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“Eddy” saturation of the Antarctic Circumpolar Current by standing waves
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ABSTRACT: It is now well established that changes in the zonal wind stress over the ACC do not lead to changes in its baroclinicity nor
baroclinic transport, a phenomenon referred to as “eddy saturation”. Previous studies provide contrasting dynamical mechanisms for this
phenomenon: on one extreme, changes in the winds lead to changes the efficiency with which transient eddies transfer momentum to the
sea floor; on the other, structural adjustments of the ACC’s standing meanders increase the efficiency of momentum transfer. In this study
the authors investigate the relative importance of these mechanisms using an idealized, isopycnal channel model of the ACC. Via separate
diagnoses of the model’s time-mean flow and eddy diffusivity, the authors decompose the model’s response to changes in wind stress into
contributions from transient eddies and the mean flow. A key result is that holding the transient eddy diffusivity constant while varying the
mean flow very closely compensates changes in the wind stress, whereas holding the mean flow constant and varying the eddy diffusivity
does not. This implies that “eddy saturation” primarily occurs due to adjustments in the ACC’s standing waves/meanders, rather than due
to adjustments of transient eddy behavior. The authors derive a quasi-geostrophic theory for ACC transport saturation by standing waves,
in which the transient eddy diffusivity is held fixed, and thus provides dynamical insights into standing wave adjustment to wind changes.
These findings imply that representing eddy saturation in global models requires adequate resolution of the ACC’s standing meanders, with

wind-responsive parameterizations of the transient eddies being of secondary importance.

1. Introduction

The response of the Southern Ocean to changes in
the atmospheric state and circulation has been the sub-
ject of extensive scientific study in recent decades (see
e.g. Mayewski et al. 2009; Rintoul 2018). This scientific
scrutiny is motivated by the central role of the Southern
Ocean, and particularly the Antarctic Circumpolar Current
(ACCQ), in connecting the major ocean basins (Nowlin Jr
and Klinck 1986; Olbers et al. 2004) and closing the deep
cells of the global overturning circulation (Marshall and
Speer 2012; Talley 2013). Particular emphasis has been
placed on the strengthening and southward-shifting of the
southern hemisphere westerlies that occurs with increased
atmospheric CO, concentrations, both as a consequence of
anthropogenic influence (Hazel and Stewart 2019; Thomp-
son and Solomon 2002) and naturally over paleoclimatic
time scales (Toggweiler et al. 2006; Toggweiler 2009).

It is now a well-established result, both based on ob-
servations (Boning et al. 2008) and model simulations
(Meredith and Hogg 2006; Hogg and Blundell 2006;
Meredith et al. 2012), that the baroclinic transport of the
ACC is approximately insensitive to changes in the westerly
winds. This phenomenon, referred to as “eddy saturation”
(Straub 1993; Hogg et al. 2008), apparently contradicts
the historical conception of the ACC as a primarily wind-
driven current (Munk and Palmén 1951; Nowlin Jr and
Klinck 1986). Indeed, idealized model experiments have
shown that the ACC transport may remain insensitive to
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winds even at the limit of zero wind stress (Munday et al.
2013), provided that mesoscale eddies are sufficiently well
resolved and that the meridional overturning circulation is
sufficiently weak (Youngs et al. 2019).

Figure 1 illustrates schematically the mechanism via
which eddy saturation occurs. This mechanism is most
clearly isolated in a quasi-latitudinal coordinate system that
follows mean streamlines of the ACC, which emphasizes
the role of mesoscale eddies, rather than time-mean flows
(Abernathey and Cessi 2014). In an equilibrium state, mo-
mentum is transferred from the winds into the upper ocean,
and is then transferred down to the deep ocean (and ulti-
mately the sea floor) via eddy interfacial form stress (IFS)
(Marshall and Radko 2003; Abernathey and Cessi 2014).
The eddy IFS results from baroclinic instabilities, which
draw energy from the baroclinicity of the ACC (Treguier
and McWilliams 1990; Youngs et al. 2017). “Eddy sat-
uration” refers to the response of this system to a change
in surface wind stress: increasing the surface wind stress
leads to a commensurate increase in the eddy IFS, while
the baroclinicity of the ACC remains unchanged. We note
that this characterization of “eddy saturation” in terms of
eddy IFS is equivalent (under quasi-geostrophic scaling)
to previous characterizations based on quasi-meridional
Ekman vs. eddy volume transports (e.g. Thompson and
Naveira Garabato 2014; Youngs et al. 2019).

Previous studies of the “eddy saturation” phenomenon
have proposed diverging mechanistic explanations. On
one extreme, “eddy saturation” has been posited to result
from changes in the efficiency of the transient eddy IFS
(or, equivalently, the horizontal eddy buoyancy flux), char-
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FiG. 1. Schematic of the eddy saturation phenomenon, presented in a coordinate system that follows the time-mean geostrophic streamlines of
the ACC, which for the upper ocean is the sea surface height (SSH). In each panel the tilted blue line schematically indicates an isopycnal surface,
and the blue arrow (directed out of the page) indicates the near-surface flow of the ACC. (a) Momentum input by the wind (light blue arrow, out
of the page) to the upper ocean is transferred downward by eddy interfacial form stress (IFS) to the deep ocean, where it is ultimately removed by
topographic form stress and bottom friction. (b) Increases in the zonal surface wind stress lead to commensurate increases in the eddy IFS, with
approximately no change in the baroclinicity of the ACC. Note that the geostrophic streamline-following coordinate system ensures there is no mean

component of the IFS (see Section 2b and Abernathey and Cessi 2014).

acterized by the Gent-McWilliams diffusivity, « (Gent and
McWilliams 1990; Gent et al. 1995). For example, the
residual-mean theory of Marshall and Radko (2003, 2006)
requires that « scale linearly with the wind stress in order
to preserve the baroclinicity of the ACC. Meredith et al.
(2012) rationalized this linear scaling based on the mixing
suppression theory of Ferrari and Nikurashin (2010). More
recently, Marshall et al. (2017) and Mak et al. (2018) have
developed a theory for changes in x based on the eddy en-
ergy budget, constraining the eddy interfacial form stress
following the geometric interpretation of Marshall et al.
(2012) and Maddison and Marshall (2013). This theory
explicitly predicts approximate independence of the ACC
transport on wind stress, but relatively strong dependence
of the ACC transport on friction at the sea floor (Marshall
et al. 2017; Mak et al. 2018, 2022).

On the other extreme, “eddy saturation’ has been posited
to result from adjustment of the ACC’s time-mean standing
meanders, i.e. standing Rossby waves (Marshall 2016; Bai
etal.2021). Thompson and Naveira Garabato (2014) noted
that two-dimensional residual-mean theories of the ACC
omit the zonally-localized dynamics of the ACC’s standing
meanders, where eddy activity is concentrated (Abernathey

and Cessi 2014; Meredith 2016; Rintoul 2018). Based on
analysis of a high-resolution global ocean model, Thomp-
son and Naveira Garabato (2014) proposed that the ACC
could adjust to changes in zonal wind stress via “flexing”
of its standing meanders, i.e. changes in the meander
shape and amplitude that serve to increase or decrease the
efficiency of downward momentum transfer by mean IFS.
Nadeau and Ferrari (2015) used channel model simulations
to show that eddy saturation does not occur in the absence
of bathymetric obstacles and standing meanders, and pro-
posed that formation of closed gyres abutting the flow of
the ACC plays a key role in balancing increases in zonal
wind stress. Constantinou and Hogg (2019) showed that
“eddy saturation” occurs even in barotropic channel model
simulations, in which there can be no baroclinic instabil-
ity, and thus concluded that barotropic flow-topographic
interactions alone are sufficient to produce a saturation re-
sponse.

