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ABSTRACT: Particularly important to hurricane risk assessment for coastal regions is finding accurate approximations of

return probabilities of maximum wind speeds. Since extremes in maximum wind speed have a direct relationship with mi-

nima in the central pressure, accurate wind speed return estimates rely heavily on proper modeling of the central pressure

minima. Using the HURDAT2 database, we show that the central pressure minima of hurricane events can be appropri-

ately modeled by a nonstationary extreme value distribution. We also provide and validate a Poisson distribution with a

nonstationary rate parameter to model returns of hurricane events. Using our nonstationary models and numerical simula-

tion techniques from established literature, we perform a simulation study to model returns of maximum wind speeds of

hurricane events along the North Atlantic coast. We show that our revised model agrees with current data and results in an

expectation of higher maximum wind speeds for all regions along the coast, with the highest maximum wind speeds occur-

ring along the northeast seaboard.
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1. Introduction

Hurricanes and tropical storms bring massive societal im-

pacts and cause economic instabilities. Known for their high

wind speeds and downpours, these storms are often accompa-

nied by flooding, wind damage, and travel hazards that lead to

large-scale evacuations and a national emergency response.

Talk of climate change in recent years and more frequent ob-

servations of extreme weather events has inspired research

into techniques that provide more accurate estimates of re-

turns and return times of extremes (Bloemendaal et al. 2020;

Carney et al. 2019; Carney and Kantz 2020; Knutson et al.

2019; Keim et al. 2004; Muller and Takayabu 2020; Patricola

and Wehner 2018; Lucarini et al. 2016; Trepanier 2020).

Particularly important in hurricane risk assessment for

coastal regions is finding accurate approximations of the re-

turn probabilities of maximum wind speeds. There have been

several studies surrounding maximum wind speed return esti-

mates for hurricanes occurring along the North Atlantic coast

(Batts et al. 1980; Ho et al. 1987; Casson and Coles 2000;

Simiu et al. 1995; Vickery and Twisdale 1995). Many of these

studies use the retired HURDAT database, which has since

been discounted as an unreliable source for future prediction

modeling. Casson and Coles (2000) purposed a hurricane

model that allows for approximations of maximum wind

speed returns using the tracks and central pressure minima.

The advantage of a model over raw data analysis is that a

large number of hurricanes can be simulated to provide more

accurate estimates of the tail probabilities and longer year re-

turns of such rare events. The simulation results of this model

are in good agreement with the other models and analyses of

that decade. However, our findings suggest that this model

does not hold up in accuracy when fitted to the updated

HURDAT2 database. These inaccuracies can be almost en-

tirely attributed to systematic trends in the observed central

pressure and frequency of hurricane events over recent years.

Although there are many factors in a hurricane event that

affect the maximum wind speed, we find that the most influen-

tial for risk assessment are the central pressure minima and

translational velocity of a hurricane at the time of impact with

the coast. Since the central pressure minima have a direct re-

lationship with the wind speed maxima, a better estimate of

their probability distribution can provide more accurate re-

turns of extreme highs of wind speed maxima along the coast.

Models of an extreme (e.g., minima or maxima) most often

take the form of an extreme value distribution (Coles 2001;

Lucarini et al. 2016). These distributions have been studied

extensively; however, revisions for more complex data analy-

sis settings are often required.

Following the work in Casson and Coles (2000), we show

that we can still reliably model the central pressure minima

of a hurricane event using the generalized extreme value

distribution (GEV); however, a previously unobserved time

dependent trend in the central pressure minima requires

adaptations in both the model and method. We also provide

evidence for a Poisson distribution with a time-dependent

rate parameter to model the number of yearly hurricane

events that continues into the modern era (post-1965),

which previous literature has assumed to be stationary

(Casson and Coles 2000).

Recent work by Bloemendaal et al. (2020) has introduced

a synthetic resampling algorithm (STORM) that can be ap-

plied to large-scale tropical cyclone datasets to extend the

dataset in a way that preserves the statistics from the origi-

nal. Statistical resampling techniques can allow for more ac-

curate estimates on the returns of rare events, such as

returns of tropical cyclones, provided the underlying distri-

butions are stationary. In contrast, our approach accountsCorresponding author: Meagan Carney, m.carney@uq.edu.au
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for observed nonstationarity in the statistical parameters of

the central pressure minima of historical tropical cyclones

with longer lifetimes (T$ 150 h).

Trends in frequency and intensity of hurricane events have

been observed throughout the literature, informed by both his-

torical data and generated data coming from complex climate

models, such as general circulation models (GCMs) of the atmo-

sphere. Results described in Keim et al. (2004) indicate that there

is strong evidence of an increase in the number of very powerful

storms over the past 50–100 years in the North Atlantic Ocean

basin and the Gulf of Mexico, after the inclusion of both ENSO

and the North Atlantic Oscillation. This claim is supported by

historical data and agrees well with results from GCMs under

global warming conditions. In addition, marginal trends in cen-

tral pressure have been noted as far back as 1995 (Hirsch et al.

2001). We find complementary results with regard to increases in

the rate of returns of hurricane events with longer lifetimes and

trends in central pressure minima. We refer the reader to Keim

et al. (2004) for a nice introductory review of the past literature

on trends in frequency and power of tropical storms.

Our revised model results in two major differences in the

simulation of coastal risk analysis of hurricane events: 1) higher

maximum wind speeds are expected for all regions along the

North Atlantic coast, including the Gulf Coast, and 2) the high-

est maximum wind speeds are expected to occur along the

northeast seaboard. Higher maximum wind speeds are likely

due to a combination of the central pressure minima time de-

pendence and increase in the number of observed hurricane

events incorporated into the model. The second observation is

arguably more surprising since the number of hurricane events

hitting the coast in the north is much lower than regions near

the Gulf of Mexico. An increase in the translational velocity as

hurricanes travel northward explains this effect.

