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Abstract

Given a profinite group G of finite p-cohomological dimension and a pro-p quotient H of G by a closed normal
subgroup N, we study the filtration on the Iwasawa cohomology of N by powers of the augmentation ideal in the
group algebra of H. We show that the graded pieces are related to the cohomology of G via analogues of Bockstein
maps for the powers of the augmentation ideal. For certain groups H, we relate the values of these generalized
Bockstein maps to Massey products relative to a restricted class of defining systems depending on H. We apply our
study to prove lower bounds on the p-ranks of class groups of certain nonabelian extensions of Q and to give a new
proof of the vanishing of Massey triple products in Galois cohomology.
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1. Introduction
At its essence, this paper revolves around the fundamental question:

How does the continuous cohomology of a profinite group G with compact coefficients compare with
the cohomology of an open normal subgroup N?

As a starting point, if G has cohomological dimension d, then corestriction induces an isomorphism
from the G /N-coinvariants of a dth cohomology group of N to the dth cohomology group of G with
the same coeflicients. We view this corestriction map as the first of a sequence of generalized Bockstein
maps ¥ for n > 0, which we extend to closed N by considering Iwasawa cohomology. The powers of
the augmentation ideal / of a completed group ring of G/N yield a natural filtration on the domain of
corestriction. In Section 2, we show that the nth graded piece of this augmentation filtration is isomorphic
to the cokernel of ¥ ("), employing two purely homological results of Appendix A in the proof. In Section
4, we demonstrate how, in many cases, the image of ¥ is described by n-fold Massey products.

Massey products were first introduced by Massey [Ma] as a tool for proving that two topological
spaces are not homotopy equivalent even when they have isomorphic cohomology rings. The best-
known example involves the complement of the Borromean rings in R3, three pairwise unlinked circle
which are nonetheless linked, resulting in a nontrivial Massey triple product in the second cohomology.
In algebra, Massey products are used to study properties of a group G that are not detected by the
group cohomology ring itself. Massey products of tuples of homomorphisms on G valued in a ring R
are obstructions in H>(G, R) to lifting homomorphisms to unipotent matrices from the quotient by the
center.

Our initial motivation for studying this question came from Iwasawa theory. Indeed, Galois groups of
number fields with restricted ramification above a prime p have p-cohomological dimension equal to 2,
and their second cohomology groups with coefficients in p-power roots of unity are closely related to
ideal class groups. In such a setting, the fundamental question above translates to comparing ideal class
groups as one goes up a tower of fields, the original question of Iwasawa theory. In this vein, Mazur
[Mz] described an analogy between knot complements in 3-manifolds and Galois groups with restricted
ramification, relating the Alexander polynomial of a knot and a characteristic ideal of an inverse limit
of class groups. Morishita explored this analogy in terms of Massey products (see, for example, [Mo]).

The third author studied Massey products in an Iwasawa-theoretic context, relating them to the
structure of augmentation-graded pieces of limits of class groups in a nonabelian tower of Kummer
extensions [Sh2]. This paper distills the purely algebraic results of the latter paper from their number-
theoretic application. The distinct perspective using generalized Bockstein maps, that we introduce here,
allows us to go beyond the procyclic setting of [Sh2].
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Massey products of length n are defined only if certain (n — 1)-fold Massey products vanish. Even
when defined, there is some indeterminacy in their definition, resulting from a choice of defining
system, a homomorphism to the quotient of the (n + 1)-dimensional unipotent matrices by their center.
The Massey product provides the obstruction to lifting this homomorphism to the full unipotent group.
In order to view n-fold Massey products as values of W), we define an appropriate notion of a proper
defining system, reducing the aforementioned indeterminacy. The requisite definitions are given in
some generality in Section 3, providing the framework for the comparison with ¥ in specific cases
described in Section 4.