Thus there remains an outstanding question as to what
extent “eddy saturation” occurs as a result of changes in the
efficiency of transient eddy transfer, versus rearrangement
of the ACC’s standing meanders. In this study we ad-
dress this question by using an idealized isopycnal channel



model to quantify the relative importance of transient eddy
versus standing wave adjustment in “eddy saturation”. In
Section 2 we describe our numerical configuration, pose a
decomposition of the eddy saturation response via the mo-
mentum balance along time-mean geostrophic streamlines,
and present a method of diagnosing the transient eddy dif-
fusivity. In Section 3 we examine the saturation response
simulated across a suite of model experiments, and ap-
ply our decomposition to distinguish the roles of transient
eddy versus standing wave adjustment. Motivated by these
findings, in Section 4 we pose a quasi-geostrophic standing
wave theory of eddy saturation, and use it to draw insights
into the dynamics of standing wave adjustment to wind
changes. Finally, in Section 5 we discuss our findings and
conclude.

2. Numerical modeling approach and diagnostics
a. Model configuration

We designed our model configuration to minimize phys-
ical complexity while capturing the “eddy saturation” phe-
nomenon, drawing inspiration from many previous studies
of ACC dynamics (Ward and Hogg 2011; Nadeau and Fer-
rari 2015; Howard et al. 2015; Constantinou and Hogg
2019; Youngs et al. 2019). Specifically, we simulate the
flow in a zonally re-entrant walled channel of zonal length
L, =3200km, meridional width L, = 1600km, and depth
H =4000m. The channel is posed on a mid-latitude beta-
plane with Coriolis parameter f = fo+8(y—L,/2), where
fo=—1x10"*s7! is the reference Coriolis parameter and
B=15x10"""m"s7! is the Coriolis parameter gradient.
To obstruct the zonal flow through the channel, we im-
pose a single Gaussian bump in the sea floor (z = 1, (x))
at x = Xp = 1000km of height Hy = 1000m and width

Wy = 150km,
x—Xp 2
Wy '

This geometry, shown in Figure 2, crudely represents the
presence of bathymetric obstacles that generate standing
meanders in the ACC (e.g. Thompson and Naveira Gara-
bato 2014; Nadeau and Ferrari 2015; Youngs et al. 2019).

The density stratification is represented by two layers,
each of constant density, as this is the minimum required
to allow the development of baroclinic instability (Val-
lis 2006). The isopycnal velocities and layer thicknesses
evolve according to conservation of momentum, which we
write for convenience as

Ny = —H+Hbexp
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and conservation of volume,
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We denote the isopycnal velocity in each layer as uy and
the corresponding layer thickness as &, where k = 1 corre-
sponds to the upper layer and k =2 to the lower layer. We
make the rigid-lid approximation to exclude fast surface
gravity waves, so the Montgomery potential M is defined
as
My =n+6218n. “)

Here 7 is the surface pressure (normalized by the reference
density), 7 = —h is the elevation of the interface between
the layers, g’ = gAp/po = 1 x 1072ms~2 is the reduced
gravity, Ap denotes the positive density difference between
the layers, g is the gravitational constant, pg = 1000kgm™3
is a reference density, and ¢ denotes the Kronecker delta.
The flow in the upper layer is forced by a zonal wind
stress Ty (v)@& whose latitudinal structure (see Figure 2(a))
is given by
() = T sin® (ﬂ) , 5)
Ly
where & denotes a unit vector in the x-direction. The flow
in the lower layer is retarded by frictional stress 71, at the
sea floor. For all experiments described in the main text,
we adopt a quadratic formulation of this frictional stress,

7 = poCyluz|uy, (6)

where Cy is the drag coefficient. We perform an analo-
gous set of experiments, results of which are presented in
Appendix B, using a linear formulation of the frictional
stress,

Th = PorbU2, @)

where ry, is the friction velocity. Over the northernmost
100km of the model domain we impose a diapycnal veloc-
ity
n-n’
Trelax

, ®)

w =

that serves to relax the layer interface toward a reference
elevation n° = —1750m. The relaxation rate Tr;llax varies
linearly from 1week™! at the northern wall to zero at the
edge of the restoring region. This relaxation is not strictly
necessary in our model configuration because the flow can
be configured to be perfectly adiabatic, but it serves to pro-
duce a consistent stratification at the northern edge of the
domain across our experiments, without constraining the
isopycnal slope across the channel. The diapycnal velocity
also enters (2) in order to conserve momentum, multiplying
an effective isopycnal velocity uw* that is assigned based on
the layer that is “upwind” relative to the diapycnal velocity
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FiG. 2. Schematic of our model configuration. (a) Latitudinal profile of zonal wind stress applied to the upper isopycnal layer. (b) Snapshot
of potential vorticity in the upper isopycnal layer of our reference simulation. Shading indicates the location of the sponge/restoring region at the
northern boundary, while dark gray contours indicate the 3750 m, 3500 m and 3250 m isobaths. (c) Zonal variation of the topographic elevation
(brown) and the meridionally-averaged isopycnal layer interface (blue) corresponding to the simulation snapshot shown in panel (b).

(LeVeque 2002),

w <0,
w > 0.

up,
us,

u* = { ©))
Finally we dissipate grid-scale energy and enstrophy via a
biharmonic viscous stress tensor, V - o, using a Smagorin-
sky prescription of the viscosity with dimensionless coef-
ficient Asmag = 4 (Griffies and Hallberg 2000).

We solve (2)—(4) via forward numerical integration us-
ing the AWSIM model (Stewart and Dellar 2016). We
adopt the same spatio-temporal numerical schemes as
those discussed by Stewart et al. (2021). We discretize
the model equations on a uniform horizontal grid of
Nx X N, =512x256 points, corresponding to a grid spac-
ing of approximately 6km. The horizontal grid spacing is
chosen to be much smaller than the baroclinic deformation
radius, in order to ensure adequate resolution of mesoscale
eddies (Hallberg 2013). For our chosen model parameters
the baroclinic deformation radius is approximately 30km,
which is comparable to the first Rossby radius of deforma-
tion along the northern flank of the ACC (Chelton et al.
1998).

Motivated by the previous finding that bottom
friction plays an important role in setting the
ACC transport, we conduct a suite of experi-

ments in which we co-vary the wind stress (ty™* =
{0.01,0.013,0.017,0.022,0.03,0.039,0.05,0.07,0.1,0.13,
O.17,0.22,0.3,0.39,0.5}Nm‘2) with either the quadratic
drag coefficient (Cyq = {.5,1,1.5,2,2.5,3,3.5,4} x 1073)
or the linear drag velocity (r, = {2,3,4,5,6,7,8,9,10} X
10*ms™!).  All other model parameters are held
fixed. Each experiment is “spun up” at low resolution
(Nx X Ny =256 x 128 points) for either 200 years (for
X > (0.05Nm~2) or 400 years (for 7™ < 0.05Nm™2),
because experiments with weak surface wind stress require
longer to reach a statistically steady state (Constantinou
and Hogg 2019). We then interpolate the model state to
the high-resolution grid (Nx X N, = 512X 256 points) and
continue the spin-up for a further 100 years to re-establish
statistical equilibrium; over the last 30 years integration,
the linear trend in the annually-computed zonal transport
is not significant at the 5% level. Finally, we continue each
high-resolution run for a further 30 years, which serves as
the analysis period.

b. Zonal versus along-streamline momentum balance

In Section 1 we framed the “eddy saturation” phe-
nomenon in terms of the momentum balance of the ACC
(see Figure 1). In this subsection we show (consistent with
previous studies, c.f. Abernathey and Cessi (2014)), that
in streamline-following coordinates, eddy isopycnal form



stress is almost entirely responsible for the downward trans-
fer of momentum. Therefore, in this coordinate system the
analysis of eddy saturation is simplified in that it requires
consideration of only the eddy (and not the mean) isopyc-
nal form stress term. We will take advantage of this result
in Section 2c to decompose the isopycnal form stress re-
sponse (which results in eddy saturation) into contributions
from changes in mean and transient motions.

