the standing meander

in response to increased zonal wind stress (Thompson and

Naveira Garabato 201»), though the change in SKE could

also arise due to spin-up of the mean gyres that abut the

circumpolar flow in Figure « (Nadeau and Ferrari 2015).

To quantify the relative roles of transient eddy versus

standing wave adjustment in “eddy saturation”, we now

separately examine their contributions to the changes in

eddy IFS that occur in response to wind stress perturba-

tions. The rationale for this approach is that the wind-input

momentum along mean streamlines is primarily transferred

downward toward the sea floor via eddy IFS, (c.f. Equa-

tion (15)). To demonstrate that this holds across the pa-

rameter space examined in this study, in Figure 7(a) we

quantify the contributions of wind stress, eddy IFS and

eddy advection (c.f. Figure «) to the along-stream mo-

mentum balance. We plot these contributions as functions

of the wind stress maximum, holding the quadratic drag

coefficient fixed at 𝐶𝑑 = 2×10−3. For each simulation we

select a mean streamline that tracks the core of the zon-

ally re-entrant flow by taking the median of the time-mean

SSH over the entire model domain, e.g. as shown in Fig-

ure «(a). For all of the wind stresses examined here, the

upper-layer momentum balance along this contour is pri-

marily between the wind stress and the eddy IFS, although

horizontal redistribution of momentum by eddies balances

up to 25% of the wind stress. We therefore conclude that

(15) holds approximately across our suite of simulations.

To quantify the contributions of transient eddies versus

standing waves to changes in eddy IFS, we use (15) to pro-

duce estimates of the eddy IFS resulting from independent

perturbations of 𝜅 and the mean flow, respectively. For

notational clarity we first rewrite (17) as

EIFS = F [𝜅,u], (22)

where EIFS denotes the alongstream-averaged eddy IFS,

the functional F is defined by the right-hand side of (17),

andu is shorthand for the time-mean flow in both isopycnal

layers. We then define reference spatial distributions of 𝜅

and u from our reference experiment (see Section 2b),

which we denote as 𝜅ref and uref respectively. Finally, for

each of our experiments we define two reconstructions of

the eddy IFS,

EIFS| (𝑛)𝜅=𝜅ref
= F

[
𝜅ref,u

(𝑛)
]
, (2«a)

EIFS| (𝑛)
u=uref

= F
[
𝜅 (𝑛) ,uref

]
. (2«b)

Here (𝑛) is an arbitrary index to distinguish different exper-

iments, and 𝜅 (𝑛) and u
(𝑛) denote the eddy diffusivity and

mean flow diagnosed from the 𝑛th experiment. Thus the

reconstructions EIFS| (𝑛)𝜅=𝜅ref
provide an estimate of the eddy

IFS response that results from varying only the mean flow,

while the reconstructions EIFS| (𝑛)
u=uref

provide an estimate

of the eddy IFS response that result from varying only the

eddy diffusivity.

Figure 7(b) demonstrates this approach, focusing on the

same subset of our simulations as shown in Figure 7(a).

Holding the mean flow fixed and varying 𝜅 yields a re-

constructed eddy IFS that increases with the wind stress,

but with a substantially smaller slope than the diagnosed

eddy IFS. In particular, for wind stresses larger than the

reference value, the reconstructed eddy IFS is almost in-

variant under increases of the wind stress. This implies

that changes in transient eddy diffusivity alone fail to cap-

ture the “eddy saturation” response. In contrast, holding

𝜅 fixed and varying the mean flow yields a reconstructed

eddy IFS that closely tracks the diagnosed IFS.

Figures 7(c) and (d) expand the scope of this analy-

sis to include our entire suite of simulations with vary-

ing wind stress maximum and quadratic drag coefficient.

These reconstructions exhibit the same qualitative pattern

as Figure 7(b), despite significant scatter associated with

the varying quadratic drag coefficient. To provide a quanti-

tative assessment of these reconstructions, we note that the

eddy IFS spans orders of magnitude, and thus we quantify

the root-mean-square difference between the logarithms of

the diagnosed and reconstructed eddy IFS (the LRMSE).

Consistent with our inference based on visual inspection,

the LRMSE of EIFS| (𝑛)
u=uref

is substantially higher than that

of EIFS| (𝑛)𝜅=𝜅ref
(∼0.«0 versus ∼0.1»). These diagnostics in-

dicate that the “eddy saturation” response occurs primarily

as a result of adjustment of the mean flow, i.e. of the

standing meander, rather than of the efficiency of eddy

momentum transfer.

4. A theory of standing wave saturation

The diagnostics presented in Section « indicate that

“eddy saturation” occurs primarily as a result of adjust-

ment of standing meanders in response to changes in zonal

wind stress. Motivated by this finding, we now pose a

quasi-geostrophic standing wave theory of eddy satura-

tion. This theory simultaneously supports the conclusions

drawn from our simulations and yields insight into the

dynamics of eddy saturation.
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Fig. 7. (a) Upper-layer momentum budget along a streamline through the core of the circumpolar flow (see Figure «(a,e)) in experiments with

varying wind stress maxima 𝜏max
w and fixed quadratic drag coefficient 𝐶d = 2×10−3. The “total eddy force” is the sum of the eddy IFS and eddy

momentum flux convergence. (b) Reconstructions of the eddy IFS obtained via (17) in which we independently vary the mean flow while holding

the spatial distribution of 𝜅 fixed and equal to that of the reference simulation, 𝜅ref (blue points); and varying 𝜅 while holding the mean flow u

fixed and equal to that of the reference simulation, uref (red points). The quadratic drag coefficient is held fixed and equal to 𝐶d = 2× 10−3. (c)