In Section 5, we demonstrate how our methods can be used to derive concrete arithmetic results
by proving lower bounds on the p-ranks of class groups of finite p-ramified bicyclic and Heisenberg
extensions of Q(up). Though we eschew Iwasawa-theoretic applications in this paper to ground our
study, a description of the augmentation filtrations of inverse limits of p-parts of class groups in
Z,-extensions, derived using our methods, may be found in [Sh4].

We also consider applications of generalized Bockstein maps to the study of absolute Galois groups of
fields. Many algebraic properties of absolute Galois groups are encoded cohomologically as properties
of the norm residue symbol. The celebrated norm residue isomorphism theorem of Voevodsky and
Rost [Vo] (formerly the Milnor-Bloch-Kato conjecture), describes cohomology rings of absolute Galois
groups with coefficients in twists of roots of unity as Milnor K-rings of the fields.

The Massey vanishing conjecture of Mina¢ and Tan [MiTa4] goes beyond the cohomological ring
structure to posit that, for n > 3, all definable n-fold Massey products with F,-coefficients vanish for
some choice of defining system. Earlier work of Hopkins—Wickelgren [HoWi] had established this for
n =3 and p = 2 over number fields. The full n = 3 case of this conjecture is the triple Massey vanishing
theorem of Efrat-Matzri [EfMa] and Mina¢-Tan [MiTa3]. The introduction to Section 6 provides a
more detailed, yet still incomplete, summary of the history of and rapid progress in this area. In that
section, we show that certain algebraic properties of absolute Galois groups are naturally expressed in
terms of generalized Bockstein maps. This perspective enables us to give a new proof for odd primes of
the triple Massey vanishing theorem.

Mina¢ and Tan originally formulated the Massey vanishing conjecture, in part, as a way to help
cohomologically characterize which profinite groups are isomorphic to absolute Galois groups of
fields. We suspect that generalized Bockstein maps have an important role to play in formulating and
understanding such cohomological characterizations.

We next provide a more detailed overview of our main results.

1.1. Comparing cohomology using generalized Bockstein maps

Let G be a profinite group of p-cohomological dimension d > 1. Let H be a finitely generated pro-p
quotient of G by a closed normal subgroup N. Let Q = Z, [ H] denote the completed Z,-group ring
of H, the inverse limit of the Z,-group rings of the finite quotients of H. Let T be a finitely generated
Z,,-module with a continuous action of G. This paper is concerned with the study of connecting maps
in the continuous G-cohomology of the augmentation filtration of the tensor product 7' ®z,, Q. That is,
if I = ker(Q — Z,) denotes the augmentation ideal of Q, then we have exact sequences

0> Teg, I"I" 5Tz, QI ->Tez, Q/I"—0 (1.1)
for each n > 1, such that /1" is Z,-flat. Our interest lies in the connecting homomorphisms
¢ HNG, T &z, Q/I") > HY(G,T) &z, I"/I™!

attached to these sequences, which we refer to as generalized Bockstein maps, due to their similarlity to
usual Bockstein maps for exact sequences of p-power order cyclic groups.
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We can use the Bockstein maps to partially describe the second Iwasawa cohomology group
HI‘fV (N, T) of N with T-coefficients. This cohomology group is the inverse limit of the groups H¢ (U, T)
under corestriction maps, where U runs over the open normal subgroups of G containing N. It is naturally
endowed, through the Z,,[G /U]-actions on each H 4(U,T), with the structure of an Q-module. We prove
that the cokernels of the generalized Bockstein maps describe the graded quotients in the augmentation
filtration of Hfév(N, T) (see Theorem 2.2.4).

Theorem A. There are canonical isomorphisms

I"HE (N, T) N HY(G,T) @z, I"/1"
I"'HE (N, T) im ¥ (")
w

The proof rests on an Iwasawa-cohomological version [LiSh, FuKa] of a descent spectral sequence
of Tate, applied to the terms of our exact sequences for the augmentation filtration of Q. We verify
the compatibility of these spectral sequences with generalized Bockstein maps and a connecting map in
the H-homology of the Z,-tensor product of Hl‘év (N,T) with (1.1).