We now provide reference diagnostics of the mean cir-
culation balance in our reference simulation, defined by a
wind stress maximum of 7 = 0.1Nm™2, to match the
order of magnitude of the maximum wind stress over the
ACC (Large and Yeager 2009), and a quadratic bottom drag
coefficient of C; =2 x 1073 (Gill 1982; Arbic and Scott
2008). Figure 3 shows the time-mean momentum balance
averaged zonally in both latitudinal and along-stream coor-
dinates, and taken either over the full ocean depth or just the
upper isopycnal layer. We separate “mean” versus “eddy”
contributions to the momentum advection via thickness-
weighted averaging (Young 2012; Aiki et al. 2016),

V-(m)zv-(h_kakﬁk)w-(h_km). (10)

mean advection eddy advection

Here the overbar e denotes a time-average over the 30-year
simulation analysis period. The hat operator denotes a
thickness-weighted average, with daggers denoting fluctu-
ations,

— I’lkUk ¥ —
uk =Uir —Uf.

an

We separate “mean” and eddy components of the pressure
gradient force (PGF) as

hV My = h VM +h, VM7,
— —
mean PGF eddy PGF

12)

where primes denote deviations from the time-average, i.e.
o’ = e —o. The resulting averaged momentum equations
are given in full in Appendix A.

Figure 3(b—c) shows the zonally-averaged, time-mean
zonal momentum balance. Consistent with previous stud-
ies (e.g. Treguier and McWilliams 1990; Abernathey and
Cessi2014; Stewart and Hogg 2017), in this coordinate sys-
tem the wind-input momentum is transferred downward al-
most entirely via the action of mean IFS, and then removed
at the sea floor via topographic form stress (TFS),

Tw(y) = (PpoxTl), = (Pr0x1b) ¢ (13)
—_ o —

wind stress mean IFS TES

Here (o), denotes a zonal average, p,, = p|,=y, is the pres-
sure on the isopycnal interface, and py, = pl.=;, is the
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pressure at the sea floor. Note that the forms of the IFS and
TFS terms differ locally from those given in Appendix A,
but are equivalent when integrated over any closed contour

prhIVMl -d8=‘¢‘pnvn~d8,
C C

j{ POZ h VM -ds = }{ puVnp -ds,
¢ T c

where ds denotes an infinitesimal line element along the
closed contour C.

As noted by Abernathey and Cessi (2014), integration
along lines of constant latitude obscures the role of tran-
sient eddies. Figure 3(d—e) shows the time-mean momen-
tum balance integrated along contours of mean sea surface
height, i.e. mean geostrophic streamlines, then divided by
the zonal domain length L, (see Appendix A). As we em-
ploy the rigid-lid approximation (see Section 2a), we define
an equivalent sea surface height via the surface pressure as
{ =n/g. In this coordinate system the mean IFS vanishes
identically, and the momentum balance approximately be-
comes (c.f. Johnson and Bryden 1989)

,75; Twcﬁ-dszﬁ p%Vn“dszjg PurVnp -ds.
{=d {=do {=4

eddy IFS TFS

(14a)

(14b)

wind stress

15)

Here { denotes the mean sea surface height contour along

which the line integral is taken; the mean sea surface height
in our reference experiment is shown in Figure 3.

c. Separating transient eddy and mean flow contributions
to eddy IFS

As discussed in Section 1, it remains unclear to what
extent “eddy saturation” occurs as a result of changes in
the efficiency of transient eddies in transferring momen-
tum downward via IFS versus adjustment of the ACC’s
standing meanders. To distinguish between these contribu-
tions, we relate the eddy IFS locally to the vertical gradient
of the mean flow (Greatbatch and Lamb 1990), which is
equivalent (in the quasi-geostrophic limit) to assuming a
down-gradient horizontal buoyancy flux (Gent et al. 1995),

2

E- 0

Vv - P
Teddy = PnVU =K

(ur-uz)+VD.  (16)
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The first term on the right-hand-side of (16) is approx-
imately non-divergent (under quasi-geostrophic scaling,
and for slow spatial variations in k). We make the ansatz
that this term accounts for the rotational component of the
eddy IFS, and allow for an additional divergent compo-
nent of the eddy IFS, VD (see Marshall and Shutts 1981).
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(b—e) corresponds to the median SSH, as shown in panel (a). The red dotted line in panel (e) is the eddy interfacial form stress reconstructed from
the time-mean flow and the diagnosed eddy diffusivity « via (17).

Substituting (16) into (15), we obtain In Section 3 we will use (17) to quantify the contri-

) butions of transient eddies versus standing meanders in

y{_‘ Teddy - ds = }g P .% (U] —u3) -ds adjusting the eddy IFS to changes in wind stress. To do

¢=bo {=b " this, we require spatially-varying estimate of «, which is
eddy

efficiency standing meander structure defined implicitly by (16). We diagnose « by taking the
17




curl of (16) to eliminate the divergent component of the
eddy IFS,

- 2
J(pym) ~ Kp(;],c

VX (ur-u2). (18)

Here we have additionally neglected spatial variations of f
and «, under the assumption that they vary slowly relative
to the mean flow. Although (18) could be used directly
to calculate k at each point in the model domain, x = x,
the result is excessively noisy. Instead, we invert (18)
for k via least-squares linear regression of J(pj,,n’) on
(pof?/g")V x (w] —wy) over all points within a 200km
radius of xp. The linear fits are statistically significant
(p-values typically many orders of magnitude smaller than
0.001) over almost all of the model domain.

Figure 4 shows the spatial distribution of « in our refer-
ence simulation, as compared with the distribution of the
depth-averaged eddy kinetic energy (EKE),

1 —
EKE = Lhut.
Zich Zk: :

Both the EKE and « are elevated downstream of the bathy-
metric ridge, consistent with previous modeling studies and
observations (e.g. Bischoff and Thompson 2014; Mered-
ith 2016). This correspondence is visually evident in
the “storm track” region (Bischoff and Thompson 2014),
which we define as the uppermost quartile of the EKE over
the entire model domain (see Figure 4(a)). In this region
there is generally little scatter in the linear regression that
we use to estimate « (Figure 4(c)), supporting our assump-
tion that « is slowly-varying relative to the mean flow. Note
that the region within 200-300 km of the northern bound-
ary also exhibits little scatter in the linear regression, but
that this is an artifact resulting from the tendency of the
sponge layer to create elongated zonal structures in both
J(prys1) and (pof?/8")V x (@1 —w3).

To further evaluate our approach to estimating «x, we
compute the alongstream-averaged eddy IFS via (17). Fig-
ure 3(e) shows that this reconstruction only slightly under-
estimates the diagnosed alongstream-averaged eddy IFS,
by around 10-20% over the SSH contours that cross the
bathymetric ridge (see Figure 3(a)).
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3. Saturation by transient eddies versus standing waves

In this section we utilize our suite of model experiments
(see Section 2a) to assess the extent to which adjustment
of transient eddy behavior versus mean flow structure is
responsible for “eddy saturation”. Briefly, we first show
that the model’s baroclinic transport is indeed saturated
in experiments with varying zonal wind stress, consistent
with previous studies. We then show that the diagnosed
variations in the transient eddy diffusivity (along with the

7

eddy kinetic energy) suggests that transient eddies are not
adjusting sufficiently rapidly to support the transport satu-
ration. Finally, we use our decomposition of the eddy IFS
(17) to verify that the saturation occurs primarily via ad-
justments of the standing waves, rather than of the transient
eddies.