A recent investigation using the HURDAT2 database also

finds an expected increase in returns of extreme wind speeds

along the North Atlantic coast; however, this study assumes a

fixed warming effect in the surrounding ocean and estimates

returns from data-based relationships of extreme wind speed

with sea surface temperature so that returns are estimated in

a stationary setting (Trepanier 2020).

2. Method

a. The wind field model, maximum wind speeds, and

minimum pressure

We describe the wind field model introduced in NOAA

(1972) and the relationship between maximum wind speeds

and minimum central pressure. Given the center location

(ft, ct) in the usual geographic coordinates (degrees latitude

and longitude, respectively) and central pressure pt in hectopas-

cals of a hurricane measured at the eye at time t, the wind field

model allows us to model the stochastic process of maximum

wind speeds of a hurricane as a sequence of random variables

sampled at any given time t by

V(Rmax,ft,pt,ut) 5 0:865 K
�����
Dpt

√
2

Rmax(ft
)f

2

[ ]
1 0:5ut,

(1)

where K is a constant [m (s hPa1/2)21], f 5 v sinft is the Corio-

lis parameter v 5 7.2982 3 1024 s21, Dpt 5 0.75(1013 2 pt) is

the pressure differential, Rmax(ft) is the radius to maximum

wind speeds in meters sampled from the distribution in Fig. A2

of appendix A, and ut is the translational velocity in meters per

second at time t. The translational velocity ut at a time t is esti-

mated as the change in the distance, in meters, of the center of

the hurricane

�������������������������������������
(ft 2 ft21)

2
1 (ct 2 ct21)

2
√

over the change in time, in seconds, from time index t 2 1 to

time index t. For more information on how the variables in

the wind field model are related see Table 1.

Throughout this article, we will define a hurricane event as

a tropical cyclone taking any form (e.g., tropical depression,

tropical storm, or hurricane) and denote the total lifetime of a

hurricane event as a length of indexed time T representing

the total number of 6-h time intervals passed since formation.

For any given hurricane event, if we are given the track

(ft, ct) and central pressure time series pt, we may use Eq. (1)

to reconstruct the maximum wind speed V(Rmax, ft, pt, ut) for

all t 5 1, … , T, where t is the index number of 6-h time inter-

vals passed since formation. From Eq. (1) we can see that ex-

treme highs of the maximum wind speed occur for extreme

lows of central pressure. Hence, it is important to accurately

model the central pressure minima of a hurricane event in or-

der to estimate longer year returns and rare threshold exceed-

ances of maximum wind speeds. Furthermore, central

pressure minima often occur at or near landfall so they are

particularly important for estimating coastal risk. [We refer to

Fig. A1 of appendix A for an illustration of the estimated den-

sity plot of central pressure minima occurrence times to land-

fall times estimated from the tracks of historical hurricane

events used in this analysis, which agrees nicely with the den-

sity plot found in Casson and Coles (2000, their Fig. 4).]

We can use tools from extreme value theory to model ex-

tremes of a time series (e.g., minima or maxima). One well-

known strategy is to approximate the set of maxima (or nega-

tive minima) taken over blocks of a fixed length m of a set of

independent and identically distributed random variables by

the GEV given by

G(x) 5 exp 2 1 2
k(x 2 m)

s

[ ]21/k
{ }

(2)

TABLE 1. Description of variables in the wind field model and their dependence.

Variable: V Rmax pt ft ct ut

Depends on: Rmax, ft, pt, ut ft and sampled Historical data Historical data Historical data (ft,t21, ct,t21)
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for x: 11 k[(x2 m)/s]$ 0, where m is the location parameter,

s . 0 is the scale parameter, and k is the shape parameter

that defines the tail behavior of G. Under certain regularity

conditions, we may use maximum likelihood estimation of the

parameters m, s, and k to fit the GEV to the block maxima

(or negative minima) where each parameter estimate is as-

ymptotically normal provided k.20.5 (Coles 2001).

By a standard max-stable argument it is not necessary that

the block length m be fixed, as long as it is long enough so

that the maxima (or negative minima) can be modeled by its

asymptotic GEV. By the same argument, the GEV that is fit

to blocks of varying length is related to G from Eq. (2), with

different m 5 m* and s 5 s* parameters. A result of this max-

stability property is that we may model the central pressure

minima of hurricane events coming from historical records

with varying lifetimes T. That is, we may model the negative

central pressure minima

pmin 5 min
t

pt for t 5 1,…,T (3)

by the GEV provided the lifetime of each hurricane event is

long enough. We will refer to tpmin
as the time in the total life-

time of the hurricane event that the central pressure minimum

is reached.

We can relax the requirement of strict independence for the

GEV in (2) provided the time series is weakly dependent and

stationary; see, for example, Leadbetter et al. (1983, chapter 3)

or Lucarini et al. (2016). Using historical recordings from the

HURDAT2 database, we find that the central pressure mi-

nima have the same dependence as in Casson and Coles

(2000) on the lifetime T and the latitude ftpmin
where the

central pressure minima occurs. (Figure C1 in appendix C

depicts scatterplots of the central pressure minima against

the lifetime T and latitude f
tpmin

for landfalling and non-

landfalling hurricanes.)

We limit our model to hurricanes with lifetimes T $ 25 5

150 hours to ensure convergence of the negative central pres-

sure minima to a GEV distribution. See, for example, the de-

scription in Coles (2001, chapter 5.3.1) on GEV models of

block maxima or Leadbetter (1974) for estimates on conver-

gence rates of stationary sequences Xh to the GEV, where we

assume a convergence rate of O(h2r) for some r $ 1 due to

the natural boundedness of central pressure (i.e., central pres-

sures are assumed not to be able reach infinity). There are 642

hurricane events over 1851–2019 in the HURDAT2 database

that satisfy this requirement (300 landfalling and 342 nonland-

falling). Central pressure minima from 1851 to 1960 are often

recorded for a single time index t along the lifetime of the hur-

ricane event. The corresponding tracks of these hurricane

events are estimated using a best tracks procedure (NOAA

1972). While the accuracy of recording the exact central pres-

sure minima would be influenced by the number of locations

available to measure central pressure along the track, and

hence be lower for these years, we remark that the central

pressure minima were often recorded near landfall where we

observe the highest chance of central pressure minima occur-

ring over all years (1851–2019). Still, in light of the possibility

of data-measuring inaccuracies in early year recordings

(1851–1960), it would be interesting to apply our methods,

outlined here for the HURDAT2 historical dataset, to the re-

cently generated STORM dataset in a future investigation

(Bloemendaal et al. 2020).