1.2. A brief primer on Massey products

Given a commutative ring R, a Massey product (xi,..., xn) of n homomorphisms yi,..., y, in
H'(G,R) is an element of H*>(G, R) that provides the obstruction to a certain problem of lifting a
homomorphism formed using the tuple of characters y; to a homomorphism p: G — U4 (R) of G to
the group of (n + 1)-dimensional unipotent matrices in R, with y; providing the ith off-diagonal entry
Pi,i+1-

More precisely, a defining system for a Massey product (y1,..., x») is a homomorphism p: G —
U;,+1(R) to the quotient of U,,41 (R) by its center, with p; ;11 = x;. The Massey product (x1, ..., xn)p
of x1, ..., xn relative to the defining system p is the class in H>(G, R) of the 2-cocycle

F:(o,7)— Zp1,i(0).0i,n+1(7)-

i=1

It vanishes if and only if p lifts to a homomorphism g: G — U,4+{(R). In other words, the Massey
product relative to p is the obstruction to choosing the remaining upper right-hand entry g ,+1 to make
p a homomorphism, which is exactly to say that dp| ;41 = —F.

An n-fold Massey product (xi, ..., xn) is said to be defined if a defining system for it exists. For
n = 2, the Massey product is defined and equals the cup product y; U y». For n > 3, a Massey product
need not be defined, and even if it is, it may have indeterminacy in its values, coming from the different
choices of defining systems. A Massey product is said to contain zero or vanish if it has a defining
system for which the Massey product is zero.

We shall work with profinite groups and compact coefficient rings, so our Massey products take
values in continuous cohomology groups, and all cocycles and homomorphisms involved are required
to be continuous. In fact, we shall allow more general Massey products valued in modules over a group
ring, replacing the group of unipotent matrices with an analogous object in a generalized matrix algebra.

1.3. The images of generalized Bockstein maps

The case d = 2 and H = Z, of Theorem A was first studied in [Sh2] from a different perspective and
applied in an Iwasawa-theoretic context. Its main result has a similar form to Theorem A, but in place
of the image of ¥, it has a group of values of certain (n + 1)-fold Massey products. We relate the
image of ¥ to Massey products for a variety of groups H.
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In the situation of Section 1.1 with H = Z,, the quotient map G — H can be thought of as an
element y € H 1 (G,Z p). This context was considered in [Sh2], and a result like Theorem A is proven,
but with the image of ¥ replaced by (n + 1)-fold Massey products of the form (y, x, ..., x, -) with
respect to certain ‘proper’ defining systems. In Section 4.3, we show that, in the case that H is procyclic,
the image of W is generated by these same Massey products. In other words, when H is procyclic,
Theorem A recovers the main result of [Sh2].

This raises the question of whether the relation between the values of generalized Bockstein maps and
Massey products can be extended from procyclic H to more general groups. The most difficult step is to
determine the appropriate notion of proper defining system. The key insight is that the proper defining
systems of [Sh2] are those defining systems that, in a sense, partially have group-theoretic origin. That
is, if H is procyclic, then for every n > 0, there is a group homomorphism we call the unipotent binomial
matrix homomorphism

[n] tH— Un+l(Zp)

defined by sending a generator of H to the unipotent matrix with all 1’s on the diagonal and off-diagonal
and O’s elsewhere (the notation is meant to evoke binomial coeflicients, the nonzero entries of [fl ]
being binomial coefficients, see Section 4.2). A defining system p: G — U/ ,(Z),) for the (n + 1)-fold
Massey product (x, x, ..., Y, ) is called proper if its restriction to the upper-left copy of U,.+1(Z,) in
U/ ,(Z,) equals | ] o x.