Reconstruction of the eddy IFS via (17) across our entire suite of simulations with fixed 𝜅 and varying mean flow. (d) As (c), but with fixed mean

flow and varying 𝜅 .

a. Theoretical model formulation

Our theoretical model closely follows those derived in

several recent studies (Abernathey and Cessi 201»; Con-

stantinou and Young 2018; Bai et al. 2021), which in turn

build on earlier work by Davey (1980). Under the assump-

tions that the flow is quasi-geostrophic and slowly-varying

in the meridional direction, this formulation simplifies con-

servation of potential vorticity to a one-dimensional wave

equation, complemented by a zonal momentum equation

that constrains the zonal mean flow. The resulting system

can, in principle, be solved analytically to produce explicit

predictions of the circumpolar transport and the structures

of the standing meanders/waves. Below we discuss the

key steps required to derive the model equations, and then

discuss our method of solution.

We start with the 2-layer quasi-geostrophic analogue of

(2)–(») (e.g. Pedlosky 1987), neglecting diapycnal fluxes

and the hyperviscous stress tensor. Taking a time average,

these equations become

𝜕𝑞𝑘

𝜕𝑡
+ 𝐽

(
𝜓𝑘 , 𝑞𝑘

)
+∇ ·u′

𝑘
𝑞′
𝑘
= − 𝛿1,𝑘

𝜌0𝐻1

𝜕𝜏w

𝜕𝑦
− 𝛿2,𝑘

𝜌0𝐻2

∇×τb

(2»)

where the potential vorticity (PV) in each layer is given by

𝑞𝑘 = ∇2𝜓𝑘 + 𝛽𝑦 + (−1)𝑘𝐿−2
𝑘 (𝜓1 −𝜓2) + 𝛿2,𝑘

𝑓0

𝐻2

𝜂𝑏 . (25)
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Here 𝜓𝑘 is the geostrophic streamfunction, u𝑘 = −∇×𝜓𝑘 ẑ

is the geostrophic velocity, 𝐽 (•,•) denotes the Jacobian

operator, the deformation radius in each layer is defined as

𝐿𝑘 =
√
𝑔′𝐻𝑘/| 𝑓0 |, and the reference layer thicknesses are

𝐻1 = 1500m and 𝐻2 = 2500m. Unless otherwise stated,

the model parameters and geometry match those given

in Section 2a. In order to make the theory analytically

tractable, we use the linear formulation (7) of the bottom

frictional stress.

The transient eddy PV flux in (2») can be decomposed,

following some manipulations, as

∇ ·u′
𝑘
𝑞′
𝑘
= ∇ ·u′

𝑘
𝜉 ′
𝑘︸   ︷︷   ︸

vorticity flux divergence

+ (−1) (𝑘−1)𝐿−2
𝑘 𝐽 (𝜓 ′

1
,𝜓 ′

2
)

︸                        ︷︷                        ︸
isopycnal pressure torque

,

(26)

where 𝜉𝑘 = ∇×u𝑘 = ∇2𝜓𝑘 is the relative vorticity. Fol-

lowing (18), we assume that the isopycnal pressure torque

acts down the vertical gradient of the relative vorticity, i.e.

𝑓 2
0

𝑔′
𝐽 (𝜓 ′

1
,𝜓 ′

2
) =

𝑓 2
0

𝑔′
𝜅
(
𝜉1 − 𝜉2

)
, (27)

where 𝜅 is taken to be a constant. We further assume that

the horizontal fluxes of relative vorticity are also directed

down the mean relative vorticity gradient,

u
′
𝑘
𝜉 ′
𝑘
= −𝜈∇𝜉𝑘 , (28)

where 𝜈 is a constant horizontal eddy viscosity. Bai et al.

(2021) showed that adding a horizontal eddy viscosity to

a barotropic standing wave model removes the indetermi-

nacy of the solution that occurs when dissipation can only

occur via bottom friction (see also Constantinou and Young

2018). Substituting (26)–(28) and (7) into (2») yields the

following evolution equation for the mean PV,

𝜕𝑞𝑘

𝜕𝑡
+ 𝐽

(
𝜓𝑘 , 𝑞𝑘

)
= 𝜈∇2𝜉𝑘 + (−1)𝑘𝐿−2

𝑘 𝜅(𝜉1 − 𝜉2)

− 𝛿1,𝑘

𝜌0𝐻1

𝜕𝜏w

𝜕𝑦
− 𝛿2,𝑘𝑟𝑏

𝜌0𝐻2

𝜉2. (29)

We now partition the mean streamfunction into a zonal

mean component
〈
𝜓𝑘

〉
𝑥
(𝑦, 𝑡) and perturbation component

𝜓̃𝑘 (𝑥, 𝑦, 𝑡),
𝜓𝑘 =

〈
𝜓𝑘

〉
𝑥
+ 𝜓̃𝑘 , («0)

and we define the zonal-mean zonal velocity in each layer

as𝑈𝑘 =−𝜕𝑦
〈
𝜓𝑘

〉
𝑥
. We then assume that the time-averaged

system is in steady state, i.e. 𝜕𝑡 ≡ 0, and that the flow is

slowly varying in 𝑦, i.e. 𝜕𝑦 ≪ 𝜕𝑥 , such that all derivatives

of 𝜓̃𝑘 and 𝑈𝑘 with respect to 𝑦 can be neglected. After

further manipulations, (29) may be rewritten in the form

of a linear wave equation,

𝑈𝑘𝜕
3
𝑥 𝜓̃𝑘 + 𝐿−2

𝑘 (−1)𝑘
(
𝑈2𝜕𝑥𝜓̃1 −𝑈1𝜕𝑥𝜓̃2

)
+ 𝛽𝜕𝑥𝜓̃𝑘

+ 𝛿2,𝑘𝑈2

𝑓0

𝐻2

𝜕𝑥𝜂𝑏 = −𝛿2,𝑘

𝑟𝑏

𝐻2

𝜕2
𝑥 𝜓̃2

+ 𝜈𝜕4
𝑥 𝜓̃𝑘 + (−1)𝑘𝜅𝐿−2

𝑘 𝜕2
𝑥

(
𝜓̃1 − 𝜓̃2

)
. («1)