To evaluate the extent to which our idealization of the
ACC is “eddy saturated”, we examine the sensitivity of
both the total transport and its barotropic/baroclinic com-
ponents, defined respectively as

Ly
Tiot = < / th) : (20a)
0 T .
L‘y JR—
= [T ) (20b)
0 z .
Toc = Tiot — Tt (20c¢)

We define the lower-layer flow as the barotropic component
of the zonal flow, and then average the associated barotropic
transport zonally to obtain Ty, with Ty computed as a
residual.

In Figure 5 we plot the dependence of these transports
on the wind stress maximum and the quadratic drag co-
efficient. The total volume transport is generally sub-
stantially lower than the observed transport of the ACC
(Whitworth and Peterson 1985; Donohue et al. 2016), but
is of the correct order of magnitude, and is comparable
to previously-reported transports in channel model simu-
lations (e.g. Stewart and Hogg 2017; Youngs et al. 2019).
Fig 5 shows that the baroclinic transport is approximately
independent of wind stress, whereas the barotropic trans-
port increases with wind stress, and thus so does the total
transport. This is consistent with some previous model-
ing studies (Nadeau and Ferrari 2015; Youngs et al. 2019),
whereas others have found that the total transport is ap-
proximately independent of the wind stress (Munday et al.
2013; Marshall et al. 2017). Similar to Marshall et al.
(2017), the total, barotropic and baroclinic transports all
increase with quadratic drag coefficient, although for drag
coefficients > 2x 1073 this sensitivity is relatively weak.
For the strongest wind stresses and weakest bottom fric-
tion coefficients examined here, the barotropic transport
actually begins to decrease with wind stress, and may even
become negative. This flow reversal appears to be associ-
ated with extreme strengthening of deep gyres in the lee of
the ridge (Nadeau and Ferrari 2015), but the specific mech-
anism via which it occurs and its relevance to the dynamics
of the ACC are left as a topic for future investigation.

To obtain preliminary insights into how transient ed-
dies and standing meanders/waves change while preserv-
ing the baroclinic flow, we now examine the response of
the transient eddy and standing wave activity to variations
in the wind stress. Figure 6(a) shows the sensitivity of «,
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spatially averaged over the “storm track” region in each quadratic drag coefficient. Least squares logarithmic fits

simulation, to changes in the wind stress maximum and over all of our simulations yield approximate scalings of
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k ~ 796 and EKE ~ 70-7. Including random multiplicative
errors with average magnitudes of 10% in the estimate of «,
motivated by our comparison between the diagnosed and
reconstructed eddy IFS in Figure 2, does not change the
scaling of « with 7y, to within one decimal place. In con-
trast, residual-mean theory (Marshall and Radko 2003) pre-
dicts that « must scale linearly with 7y, in order to preserve
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Fic. 6. Sensitivity of transient eddies and standing waves to the wind
stress maximum and the quadratic drag coefficient. (a) Transient eddy
diffusivity k averaged over the “storm track” region (see Figure 4), (b)
domain-averaged eddy kinetic energy, and (c) domain-averaged standing
wave energy.

the baroclinic transport. Thus our diagnostics suggest that
adjustments in the efficiency of downward transient eddy
momentum transfer (i.e. of «) are not sufficient to pro-
duce the “eddy saturation” response in these simulations.
Figure 6(c) shows the sensitivity of the domain-averaged
standing wave kinetic energy (SKE), which we simply es-
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timate as the depth-averaged mean kinetic energy,

ZkthZ i

In contrast to the EKE, the SKE scales approximately lin-
early with wind stress, with SKE ~ 7!"!. This is qualita-
tively consistent with “flexing” of the standing meander
in response to increased zonal wind stress (Thompson and
Naveira Garabato 2014), though the change in SKE could
also arise due to spin-up of the mean gyres that abut the
circumpolar flow in Figure 3 (Nadeau and Ferrari 2015).

To quantify the relative roles of transient eddy versus
standing wave adjustment in “eddy saturation”, we now
separately examine their contributions to the changes in
eddy IFS that occur in response to wind stress perturba-
tions. The rationale for this approach is that the wind-input
momentum along mean streamlines is primarily transferred
downward toward the sea floor via eddy IFS, (c.f. Equa-
tion (15)). To demonstrate that this holds across the pa-
rameter space examined in this study, in Figure 7(a) we
quantify the contributions of wind stress, eddy IFS and
eddy advection (c.f. Figure 3) to the along-stream mo-
mentum balance. We plot these contributions as functions
of the wind stress maximum, holding the quadratic drag
coefficient fixed at C; = 2 x 1073, For each simulation we
select a mean streamline that tracks the core of the zon-
ally re-entrant flow by taking the median of the time-mean
SSH over the entire model domain, e.g. as shown in Fig-
ure 3(a). For all of the wind stresses examined here, the
upper-layer momentum balance along this contour is pri-
marily between the wind stress and the eddy IFS, although
horizontal redistribution of momentum by eddies balances
up to 25% of the wind stress. We therefore conclude that
(15) holds approximately across our suite of simulations.

To quantify the contributions of transient eddies versus
standing waves to changes in eddy IFS, we use (15) to pro-
duce estimates of the eddy IFS resulting from independent
perturbations of « and the mean flow, respectively. For
notational clarity we first rewrite (17) as

SKE =

2D

EIFS = F [, u], (22)

where EIFS denotes the alongstream-averaged eddy IFS,
the functional ¥ is defined by the right-hand side of (17),
and w is shorthand for the time-mean flow in both isopycnal
layers. We then define reference spatial distributions of «
and u from our reference experiment (see Section 2b),
which we denote as kpef and urer respectively. Finally, for
each of our experiments we define two reconstructions of

the eddy IFS,
BIFS|(Z, =7 [ et @™ (23a)
EIFS| =¢[ Q) uref] (23b)

Here (") is an arbitrary index to distinguish different exper-
iments, and k™ and ™ denote the eddy diffusivity and
mean flow diagnosed from the n" experiment. Thus the
reconstructions EIFS |,(<'i),(ref provide an estimate of the eddy
IFS response that results from varying only the mean flow,
while the reconstructions EIFS|(”) » provide an estimate
of the eddy IFS response that result from varying only the
eddy diffusivity.

Figure 7(b) demonstrates this approach, focusing on the
same subset of our simulations as shown in Figure 7(a).
Holding the mean flow fixed and varying « yields a re-
constructed eddy IFS that increases with the wind stress,
but with a substantially smaller slope than the diagnosed
eddy IFS. In particular, for wind stresses larger than the
reference value, the reconstructed eddy IFS is almost in-
variant under increases of the wind stress. This implies
that changes in transient eddy diffusivity alone fail to cap-
ture the “eddy saturation” response. In contrast, holding
k fixed and varying the mean flow yields a reconstructed
eddy IFS that closely tracks the diagnosed IFS.

Figures 7(c) and (d) expand the scope of this analy-
sis to include our entire suite of simulations with vary-
ing wind stress maximum and quadratic drag coefficient.
These reconstructions exhibit the same qualitative pattern
as Figure 7(b), despite significant scatter associated with
the varying quadratic drag coefficient. To provide a quanti-
tative assessment of these reconstructions, we note that the
eddy IFS spans orders of magnitude, and thus we quantify
the root-mean-square difference between the logarithms of
the diagnosed and reconstructed eddy IFS (the LRMSE).
Consistent with our inference based on visual inspection,

the LRMSE of EIFS |L" )f is substantially higher than that

of EIFSl,S”)K o (~0.30 versus ~0.14). These diagnostics in-
dicate that the “eddy saturation” response occurs primarily
as a result of adjustment of the mean flow, i.e. of the
standing meander, rather than of the efficiency of eddy

momentum transfer.

