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ABSTRACT: Particularly important to hurricane risk assessment for coastal regions is finding accurate approximations of
return probabilities of maximum wind speeds. Since extremes in maximum wind speed have a direct relationship with mi-
nima in the central pressure, accurate wind speed return estimates rely heavily on proper modeling of the central pressure
minima. Using the HURDAT? database, we show that the central pressure minima of hurricane events can be appropri-
ately modeled by a nonstationary extreme value distribution. We also provide and validate a Poisson distribution with a
nonstationary rate parameter to model returns of hurricane events. Using our nonstationary models and numerical simula-
tion techniques from established literature, we perform a simulation study to model returns of maximum wind speeds of
hurricane events along the North Atlantic coast. We show that our revised model agrees with current data and results in an
expectation of higher maximum wind speeds for all regions along the coast, with the highest maximum wind speeds occur-

ring along the northeast seaboard.
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1. Introduction

Hurricanes and tropical storms bring massive societal im-
pacts and cause economic instabilities. Known for their high
wind speeds and downpours, these storms are often accompa-
nied by flooding, wind damage, and travel hazards that lead to
large-scale evacuations and a national emergency response.
Talk of climate change in recent years and more frequent ob-
servations of extreme weather events has inspired research
into techniques that provide more accurate estimates of re-
turns and return times of extremes (Bloemendaal et al. 2020,
Carney et al. 2019; Carney and Kantz 2020; Knutson et al.
2019; Keim et al. 2004; Muller and Takayabu 2020; Patricola
and Wehner 2018; Lucarini et al. 2016; Trepanier 2020).

Particularly important in hurricane risk assessment for
coastal regions is finding accurate approximations of the re-
turn probabilities of maximum wind speeds. There have been
several studies surrounding maximum wind speed return esti-
mates for hurricanes occurring along the North Atlantic coast
(Batts et al. 1980; Ho et al. 1987; Casson and Coles 2000;
Simiu et al. 1995; Vickery and Twisdale 1995). Many of these
studies use the retired HURDAT database, which has since
been discounted as an unreliable source for future prediction
modeling. Casson and Coles (2000) purposed a hurricane
model that allows for approximations of maximum wind
speed returns using the tracks and central pressure minima.
The advantage of a model over raw data analysis is that a
large number of hurricanes can be simulated to provide more
accurate estimates of the tail probabilities and longer year re-
turns of such rare events. The simulation results of this model
are in good agreement with the other models and analyses of
that decade. However, our findings suggest that this model
does not hold up in accuracy when fitted to the updated
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HURDAT?2 database. These inaccuracies can be almost en-
tirely attributed to systematic trends in the observed central
pressure and frequency of hurricane events over recent years.

Although there are many factors in a hurricane event that
affect the maximum wind speed, we find that the most influen-
tial for risk assessment are the central pressure minima and
translational velocity of a hurricane at the time of impact with
the coast. Since the central pressure minima have a direct re-
lationship with the wind speed maxima, a better estimate of
their probability distribution can provide more accurate re-
turns of extreme highs of wind speed maxima along the coast.
Models of an extreme (e.g., minima or maxima) most often
take the form of an extreme value distribution (Coles 2001;
Lucarini et al. 2016). These distributions have been studied
extensively; however, revisions for more complex data analy-
sis settings are often required.

Following the work in Casson and Coles (2000), we show
that we can still reliably model the central pressure minima
of a hurricane event using the generalized extreme value
distribution (GEV); however, a previously unobserved time
dependent trend in the central pressure minima requires
adaptations in both the model and method. We also provide
evidence for a Poisson distribution with a time-dependent
rate parameter to model the number of yearly hurricane
events that continues into the modern era (post-1965),
which previous literature has assumed to be stationary
(Casson and Coles 2000).

Recent work by Bloemendaal et al. (2020) has introduced
a synthetic resampling algorithm (STORM) that can be ap-
plied to large-scale tropical cyclone datasets to extend the
dataset in a way that preserves the statistics from the origi-
nal. Statistical resampling techniques can allow for more ac-
curate estimates on the returns of rare events, such as
returns of tropical cyclones, provided the underlying distri-
butions are stationary. In contrast, our approach accounts
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TABLE 1. Description of variables in the wind field model and their dependence.
Variable: 14 Rinax b, A u,
Depends on: Rinax, & Do Us ¢, and sampled Historical data Historical data Historical data (bre—15 Pre—1)

for observed nonstationarity in the statistical parameters of
the central pressure minima of historical tropical cyclones
with longer lifetimes (7" = 150 h).

Trends in frequency and intensity of hurricane events have
been observed throughout the literature, informed by both his-
torical data and generated data coming from complex climate
models, such as general circulation models (GCMs) of the atmo-
sphere. Results described in Keim et al. (2004) indicate that there
is strong evidence of an increase in the number of very powerful
storms over the past 50-100 years in the North Atlantic Ocean
basin and the Gulf of Mexico, after the inclusion of both ENSO
and the North Atlantic Oscillation. This claim is supported by
historical data and agrees well with results from GCMs under
global warming conditions. In addition, marginal trends in cen-
tral pressure have been noted as far back as 1995 (Hirsch et al.
2001). We find complementary results with regard to increases in
the rate of returns of hurricane events with longer lifetimes and
trends in central pressure minima. We refer the reader to Keim
et al. (2004) for a nice introductory review of the past literature
on trends in frequency and power of tropical storms.

Our revised model results in two major differences in the
simulation of coastal risk analysis of hurricane events: 1) higher
maximum wind speeds are expected for all regions along the
North Atlantic coast, including the Gulf Coast, and 2) the high-
est maximum wind speeds are expected to occur along the
northeast seaboard. Higher maximum wind speeds are likely
due to a combination of the central pressure minima time de-
pendence and increase in the number of observed hurricane
events incorporated into the model. The second observation is
arguably more surprising since the number of hurricane events
hitting the coast in the north is much lower than regions near
the Gulf of Mexico. An increase in the translational velocity as
hurricanes travel northward explains this effect.