We derive the corresponding zonal momentum equa-

tions by multiplying (29) by 𝐻𝑘 , integrating from 𝑦′ = 0

to 𝑦′ = 𝑦 and zonally averaging, where 𝑦′ is a variable of

integration. Assuming that the meridional velocity and

wind/frictional stresses are zero at 𝑦 = 0, this yields

𝜏w = EIFS+SIFS, («2a)

EIFS+SIFS = TFS+ 𝜌0𝑟b𝑈2, («2b)

where

SIFS =
𝜌0 𝑓

2
0

𝑔′
〈
𝜓̃1𝜕𝑥𝜓̃2

〉
𝑥
, (««a)

EIFS =
𝜌0𝜅

(𝑦) 𝑓 2
0

𝑔′
(𝑈1 −𝑈2), (««b)

TFS = 𝜌0 𝑓
〈
𝜓̃2𝜕𝑥𝜂𝑏

〉
𝑥
, (««c)

are the standing wave interfacial form stress (SIFS), eddy

interfacial form stress (EIFS) and topographic form stress

(TFS), respectively. Taken together, («1) and («2a)–(«2b)

comprise four equations for the four unknownsȷ the zonal

mean velocities 𝑈𝑘 and the perturbation streamfunctions

𝜓̃𝑘 .

Note that we use a distinct eddy diffusivity, 𝜅 (𝑦) , in

(««b), from that appearing in («1). The rationale for this

is that («2a)–(«2b) describe the zonal momentum balance

zonally averaged along latitude lines, rather than the mo-

mentum balance averaged along mean streamlines. Based

on our simulations (see Figure «), we therefore expect the

SIFS, rather than the EIFS, to balance the wind stress in

(«2a). In our simulations, the eddy diffusivity obtained by

zonally averaging eddy IFS and zonal velocity (c.f. Equa-

tion (16)) across a latitude band is much smaller than the

diffusivities diagnosed following the method discussed in

Section 2c. Based on the diagnostics presented in Ap-

pendix C, we select 𝜅 (𝑦) = 80m2 s−1, whereas based on

Figure »(a), we select 𝜅 = 400m2 s−1. If we were to choose

𝜅 (𝑦) to be as large as 𝜅 then we would find that EIFS made

an O(1) contribution to the theoretical momentum balance

(not shown), conflicting with our simulation results (Fig-

ure «). The eddy viscosity of 𝜈 = 2000m2 s−1 is chosen to

be as small as possible while preserving the stability of our

numerical solutions, discussed below.

Although in principle analytical progress toward a so-

lution of («1)–(««c) can be achieved via a zonal Fourier



13

Fig. 8. (a) Equivalent sea surface height predicted by our quasi-geostrophic standing wave theory (see Section »a). Dark gray contours indicate

the «750 m, «500 m and «250 m isobaths. Note the different color axis range from Figure «(a). (b) Comparison of the theoretically predicted

sea surface height (amplified by a factor of 1000 for visibility) and isopycnal interface elevation along 𝑦 = 𝐿𝑦/2 with those diagnosed from our

reference simulation.

transform (Bai et al. 2021), in practice the resulting equa-

tions yield little additional physical insight. We therefore

solve the equations numerically via Matlab’s least-squares

Trust-Region Reflective algorithm. In all cases presented

here, the optimized solution yielded a differences between

the left- and right-hand-sides of («2a)–(«2b) of no more

than 10−7 Nm−2, which is five orders of magnitude smaller

than our smallest wind stress.

In Figure 8(a) we plot the equivalent sea surface height

predicted by our theory, for comparison with the time-

mean simulated sea surface height shown in Figure «(a).

In Figure 8(b) we directly compare the predicted and diag-

nosed sea surface height and isopycnal elevation along the

mid-line of the channel, 𝑦 = 𝐿𝑦/2. Here we have solved

(«1)–(««c) using the corresponding wind stress at each lat-

itude (c.f. Equation (5)). We use the same reference wind

stress maximum as in Section 2a (𝜏max
w = 0.1Nm−2) and

set the linear friction velocity to 𝑟b = 4× 10−4 ms−1. All

other model parameters are assumed to be independent of

latitude. The resulting mean flow resembles a standing

meander in the lee of the bathymetric ridge, but exhibits

qualitative differences from the mean flow in our simu-

lations. Notably, although the amplitude of the standing

wave is similar over the ridge, the theoretical standing wave

visibly persists over a longer zonal distance. The theoreti-

cal zonal-mean upper-layer flow is also larger, as indicated

by the larger meridional sea surface height gradient in

Figure 8 than in Figure «. These differences likely arise

because, under the assumption of a flow that is slowly-

varying in 𝑦, the theoretical solution is not constrained by

the meridional walls. Furthermore, the theoretical solution

cannot form “gyres” in the lee of the ridge (Nadeau and

Ferrari 2015), and thus the topographic form stress must

be established entirely by the standing Rossby wave. The
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Fig. 9. Dependence of the (a) total transport, (b) barotropic transport (c) baroclinic transport, and (d) standing wave kinetic energy on the wind

stress maximum and on the linear friction velocity in our quasi-geostrophic theory. Each point corresponds to a solution of Equations «1–(««c).