4. A theory of standing wave saturation

The diagnostics presented in Section 3 indicate that
“eddy saturation” occurs primarily as a result of adjust-
ment of standing meanders in response to changes in zonal
wind stress. Motivated by this finding, we now pose a
quasi-geostrophic standing wave theory of eddy satura-
tion. This theory simultaneously supports the conclusions
drawn from our simulations and yields insight into the
dynamics of eddy saturation.
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flow and varying «.

a. Theoretical model formulation

Our theoretical model closely follows those derived in
several recent studies (Abernathey and Cessi 2014; Con-
stantinou and Young 2018; Bai et al. 2021), which in turn
build on earlier work by Davey (1980). Under the assump-
tions that the flow is quasi-geostrophic and slowly-varying
in the meridional direction, this formulation simplifies con-
servation of potential vorticity to a one-dimensional wave
equation, complemented by a zonal momentum equation
that constrains the zonal mean flow. The resulting system
can, in principle, be solved analytically to produce explicit
predictions of the circumpolar transport and the structures
of the standing meanders/waves. Below we discuss the

key steps required to derive the model equations, and then
discuss our method of solution.

We start with the 2-layer quasi-geostrophic analogue of
(2)—(4) (e.g. Pedlosky 1987), neglecting diapycnal fluxes
and the hyperviscous stress tensor. Taking a time average,
these equations become
N Vs

poH>

(24)
where the potential vorticity (PV) in each layer is given by

5],/( 6TW
poH; 9y

99K (= — —
%+J(¢k,%)+v'uqu =

qk=V2¢k+ﬂy+(—1)kL;2(m—wz)+6z,k§;nb. 25)
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Here ¢ is the geostrophic streamfunction, ux = =V Xy 2
is the geostrophic velocity, J(e,e) denotes the Jacobian
operator, the deformation radius in each layer is defined as
Ly =+/g’"H;/|fol, and the reference layer thicknesses are
H; =1500m and H, = 2500m. Unless otherwise stated,
the model parameters and geometry match those given
in Section 2a. In order to make the theory analytically
tractable, we use the linear formulation (7) of the bottom
frictional stress.

The transient eddy PV flux in (24) can be decomposed,
following some manipulations, as

Vs Vg

N——
vorticity flux divergence

+(-DE VLI,

isopycnal pressure torque

(26)
where &, =V Xuy, = szpk is the relative vorticity. Fol-
lowing (18), we assume that the isopycnal pressure torque
acts down the vertical gradient of the relative vorticity, i.e.

fo

= @7)
8

o f
JWi.y93) = ?K(fl —rfz) ,
where « is taken to be a constant. We further assume that
the horizontal fluxes of relative vorticity are also directed
down the mean relative vorticity gradient,

w € =-vVé;, (28)

where v is a constant horizontal eddy viscosity. Bai et al.
(2021) showed that adding a horizontal eddy viscosity to
a barotropic standing wave model removes the indetermi-
nacy of the solution that occurs when dissipation can only
occur via bottom friction (see also Constantinou and Young
2018). Substituting (26)—(28) and (7) into (24) yields the
following evolution equation for the mean PV,

9% — _ o
T (00.7) = VP E+ (DAL E - E)
_ Ok 6&—62’1(”75_% 29)
poHy 0y  poH:

We now partition the mean streamfunction into a zonal
mean component <z// k>x (y,1) and perturbation component

Jrk(x,y,t),

Vi = (Vi) +k, (30)

and we define the zonal-mean zonal velocity in each layer
as Uy = =0y (¥« ) . We then assume that the time-averaged
system is in steady state, i.e. 0d; =0, and that the flow is
slowly varying in y, i.e. 8y << Oy, such that all derivatives
of Y and Uy with respect to y can be neglected. After
further manipulations, (29) may be rewritten in the form

of a linear wave equation,
U030k + L2 (=1)* (U201 = U10x2) + Boxiix
Jo b 2
02, xUps~—=0xnp = =02,k —0
+02,k 21, b 2k W2
+vOR+ (=D kL02 (b1 - d2) . (B1)
We derive the corresponding zonal momentum equa-
tions by multiplying (29) by Hy, integrating from y’ =0
to y’ =y and zonally averaging, where y’ is a variable of

integration. Assuming that the meridional velocity and
wind/frictional stresses are zero at y = 0, this yields

7w = EIFS + SIFS, (32a)
EIFS +SIFS = TFS + pory Us, (32b)
where
pofd .
SIFS = =75 (§10302).« (33)
x) £2
EIES = u(ul —Uy), (33b)
TFS = po f (¥20x1p) . - (33c)

are the standing wave interfacial form stress (SIFS), eddy
interfacial form stress (EIFS) and topographic form stress
(TES), respectively. Taken together, (31) and (32a)—(32b)
comprise four equations for the four unknowns: the zonal
mean velocities Uy and the perturbation streamfunctions
Y.

Note that we use a distinct eddy diffusivity, P
(33b), from that appearing in (31). The rationale for this
is that (32a)—(32b) describe the zonal momentum balance
zonally averaged along latitude lines, rather than the mo-
mentum balance averaged along mean streamlines. Based
on our simulations (see Figure 3), we therefore expect the
SIFS, rather than the EIFS, to balance the wind stress in
(32a). In our simulations, the eddy diffusivity obtained by
zonally averaging eddy IFS and zonal velocity (c.f. Equa-
tion (16)) across a latitude band is much smaller than the
diffusivities diagnosed following the method discussed in
Section 2c. Based on the diagnostics presented in Ap-
pendix C, we select k) = 80m?s~!, whereas based on
Figure 4(a), we select x =400m?s~!. If we were to choose
k) to be as large as « then we would find that EIFS made
an O(1) contribution to the theoretical momentum balance
(not shown), conflicting with our simulation results (Fig-
ure 3). The eddy viscosity of v =2000m?s™! is chosen to
be as small as possible while preserving the stability of our
numerical solutions, discussed below.

Although in principle analytical progress toward a so-
lution of (31)—(33c) can be achieved via a zonal Fourier
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Fic. 8. (a) Equivalent sea surface height predicted by our quasi-geostrophic standing wave theory (see Section 4a). Dark gray contours indicate
the 3750 m, 3500 m and 3250 m isobaths. Note the different color axis range from Figure 3(a). (b) Comparison of the theoretically predicted
sea surface height (amplified by a factor of 1000 for visibility) and isopycnal interface elevation along y = L., /2 with those diagnosed from our

reference simulation.

transform (Bai et al. 2021), in practice the resulting equa-
tions yield little additional physical insight. We therefore
solve the equations numerically via Matlab’s least-squares
Trust-Region Reflective algorithm. In all cases presented
here, the optimized solution yielded a differences between
the left- and right-hand-sides of (32a)—(32b) of no more
than 10~ Nm~2, which is five orders of magnitude smaller
than our smallest wind stress.