A recent investigation using the HURDAT?2 database also
finds an expected increase in returns of extreme wind speeds
along the North Atlantic coast; however, this study assumes a
fixed warming effect in the surrounding ocean and estimates
returns from data-based relationships of extreme wind speed
with sea surface temperature so that returns are estimated in
a stationary setting (Trepanier 2020).

2. Method

a. The wind field model, maximum wind speeds, and
minimum pressure

We describe the wind field model introduced in NOAA
(1972) and the relationship between maximum wind speeds
and minimum central pressure. Given the center location
(¢, ¥,) in the usual geographic coordinates (degrees latitude
and longitude, respectively) and central pressure p, in hectopas-
cals of a hurricane measured at the eye at time ¢, the wind field
model allows us to model the stochastic process of maximum
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wind speeds of a hurricane as a sequence of random variables
sampled at any given time ¢ by

R (@)f
2

V(R x> &5, 1t,) = 0.865| K+\/Ap, — + 0.5u,,
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where K is a constant [m (s hPa'?)"!], f = wsind, is the Corio-
lis parameter o = 7.2982 X 107* 57!, Ap, = 0.75(1013 — p,) is
the pressure differential, Ry.x(¢,) is the radius to maximum
wind speeds in meters sampled from the distribution in Fig. A2
of appendix A, and u, is the translational velocity in meters per
second at time ¢. The translational velocity u, at a time ¢ is esti-
mated as the change in the distance, in meters, of the center of
the hurricane

N T

over the change in time, in seconds, from time index t — 1 to
time index ¢. For more information on how the variables in
the wind field model are related see Table 1.

Throughout this article, we will define a hurricane event as
a tropical cyclone taking any form (e.g., tropical depression,
tropical storm, or hurricane) and denote the total lifetime of a
hurricane event as a length of indexed time T representing
the total number of 6-h time intervals passed since formation.
For any given hurricane event, if we are given the track
(¢r, ¥,) and central pressure time series p,, we may use Eq. (1)
to reconstruct the maximum wind speed V(Rmax, &, P, ;) for
allt =1, ..., T, where t is the index number of 6-h time inter-
vals passed since formation. From Eq. (1) we can see that ex-
treme highs of the maximum wind speed occur for extreme
lows of central pressure. Hence, it is important to accurately
model the central pressure minima of a hurricane event in or-
der to estimate longer year returns and rare threshold exceed-
ances of maximum wind speeds. Furthermore, central
pressure minima often occur at or near landfall so they are
particularly important for estimating coastal risk. [We refer to
Fig. A1 of appendix A for an illustration of the estimated den-
sity plot of central pressure minima occurrence times to land-
fall times estimated from the tracks of historical hurricane
events used in this analysis, which agrees nicely with the den-
sity plot found in Casson and Coles (2000, their Fig. 4).]

We can use tools from extreme value theory to model ex-
tremes of a time series (e.g., minima or maxima). One well-
known strategy is to approximate the set of maxima (or nega-
tive minima) taken over blocks of a fixed length m of a set of
independent and identically distributed random variables by
the GEV given by

—1/k
Gx) = exp{— [1 - Lx; M)j } 2
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forx: 1 + k[(x — p)/o] = 0, where p is the location parameter,
o > 0 is the scale parameter, and k is the shape parameter
that defines the tail behavior of G. Under certain regularity
conditions, we may use maximum likelihood estimation of the
parameters pu, o, and k to fit the GEV to the block maxima
(or negative minima) where each parameter estimate is as-
ymptotically normal provided & > —0.5 (Coles 2001).

By a standard max-stable argument it is not necessary that
the block length m be fixed, as long as it is long enough so
that the maxima (or negative minima) can be modeled by its
asymptotic GEV. By the same argument, the GEV that is fit
to blocks of varying length is related to G from Eq. (2), with
different w = p* and o = o* parameters. A result of this max-
stability property is that we may model the central pressure
minima of hurricane events coming from historical records
with varying lifetimes 7. That is, we may model the negative
central pressure minima

Ponin = mtinpr forr=1,...,T 3)

by the GEV provided the lifetime of each hurricane event is
long enough. We will refer to 7, as the time in the total life-
time of the hurricane event that the central pressure minimum
is reached.

We can relax the requirement of strict independence for the
GEV in (2) provided the time series is weakly dependent and
stationary; see, for example, Leadbetter et al. (1983, chapter 3)
or Lucarini et al. (2016). Using historical recordings from the
HURDAT?2 database, we find that the central pressure mi-
nima have the same dependence as in Casson and Coles
(2000) on the lifetime 7 and the latitude d),pmm where the
central pressure minima occurs. (Figure C1 in appendix C
depicts scatterplots of the central pressure minima against
the lifetime 7 and latitude ¢,  for landfalling and non-
landfalling hurricanes.) fmin

We limit our model to hurricanes with lifetimes 7' = 25 =
150 hours to ensure convergence of the negative central pres-
sure minima to a GEV distribution. See, for example, the de-
scription in Coles (2001, chapter 5.3.1) on GEV models of
block maxima or Leadbetter (1974) for estimates on conver-
gence rates of stationary sequences X, to the GEV, where we
assume a convergence rate of O(n~ ") for some r = 1 due to
the natural boundedness of central pressure (i.e., central pres-
sures are assumed not to be able reach infinity). There are 642
hurricane events over 1851-2019 in the HURDAT?2 database
that satisfy this requirement (300 landfalling and 342 nonland-
falling). Central pressure minima from 1851 to 1960 are often
recorded for a single time index ¢ along the lifetime of the hur-
ricane event. The corresponding tracks of these hurricane
events are estimated using a best tracks procedure (NOAA
1972). While the accuracy of recording the exact central pres-
sure minima would be influenced by the number of locations
available to measure central pressure along the track, and
hence be lower for these years, we remark that the central
pressure minima were often recorded near landfall where we
observe the highest chance of central pressure minima occur-
ring over all years (1851-2019). Still, in light of the possibility
of data-measuring inaccuracies in early year recordings
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(1851-1960), it would be interesting to apply our methods,
outlined here for the HURDAT? historical dataset, to the re-
cently generated STORM dataset in a future investigation
(Bloemendaal et al. 2020).