The “equivalent wind stress maximum” defines the wind stress profile via (5), which is then meridionally averaged and used to force the theoretical

momentum equation («2a). Note the nonlinear abscissa on all axes, and the nonlinear ordinate in panel (d).

theoretical baroclinic and barotropic transports are approx-

imately 242Sv and 15Sv, respectively. These transports

are of the same orders of magnitude as those measured in

the ACC (Donohue et al. 2016) but several times higher

than the corresponding transports from our simulations

(see Figure 5). We conclude that our theoretical solution

qualitatively resembles the circulation of the ACC and pro-

duces a zonal transport of the same order of magnitude as

observations, but that caution is required in comparing its

predictions with the channel model simulations presented

in Section 2–«.

b. Regimes of standing wave saturation

We now show that our theory captures the “eddy satu-

ration” phenomenon, and exploit its analytical simplicity

to draw some insights into the dynamics of the saturation

response. We obtain solutions of («1)–(««c) over the same

range of wind stresses and linear friction velocities as dis-

cussed in Section 2a. To aid our dynamical interpretation,

rather than solve the theoretical model equations at all lati-

tudes in our model domain, we instead solve the equations

at a single latitude using the meridionally-averaged wind

stress. For the wind stress profile (5), this corresponds to

setting

𝜏w =
1
2
𝜏max

w («»)

in Eq. («2a). Thus the resulting solutions should be thought

of as an approximation to the meridionally-averaged stand-

ing wave behavior, although there are substantial qualita-

tive departures of the theoretical solutions from our sim-

ulations, as discussed in Section »a. To obtain equivalent

zonal transports, we multiply the depth-integrated mean

zonal velocity (i.e. 𝐻1𝑈1 +𝐻2𝑈2) by 𝐿𝑦 = 1600km.

In Figure 9 we plot the sensitivity of the total trans-

port, baroclinic transport, barotropic transport, and stand-

ing wave kinetic energy to changes in wind stress and
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friction velocity, analogous to Figures 5 and 6(c). For

wind stresses ≳0.0«Nm−2, the total zonal transport is ap-

proximately independent of the wind stress; this contrasts

with our simulations, in which the baroclinic transport is

independent of the wind stress. In this regime there is a

relatively small increase in the barotropic transport with

wind stress, accompanied by a compensating decrease in

baroclinic transport. We note that the theory overpredicts

that barotropic transport only by a factor of ∼2 (compare

Figures 9(b) and 5(b)), whereas it overpredicts the baro-

clinic transport by a factor of∼7 (compare Figures 9(c) and

5(c)). This discrepancy is likely related to the assumption

of small meridional gradients in the theory, which elimi-

nates the influence of meridional walls and precludes the

formation of gyres in the lee of the ridge, as discussed in

Section »a.

The theoretically-predicted total and baroclinic trans-

ports increase with the linear drag coefficient, with the total

transport increasing from∼285Sv for 𝑟b = 2×10−4 ms−1 to

∼«50Sv for 𝑟b = 1× 10−3 ms−1. Thus the theory appears

to capture the “frictional control” of the zonal transport

exhibited in our simulations and previous work (Marshall

et al. 2017), despite mesoscale eddies being entirely pa-

rameterized. In the eddy-saturated regime the standing

wave kinetic energy increases approximately linearly with

the wind stress, consistent with our simulations (see Fig-

ure 6(d)). For wind stresses ≲0.0«Nm−2, the total and

barotropic transports both increase linearly with the wind

stress, while the standing wave kinetic energy rapidly de-

cays to zero as 𝜏w → 0, approximately scaling as SKE∼ 𝜏7
w.

To aid in the interpretation of these results, in Figure 10

we plot the SIFS and TFS terms from («2a)–(«2b), nor-

malized by the wind stress. Panel a shows that in all of

these solutions, TFS is almost entirely responsible for re-

moving the wind-input momentum at the sea floor; with

bottom friction (rightmost term in («2b)) playing a neg-

ligible role (c.f. Munk and Palmén 1951). Note that in

Fig. 10, the contribution of bottom friction to the momen-

tum balance is given by one minus the “total” curve, i.e.

(1−TFS/𝜏w). This should not be confused with the con-

tribution of bottom friction to establishing the TFS, which

is plotted in yellow and discussed in the following subsec-

tion. In the saturated regime (𝜏max
w ≳0.0«Nm−2) the wind

stress is primarily balanced by SIFS; this is to be expected

based on our model simulations, because our theoretical

momentum balance is averaged along latitude lines (see

Figure «). Thus, provided that the standing waves are pri-

marily responsible for the downward transfer of wind-input

momentum, i.e.

𝜏w ≈ SIFS ≈ TFS, («5)

the theoretical model solutions exhibit saturation of the

zonal transport.