In Figure 8(a) we plot the equivalent sea surface height
predicted by our theory, for comparison with the time-
mean simulated sea surface height shown in Figure 3(a).
In Figure 8(b) we directly compare the predicted and diag-
nosed sea surface height and isopycnal elevation along the
mid-line of the channel, y = L, /2. Here we have solved
(31)—(33c) using the corresponding wind stress at each lat-
itude (c.f. Equation (5)). We use the same reference wind

stress maximum as in Section 2a (7% =0.1Nm~2) and

set the linear friction velocity to r, =4 x 10™*ms~!. All
other model parameters are assumed to be independent of
latitude. The resulting mean flow resembles a standing
meander in the lee of the bathymetric ridge, but exhibits
qualitative differences from the mean flow in our simu-
lations. Notably, although the amplitude of the standing
wave is similar over the ridge, the theoretical standing wave
visibly persists over a longer zonal distance. The theoreti-
cal zonal-mean upper-layer flow is also larger, as indicated
by the larger meridional sea surface height gradient in
Figure 8 than in Figure 3. These differences likely arise
because, under the assumption of a flow that is slowly-
varying in y, the theoretical solution is not constrained by
the meridional walls. Furthermore, the theoretical solution
cannot form “gyres” in the lee of the ridge (Nadeau and
Ferrari 2015), and thus the topographic form stress must
be established entirely by the standing Rossby wave. The
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theoretical baroclinic and barotropic transports are approx-
imately 242 Sv and 15Sv, respectively. These transports
are of the same orders of magnitude as those measured in
the ACC (Donohue et al. 2016) but several times higher
than the corresponding transports from our simulations
(see Figure 5). We conclude that our theoretical solution
qualitatively resembles the circulation of the ACC and pro-
duces a zonal transport of the same order of magnitude as
observations, but that caution is required in comparing its
predictions with the channel model simulations presented
in Section 2-3.

b. Regimes of standing wave saturation

We now show that our theory captures the “eddy satu-
ration” phenomenon, and exploit its analytical simplicity
to draw some insights into the dynamics of the saturation
response. We obtain solutions of (31)—(33c) over the same

range of wind stresses and linear friction velocities as dis-
cussed in Section 2a. To aid our dynamical interpretation,
rather than solve the theoretical model equations at all lati-
tudes in our model domain, we instead solve the equations
at a single latitude using the meridionally-averaged wind
stress. For the wind stress profile (5), this corresponds to

setting

1 __max
Tw = 5Ty

(34)

in Eq. (32a). Thus the resulting solutions should be thought
of as an approximation to the meridionally-averaged stand-
ing wave behavior, although there are substantial qualita-
tive departures of the theoretical solutions from our sim-
ulations, as discussed in Section 4a. To obtain equivalent
zonal transports, we multiply the depth-integrated mean
zonal velocity (i.e. HU+H,U,) by Ly =1600km.

In Figure 9 we plot the sensitivity of the total trans-
port, baroclinic transport, barotropic transport, and stand-
ing wave Kkinetic energy to changes in wind stress and



friction velocity, analogous to Figures 5 and 6(c). For
wind stresses >0.03Nm™2, the total zonal transport is ap-
proximately independent of the wind stress; this contrasts
with our simulations, in which the baroclinic transport is
independent of the wind stress. In this regime there is a
relatively small increase in the barotropic transport with
wind stress, accompanied by a compensating decrease in
baroclinic transport. We note that the theory overpredicts
that barotropic transport only by a factor of ~2 (compare
Figures 9(b) and 5(b)), whereas it overpredicts the baro-
clinic transport by a factor of ~7 (compare Figures 9(c) and
5(c)). This discrepancy is likely related to the assumption
of small meridional gradients in the theory, which elimi-
nates the influence of meridional walls and precludes the
formation of gyres in the lee of the ridge, as discussed in
Section 4a.

The theoretically-predicted total and baroclinic trans-
ports increase with the linear drag coefficient, with the total
transport increasing from ~285 Sv for r, =2x 10™*ms~! to
~3508v for r, = 1 x 10> ms~'. Thus the theory appears
to capture the “frictional control” of the zonal transport
exhibited in our simulations and previous work (Marshall
et al. 2017), despite mesoscale eddies being entirely pa-
rameterized. In the eddy-saturated regime the standing
wave kinetic energy increases approximately linearly with
the wind stress, consistent with our simulations (see Fig-
ure 6(d)). For wind stresses <0.03Nm™2, the total and
barotropic transports both increase linearly with the wind
stress, while the standing wave kinetic energy rapidly de-
cays to zero as 7, — 0, approximately scaling as SKE ~ 7.

To aid in the interpretation of these results, in Figure 10
we plot the SIFS and TFS terms from (32a)—(32b), nor-
malized by the wind stress. Panel a shows that in all of
these solutions, TFS is almost entirely responsible for re-
moving the wind-input momentum at the sea floor; with
bottom friction (rightmost term in (32b)) playing a neg-
ligible role (c.f Munk and Palmén 1951). Note that in
Fig. 10, the contribution of bottom friction to the momen-
tum balance is given by one minus the “total” curve, i.e.
(1 =TFS/1y). This should not be confused with the con-
tribution of bottom friction to establishing the TFS, which
is plotted in yellow and discussed in the following subsec-
tion. In the saturated regime (7' 20.03Nm~2) the wind
stress is primarily balanced by SIFS; this is to be expected
based on our model simulations, because our theoretical
momentum balance is averaged along latitude lines (see
Figure 3). Thus, provided that the standing waves are pri-
marily responsible for the downward transfer of wind-input
momentum, i.e.

7w =~ SIFS = TFS, 35)

the theoretical model solutions exhibit saturation of the
zonal transport.

15

Figures 10(a) and 10(b) shows that both saturation and
the approximate momentum balance (35) fail for small
wind stresses (7 <0.04N'm~2) because the wind stress
becomes balanced by EIFS instead of SIFS. The approxi-
mate wind stress required for this to occur can be estimated
by computing the EIFS associated with the baroclinic shear
in the saturated regime, i.e. U;—U; ~ 0.1ms~!, which
yields EIFS = EIFS®* ~ 0.008Nm?. Figure 9(b) shows
that this EIFS is small compared with the SIFS in the sat-
urated regime, but for a sufficiently small wind stress we
will reach a situation where ¥ ~ EIFS*®. When this oc-
curs, SIFS can no longer primarily balance the wind stress
and/or the baroclinic shear must decrease. To obtain an
estimate for the wind stress at which this transition occurs,
we use (32a) to predict that the EIFS will balance 50% of
the wind stress when 17, ~ EIFS*! ~ 0.016Nm™2, i.e. for
74X~ 0.032N'm~2. This prediction agrees approximately
with Figure 9(b). In this regime the transport is not satu-
rated; instead, there is a linear dependence of the transport
on wind stress (Figure 9(a)). This occurs because we have
held the meridional eddy diffusivity, k¥ constant. As-
suming that EIFS = 7, in the limit of small wind stress, we
expect the baroclinic shear to scale as

’

8

U -U;— —fopoK(y) Tw

as Tw — 0. (36)

Figure 9 shows that this scaling accurately captures the
total and baroclinic transports predicted by our theory in
the limit of weak wind stress.

c. Dynamics of standing wave saturation

The above analysis demonstrates that saturation of the
zonal transport can indeed occur entirely via adjustments
of standing waves, as suggested by our diagnostics in Sec-
tion 3. However, even from this heavily simplified theory
one can not trivially discern what sets the zonal transport,
nor mechanistically how the standing waves adjust such
that the SIFS compensates changes in the wind stress. To
yield further insight into this process, we use the standing
wave energy budget to relate the SIFS and TFS to energy
dissipation, building on earlier work by Abernathey and
Cessi (2014). Multiplying the upper-layer wave equation
(Equation (31) with k = 1) by 8,41 and zonally averaging,
we obtain, after some manipulations,

SIFS = pole‘ <(a§¢71)2>

1

viscous

B ((0.0) ~(obnin ] @

diffusive
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This equation relates the SIFS directly to dissipative pro-
cesses associated with the eddy viscosity and the eddy
diffusivity. Thus the SIFS can only occur in the presence
of (parameterized) transient eddy PV fluxes (c.f. Treguier
and McWilliams 1990; Straub 1993). Similarly, we mul-
tiply the lower-layer wave equation (Equation (31) with
k =2) by 95> and zonally average to obtain, after further
manipulations,

TFS = ;—1’2 <(ax&2)2>x
2

frictional
) o)

viscous

i 5 {(@e) + (@)

+v

X

| | (38)
(g (daa.in),|

diffusive

This equation relates the TFS directly to dissipative pro-
cesses associated with the linear friction, the eddy viscos-
ity and the eddy diffusivity. Physically, the relationships
(37)—(38) arise because the SIFS and TFS extract energy
from the mean flow and convert it to standing wave energy.
This standing wave energy source must be balanced by cor-
responding sinks, which are provided either by frictional
energy dissipation or via conversion to transient eddy en-
ergy.