We use maximum likelihood estimation on the parameters

of the locally stationary GEV model proposed in Casson and

Coles (2000). Although the central pressure minima pmin are

sampled from independent hurricane events, they have some

underlying dependence on both the lifetime T and latitude

ftpmin
of the hurricane event, which is accounted for in the lo-

cation m and scale s parameters of this locally stationary

model. We find poor fits for quantile plots of this locally sta-

tionary model.

A natural question is whether there exists some time de-

pendence in the distribution of central pressure minima.

b. A nonstationary model for central pressure minima

We investigate the time dependence in the location m and

scale s parameters of central pressure minima for landfalling

and nonlandfalling hurricanes. As a preliminary investigation,

we split the central pressure minima into two parts, central

pressure minima of hurricane events occurring between 1851

and 1980 and those occurring between 1981 and 2019 and then

test whether a statistically significant change in the statistical

parameters is observed. We perform an F test for equal vari-

ance that indicates the variance of the central pressure minima

for landfalling hurricanes has significantly changed (p 5 0.004)

in the last 40 years. We obtain a similar result using a t test for

equal means of the central pressure minima for nonlandfalling

hurricanes (p 5 0.012). Normality assumptions for the t test

are met by a moderately large sample size and the central limit

theorem, 176 and 166 nonlandfalling hurricanes over

1851–1980 and 1981–2019, respectively. On the other hand, re-

sults from the F test are reasonably robust against nonnormal-

ity provided our sample sizes are similar and moderately large

(Donaldson 1966), 166 and 134 landfalling hurricanes over

1851–1980 and 1981–2019, respectively. Preliminary investiga-

tions into the time dependence of the shape k parameter

showed no obvious trend, so it is taken as constant.

Motivated by the observed difference in the statistical pa-

rameters of the central pressure minima in the last 40 years,

we now investigate the possibility of a time-dependent trend

in the location and scale parameters of the locally stationary

model proposed by Casson and Coles (2000). This locally sta-

tionary model asserts a dependence of the location m and

scale s parameters on the lifetime T of the hurricane and lati-

tude ftpmin
of the central pressure minima. We use this model

as a basis for checking the time dependence of the m and s pa-

rameters in the GEV described by Eq. (2). We begin by per-

forming maximum likelihood estimation of all the coefficient

parameters used in the locally stationary model. Maximum

likelihood estimation is performed on subsets of the 300 (simi-

larly, 342) historical values of central pressure minima from

landfalling (similarly, nonlandfalling) hurricanes taken over

moving time windows of 40 years with a time step of 1 year by

maximizing the negative log-likelihood of the locally station-

ary GEV defined by
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‘tyr ,T,ftpmin

(pmin) 5 2h logs(T,ftpmin

) 2 [1 1 (1/k)]

3
∑h

i51

log 1 1 k
pmin,i 2 m(T,ftpmin

)
s(T,f

tpmin

)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

2
∑h

i51

1 1 k
pmin,i 2 m(T,f

tpmin

)
s(T,ftpmin

)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

21/k

, (4)

where tyr 5 year 2 1851 and h is the number of central pres-

sure minima pmin,i occurring in the 40-yr window [tyr, tyr 1 40].

We choose 40-yr windows because 1) we observed a statisti-

cally significant difference in the location and scale parame-

ters over the last 40 years and 2) 40 years of central pressure

minima is a long enough period to obtain reasonable confi-

dence intervals (ci) around our maximum likelihood esti-

mates. Our final result is a set of time series representing the

maximum likelihood values of the coefficient parameters in

the locally stationary model. We then reconstruct the time se-

ries of the location, m(tyr), and scale, s(tyr), using the relation-

ships described in the locally stationary model and the

historical values of T and ftpmin
. From now on, we will refer to

the time series m(tyr) and s(tyr) as the location time series and

scale time series, respectively, to differentiate between the

other time series in this investigation.

For each 40-yr window, the set of lifetimes T and locations

ftpmin

of historical hurricane events occurring in the 40-yr win-

dow are used to estimate the coefficients of the locally station-

ary model described in Eqs. (B1) and (B2) of appendix B for

landfalling and nonlandfalling hurricanes, respectively. Since

the location time series for the nonlandfalling case has a de-

pendence on the lifetime, T, we fix such a T to construct the

location time series, which results in 342 location time series

taken from the 342 fixed values of historical recordings of T

(one for each hurricane event). This is in contrast to the scale

parameter of landfalling hurricanes, which does not have a

dependence on T or ftpmin

and, as a consequence, results in a

single scale time series.

Unreliable maximum likelihood estimates of the location

and scale parameters in the years 1851–1960 are found and

are due to low numbers of recorded hurricane events with

lifetimes T $ 25 where the yearly average over this time pe-

riod is 1.324. Nevertheless, continuous time-dependent trends

are noticeable after 1960 for parameters in both the landfal-

ling and nonlandfalling case.

To determine whether a trend is reliable, we perform the

Mann–Kendall test for trend on all the location and scale

time series. We find a positive statistically significant trend

for the scale parameter in the landfalling case and a nega-

tive statistically significant trend for all time series of the lo-

cation parameter in the nonlandfalling case. Trends were

evaluated using the Kendall correlation coefficient tb with

95% confidence intervals calculated following (Hollander

et al. 2015, chapter 9.3). The Kendall correlation coefficient

is estimated for all years and for years from 1960 to 2020,

for comparison. For an illustration of the trend results and

parameter time series see Figs. 1 and 2, respectively. We do

not find clear evidence for a reliable trend in the location

time series for the landfalling case or the scale time series

for the nonlandfalling case.