Figures 10(a) and 10(b) shows that both saturation and

the approximate momentum balance («5) fail for small

wind stresses (𝜏max
w ≲0.0»Nm−2) because the wind stress

becomes balanced by EIFS instead of SIFS. The approxi-

mate wind stress required for this to occur can be estimated

by computing the EIFS associated with the baroclinic shear

in the saturated regime, i.e. 𝑈1 −𝑈2 ∼ 0.1ms−1, which

yields EIFS = EIFSsat ≈ 0.008Nm2. Figure 9(b) shows

that this EIFS is small compared with the SIFS in the sat-

urated regime, but for a sufficiently small wind stress we

will reach a situation where 𝜏w ∼ EIFSsat. When this oc-

curs, SIFS can no longer primarily balance the wind stress

and/or the baroclinic shear must decrease. To obtain an

estimate for the wind stress at which this transition occurs,

we use («2a) to predict that the EIFS will balance 50% of

the wind stress when 1
2
𝜏w ≈ EIFSsat ≈ 0.016Nm−2, i.e. for

𝜏max
w ≈ 0.032Nm−2. This prediction agrees approximately

with Figure 9(b). In this regime the transport is not satu-

rated; instead, there is a linear dependence of the transport

on wind stress (Figure 9(a)). This occurs because we have

held the meridional eddy diffusivity, 𝜅 (𝑦) , constant. As-

suming that EIFS ≈ 𝜏w in the limit of small wind stress, we

expect the baroclinic shear to scale as

𝑈1 −𝑈2 →
𝑔′

𝑓 2
0
𝜌0𝜅 (𝑦)

𝜏w as 𝜏w → 0. («6)

Figure 9 shows that this scaling accurately captures the

total and baroclinic transports predicted by our theory in

the limit of weak wind stress.

c. Dynamics of standing wave saturation

The above analysis demonstrates that saturation of the

zonal transport can indeed occur entirely via adjustments

of standing waves, as suggested by our diagnostics in Sec-

tion «. However, even from this heavily simplified theory

one can not trivially discern what sets the zonal transport,

nor mechanistically how the standing waves adjust such

that the SIFS compensates changes in the wind stress. To

yield further insight into this process, we use the standing

wave energy budget to relate the SIFS and TFS to energy

dissipation, building on earlier work by Abernathey and

Cessi (201»). Multiplying the upper-layer wave equation

(Equation («1) with 𝑘 = 1) by 𝜕𝑥𝜓̃1 and zonally averaging,

we obtain, after some manipulations,

SIFS =
𝜌0𝜈𝐻1

𝑈1

〈(
𝜕2
𝑥 𝜓̃1

)2
〉

𝑥︸                   ︷︷                   ︸
viscous

+ 𝜌0𝜅 𝑓
2

𝑔′𝑈1

[〈(
𝜕𝑥𝜓̃1

)2〉
𝑥
−
〈
𝜕𝑥𝜓̃2𝜕𝑥𝜓̃1

〉
𝑥

]

︸                                           ︷︷                                           ︸
diffusive

. («7)
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This equation relates the SIFS directly to dissipative pro-

cesses associated with the eddy viscosity and the eddy

diffusivity. Thus the SIFS can only occur in the presence

of (parameterized) transient eddy PV fluxes (c.f. Treguier

and McWilliams 1990; Straub 199«). Similarly, we mul-

tiply the lower-layer wave equation (Equation («1) with

𝑘 = 2) by 𝜕𝑥𝜓̃2 and zonally average to obtain, after further

manipulations,

TFS =
𝑟𝑏

𝑈2

〈(
𝜕𝑥𝜓̃2

)2〉
𝑥︸             ︷︷             ︸

frictional

+ 𝜈
[
𝐻2

𝑈2

〈(
𝜕2
𝑥 𝜓̃2

)2
〉

𝑥

+ 𝐻1

𝑈1

〈(
𝜕2
𝑥 𝜓̃1

)2
〉

𝑥

]

︸                                            ︷︷                                            ︸
viscous

+

𝜅 𝑓 2

𝑔′

[
1

𝑈2

〈(
𝜕𝑥𝜓̃2

)2〉
𝑥
+ 1

𝑈1

〈(
𝜕𝑥𝜓̃1

)2〉
𝑥

−
(

1

𝑈2

+ 1

𝑈1

) 〈
𝜕𝑥𝜓̃2𝜕𝑥𝜓̃1

〉
𝑥

]

︸                                              ︷︷                                              ︸
diffusive

. («8)

This equation relates the TFS directly to dissipative pro-

cesses associated with the linear friction, the eddy viscos-

ity and the eddy diffusivity. Physically, the relationships

(«7)–(«8) arise because the SIFS and TFS extract energy

from the mean flow and convert it to standing wave energy.

This standing wave energy source must be balanced by cor-

responding sinks, which are provided either by frictional

energy dissipation or via conversion to transient eddy en-

ergy.

In Figure 10 we quantify the contributions of bottom

friction, eddy viscosity, and eddy diffusivity to the TFS

and SIFS, computed via («7)–(«8). In the eddy-saturated

regime (𝜏max
w ≳0.0»Nm−2), the TFS is primarily (∼70%)

supported by viscous dissipation, with diffusive and fric-

tional dissipation making relatively minor contributions.

Consistent with this, Bai et al. (2021) found that includ-

ing a horizontal eddy viscosity substantially enhanced the

TFS in a similar, barotropic standing wave theory, and was

necessary to produce qualitative agreement between the

theory and numerical simulations. Physically, this implies

that the production of standing wave energy associated with

topographic form stress is primarily removed via (parame-

terized) eddy viscous dissipation. The SIFS is consistently

supported in almost equal parts by viscous and diffusive

dissipation. Given that («5) holds approximately, and given

that the upper-layer zonal velocity is approximately inde-

pendent of the wind stress (because 𝑈1 ≫𝑈2 and 𝑈1 −𝑈2

is insensitive to the wind stress), these diagnostics imply

that the rate of standing wave energy dissipation must in-

crease linearly with the wind stress. Noting that the second

“diffusive” term in («7) is empirically negligible compared

with the first (not shown), this implies that the SKE scales

as

SKE ∼ 𝜏max
w . («9)

This linear relationship between the standing wave kinetic

energy and the wind stress is consistent both with our theo-

retical solutions in the eddy-saturated regime (Figure 9(d))

and with our channel model simulations (Figure 6(c)).