In Figure 10 we quantify the contributions of bottom
friction, eddy viscosity, and eddy diffusivity to the TFS
and SIFS, computed via (37)—-(38). In the eddy-saturated
regime (7 20.04Nm~2), the TFS is primarily (~70%)
supported by viscous dissipation, with diffusive and fric-
tional dissipation making relatively minor contributions.
Consistent with this, Bai et al. (2021) found that includ-
ing a horizontal eddy viscosity substantially enhanced the
TFES in a similar, barotropic standing wave theory, and was
necessary to produce qualitative agreement between the
theory and numerical simulations. Physically, this implies
that the production of standing wave energy associated with
topographic form stress is primarily removed via (parame-
terized) eddy viscous dissipation. The SIFS is consistently
supported in almost equal parts by viscous and diffusive
dissipation. Given that (35) holds approximately, and given
that the upper-layer zonal velocity is approximately inde-
pendent of the wind stress (because U; > U, and U; — U2
is insensitive to the wind stress), these diagnostics imply
that the rate of standing wave energy dissipation must in-
crease linearly with the wind stress. Noting that the second
“diffusive” term in (37) is empirically negligible compared

with the first (not shown), this implies that the SKE scales
as

SKE ~ 7%, (39)

This linear relationship between the standing wave kinetic
energy and the wind stress is consistent both with our theo-
retical solutions in the eddy-saturated regime (Figure 9(d))
and with our channel model simulations (Figure 6(c)).

5. Discussion and Conclusions

This work was motivated by the divergent previous ex-
planations of the “eddy saturation” phenomenon, i.e. the
approximate independence of the ACC transport to changes
in the mean zonal winds. Specifically, various previous
studies have either posited that “eddy saturation” occurs as
a result of changes in the efficiency of eddy transfer (Mar-
shall and Radko 2003; Meredith et al. 2012; Marshall et al.
2017; Mak et al. 2018), or argued that it occurs as a re-
sult of “flexing” of the ACC’s standing meanders (Thomp-
son and Naveira Garabato 2014; Nadeau and Ferrari 2015;
Constantinou and Hogg 2019). As is evident from the
alongstream-averaged momentum balance utilized in this
study, eddies play a central role in the downward transfer
of wind-input momentum (see Figures 1 and 3), or equiv-
alently the southward transport of heat (Vallis 2006). This
is consistent with previous studies showing that eddy heat
fluxes across mean streamlines are approximately equal to
the combined heat flux due to standing plus transient ed-
dies across lines of constant latitude (Marshall et al. 1993;
Abernathey and Cessi 2014). The focus of this study is
on the mechanisms via which this downward transfer of
momentum along mean streamlines by transient eddies re-
sponds to changes in the surface wind stress. As shown
in Section 2b, changes in this transient eddy momentum
transfer results from a combination of: a) changes in the
efficiency with which the eddy field transfers momentum
down the vertical gradient in the mean flow; or b) a restruc-
turing of the mean flow that allows the eddies to transfer
more momentum downward in a circumpolar integral. The
former corresponds to an increase in the eddy diffusivity,
k, as discussed in Section 2c. The latter may correspond
to a combination of lengthening of the standing meanders
(Thompson and Naveira Garabato 2014) and spin-up of
gyres abutting the circumpolar flow (Nadeau and Ferrari
2015), which we collectively refer to as an adjustment of
the “standing waves”.

In this study we sought to distinguish between these
previously-proposed mechanisms of “eddy saturation”
via analysis of hundreds of simulations using an eddy-
resolving, two-layer channel model (Section 2a). These
simulations exhibit saturation of the zonal transport (Fig-
ure 5), with changes in wind-input momentum being ac-
commodated by changes in the eddy IFS along mean
streamlines (Figure 7). To isolate the mechanism of “eddy
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saturation”, we therefore decomposed the alongstream-
averaged eddy IFS into multiplicative contributions from
the eddy diffusivity and the structure of the mean flow
(Equation (17)). We then separately diagnosed « and the
mean flow from each of our model simulations, allowing us
to create approximate reconstructions of the alongstream-
averaged eddy IFS (Figure 3). Viareconstructions based on
independent variations of « and the mean flow, we showed
that varying the mean flow alone approximately recon-
structs the diagnosed eddy IFS across our suite of experi-
ments (Figure 7). In contrast, varying « alone yields amuch
less accurate reconstruction of the diagnosed eddy IFS; in-
deed, for a realistic range of wind stresses (2 0.1 Nm™)
the eddy IFS is approximately insensitive to variations in «.
We therefore concluded that, at least in this suite of model
simulations, “eddy saturation” is primarily attributable to
adjustment of standing waves, rather than transient eddies.

Motivated by this finding, we posed a quasi-geostrophic
theory of our idealized ACC in which « is held constant,
and thus saturation can only occur via adjustment of stand-
ing waves (Section 4a). This theory is distinguished from
previous studies (e.g. Abernathey and Cessi 2014) primar-
ily via the separate treatment of eddy vertical momentum
transfer, proportional to «, and lateral eddy momentum
fluxes, proportional to the eddy viscosity v. However, the
assumptions underpinning the theory produce qualitative
differences from our channel model simulations (compare
Figures 3(a) and 8). Thus, while the theory serves to
demonstrate that eddy saturation can occur purely via ad-
justment of standing waves (Figure 9), it is difficult to
directly compare its predictions with the diagnostics from
our simulations. Furthermore, one might hope that the rel-
ative simplicity of our theory might facilitate the derivation
of further simplified scalings, for example to elucidate the
parameter dependence of the zonal transport. Though our
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efforts have failed to acquire such insights thus far, fur-
ther study of the model equations may prove fruitful. The
theory nonetheless offers transferable insights into the dy-
namics of standing wave-induced saturation; for example,
it predicts that the standing wave kinetic energy must in-
crease linearly with the wind stress in order to produce a
saturated zonal transport (Figures 6(c) and 9(d) and Sec-
tion 4c¢).

A caveat of our overall approach is that the posing of
our channel model simulations and quasi-geostrophic the-
ory is highly idealized, which raises questions regarding
the transferability of our findings to more realistic model
configurations and to nature. Future studies could test
our conclusions by extending the eddy IFS decomposition
(Section 2b) and mean flow eddy diffusivity perturbation
analysis (Section 3) to more realistic model configurations.
A specific caveat of this perturbation analysis is that it sim-
plistically perturbs the mean flow or « at each horizontal
point in space (see Figure 7), which could skew the result-
ing eddy IFS calculations in some situations. For example,
if we applied a wind perturbation of sufficient magnitude
to substantially shift the path of the mean flow over the
topographic ridge, then the mean flow streamlines in that
simulation may no longer traverse the region of maximum
EKE and « in the reference simulation (Figure 4), and this
may be expected to bias the calculation toward a smaller
eddy IFS. This may explain why the reconstructed eddy IFS
with fixed « and varying mean flow under-predicts the di-
agnosed eddy IFS in the experiments with the largest wind
stresses (Figure 7(b—c)). It may be possible to circumvent
such issues via more dynamically-based perturbations; for
example, one might be able to empirically derive a relation-
ship between « and the mean flow (&) in each experiment,
i.e. k=~ k(u), and then attempt to reconstruct the eddy IFS
by independently perturbing w and the functional relation-
ship x () across all of the experiments.