From these results, we propose the following nonstationary

model (tyr 5 year2 1851 is the yearly index):

m 5 m0 1 m1 log(T) 1 m2ftpmin

, s 5 s0 1 s1tyr, k 5 k0,

(5)

for landfalling hurricanes, and

m 5 m0 1 m1 log(T) 1 m2 log(tyr), s 5 s0 1 s1ftpmin

;

k 5 k0, (6)

for nonlandfalling hurricanes. Maximum likelihood estimates

from the negative log-likelihood of Eq. (2), with location and

scale parameters given by Eqs. (5) and (6), and standard er-

rors (se) estimated from the information matrix are provided

in Table 2. We find using the likelihood ratio test (LRT) that

our revised nonstationary model for central pressure minima

offers a statistically significant better fit to the data than the

stationary model with test statistics well beyond L0.05,1 5 3.84,

the statistic corresponding to the a 5 0.05 significance level

with 1 degree of freedom (see L in Table 2).

Results from Kim et al. (2017) indicate that for sample sizes

of greater than 40 (ours is on the order of 300 for each

model), the LRT has the best performance across other

model methods [Akaike information criteria (AIC), corrected
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FIG. 1. Time series of parameter s(tyr)5 s0(tyr) coming from the

stationary model for 2pmin (hPa) of landfalling hurricanes con-

structed from likelihood estimates. The value tb is the Kendall cor-

relation coefficient. The x axis represents the end year of the 40-yr

time window chosen for likelihood parameter estimation. Dark

circles highlight the maximum likelihood estimates of the s(tyr) pa-

rameter after 1960 (end year) when the quantity of recorded hurri-

cane events in the 40-yr time window produce reliable maximum

likelihood estimates. Crossover of 95% confidence intervals of tb,

indicated by a dashed line, is a result of choosing the median as the

intercept for plotting.
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AIC (AICc), and Bayesian information criterion (BIC)] to

appropriately estimate the nonstationary GEV with time-

varying location parameter while the AIC performs better for

time-varying location and scale parameters; however, the au-

thors state that they expect the AIC outperforms other meth-

ods because of its tendency to select more complex models.

Informed by the preliminary investigation into the time de-

pendence of location and scale parameters in the data, we did

not see a reason to increase the complexity of our model. It

would be interesting to investigate the possibility of using the

AIC for future models where there is evidence for multiple

time-varying parameters in our GEV model.

c. Poisson returns of hurricane events and

a nonstationary rate parameter

We investigate a Poisson model for yearly returns of hurri-

cane events where the number of expected yearly hurricane

events is increasing over time.

Returns of extreme hurricane events, such as low central

pressure minima or high maximum wind speeds, are often re-

ported in terms of an n-yr return. To interpret returns in this

way, our model must consider how often a hurricane event oc-

curs in a given year. Classically, it is expected that a rare

event, such as a hurricane, is modeled by a Poisson distribu-

tion given by

P(X 5 K) 5 k
Ke2kt

K !
, (7)

where k 5 r/t is the rate parameter estimated as the number

of events r in a given time t.

Under the assumption of stationarity, the authors in

Casson and Coles (2000) estimate a fixed rate parameter,

k 5 5.45 hurricane events per year, as the average number

of returns of a hurricane in a given year over 1965–94.

With more data available in the HURDAT2 database, we

are able to estimate the time-dependent yearly rate param-

eter ktyr over 20-yr sliding windows from 1851 to 2019. We

refer the reader to Fig. 3 for an illustration of the esti-

mated yearly rate parameter.

We fit an exponential to the time-dependent Poisson rate

parameter ktyr
by maximizing the negative log-likelihood func-

tion with respect to parameters a and b of our exponential

model,

k
tyr

5 aebtyr : (8)

Maximum likelihood estimates and confidence intervals of

a and b can be found in Table 3. Our model for hurricane re-

turns does not differentiate between landfalling and nonland-

falling hurricane events due to the nature of the simulation in

FIG. 2. (a) An example time series of parameter m(tyr) 5 m0(tyr) 1 m1(tyr) log(T), for a single sampled T. The value

tb is the Kendall correlation coefficient. The x axis represents the end year of the 40-yr time window chosen for likeli-

hood parameter estimation. Dark circles highlight the maximum likelihood estimates of the m(tyr) parameter after

1960 (end year) when the quantity of recorded hurricane events in the 40-yr time window produces reliable maximum

likelihood estimates. (b) The tb for all time series of m(tyr), illustrating that all time series have a statistically significant

negative Kendall correlation coefficient. Crossover of 95% confidence intervals of tb, indicated by a dashed line, is a

result of choosing the median as the intercept for plotting.

TABLE 2. Maximum likelihood estimates of the parameters in the nonstationary generalized extreme value distribution model for

2pmin. Time-dependent parameters are marked with an asterisk. Likelihood ratio test statistics for our revised nonstationary model

of 2pmin against the stationary model are indicated by L.

Type m0 (se) m1 (se) m2 (se) s0 (se) s1 (se) k (se) L

Landfalling 21078.97 (14.48) 32.87 (3.60) 20.52 (0.16) 12.47 (1.86) 0.07 (0.02)* 20.13 (0.04) 15.62

Nonlandfalling 21027.13 (13.65) 27.40 (2.76) 211.47 (1.84)* 20.48 (2.04) 20.16 (0.06) 20.13 (0.04) 30.77
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the final section. This is because tracks of a simulated hurri-

cane are generated by randomly sampling a historical track

and adding noise. To compare our results with current litera-

ture, we separate the discussion of returns of hurricane events

for landfalling and nonlandfalling hurricanes in the para-

graphs below.