5. Discussion and Conclusions

This work was motivated by the divergent previous ex-

planations of the “eddy saturation” phenomenon, i.e. the

approximate independence of the ACC transport to changes

in the mean zonal winds. Specifically, various previous

studies have either posited that “eddy saturation” occurs as

a result of changes in the efficiency of eddy transfer (Mar-

shall and Radko 200«; Meredith et al. 2012; Marshall et al.

2017; Mak et al. 2018), or argued that it occurs as a re-

sult of “flexing” of the ACC’s standing meanders (Thomp-

son and Naveira Garabato 201»; Nadeau and Ferrari 2015;

Constantinou and Hogg 2019). As is evident from the

alongstream-averaged momentum balance utilized in this

study, eddies play a central role in the downward transfer

of wind-input momentum (see Figures 1 and «), or equiv-

alently the southward transport of heat (Vallis 2006). This

is consistent with previous studies showing that eddy heat

fluxes across mean streamlines are approximately equal to

the combined heat flux due to standing plus transient ed-

dies across lines of constant latitude (Marshall et al. 199«;

Abernathey and Cessi 201»). The focus of this study is

on the mechanisms via which this downward transfer of

momentum along mean streamlines by transient eddies re-

sponds to changes in the surface wind stress. As shown

in Section 2b, changes in this transient eddy momentum

transfer results from a combination ofȷ a) changes in the

efficiency with which the eddy field transfers momentum

down the vertical gradient in the mean flow; or b) a restruc-

turing of the mean flow that allows the eddies to transfer

more momentum downward in a circumpolar integral. The

former corresponds to an increase in the eddy diffusivity,

𝜅, as discussed in Section 2c. The latter may correspond

to a combination of lengthening of the standing meanders

(Thompson and Naveira Garabato 201») and spin-up of

gyres abutting the circumpolar flow (Nadeau and Ferrari

2015), which we collectively refer to as an adjustment of

the “standing waves”.

In this study we sought to distinguish between these

previously-proposed mechanisms of “eddy saturation”

via analysis of hundreds of simulations using an eddy-

resolving, two-layer channel model (Section 2a). These

simulations exhibit saturation of the zonal transport (Fig-

ure 5), with changes in wind-input momentum being ac-

commodated by changes in the eddy IFS along mean

streamlines (Figure 7). To isolate the mechanism of “eddy
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Fig. 10. Black curves show the magnitudes of (a) topographic form stress (TFS) and (b) standing wave interfacial form stress (SIFS) to the

zonal momentum balance in our quasi-geostrophic theory, normalized by the zonal wind stress (Equations («2a)–(«2b)). Colored curves show the

decomposition of the TFS into contributions from viscous, diffusive and frictional energy dissipation (Equations («7)–(«8)). We hold the linear

friction velocity constant and equal to 𝑟b = 4×10−4 ms−1 for clarity. The “equivalent wind stress maximum” defines the wind stress profile via (5),

which is then meridionally averaged and used to force the theoretical momentum equation («2a).

saturation”, we therefore decomposed the alongstream-

averaged eddy IFS into multiplicative contributions from

the eddy diffusivity and the structure of the mean flow

(Equation (17)). We then separately diagnosed 𝜅 and the

mean flow from each of our model simulations, allowing us

to create approximate reconstructions of the alongstream-

averaged eddy IFS (Figure «). Via reconstructions based on

independent variations of 𝜅 and the mean flow, we showed

that varying the mean flow alone approximately recon-

structs the diagnosed eddy IFS across our suite of experi-

ments (Figure 7). In contrast, varying 𝜅 alone yields a much

less accurate reconstruction of the diagnosed eddy IFS; in-

deed, for a realistic range of wind stresses (≳ 0.1Nm−2)

the eddy IFS is approximately insensitive to variations in 𝜅.

We therefore concluded that, at least in this suite of model

simulations, “eddy saturation” is primarily attributable to

adjustment of standing waves, rather than transient eddies.

Motivated by this finding, we posed a quasi-geostrophic

theory of our idealized ACC in which 𝜅 is held constant,

and thus saturation can only occur via adjustment of stand-

ing waves (Section »a). This theory is distinguished from

previous studies (e.g. Abernathey and Cessi 201») primar-

ily via the separate treatment of eddy vertical momentum

transfer, proportional to 𝜅, and lateral eddy momentum

fluxes, proportional to the eddy viscosity 𝜈. However, the

assumptions underpinning the theory produce qualitative

differences from our channel model simulations (compare

Figures «(a) and 8). Thus, while the theory serves to

demonstrate that eddy saturation can occur purely via ad-

justment of standing waves (Figure 9), it is difficult to

directly compare its predictions with the diagnostics from

our simulations. Furthermore, one might hope that the rel-

ative simplicity of our theory might facilitate the derivation

of further simplified scalings, for example to elucidate the

parameter dependence of the zonal transport. Though our
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efforts have failed to acquire such insights thus far, fur-

ther study of the model equations may prove fruitful. The

theory nonetheless offers transferable insights into the dy-

namics of standing wave-induced saturation; for example,

it predicts that the standing wave kinetic energy must in-

crease linearly with the wind stress in order to produce a

saturated zonal transport (Figures 6(c) and 9(d) and Sec-

tion »c).

A caveat of our overall approach is that the posing of

our channel model simulations and quasi-geostrophic the-

ory is highly idealized, which raises questions regarding

the transferability of our findings to more realistic model

configurations and to nature. Future studies could test

our conclusions by extending the eddy IFS decomposition

(Section 2b) and mean flow eddy diffusivity perturbation

analysis (Section «) to more realistic model configurations.