We use maximum likelihood estimation on the parameters
of the locally stationary GEV model proposed in Casson and
Coles (2000). Although the central pressure minima pp,, are
sampled from independent hurricane events, they have some
underlying dependence on both the lifetime 7" and latitude
d),pmm of the hurricane event, which is accounted for in the lo-
cation p and scale o parameters of this locally stationary
model. We find poor fits for quantile plots of this locally sta-
tionary model.

A natural question is whether there exists some time de-
pendence in the distribution of central pressure minima.

b. A nonstationary model for central pressure minima

We investigate the time dependence in the location w and
scale o parameters of central pressure minima for landfalling
and nonlandfalling hurricanes. As a preliminary investigation,
we split the central pressure minima into two parts, central
pressure minima of hurricane events occurring between 1851
and 1980 and those occurring between 1981 and 2019 and then
test whether a statistically significant change in the statistical
parameters is observed. We perform an F test for equal vari-
ance that indicates the variance of the central pressure minima
for landfalling hurricanes has significantly changed (p = 0.004)
in the last 40 years. We obtain a similar result using a ¢ test for
equal means of the central pressure minima for nonlandfalling
hurricanes (p = 0.012). Normality assumptions for the ¢ test
are met by a moderately large sample size and the central limit
theorem, 176 and 166 nonlandfalling hurricanes over
1851-1980 and 1981-2019, respectively. On the other hand, re-
sults from the F test are reasonably robust against nonnormal-
ity provided our sample sizes are similar and moderately large
(Donaldson 1966), 166 and 134 landfalling hurricanes over
1851-1980 and 1981-2019, respectively. Preliminary investiga-
tions into the time dependence of the shape k parameter
showed no obvious trend, so it is taken as constant.

Motivated by the observed difference in the statistical pa-
rameters of the central pressure minima in the last 40 years,
we now investigate the possibility of a time-dependent trend
in the location and scale parameters of the locally stationary
model proposed by Casson and Coles (2000). This locally sta-
tionary model asserts a dependence of the location u and
scale o parameters on the lifetime 7 of the hurricane and lati-
tude ¢, of the central pressure minima. We use this model
as a basis for checking the time dependence of the w and o pa-
rameters in the GEV described by Eq. (2). We begin by per-
forming maximum likelihood estimation of all the coefficient
parameters used in the locally stationary model. Maximum
likelihood estimation is performed on subsets of the 300 (simi-
larly, 342) historical values of central pressure minima from
landfalling (similarly, nonlandfalling) hurricanes taken over
moving time windows of 40 years with a time step of 1 year by
maximizing the negative log-likelihood of the locally station-
ary GEV defined by



(Poin) = —hlogo(T, d)t] )= [+ (k)]
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where fy, = year — 1851 and 4 is the number of central pres-
sure minima p, ; occurring in the 40-yr window [ty,, t, + 40].
We choose 40-yr windows because 1) we observed a statisti-
cally significant difference in the location and scale parame-
ters over the last 40 years and 2) 40 years of central pressure
minima is a long enough period to obtain reasonable confi-
dence intervals (ci) around our maximum likelihood esti-
mates. Our final result is a set of time series representing the
maximum likelihood values of the coefficient parameters in
the locally stationary model. We then reconstruct the time se-
ries of the location, u(ty,), and scale, o(ty,), using the relation-
ships described in the locally stationary model and the
historical values of 7'and ¢, . From now on, we will refer to
the time series w(t,;) and o(ty,) as the location time series and
scale time series, respectively, to differentiate between the
other time series in this investigation.

For each 40-yr window, the set of lifetimes 7" and locations
‘1’:,, of historical hurricane events occurring in the 40-yr win-
dow are used to estimate the coefficients of the locally station-
ary model described in Egs. (B1) and (B2) of appendix B for
landfalling and nonlandfalling hurricanes, respectively. Since
the location time series for the nonlandfalling case has a de-
pendence on the lifetime, 7, we fix such a T to construct the
location time series, which results in 342 location time series
taken from the 342 fixed values of historical recordings of T
(one for each hurricane event). This is in contrast to the scale
parameter of landfalling hurricanes, which does not have a
dependence on T or ¢, and, as a consequence, results in a
single scale time series.

Unreliable maximum likelihood estimates of the location
and scale parameters in the years 1851-1960 are found and
are due to low numbers of recorded hurricane events with
lifetimes 7" = 25 where the yearly average over this time pe-
riod is 1.324. Nevertheless, continuous time-dependent trends
are noticeable after 1960 for parameters in both the landfal-
ling and nonlandfalling case.

To determine whether a trend is reliable, we perform the
Mann-Kendall test for trend on all the location and scale
time series. We find a positive statistically significant trend
for the scale parameter in the landfalling case and a nega-
tive statistically significant trend for all time series of the lo-
cation parameter in the nonlandfalling case. Trends were
evaluated using the Kendall correlation coefficient 7, with
95% confidence intervals calculated following (Hollander
et al. 2015, chapter 9.3). The Kendall correlation coefficient
is estimated for all years and for years from 1960 to 2020,
for comparison. For an illustration of the trend results and

‘min
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FIG. 1. Time series of parameter o(t,;) = o(t,;) coming from the
stationary model for —p, (hPa) of landfalling hurricanes con-
structed from likelihood estimates. The value 7, is the Kendall cor-
relation coefficient. The x axis represents the end year of the 40-yr
time window chosen for likelihood parameter estimation. Dark
circles highlight the maximum likelihood estimates of the of(ty,) pa-
rameter after 1960 (end year) when the quantity of recorded hurri-
cane events in the 40-yr time window produce reliable maximum
likelihood estimates. Crossover of 95% confidence intervals of 7,
indicated by a dashed line, is a result of choosing the median as the
intercept for plotting.

parameter time series see Figs. 1 and 2, respectively. We do
not find clear evidence for a reliable trend in the location
time series for the landfalling case or the scale time series
for the nonlandfalling case.