There is some debate on whether the average number of

hurricane events is increasing generally; some literature sug-

gests that low ship density is the underlying cause for the low

number of recorded hurricanes for years up to 1965 (Landsea

et al. 2010; Vecchi and Knutson 2010), while others report sig-

nificant increases in frequency after the late 1980s (Vecchi

and Knutson 2007). When averaging yearly frequency over

moving time windows, the authors in Vecchi and Knutson

(2007) report a small nominally positive upward trend post-

1878. The work of Landsea et al. (2010) finds an increase in

the occurrence of short lifetime hurricanes only, leading

the authors to conclude ship density as a plausible cause

for the observed trend. It is important to note that the liter-

ature described here uses the retired HURDAT database

for their analyses rather than the HURDAT2 database

used in this investigation; however, this certainly does not

rule out the possibility of historically unrecorded storms in

the updated database. There is active research on the fre-

quency of hurricane events recorded in the HURDAT2 da-

tabase where an observed late-twentieth-century trend is

attributed to a possible unusually low minima in the 1980s

(Vecchi et al. 2021).

We find an increasing trend in frequency of hurricane

events longer than 6.25 days using the Poisson rate parame-

ter, which differs from the results in Landsea et al. (2010).

This trend holds even into the modern era (post-1965)

where ship density is expected to remain steady. One expla-

nation for this difference could be our use of a Poisson rate

estimate over a moving average. Rate estimates expect that

an increase in the mean results in an increase in the vari-

ance. This phenomenon is observed in the raw data. In the

case of a moving average estimate this increase in variance

can cause statistical tests of the mean difference to be near

zero due to large standard errors. We also do not separate

hurricane events by wind speed where differences in trend

have been reported (Vecchi and Knutson 2007). Since we

limit our investigation to hurricanes with life-spans longer

than 6.25 days, our findings may also be a result of some un-

derlying increase in the life-span of hurricane events as a

whole. Using the yearly estimates from our model for the

rate over 1965–94 we find that the average is identical to

past literature, which provides some reasonable benchmark

(Casson and Coles 2000).

An argument could be made that this increase in the total

number of observed hurricane events post-1965 comes from

our ability to more readily observe nonlandfalling hurri-

canes. However, an increase in the Poisson rate parameter

is also observed for strictly landfalling hurricane events of

lifetimes longer than 6.25 days; however, this rate parame-

ter follows a similar pattern (with low minima in the 1980s)

to that of Vecchi et al. (2021) with a slight increase in the

current peak relative to that of 1965.

d. Verification of the nonstationary model for central

pressure minima

We use a combination of established statistical methods to

illustrate the reliability of our nonstationary model at predict-

ing returns of central pressure minima.

To test the reliability of our model to accurately predict

the distribution of central pressure minima without updat-

ing, we break the HURDAT2 database up into a training

set, which we will use to simulate hurricanes from the

model and test set, which we will use to compare risk proba-

bility outcomes estimated from the training set with the

“true” probabilities. Our training set will be defined as the

set of all years in our dataset minus the number of years n

used to obtain the n-yr returns and our test set will be the n

last years in our dataset. For example, if we are interested

in finding the 50-yr returns, our training set would be de-

fined as the set of all hurricanes occurring between 1851

and 1970 and our test set would be the set of all hurricanes

occurring between 1971 and 2019.

Under the assumption that our negative central pres-

sure minima follow some generalized extreme value dis-

tribution, [Coles 2001, section 6b(c)] suggests the use of

FIG. 3. Maximum likelihood estimate of the Poisson parameter

for yearly hurricane event rates with lifetimes greater than

6.25 days. Estimates are taken over 20-yr moving time windows.

Standard errors are marked with dotted lines. The fitted exponen-

tial model is represented by a thick line. Grayed areas correspond

to those in Vecchi et al. (2021): 1) 1878}year when the U.S.

Signal Corps began cataloging all Atlantic Ocean hurricanes;

2) 1900}year when the U.S. coast was sufficiently well populated

for monitoring; 3) modern era with appropriate ship density.

TABLE 3. Maximum likelihood estimates and 95% confidence

intervals of the exponential model for the time-dependent

Poisson parameter ktyr .

a (ci) b (ci)

1.024 (0.925, 1.123) 0.015 (0.014, 0.015)
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a sequence of standardized variables z
tyr

defined for our

purposes by

ztyr
5

1

k
log 1 1 k

2pmin(tyr) 2 m(tyr)
s(tyr)

[ ]{ }
, (9)

each having a standard Gumbel distribution,

P(z
tyr
# z) 5 exp{2e2z}, z ∈ R: (10)

The advantage of using this sequence is that the “true” quan-

tile plots of the observed and standardized 2pmin(tyr) in the

test set can be made with reference to the distribution for the

simulated (under the nonstationary model) and standardized

2pmin(tyr) from the training set.

We generate data to model negative central pressure mi-

nima n-yr returns for the years in the test set using 1) the pa-

rameter likelihoods of m(tyr), s(tyr), and k defined by the

model in Eqs. (5) and (6) estimated from the training set and

2) the appropriate rate parameters defined by Eq. (8) to com-

pute returns of hurricane events using Eq. (7) where tyr indi-

ces are chosen to correspond to those of the test set. By way

of the model, the generated central pressure minima follow a

nonstationary distribution.

We are interested in whether the central pressure minima

generated from our nonstationary model with parameters es-

timated by central pressure minima from the training set accu-

rately represent the historical central pressure minima we

have in the test set. We cannot directly compare the model

and historical values because of the nonstationarity we ob-

serve; however, we can perform a comparison by standardiz-

ing the model and historical central pressure minima using

Eq. (8). Provided the model with estimated m(tyr) and s(tyr)

appropriately describes the nonstationarity we observe, the

standardized historical central pressure minima, denoted by

ztyr
in Eq. (9), will follow the Gumbel distribution described

by Eq. (10).