A specific caveat of this perturbation analysis is that it sim-

plistically perturbs the mean flow or 𝜅 at each horizontal

point in space (see Figure 7), which could skew the result-

ing eddy IFS calculations in some situations. For example,

if we applied a wind perturbation of sufficient magnitude

to substantially shift the path of the mean flow over the

topographic ridge, then the mean flow streamlines in that

simulation may no longer traverse the region of maximum

EKE and 𝜅 in the reference simulation (Figure »), and this

may be expected to bias the calculation toward a smaller

eddy IFS. This may explain why the reconstructed eddy IFS

with fixed 𝜅 and varying mean flow under-predicts the di-

agnosed eddy IFS in the experiments with the largest wind

stresses (Figure 7(b–c)). It may be possible to circumvent

such issues via more dynamically-based perturbations; for

example, one might be able to empirically derive a relation-

ship between 𝜅 and the mean flow (u) in each experiment,

i.e. 𝜅 ≈ 𝜅(u), and then attempt to reconstruct the eddy IFS

by independently perturbing u and the functional relation-

ship 𝜅(u) across all of the experiments.

It also remains to be understood why this and previ-

ous model studies have exhibited apparently contradictory

mechanisms of eddy saturation. For example, previous

modeling studies that have argued for saturation by tran-

sient eddy adjustment (Meredith et al. 2012; Munday et al.

201«; Marshall et al. 2017; Mak et al. 2018) have reported

that the EKE scales linearly with the wind stress, whereas

in our simulations it scales sub-linearly (Figure 6). A com-

mon feature of these previous studies is that they use a

linear formulation of the bottom friction; this, in part, mo-

tivated us to conduct a parallel suite of experiments with

linear bottom friction (see Appendix B). For weak winds

stresses (≲ 0.1Nm−2), independently varying 𝜅 more accu-

rately reproduces the changes in the diagnosed alongstream

eddy IFS than does independently varying the mean flow,

indicating that the saturation may be a result of transient

eddy adjustments. However, for a realistic range of wind

stresses (≳ 0.1Nm−2) the transport saturation appears to

be better explained by variations in the mean flow. These

experiments suggest that the formulation of bottom friction

may be an essential element of “eddy saturation”. Further

work is required to assess whether this does indeed explain

the differences in saturation behavior proposed in previous

modeling studies, and perhaps to assess which formulation

of bottom friction is most accurate at the scales of motion

represented by the models (Arbic and Scott 2008).

In addition to partly reconciling previous explanations

of the “eddy saturation” phenomenon, these findings

also have implications for coarsely-resolved ocean/climate

model simulations that must parameterize the effects of

mesoscale eddies (Gent and McWilliams 1990; Gent et al.

1995). If “eddy saturation” is primarily the result of tran-

sient eddy adjustments, then this motivates the use of pa-

rameterization schemes that allow 𝜅 to adapt to changes in

surface wind stress (Marshall and Radko 200«; Mak et al.

2018, 2022). In contrast, if saturation is primarily the result

of standing wave adjustments then much simpler param-

eterization schemes may suffice, provided that the stand-

ing waves are resolved. Consistent with the latter, (Farneti

et al. 2015) found that an ensemble of interannually-forced,

coarse-resolution global ocean simulations consistently ex-

hibited independence of the baroclinic transport from the

wind stress. Kong and Jansen (2021) compared simula-

tions with resolved and parameterized eddies in an ideal-

ized Southern Ocean sector model. They found that even a

coarse simulation with a constant 𝜅 had a similar wind forc-

ing response to that of an eddy-resolving simulation, con-

sistent with our idealized quasi-geostrophic theory. These

findings suggest that the key to representing “eddy sat-

uration” in coarse ocean/climate models is to resolve or

parameterize the standing wave response, rather than the

transient eddy response, to wind changes.
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Momentum balance in latitudinal and streamline

coordinates

In this Appendix we provide complete expressions for

the isopycnal momentum balances discussed in Section 2b

and presented in Figure «. In all of these expressions the

hyperviscous stress tensor and the diapycnal (restoring)

velocity, all of which contribute negligibly to the zonally-

or alongstream-averaged momentum balance. We neglect

the Coriolis term because there is no overturning circula-

tion in our model simulations, and thus this term is also

negligible.

a. Zonally-averaged momentum balance

The depth-integrated, zonally-averaged zonal momen-

tum balance is given by

𝜕

𝜕𝑡

∑︁

𝑘

〈
ℎ𝑘𝑢𝑘

〉
𝑥

︸             ︷︷             ︸
tendency

≈

−
∑︁

𝑘

𝜕

𝜕𝑦

〈
ℎ𝑘𝑣𝑘𝑢𝑘

〉
𝑥

︸                    ︷︷                    ︸
mean advection

−
∑︁

𝑘

𝜕

𝜕𝑦

〈
ℎ𝑘

�
𝑣
†
𝑘
𝑢
†
𝑘

〉
𝑥

︸                    ︷︷                    ︸
eddy advection

−
∑︁

𝑘

〈
ℎ𝑘𝜕𝑥𝑀𝑘

〉
𝑥

︸                ︷︷                ︸
topographic form stress

+ 𝜏w

𝜌0︸︷︷︸
wind stress

− 1

𝜌0

〈
𝜏
(𝑥)
b

𝑡
〉

𝑥︸           ︷︷           ︸
bottom friction

, (A1)

and the upper layer zonally-averaged zonal momentum bal-

ance is given by

𝜕

𝜕𝑡

〈
ℎ1𝑢1

〉
𝑥︸        ︷︷        ︸

tendency

≈ − 𝜕
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〉
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︸              ︷︷              ︸
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− 𝜕
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†
1
𝑢
†
1