From these results, we propose the following nonstationary
model (fy, = year — 1851 is the yearly index):

=, + p, log(T) + p,zd)tpm , O=0y t oty k = kg,

®)
for landfalling hurricanes, and
w= by o log(T) + y loglty,), o =0y + 0y,
k =k, (6)

for nonlandfalling hurricanes. Maximum likelihood estimates
from the negative log-likelihood of Eq. (2), with location and
scale parameters given by Egs. (5) and (6), and standard er-
rors (se) estimated from the information matrix are provided
in Table 2. We find using the likelihood ratio test (LRT) that
our revised nonstationary model for central pressure minima
offers a statistically significant better fit to the data than the
stationary model with test statistics well beyond Ag s = 3.84,
the statistic corresponding to the a = 0.05 significance level
with 1 degree of freedom (see A in Table 2).

Results from Kim et al. (2017) indicate that for sample sizes
of greater than 40 (ours is on the order of 300 for each
model), the LRT has the best performance across other
model methods [Akaike information criteria (AIC), corrected



NOVEMBER 2022 CARNEY

)
©
2]
a

©
<
S)
T
L

©

Q

o
T
L

7, =-0.7585

©

®

oS
T
L

©
®
a
T
L

©

©

o
T

location parameter of the locally-stationary model (hPa

1940 1960
year

(a)

995 ;

1880 1900 1920 1980 2000 2020

ET AL. 1639

80

70+

frequency
=3 w {23
o o (=3

[
=]

201

-09 -085 -0.8 -0.75 -05 -0.45

FIG. 2. (a) An example time series of parameter u(tyr) = uo(tyr) + wi(tyr) log(T), for a single sampled 7. The value
7p is the Kendall correlation coefficient. The x axis represents the end year of the 40-yr time window chosen for likeli-
hood parameter estimation. Dark circles highlight the maximum likelihood estimates of the u(ty,) parameter after
1960 (end year) when the quantity of recorded hurricane events in the 40-yr time window produces reliable maximum
likelihood estimates. (b) The 7, for all time series of w(ty,), illustrating that all time series have a statistically significant
negative Kendall correlation coefficient. Crossover of 95% confidence intervals of 7, indicated by a dashed line, is a

result of choosing the median as the intercept for plotting.

AIC (AICc), and Bayesian information criterion (BIC)] to
appropriately estimate the nonstationary GEV with time-
varying location parameter while the AIC performs better for
time-varying location and scale parameters; however, the au-
thors state that they expect the AIC outperforms other meth-
ods because of its tendency to select more complex models.
Informed by the preliminary investigation into the time de-
pendence of location and scale parameters in the data, we did
not see a reason to increase the complexity of our model. It
would be interesting to investigate the possibility of using the
AIC for future models where there is evidence for multiple
time-varying parameters in our GEV model.

c. Poisson returns of hurricane events and
a nonstationary rate parameter

We investigate a Poisson model for yearly returns of hurri-
cane events where the number of expected yearly hurricane
events is increasing over time.

Returns of extreme hurricane events, such as low central
pressure minima or high maximum wind speeds, are often re-
ported in terms of an n-yr return. To interpret returns in this
way, our model must consider how often a hurricane event oc-
curs in a given year. Classically, it is expected that a rare
event, such as a hurricane, is modeled by a Poisson distribu-
tion given by

AKE—M
Ko

PX =K) = (7
where 1 = r/t is the rate parameter estimated as the number
of events r in a given time ¢.

Under the assumption of stationarity, the authors in
Casson and Coles (2000) estimate a fixed rate parameter,
A = 5.45 hurricane events per year, as the average number
of returns of a hurricane in a given year over 1965-94.
With more data available in the HURDAT?2 database, we
are able to estimate the time-dependent yearly rate param-
eter 4, over 20-yr sliding windows from 1851 to 2019. We
refer the reader to Fig. 3 for an illustration of the esti-
mated yearly rate parameter.

We fit an exponential to the time-dependent Poisson rate
parameter 4, by maximizing the negative log-likelihood func-
tion with reérpect to parameters a and b of our exponential
model,

/“Ltw = ae’. 8)

Maximum likelihood estimates and confidence intervals of
a and b can be found in Table 3. Our model for hurricane re-
turns does not differentiate between landfalling and nonland-
falling hurricane events due to the nature of the simulation in

TABLE 2. Maximum likelihood estimates of the parameters in the nonstationary generalized extreme value distribution model for
—Pmin- Time-dependent parameters are marked with an asterisk. Likelihood ratio test statistics for our revised nonstationary model

of —pmin against the stationary model are indicated by A.

Type Ko (se) w (se) 2 (se) o (se) gy (se) k (se) A
Landfalling ~1078.97 (14.48)  32.87 (3.60) -0.52 (0.16)  12.47 (1.86) 007 (0.02)°  —0.13 (0.04)  15.62
Nonlandfalling ~ —1027.13 (13.65)  27.40 (2.76) ~ —11.47 (1.84)° 2048 (2.04)  —0.16 (0.06)  —0.13 (0.04)  30.77
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FIG. 3. Maximum likelihood estimate of the Poisson parameter
for yearly hurricane event rates with lifetimes greater than
6.25 days. Estimates are taken over 20-yr moving time windows.
Standard errors are marked with dotted lines. The fitted exponen-
tial model is represented by a thick line. Grayed areas correspond
to those in Vecchi et al. (2021): 1) 1878—year when the U.S.
Signal Corps began cataloging all Atlantic Ocean hurricanes;
2) 1900—year when the U.S. coast was sufficiently well populated
for monitoring; 3) modern era with appropriate ship density.

the final section. This is because tracks of a simulated hurri-
cane are generated by randomly sampling a historical track
and adding noise. To compare our results with current litera-
ture, we separate the discussion of returns of hurricane events
for landfalling and nonlandfalling hurricanes in the para-
graphs below.