We use this data to compute the model standardized quantile

plots for 20-, 30-, and 50-yr return periods given by quantiles of

the standard Gumbel distribution (Coles 2001, section 3.4),

z
q
5 m 2 s log[2 log(1 2 q)], (11)

for both landfalling and nonlandfalling hurricanes, where

m 5 0, s 5 1, and zq is the return level associated to the re-

turn period 1/q. Figures 4, 5, and 6 show model results

against the actual data in the test set. Not surprisingly, bet-

ter approximations for both the landfalling and nonlandfal-

ling case are made for shorter n-yr returns; however,

estimates for 50-yr returns still fall reasonably within the

95% confidence interval of the model estimated from the

information matrix.

Using the standardized negative central pressure minima al-

lows us to estimate the accuracy of the nonstationary model

against true data; however, it does not provide us with a com-

plete way of interpreting the n-yr returns. At best, we are able

to fix a year index tyr and state the probability of the negative

central pressure minima being above a certain threshold in

that given year. Most risk analysis involves directly computing

n-yr return levels where a new definition needs to be intro-

duced in the nonstationary setting. We discuss this in detail in

the next section.

3. Application of method for coastal wind speed risk

a. Time-dependent returns of high maximum wind speeds

In this section, we discuss a definition for time-dependent

n-yr return levels of maximum wind speeds.

FIG. 4. Return levels and periods of the 20-yr nonstationary GEV using the standardized 2pmin coming from

Eq. (9) for (a) nonlandfalling and (b) landfalling hurricanes. Solid lines and dashed lines represent the model and

95% confidence intervals approximated from the training set over 1851–2000. A plus sign indicates the true return lev-

els calculated from the test set over 2001–19. Return periods and return levels here are based on Eq. (9), are nondi-

mensional, and are expected to follow the Gumbel distribution (10).
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Return level is often used in risk analysis to communicate

the threshold that we are expected to exceed in a given

amount of time. For example, we may ask what is the maxi-

mum value of the wind speed that we are expected to exceed

in n years. When accounting for nonstationary effects, such as

those brought on by climate change, the probability of observ-

ing values above or below a threshold varies over time so that

terms like return level no longer make physical sense. We

refer the reader to Salas and Obeysekera (2014) for a nice de-

scription of current definitions of return probabilities in the

nonstationary setting.

Cooley (2013, section 4b) introduces the idea of extending

the definition of the n-yr return level to the nonstationary

case by taking the threshold where the expected number of

exceedances in n years is 1. In the context of nonstationary

wind speed prediction this would be equivalent to solving

for rn in

1 5
∑n

tyr51

[1 2 F
tyr
(r

n
)], (12)

where rn is the n-yr return level beginning with year tyr 5 1

and ending with year tyr 5 n and F
tyr

is the unknown indexed

yearly cumulative distribution function of maximum wind

speed. For example, if we are interested in finding the 50-yr

return level r50 of wind speed, Eq. (12) would become

FIG. 5. As in Fig. 4, but of the 30-yr nonstationary GEV. Solid lines and dashed lines represent the model and 95%

confidence intervals approximated from the training set over 1851–1990. A plus sign indicates the true return levels

calculated from the test set over 1991–2019.

FIG. 6. As in Fig. 4, but of of the 50-yr nonstationary GEV. Solid lines and dashed lines represent the model and

95% confidence intervals approximated from the training set over 1851–1970. A plus sign indicates the true return

levels calculated from the test set over 1971–2019.
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1 5
∑50

tyr51

[1 2 Ftyr
(r50)] 5 P1(ws . r50) 1 · · · 1 P50(ws . r50):

(13)

The corresponding n-yr return level can be numerically esti-

mated for future years by extrapolating the trend in the model

and approximating rn by calculating the 1 2 (1/n) quantile of

the equal weight mixed probability density function of wind

speed occurring over tyr 5 1, … , n years given by

f (x; t1,…, t
n
) 5

∑n

tyr51

f
tyr
(x), (14)

where ftyr is the unknown and numerically approximated

probability density function of the wind speed corresponding

to the yearly time index tyr. In fact, the definition in Eq. (14)

has also been used to model regional returns of extremes

where f(x; ‘1, … , ‘n) varies by location ‘i instead of time

(Carney and Kantz 2020).

b. A Simulation to estimate maximum wind speed risk

along the U.S. North Atlantic coast

We run a simulation using the adaptations described in ear-

lier sections to estimate high maximum wind speed risk for

specified regions along the U.S. North Atlantic coast.

From the wind field model described in Eq. (1), we observe

that returns of low central pressure minima have a large and

direct effect on returns of high maximum wind speeds. This

relationship makes appropriately modeling central pressure

minima vital when considering returns of extreme wind

speeds along the coast. However, it is not enough to know the

central pressure minima to estimate coastal wind speed risk.

This is because maximum wind speeds for a coastal region de-

pend, among other things, on the translational velocity of the

hurricane, the location at which landfall occurs, and whether

the central pressure minimum is achieved at landfall.

We now consider a more complex hurricane simulation to

estimate the unknown distribution described in Eq. (14) of

maximum wind speeds for a particular coastal location with

the adaptations described in this investigation. The simulation

is outlined in appendix A; however, we refer the reader to the

original literature (Casson and Coles 2000) for a detailed de-

scription. In essence, the process described in appendix A

simulates a series of hurricane events for a given year by sam-

pling the number of events to occur and the random variables

used in the wind field model represented by Eq. (1) at each

time t along a simulated hurricane track. Once all hurricane

events for a set of years have been simulated, we sample the

wind speed for each simulated hurricane landing along a

specified coastline to form the unknown distribution de-

scribed in Eq. (14). The North Atlantic coastline is first ap-

proximated by a coarse grid, illustrated in Fig. 7, then divided

into coastal regions: north Texas, south Texas, west Louisi-

ana, east Louisiana, Mississippi, Alabama–Florida, Florida,

Florida–Georgia, South Carolina, North Carolina, Virginia,

Maryland–New Jersey, and Connecticut–Massachusetts–New

Hampshire. A simulated hurricane is said to be “on the coast”

if the eye of the hurricane is within 28 of the coastal line.