〉
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eddy advection

−
〈
ℎ1𝜕𝑥𝑀1
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mean IFS

−
〈
ℎ′

1
𝜕𝑥𝑀

′
1

〉
𝑥︸           ︷︷           ︸

eddy IFS

+ 𝜏w

𝜌0︸︷︷︸
wind stress

. (A2)

b. Alongstream-averaged momentum balance

To present the alongstream-averaged momentum bal-

ance, we first define the alongstream-averaging operator

for an arbitrary vector a,

⟨a⟩𝑀 =
1

𝐿𝑥

∮

𝜁=𝜁0

a ·ds. (A«)

The depth-integrated, alongstream-averaged momentum

balance is then

𝜕
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, (A»)

and the upper layer alongstream-averaged momentum bal-

ance is

𝜕
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. (A5)

APPENDIX B

Simulations with linear bottom friction

In this Appendix we reproduce the results presented in

Section « using diagnostics from our suite of experiments

with a linear, rather than quadratic, formulation of the

bottom friction.

Figure B1 shows the sensitivity of the total, barotropic

and baroclinic transports to variations in the wind stress

and linear friction velocity. These sensitivities closely

resemble those shown in Figure 5, albeit with a somewhat

larger range of transports in response to the range of friction

velocities explored here.

Figure B2 shows the sensitivity of the transient eddy

diffusivity (averaged over the “storm track” region), the

domain-averaged eddy kinetic energy, and the domain-

averaged standing wave kinetic energy to variations in the

wind stress and linear friction velocity. These sensitivi-

ties also qualitatively resemble their counterparts in Fig-

ure 6. However, in these simulations 𝜅 and EKE increase

with wind stress slightly faster than in the simulations with

quadratic frictionȷ least-squares fits over all of our simula-

tions yield 𝜅 ∼ 𝜏0.7 and EKE ∼ 𝜏0.8.

Figure B« shows our reconstruction of the eddy IFS

resulting from independent variations of the eddy diffu-

sivity and the mean flow across our suite of simulations.
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Fig. B1. As Figure 5, but with diagnostics drawn from our suite of chan-

nel model simulations with a linear formulation of the bottom friction.

Similar to our simulations with quadratic bottom friction,

the eddy IFS consistently dominates the alongstream mo-

mentum balance. However, the results of our eddy IFS

reconstructions differ substantially from our experiments

with quadratic bottom friction, with distinct behaviors for

wind stresses larger than the reference case versus smaller

than the reference case. For larger wind stresses, holding 𝜅

fixed and varying the mean flow provides a more accurate

reconstruction of the eddy IFS, although the accuracy is

Fig. B2. As Figure 6, but with diagnostics drawn from our suite of chan-

nel model simulations with a linear formulation of the bottom friction.

lower than found in the quadratic friction experiments (see

Figure 7). For smaller wind stresses, the result is reversedȷ

holding the mean flow fixed and varying 𝜅 provides a more

accurate reconstruction of the eddy IFS. In contrast, hold-

ing 𝜅 fixed and varying the mean flow leads to the eddy

IFS decreasing too rapidly with the wind stress.

APPENDIX C
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Fig. B«. As Figure 7, but with diagnostics drawn from our suite of channel model simulations with a linear formulation of the bottom friction. In

this figure we have added dotted lines to indicate our reference experiment.

Eddy interfacial form stress along latitude lines

Our quasi-geostrophic theory of “eddy saturation” (see

Section ») employs a different eddy diffusivity 𝜅 (𝑦) to pa-

rameterize transient eddy transfer of momentum down the

vertical gradient of the zonal-mean flow. Here we justify

this choice via analysis of the zonally-integrated zonal mo-

mentum balance. Figure C1(a) shows the domain-averaged

zonal wind stress, zonal component of the mean IFS and

zonal component of the eddy IFS for experiments with

varying wind stress maxima and constant quadratic drag

coefficient 𝐶d = 2× 10−3. Consistent with Figure «, the

downward transfer of momentum is consistently dominated

by the mean IFS, with the eddy IFS reaching at most 20%

of the wind stress for very weak wind stresses. We esti-

mate 𝜅 (𝑦) using the domain-averaged zonal component of

the eddy IFS and the domain-averaged zonal mean flow via

𝜅 (𝑦) =
𝑔′

𝜌0 𝑓 2

∫ 𝐿𝑦

0
d𝑦

〈
𝑝′𝜂𝜕𝑥𝜂′

〉
𝑥∫ 𝐿𝑦

0
d𝑦 ⟨𝑢1 −𝑢2⟩𝑥

. (C1)

Figure C1 shows that the diagnosed 𝜅 (𝑦) across our suite

of experiments with varying wind stresses and quadratic

drag coefficients. For wind stress maxima smaller than

∼0.17Nm−2, 𝜅 (𝑦) typically lies between 0 and 100m2 s−1,

depending on the drag coefficient. For larger wind stress

maxima the diagnosed 𝜅 (𝑦) varies widely with the drag

coefficient, with various experiments seemingly simulating

up-gradient momentum transfer by transient eddies in a

domain-average.
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Fig. C1. Diagnostics of the zonally-integrated eddy interfacial form stress (IFS) in our simulations with quadratic bottom friction. (a) Domain-

integrated zonal wind stress, zonal component of the mean IFS, and zonal component of the eddy IFS in simulations with varying wind stress and

fixed quadratic drag coefficient 𝐶d = 2×10−3. (b) Meridional eddy diffusivity (see Appendix C) as a function of the wind stress and the quadratic

drag coefficient.
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