There is some debate on whether the average number of
hurricane events is increasing generally; some literature sug-
gests that low ship density is the underlying cause for the low
number of recorded hurricanes for years up to 1965 (Landsea
et al. 2010; Vecchi and Knutson 2010), while others report sig-
nificant increases in frequency after the late 1980s (Vecchi
and Knutson 2007). When averaging yearly frequency over
moving time windows, the authors in Vecchi and Knutson
(2007) report a small nominally positive upward trend post-
1878. The work of Landsea et al. (2010) finds an increase in
the occurrence of short lifetime hurricanes only, leading
the authors to conclude ship density as a plausible cause
for the observed trend. It is important to note that the liter-
ature described here uses the retired HURDAT database
for their analyses rather than the HURDAT2 database
used in this investigation; however, this certainly does not
rule out the possibility of historically unrecorded storms in
the updated database. There is active research on the fre-
quency of hurricane events recorded in the HURDAT?2 da-
tabase where an observed late-twentieth-century trend is
attributed to a possible unusually low minima in the 1980s
(Vecchi et al. 2021).

We find an increasing trend in frequency of hurricane
events longer than 6.25 days using the Poisson rate parame-
ter, which differs from the results in Landsea et al. (2010).
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TABLE 3. Maximum likelihood estimates and 95% confidence
intervals of the exponential model for the time-dependent
Poisson parameter i,yr.

a (ci)
1.024 (0.925, 1.123)

b (ci)
0.015 (0.014, 0.015)

This trend holds even into the modern era (post-1965)
where ship density is expected to remain steady. One expla-
nation for this difference could be our use of a Poisson rate
estimate over a moving average. Rate estimates expect that
an increase in the mean results in an increase in the vari-
ance. This phenomenon is observed in the raw data. In the
case of a moving average estimate this increase in variance
can cause statistical tests of the mean difference to be near
zero due to large standard errors. We also do not separate
hurricane events by wind speed where differences in trend
have been reported (Vecchi and Knutson 2007). Since we
limit our investigation to hurricanes with life-spans longer
than 6.25 days, our findings may also be a result of some un-
derlying increase in the life-span of hurricane events as a
whole. Using the yearly estimates from our model for the
rate over 1965-94 we find that the average is identical to
past literature, which provides some reasonable benchmark
(Casson and Coles 2000).

An argument could be made that this increase in the total
number of observed hurricane events post-1965 comes from
our ability to more readily observe nonlandfalling hurri-
canes. However, an increase in the Poisson rate parameter
is also observed for strictly landfalling hurricane events of
lifetimes longer than 6.25 days; however, this rate parame-
ter follows a similar pattern (with low minima in the 1980s)
to that of Vecchi et al. (2021) with a slight increase in the
current peak relative to that of 1965.

d. Verification of the nonstationary model for central
pressure minima

We use a combination of established statistical methods to
illustrate the reliability of our nonstationary model at predict-
ing returns of central pressure minima.

To test the reliability of our model to accurately predict
the distribution of central pressure minima without updat-
ing, we break the HURDAT?2 database up into a training
set, which we will use to simulate hurricanes from the
model and test set, which we will use to compare risk proba-
bility outcomes estimated from the training set with the
“true” probabilities. Our training set will be defined as the
set of all years in our dataset minus the number of years n
used to obtain the n-yr returns and our test set will be the n
last years in our dataset. For example, if we are interested
in finding the 50-yr returns, our training set would be de-
fined as the set of all hurricanes occurring between 1851
and 1970 and our test set would be the set of all hurricanes
occurring between 1971 and 2019.

Under the assumption that our negative central pres-
sure minima follow some generalized extreme value dis-
tribution, [Coles 2001, section 6b(c)] suggests the use of
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Return Level (Standardized) for the 20-Year GEV

Return Level (Standardized) for the 20-Year GEV

Return Period (Standardized)

(a)

Return Period (Standardized)

(b)

FIG. 4. Return levels and periods of the 20-yr nonstationary GEV using the standardized —p,,;, coming from
Eq. (9) for (a) nonlandfalling and (b) landfalling hurricanes. Solid lines and dashed lines represent the model and
95% confidence intervals approximated from the training set over 1851-2000. A plus sign indicates the true return lev-
els calculated from the test set over 2001-19. Return periods and return levels here are based on Eq. (9), are nondi-
mensional, and are expected to follow the Gumbel distribution (10).

defined for our

}, ()

(10)

a sequence of standardized variables z,
purposes by '

~ Dainlty) — 1ty
(r(lyr)

EE

z. =
ty

log{l +k

each having a standard Gumbel distribution,

P(z, =z)=exp{—e °}, z€R.

The advantage of using this sequence is that the “true” quan-
tile plots of the observed and standardized —pmin(ty,) in the
test set can be made with reference to the distribution for the
simulated (under the nonstationary model) and standardized
—Pmin(tyr) from the training set.

We generate data to model negative central pressure mi-
nima n-yr returns for the years in the test set using 1) the pa-
rameter likelihoods of w(ty), o(ty), and k defined by the
model in Egs. (5) and (6) estimated from the training set and
2) the appropriate rate parameters defined by Eq. (8) to com-
pute returns of hurricane events using Eq. (7) where ¢, indi-
ces are chosen to correspond to those of the test set. By way
of the model, the generated central pressure minima follow a
nonstationary distribution.

We are interested in whether the central pressure minima
generated from our nonstationary model with parameters es-
timated by central pressure minima from the training set accu-
rately represent the historical central pressure minima we
have in the test set. We cannot directly compare the model
and historical values because of the nonstationarity we ob-
serve; however, we can perform a comparison by standardiz-
ing the model and historical central pressure minima using
Eq. (8). Provided the model with estimated w(t,;) and o(t)
appropriately describes the nonstationarity we observe, the
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standardized historical central pressure minima, denoted by
z, in Eq. (9), will follow the Gumbel distribution described
by Eq. (10).