To estimate the n-yr return levels for regions along the

coast, we must numerically approximate the probability distri-

bution function of wind speeds described in Eq. (14). Then

the n-yr return level is simply the 1 2 (1/n) quantile of the

combined frequency distribution of maximum wind speed

data for each coastal region. We do this for 20-, 30-, and 50-yr

return levels for each region taken along the coast by generat-

ing 20, 30, and 50 years of data (i.e., 2020–40, 2020–50, and

2020–70) for N 5 1000 trials and estimating the 0.95, 0.97, and

0.98 quantiles, respectively. It is reasonable to assume that

each likelihood parameter in our simulation of maximum

wind speeds (there are several) u has reached its asymptotic

normal distribution N (û, s
u
) with mean û equal to the maxi-

mum likelihood estimate of the parameter u and standard de-

viation given by the standard error su approximated from the

FIG. 7. (a) Coarse grid representing the coastal line. (b) Simulated hurricane locations along the coastal line. Different

regions are indicated in grayscale.
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Hessian. We can be confident that the true population distri-

bution of maximum wind speeds, which the model is meant to

represent, falls within some combination of these parameters;

each coming from their corresponding distributionN (û, su).

To estimate the confidence intervals of maximum wind

speed return levels, we independently sample from each of

the parameter distributions to obtain 100 different combina-

tions of parameters. We then run the simulation with each set

FIG. 8. Plots of the (top) 20-, (middle) 30-, and (bottom) 50-yr return levels of maximum wind

speed along the coast estimated for 2021. Central estimates are the quantiles of the distribution

of 6-hourly wind speeds for N 5 1000 trials of 20, 30, and 50 years of simulated hurricanes, re-

spectively. Error bars represent the 95% confidence interval estimates from Eq. (15). The solid

horizontal line indicates the maximum wind speed return estimated from stationary models of

previous literature.
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of parameters for 2000 (e.g., 20 years and N 5 100 trials),

3000 and 5000 years of hurricane simulations and estimate

the 20-, 30-, and 50-yr return levels. Given that each of these

simulations is independent, we are left with a sequence of

quantile estimates (return levels) coming from an indepen-

dent and identically distributed (i.i.d.) sequence of maximum

wind speeds for each coastal region. It is shown in Knight

(2002) that quantiles coming from i.i.d. sequences can be well

approximated by a normal distribution. Confidence intervals

of each return level are then estimated by assuming an under-

lying normal distribution so that

CI0:95 5 F21
norm(0:025)

sq�����
100

√ , F21
norm(0:975)

sq�����
100

√
[ ]

, (15)

where F21
norm is the inverse standard normal distribution and

sq is the estimated standard deviation of the 100 quantiles ob-

tained from the 100 different parameter combinations. Quan-

tiles to estimate 20-, 30-, and 50-yr return levels of maximum

wind speed for each coastal region and their 95% estimated

confidence intervals can be found in Fig. 8.

4. Discussion

The wind field model (NOAA 1972) has provided a conve-

nient way of calculating the maximum wind speed of a hurri-

cane event at any given time along a track, provided the

central pressure is known. According to this model, high max-

imum wind speeds are obtained for low central pressure

measurements. It is shown in Casson and Coles (2000) that

this relationship can be used as a guide for estimating returns

of extremely high maximum wind speeds along the coast

by appropriately modeling the pressure minima. They found

using the HURDAT database that central pressure can be

modeled by the generalized extreme value distribution with

stationary location and scale parameters depending on the

lifetime and latitude of the central pressure minima. The sim-

ulation results of Casson and Coles (2000) using a stationary

model of central pressure minima are in good agreement with

the other models and analyses of the decade (Batts et al.

1980; Ho et al. 1987). However, our investigation shows that

this stationary model does not appropriately fit the central

pressure minima of the updated HURDAT2 database. These

poor fits can be almost entirely blamed on a time-dependent

component of the scale and location parameters in the model.

We have proposed a new, nonstationary model that accounts

for this observed time dependence in the location and scale

parameter of the central pressure minima. Our model shows

very reasonable fits to the true central pressure minima. Fol-

lowing a standard approach, we assume a Poisson distribution

for yearly returns of hurricane events; however, we show that

this model is also time dependent with an exponentially in-

creasing rate parameter for hurricane events with lifetimes

greater than 6.25 days. We discuss this against current litera-

ture where stationarity of hurricane returns is assumed. We

show that our models can reliably predict up to at least 50-yr

returns for the central pressure minima without the need for

updating by comparing the generated training-set model

against a test set and standardizing the central pressure mi-

nima using extreme value methods.

We have used our nonstationary model of central pressure

minima and Poisson returns for yearly hurricanes in a more

complex simulation to estimate 20-, 30-, and 50-yr return lev-

els of maximum wind speeds for sections along the U.S. North

Atlantic coastline. In comparison with other analyses of maxi-

mum wind speed returns for coastal regions that are based on

the HURDAT database such as those in Batts et al. (1980),

Coles (2001), and Casson and Coles (2000), our model has

two significant results: 1) higher maximum wind speeds are

expected for all regions along the U.S. North Atlantic coast,

and 2) the highest maximum wind speeds occur along the

northeast seaboard.

Specifically for landfalling hurricanes, we find a scale pa-

rameter for negative central pressure minima that is linearly

increasing with time, which suggests an expectation for higher

highs and lower lows of central pressure minima. This phe-

nomenon coupled with a general increase in the observed

number of hurricane events can certainly lead to higher maxi-

mum wind speeds everywhere along the coast.