It also remains to be understood why this and previ-
ous model studies have exhibited apparently contradictory
mechanisms of eddy saturation. For example, previous
modeling studies that have argued for saturation by tran-
sient eddy adjustment (Meredith et al. 2012; Munday et al.
2013; Marshall et al. 2017; Mak et al. 2018) have reported
that the EKE scales linearly with the wind stress, whereas
in our simulations it scales sub-linearly (Figure 6). A com-
mon feature of these previous studies is that they use a
linear formulation of the bottom friction; this, in part, mo-
tivated us to conduct a parallel suite of experiments with
linear bottom friction (see Appendix B). For weak winds
stresses (< 0.1Nm™2), independently varying x more accu-
rately reproduces the changes in the diagnosed alongstream
eddy IFS than does independently varying the mean flow,
indicating that the saturation may be a result of transient
eddy adjustments. However, for a realistic range of wind
stresses (2 0.1Nm™2) the transport saturation appears to
be better explained by variations in the mean flow. These

experiments suggest that the formulation of bottom friction
may be an essential element of “eddy saturation”. Further
work is required to assess whether this does indeed explain
the differences in saturation behavior proposed in previous
modeling studies, and perhaps to assess which formulation
of bottom friction is most accurate at the scales of motion
represented by the models (Arbic and Scott 2008).

In addition to partly reconciling previous explanations
of the “eddy saturation” phenomenon, these findings
also have implications for coarsely-resolved ocean/climate
model simulations that must parameterize the effects of
mesoscale eddies (Gent and McWilliams 1990; Gent et al.
1995). If “eddy saturation” is primarily the result of tran-
sient eddy adjustments, then this motivates the use of pa-
rameterization schemes that allow « to adapt to changes in
surface wind stress (Marshall and Radko 2003; Mak et al.
2018,2022). In contrast, if saturation is primarily the result
of standing wave adjustments then much simpler param-
eterization schemes may suffice, provided that the stand-
ing waves are resolved. Consistent with the latter, (Farneti
etal. 2015) found that an ensemble of interannually-forced,
coarse-resolution global ocean simulations consistently ex-
hibited independence of the baroclinic transport from the
wind stress. Kong and Jansen (2021) compared simula-
tions with resolved and parameterized eddies in an ideal-
ized Southern Ocean sector model. They found that even a
coarse simulation with a constant « had a similar wind forc-
ing response to that of an eddy-resolving simulation, con-
sistent with our idealized quasi-geostrophic theory. These
findings suggest that the key to representing “eddy sat-
uration” in coarse ocean/climate models is to resolve or
parameterize the standing wave response, rather than the
transient eddy response, to wind changes.
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Momentum balance in latitudinal and streamline
coordinates

In this Appendix we provide complete expressions for
the isopycnal momentum balances discussed in Section 2b
and presented in Figure 3. In all of these expressions the
hyperviscous stress tensor and the diapycnal (restoring)
velocity, all of which contribute negligibly to the zonally-
or alongstream-averaged momentum balance. We neglect
the Coriolis term because there is no overturning circula-
tion in our model simulations, and thus this term is also
negligible.

a. Zonally-averaged momentum balance

The depth-integrated, zonally-averaged zonal momen-
tum balance is given by

0 —
).
—————

tendency

0 <—AA 0 |—7F 1
- -— hkvkuk> - —<hkv u >
mean advection

o . 1 [—t
- (o) + ——<Tt§"> > . (AD)
X x PO Lo x

~—.—— ——
wind stress  bottom friction

eddy advection

topographic form stress

and the upper layer zonally-averaged zonal momentum bal-
ance is given by
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——
mean IFS eddy IFS wind stress

b. Alongstream-averaged momentum balance

To present the alongstream-averaged momentum bal-
ance, we first define the alongstream-averaging operator
for an arbitrary vector a,

(a)MzLLf;[ a-ds. (A3)
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The depth-integrated, alongstream-averaged momentum
balance is then

tendency

—_—

V- (), - S (v (),

mean advection

eddy advection

—<EVE>M +<T—W:ﬁ> —<E> . (Ad)
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—

topographic form stress iy giress bottom friction

and the upper layer alongstream-averaged momentum bal-
ance is

g ), == (v (i), (v (R,

mean advection

tendency eddy advection
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———
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APPENDIX B

Simulations with linear bottom friction

In this Appendix we reproduce the results presented in
Section 3 using diagnostics from our suite of experiments
with a linear, rather than quadratic, formulation of the
bottom friction.

Figure B1 shows the sensitivity of the total, barotropic
and baroclinic transports to variations in the wind stress
and linear friction velocity. These sensitivities closely
resemble those shown in Figure 5, albeit with a somewhat
larger range of transports in response to the range of friction
velocities explored here.

Figure B2 shows the sensitivity of the transient eddy
diffusivity (averaged over the “storm track” region), the
domain-averaged eddy kinetic energy, and the domain-
averaged standing wave kinetic energy to variations in the
wind stress and linear friction velocity. These sensitivi-
ties also qualitatively resemble their counterparts in Fig-
ure 6. However, in these simulations « and EKE increase
with wind stress slightly faster than in the simulations with
quadratic friction: least-squares fits over all of our simula-
tions yield k ~ 77 and EKE ~ 798,

Figure B3 shows our reconstruction of the eddy IFS
resulting from independent variations of the eddy diffu-
sivity and the mean flow across our suite of simulations.
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Fic. B1. As Figure 5, but with diagnostics drawn from our suite of chan-
nel model simulations with a linear formulation of the bottom friction.

Similar to our simulations with quadratic bottom friction,
the eddy IFS consistently dominates the alongstream mo-
mentum balance. However, the results of our eddy IFS
reconstructions differ substantially from our experiments
with quadratic bottom friction, with distinct behaviors for
wind stresses larger than the reference case versus smaller
than the reference case. For larger wind stresses, holding «
fixed and varying the mean flow provides a more accurate
reconstruction of the eddy IFS, although the accuracy is
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Fic. B2. As Figure 6, but with diagnostics drawn from our suite of chan-
nel model simulations with a linear formulation of the bottom friction.

lower than found in the quadratic friction experiments (see
Figure 7). For smaller wind stresses, the result is reversed:
holding the mean flow fixed and varying k provides a more
accurate reconstruction of the eddy IFS. In contrast, hold-
ing « fixed and varying the mean flow leads to the eddy
IFS decreasing too rapidly with the wind stress.
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Eddy interfacial form stress along latitude lines

Our quasi-geostrophic theory of “eddy saturation” (see
Section 4) employs a different eddy diffusivity « to pa-
rameterize transient eddy transfer of momentum down the
vertical gradient of the zonal-mean flow. Here we justify
this choice via analysis of the zonally-integrated zonal mo-
mentum balance. Figure C1(a) shows the domain-averaged
zonal wind stress, zonal component of the mean IFS and
zonal component of the eddy IFS for experiments with
varying wind stress maxima and constant quadratic drag
coefficient Cyq = 2 x 1073,
downward transfer of momentum is consistently dominated
by the mean IFS, with the eddy IFS reaching at most 20%
of the wind stress for very weak wind stresses. We esti-

Consistent with Figure 3, the

mate x) using the domain-averaged zonal component of

the eddy IFS and the domain-averaged zonal mean flow via

L.V ’ ’
o & A dy<p,78xn >x o
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Figure C1 shows that the diagnosed x*) across our suite
of experiments with varying wind stresses and quadratic
drag coefficients. For wind stress maxima smaller than
~0.17Nm™2, k¥ typically lies between 0 and 100m?s~!,
depending on the drag coefficient. For larger wind stress
maxima the diagnosed «) varies widely with the drag
coeflicient, with various experiments seemingly simulating
up-gradient momentum transfer by transient eddies in a

domain-average.
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