We use this data to compute the model standardized quantile
plots for 20-, 30-, and 50-yr return periods given by quantiles of
the standard Gumbel distribution (Coles 2001, section 3.4),

z, = n— olog[—log(1 — q)l. (11)
for both landfalling and nonlandfalling hurricanes, where
w =0, 0 =1, and z, is the return level associated to the re-
turn period 1/q. Figures 4, 5, and 6 show model results
against the actual data in the test set. Not surprisingly, bet-
ter approximations for both the landfalling and nonlandfal-
ling case are made for shorter n-yr returns; however,
estimates for 50-yr returns still fall reasonably within the
95% confidence interval of the model estimated from the
information matrix.

Using the standardized negative central pressure minima al-
lows us to estimate the accuracy of the nonstationary model
against true data; however, it does not provide us with a com-
plete way of interpreting the n-yr returns. At best, we are able
to fix a year index fy, and state the probability of the negative
central pressure minima being above a certain threshold in
that given year. Most risk analysis involves directly computing
n-yr return levels where a new definition needs to be intro-
duced in the nonstationary setting. We discuss this in detail in
the next section.

3. Application of method for coastal wind speed risk
a. Time-dependent returns of high maximum wind speeds

In this section, we discuss a definition for time-dependent
n-yr return levels of maximum wind speeds.
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FIG. 5. As in Fig. 4, but of the 30-yr nonstationary GEV. Solid lines and dashed lines represent the model and 95%
confidence intervals approximated from the training set over 1851-1990. A plus sign indicates the true return levels

calculated from the test set over 1991-2019.

Return level is often used in risk analysis to communicate
the threshold that we are expected to exceed in a given
amount of time. For example, we may ask what is the maxi-
mum value of the wind speed that we are expected to exceed
in n years. When accounting for nonstationary effects, such as
those brought on by climate change, the probability of observ-
ing values above or below a threshold varies over time so that
terms like return level no longer make physical sense. We
refer the reader to Salas and Obeysekera (2014) for a nice de-
scription of current definitions of return probabilities in the
nonstationary setting.

Cooley (2013, section 4b) introduces the idea of extending
the definition of the n-yr return level to the nonstationary

Return Level (Standardized) for the 50-Year GEV

Return Period (Standardized)

(a)

case by taking the threshold where the expected number of
exceedances in n years is 1. In the context of nonstationary
wind speed prediction this would be equivalent to solving
for r,, in

n

L=311-F, (),

tyr:l

(12)

where r,, is the n-yr return level beginning with year f,, = 1
and ending with year #,, = n and F[W is the unknown indexed
yearly cumulative distribution function of maximum wind
speed. For example, if we are interested in finding the 50-yr
return level rsq of wind speed, Eq. (12) would become

Return Level (Standardized) for the 50-Year GEV

0 1 2 3 4 5
Return Period (Standardized)

(b)

FIG. 6. As in Fig. 4, but of of the 50-yr nonstationary GEV. Solid lines and dashed lines represent the model and
95% confidence intervals approximated from the training set over 1851-1970. A plus sign indicates the true return

levels calculated from the test set over 1971-2019.
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(b)

FIG. 7. (a) Coarse grid representing the coastal line. (b) Simulated hurricane locations along the coastal line. Different
regions are indicated in grayscale.

=P, (Ws >rg) + -+ + Py(ws > ry).

50
Z F ("50
(13)

The corresponding n-yr return level can be numerically esti-
mated for future years by extrapolating the trend in the model
and approximating r, by calculating the 1 — (1/n) quantile of
the equal weight mixed probability density function of wind
speed occurring over t,, = 1, ..., n years given by

- 3},

tfl

flet,....t) (14)

where f, is the unknown and numerically approximated
probability density function of the wind speed corresponding
to the yearly time index ty,. In fact, the definition in Eq. (14)
has also been used to model regional returns of extremes
where f(x; ¢1, ..., ¢,) varies by location ¢; instead of time
(Carney and Kantz 2020).

b. A Simulation to estimate maximum wind speed risk
along the U.S. North Atlantic coast

We run a simulation using the adaptations described in ear-
lier sections to estimate high maximum wind speed risk for
specified regions along the U.S. North Atlantic coast.

From the wind field model described in Eq. (1), we observe
that returns of low central pressure minima have a large and
direct effect on returns of high maximum wind speeds. This
relationship makes appropriately modeling central pressure
minima vital when considering returns of extreme wind
speeds along the coast. However, it is not enough to know the
central pressure minima to estimate coastal wind speed risk.
This is because maximum wind speeds for a coastal region de-
pend, among other things, on the translational velocity of the
hurricane, the location at which landfall occurs, and whether
the central pressure minimum is achieved at landfall.
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We now consider a more complex hurricane simulation to
estimate the unknown distribution described in Eq. (14) of
maximum wind speeds for a particular coastal location with
the adaptations described in this investigation. The simulation
is outlined in appendix A; however, we refer the reader to the
original literature (Casson and Coles 2000) for a detailed de-
scription. In essence, the process described in appendix A
simulates a series of hurricane events for a given year by sam-
pling the number of events to occur and the random variables
used in the wind field model represented by Eq. (1) at each
time ¢ along a simulated hurricane track. Once all hurricane
events for a set of years have been simulated, we sample the
wind speed for each simulated hurricane landing along a
specified coastline to form the unknown distribution de-
scribed in Eq. (14). The North Atlantic coastline is first ap-
proximated by a coarse grid, illustrated in Fig. 7, then divided
into coastal regions: north Texas, south Texas, west Louisi-
ana, east Louisiana, Mississippi, Alabama-Florida, Florida,
Florida—Georgia, South Carolina, North Carolina, Virginia,
Maryland-New Jersey, and Connecticut-Massachusetts—New
Hampshire. A simulated hurricane is said to be “on the coast”
if the eye of the hurricane is within 2° of the coastal line.