An increase in the maximum wind speed for higher lati-

tudes is actually a nontrivial observation because return levels

are affected by the number of hurricanes observed in a coastal

region. In general, the number of observed hurricanes in the

north tend to be lower. For example, it is well known that the

coastal region around Florida has many more hurricane

events than those regions along the northeast seaboard In

fact, we find this to be true in our simulations as well. So, one

would expect to have a higher 20-yr maximum wind speed re-

turn level for the Florida region than the northeast. On the

other hand, translational velocity plays a critical role in

the maximum wind speed of a hurricane hitting the coastal

region, by definition of the wind field model described by

Eq. (1), where translational velocity is always greater for

higher latitudes (see, e.g., the translational velocity esti-

mates by latitude in Yamaguchi et al. (2020).
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FIG. 9. Average translational speed for simulated hurricanes from

our model along the coast plotted against latitude.
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We have tested our model to determine the cause of this

northern increase in maximum wind speed and have found

that translational velocity has the greatest influence over the

observed trend. Furthermore, our simulated values of average

translational velocity, estimated from the simulated hurricane

tracks, almost identically follow those found in the literature

(Yamaguchi et al. 2020, their Fig. 2d). We refer the reader to

Fig. 9 for a plot of translational velocity over latitude. This re-

sult provides us with reasonable confidence in our model for

coastal risk analysis.

In line with the ongoing scientific discussion summarized in

Knutson et al. (2019), we remark that the nonstationarity of

hurricane central pressure minima (and hence, maximum

wind speed) detected in this investigation does not allow us to

make conclusions on the underlying drivers of such change. It

would be an interesting follow-up investigation to consider

the contributions of different causal factors, anthropogenic or

natural long-term variability arising from effects of El Niño

(ENSO) and the North Atlantic Oscillation. Following the

work from Patricola and Wehner (2018), we may use the

methods described in this investigation with simulated data

coming from complex climate models, such as the Weather

Research and Forecasting Model, where we can control for

CO2 emission levels. Additionally, we could consider a

large generated dataset, such as the STORM dataset from

Bloemendaal et al. (2020), with supporting historical CO2

emission level recordings. We could then investigate contribu-

tions of long-term trends to central pressure minima as a control

and compare these results with increasing emission levels.
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APPENDIX A

Numerical Simulation of Maximum Wind Speeds for

Hurricane Events

A summary of the scheme for simulating the time series of

maximum wind speeds of a yearly sample of hurricane events

is presented in this appendix. Adaptations from this investi-

gation are marked with an asterisk. Sampling tracks or time

series refers to sampling from the 642 historical hurricane re-

cords from the HURDAT2 database. Densities and probabil-

ities are estimated from the 642 historical hurricane records.

The scheme is as follows:

1) Sample the number of hurricane events to occur for a speci-

fied year from Eq. (7) with the rate parameter in Eq. (8).*

2) For each hurricane event:
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FIG. A1. Empirical density function of the ratio tpmin
/tlf for land-

falling hurricanes that make landfall after their central pressure mi-

nima occur.

TABLE A1. Maximum likelihood estimates of the parameters

in the normal distributional model from Casson and Coles (2000,

their section 2.5) for prange.

Type a (se) b (se) c (se)

Landfalling 872.33 (25.48) 20.87 (0.03) 11.77 (0.32)

Nonlandfalling 829.50 (19.77) 20.82 (0.02) 7.47 (0.19)

FIG. A2. Observed quantiles ofRmax as a function of the U.S. coast-

line longitude c reproduced from Figs. 37 and 38 of Ho et al. (1987)

and compared with Fig. 7 of Casson and Coles (2000). The Rmax in-

creases as a function of the latitude as seen in the figure (increases and

decreases along the U.S. coastline defined longitude). The model for

Rmax is created using the longitude c, whereas sampling is performed

using the latitude f becauseRmax is unique along f.
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• Simulate a hurricane track by uniformly sampling a histor-

ical track and adding a small amount of spatial noise at

each step sampled from N (0, s2), where s ≃ 100 n mi

(∼185 km).
• Uniformly sample a central pressure time series of a

nonlandfalling hurricane.
• Time scale the central pressure time series to match the

lifetime of the simulated track.
• For simulated landfalling hurricanes, run a Bernoulli

trial with p probability that the time of occurrence of

the central pressure minimum occurring is at landfall,

tpmin
5 tlf, and 1 2 p otherwise (p is estimated from the

database).
• If occurring before landfall, randomly sample the time

of occurrence for central pressure minimum using the

density of the ratio tpmin
/tlf in Fig. A1.*

• Randomly sample the central pressure minimum

from the nonstationary model described by Eqs. (5)

and (6).*

• Randomly sample the central pressure range using the

density model in Casson and Coles (2000, their section

2.5) with fits in Table A1.
• Add landfall effects described in Casson and Coles

(2000, their section 2.6) separately for inland and coastal

hurricanes.
• Simulate the radius to maximum wind speeds Rmax(ft)

by finding the distribution with coastal latitude ft illus-

trated in Fig. A2.
• Use the simulated central pressure time series pt and

Rmax(ft) as inputs into the wind field model described in

Eq. (1).

APPENDIX B

The Locally Stationary Model for Central

Pressure Minima

The locally stationary model proposed by Casson and

Coles (2000) is given by

FIG. C1. Scatterplots of pmin against (a) T and (b) ftpmin

for (left) landfalling and (right) nonlandfalling hurricanes,

with a line of best fit added.
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m 5 m0 1 m1 log(T) 1 m2ftpmin

, s 5 s0, k 5 k0, (B1)

for landfalling hurricanes and

m 5 m0 1 m1 log(T), s 5 s0 1 s1ftpmin

, k 5 k0, (B2)

for nonlandfalling hurricanes.

APPENDIX C

Additional Scatterplots

This appendix presents scatterplots (Fig. C1) of the central

pressure minima against the lifetime T and latitude ftpmin
for

landfalling and nonlandfalling hurricanes. The results indicate

that the stationary model including dependence on T and

ftpmin

is a reasonable starting point for forming the nonsta-

tionary model.
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