To estimate the n-yr return levels for regions along the
coast, we must numerically approximate the probability distri-
bution function of wind speeds described in Eq. (14). Then
the n-yr return level is simply the 1 — (1/n) quantile of the
combined frequency distribution of maximum wind speed
data for each coastal region. We do this for 20-, 30-, and 50-yr
return levels for each region taken along the coast by generat-
ing 20, 30, and 50 years of data (i.e., 2020-40, 2020-50, and
2020-70) for N = 1000 trials and estimating the 0.95, 0.97, and
0.98 quantiles, respectively. It is reasonable to assume that
each likelihood parameter in our simulation of maximum
wind speeds (there are several) 6 has reached its asymptotic
normal distribution A (é,se) with mean 6 equal to the maxi-
mum likelihood estimate of the parameter 6 and standard de-
viation given by the standard error sy approximated from the
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FIG. 8. Plots of the (top) 20-, (middle) 30-, and (bottom) 50-yr return levels of maximum wind
speed along the coast estimated for 2021. Central estimates are the quantiles of the distribution
of 6-hourly wind speeds for N = 1000 trials of 20, 30, and 50 years of simulated hurricanes, re-
spectively. Error bars represent the 95% confidence interval estimates from Eq. (15). The solid
horizontal line indicates the maximum wind speed return estimated from stationary models of
previous literature.

Hessian. We can be confident that the true population distri- To estimate the confidence intervals of maximum wind
bution of maximum wind speeds, which the model is meant to  speed return levels, we independently sample from each of
represent, falls within some combination of these parameters; the parameter distributions to obtain 100 different combina-
each coming from their corresponding distribution N/ (9,s9). tions of parameters. We then run the simulation with each set
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of parameters for 2000 (e.g., 20 years and N = 100 trials),
3000 and 5000 years of hurricane simulations and estimate
the 20-, 30-, and 50-yr return levels. Given that each of these
simulations is independent, we are left with a sequence of
quantile estimates (return levels) coming from an indepen-
dent and identically distributed (i.i.d.) sequence of maximum
wind speeds for each coastal region. It is shown in Knight
(2002) that quantiles coming from i.i.d. sequences can be well
approximated by a normal distribution. Confidence intervals
of each return level are then estimated by assuming an under-
lying normal distribution so that

%4 %y

Cly o5 = | Foorm(0.025) Voo F.L (0.975) Jiool (15)
where F_! is the inverse standard normal distribution and

norm
oy is the estimated standard deviation of the 100 quantiles ob-

tained from the 100 different parameter combinations. Quan-
tiles to estimate 20-, 30-, and 50-yr return levels of maximum
wind speed for each coastal region and their 95% estimated
confidence intervals can be found in Fig. 8.

4. Discussion

The wind field model (NOAA 1972) has provided a conve-
nient way of calculating the maximum wind speed of a hurri-
cane event at any given time along a track, provided the
central pressure is known. According to this model, high max-
imum wind speeds are obtained for low central pressure
measurements. It is shown in Casson and Coles (2000) that
this relationship can be used as a guide for estimating returns
of extremely high maximum wind speeds along the coast
by appropriately modeling the pressure minima. They found
using the HURDAT database that central pressure can be
modeled by the generalized extreme value distribution with
stationary location and scale parameters depending on the
lifetime and latitude of the central pressure minima. The sim-
ulation results of Casson and Coles (2000) using a stationary
model of central pressure minima are in good agreement with
the other models and analyses of the decade (Batts et al.
1980; Ho et al. 1987). However, our investigation shows that
this stationary model does not appropriately fit the central
pressure minima of the updated HURDAT?2 database. These
poor fits can be almost entirely blamed on a time-dependent
component of the scale and location parameters in the model.
We have proposed a new, nonstationary model that accounts
for this observed time dependence in the location and scale
parameter of the central pressure minima. Our model shows
very reasonable fits to the true central pressure minima. Fol-
lowing a standard approach, we assume a Poisson distribution
for yearly returns of hurricane events; however, we show that
this model is also time dependent with an exponentially in-
creasing rate parameter for hurricane events with lifetimes
greater than 6.25 days. We discuss this against current litera-
ture where stationarity of hurricane returns is assumed. We
show that our models can reliably predict up to at least 50-yr
returns for the central pressure minima without the need for
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FIG. 9. Average translational speed for simulated hurricanes from
our model along the coast plotted against latitude.

updating by comparing the generated training-set model
against a test set and standardizing the central pressure mi-
nima using extreme value methods.

We have used our nonstationary model of central pressure
minima and Poisson returns for yearly hurricanes in a more
complex simulation to estimate 20-, 30-, and 50-yr return lev-
els of maximum wind speeds for sections along the U.S. North
Atlantic coastline. In comparison with other analyses of maxi-
mum wind speed returns for coastal regions that are based on
the HURDAT database such as those in Batts et al. (1980),
Coles (2001), and Casson and Coles (2000), our model has
two significant results: 1) higher maximum wind speeds are
expected for all regions along the U.S. North Atlantic coast,
and 2) the highest maximum wind speeds occur along the
northeast seaboard.

Specifically for landfalling hurricanes, we find a scale pa-
rameter for negative central pressure minima that is linearly
increasing with time, which suggests an expectation for higher
highs and lower lows of central pressure minima. This phe-
nomenon coupled with a general increase in the observed
number of hurricane events can certainly lead to higher maxi-
mum wind speeds everywhere along the coast.

An increase in the maximum wind speed for higher lati-
tudes is actually a nontrivial observation because return levels
are affected by the number of hurricanes observed in a coastal
region. In general, the number of observed hurricanes in the
north tend to be lower. For example, it is well known that the
coastal region around Florida has many more hurricane
events than those regions along the northeast seaboard In
fact, we find this to be true in our simulations as well. So, one
would expect to have a higher 20-yr maximum wind speed re-
turn level for the Florida region than the northeast. On the
other hand, translational velocity plays a critical role in
the maximum wind speed of a hurricane hitting the coastal
region, by definition of the wind field model described by
Eq. (1), where translational velocity is always greater for
higher latitudes (see, e.g., the translational velocity esti-
mates by latitude in Yamaguchi et al. (2020).
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FIG. Al. Empirical density function of the ratio #, /1, for land-
falling hurricanes that make landfall after their central pressure mi-
nima occur.

We have tested our model to determine the cause of this
northern increase in maximum wind speed and have found
that translational velocity has the greatest influence over the
observed trend. Furthermore, our simulated values of average
translational velocity, estimated from the simulated hurricane
tracks, almost identically follow those found in the literature
(Yamaguchi et al. 2020, their Fig. 2d). We refer the reader to
Fig. 9 for a plot of translational velocity over latitude. This re-
sult provides us with reasonable confidence in our model for
coastal risk analysis.

In line with the ongoing scientific discussion summarized in
Knutson et al. (2019), we remark that the nonstationarity of
hurricane central pressure minima (and hence, maximum
wind speed) detected in this investigation does not allow us to
make conclusions on the underlying drivers of such change. It
would be an interesting follow-up investigation to consider
the contributions of different causal factors, anthropogenic or
natural long-term variability arising from effects of El Nifio
(ENSO) and the North Atlantic Oscillation. Following the
work from Patricola and Wehner (2018), we may use the
methods described in this investigation with simulated data
coming from complex climate models, such as the Weather
Research and Forecasting Model, where we can control for
CO, emission levels. Additionally, we could consider a
large generated dataset, such as the STORM dataset from
Bloemendaal et al. (2020), with supporting historical CO,
emission level recordings. We could then investigate contribu-
tions of long-term trends to central pressure minima as a control
and compare these results with increasing emission levels.
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TABLE Al. Maximum likelihood estimates of the parameters
in the normal distributional model from Casson and Coles (2000,
their section 2.5) for prange-

Type a (se) b (se) c (se)
Landfalling 872.33 (25.48)  —0.87 (0.03)  11.77 (0.32)
Nonlandfalling ~ 829.50 (19.77)  —0.82 (0.02)  7.47 (0.19)

www.nhc.noaa.gov/data/hurdat/hurdat2-1851-2020-052921.txt;
Landsea and Franklin 2013). The code used to perform the
nonstationary investigation, model fits, and wind speed simu-
lation was written in MATLAB. Access to the code used in
this investigation and a user-interfaced simulation package
based on the nonstationary model proposed here can be
found online (https://doi.org/10.48610/92ad85¢).

APPENDIX A

Numerical Simulation of Maximum Wind Speeds for
Hurricane Events

A summary of the scheme for simulating the time series of
maximum wind speeds of a yearly sample of hurricane events
is presented in this appendix. Adaptations from this investi-
gation are marked with an asterisk. Sampling tracks or time
series refers to sampling from the 642 historical hurricane re-
cords from the HURDAT?2 database. Densities and probabil-
ities are estimated from the 642 historical hurricane records.

The scheme is as follows:

1) Sample the number of hurricane events to occur for a speci-
fied year from Eq. (7) with the rate parameter in Eq. (8).
2) For each hurricane event:
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FIG. A2. Observed quantiles of R, as a function of the U.S. coast-
line longitude ¢ reproduced from Figs. 37 and 38 of Ho et al. (1987)
and compared with Fig. 7 of Casson and Coles (2000). The Ry in-
creases as a function of the latitude as seen in the figure (increases and
decreases along the U.S. coastline defined longitude). The model for
Rinax s created using the longitude ¢, whereas sampling is performed
using the latitude ¢ because R,y is unique along ¢.
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FIG. C1. Scatterplots of pp;, against (a) T and (b) ¢,

for (left) landfalling and (right) nonlandfalling hurricanes,

with a lind"of best fit added.

¢ Simulate a hurricane track by uniformly sampling a histor-
ical track and adding a small amount of spatial noise at
each step sampled from N(0, %), where o ~ 100 n mi
(~185 km).

Uniformly sample a central pressure time series of a
nonlandfalling hurricane.

Time scale the central pressure time series to match the
lifetime of the simulated track.

e For simulated landfalling hurricanes, run a Bernoulli
trial with p probability that the time of occurrence of
the central pressure minimum occurring is at landfall,
t, =1y, and 1 — p otherwise (p is estimated from the
database).

If occurring before landfall, randomly sample the time
of occurrence for central pressure minimum using the
density of the ratio 7, /1, in Fig. Al"

Randomly sample the central pressure minimum
from the nonstationary model described by Egs. (5)
and (6).
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¢ Randomly sample the central pressure range using the
density model in Casson and Coles (2000, their section
2.5) with fits in Table Al.

e Add landfall effects described in Casson and Coles
(2000, their section 2.6) separately for inland and coastal
hurricanes.

e Simulate the radius to maximum wind speeds Ry..(¢,)
by finding the distribution with coastal latitude ¢, illus-
trated in Fig. A2.

e Use the simulated central pressure time series p, and
Rinax(,) as inputs into the wind field model described in

Eq. (1).
APPENDIX B

The Locally Stationary Model for Central
Pressure Minima

The locally stationary model proposed by Casson and
Coles (2000) is given by
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w=py + p log(T) + ;qubtp , o=0, k=kj, (Bl
for landfalling hurricanes and
=y oy log(T), o= o, +o¢d, , k=k, (B2)

Pmin

for nonlandfalling hurricanes.
APPENDIX C

Additional Scatterplots

This appendix presents scatterplots (Fig. C1) of the central
pressure minima against the lifetime 7 and latitude ¢,  for
landfalling and nonlandfalling hurricanes. The results indicate
that the stationary model including dependence on 7" and
‘1’:,, ~is a reasonable starting point for forming the nonsta-
tionary model.
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