This suggests considering defining systems that are, at least partially, of group-theoretic origin. Let
n>0,andleta,b > 0 be, such that a + b = n. Let

¢: H— Uu1(Zp), 6: H— Upy(Zp)

be group homomorphisms. By precomposition with G — H, these define an n-tuple of elements of
H'(G,Z p). We call that pair (¢, 8) a partial defining system for (n+ 1)-fold Massey products involving
this n-tuple of characters. Our main general result, Theorem 3.3.4, is that a partial defining system
together with a cocycle f € Z'(G,T ®z, Q/I") constitutes a defining system. Moreover, a partial
defining system defines a homomorphism of G-modules

Poo: Tz, I"/I"™ ST,

such that p¢,g(‘P<”)([f])) € H*(G,T) is the (n + 1)-fold Massey product associated to the defining
system given by (¢, 0) and f (see Theorem 4.1.2).

We apply this general machinery to the procyclic case H = Z, in Section 4.3, taking (a, b) = (n,0)
and ¢ = [n] Because H is procyclic, there is an isomorphism 1" /1! = Zp, for all n, and the map
RE is induced by this isomorphism. Hence, the values p [].1 (Y™ ([£])) completely determine the
image of ¥, and in this way, we show that the image of ¥"") is given by Massey products.

For more general H, the graded quotients I /I"**! are more complicated, and we cannot hope for any
D g,0 to be an isomorphism. However, it can happen that 1"/ "+1 is a free module; suppose this is the
case. If we can arrange that the maps p 4 ¢ for varying (¢, 6) give a dual basis to 1" /I n+1 then, again,
this construction gives a way to describe the image of ¥ (") in terms of Massey products. Said differently,
if 1" /I"*! is a free module of rank d, then, by fixing a basis, we can think of W ([f]) as a d-tuple
of elements of H>(G,T). If we can make d choices of pairs (¢, 6), such that the maps Pg,0 are the
projectors onto these coordinates, then our results describe ¥ ([ f]) as a d-tuple of Massey products.

For a general group H and general n, we do not expect that there will exist choices of (¢, 6), such
that the p g4 ¢ constitute a dual basis to I" /] n+1 However, we give some families of examples where
this is the case: H is procyclic (Section 4.3), H is pro-bicyclic (Section 4.4), H is elementary abelian
(Section 4.5) and H is a Heisenberg group and n < 4 (Section 4.6). We explicate the result for H = Z?,
in the following subsection.
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1.4. The bicyclic case: an illustration

Suppose that H is isomorphic to Z2, and let y,y: H — Z p denote the projections onto the two factors.

For each nonnegative integer a < n, there is a partial defining system ( [a] o X, [n_'a] o). Applying our
general result Theorem 4.1.2 with these defining systems, we obtain the following (see Theorem 4.4.3):

Theorem B. Suppose that v = (y,¥): H — Z%, is an isomorphism. Let x,y € I be, such that x + 1 and
v + 1 are group elements mapping under v to the standard ordered basis of Zf,. For n > 2, the cosets of
x4y""¢ with 0 < a < n then form a Z-basis for I/,

a. To a continuous 1-cocycle f: G — T ®z, Q/I" and 0 < a < n, we can associate a proper defining
system for an (n + 1)-fold Massey product

0D = (e x A, W) € HA(GLT),
N— |
a times n-—a times

where 1: G — T is the composition of f with the quotient map T ®z, Q/I" — T ®z, Q1 =T.
b. With the notation of part a, let [ f] denote the class of fin H (G, T ®z, Q/1"). Then

YOS = ), 4, p ) @y,
a=0

Let us illustrate Theorem B in some detail in the case that n = 2 and a = 1. In this case, we have
Q/I* =Z,[x,y]/(x* xy, %)
in the notation of the theorem. We can therefore write the 1-cocycle f: G — T ®z, Q/I 2 as
f=Aa+A,x+2,y,

with Ay, Ay : G — T, abbreviating the tensor product as formal multiplication. Part a of Theorem B
says that f gives rise to a defining system

1y [Ax =
o= ] /l/ly:G—>U/Z

Iy
1

for the Massey triple product (y,4,¢). Here, the values of p lie in the quotient of a group U of
generalized upper-triangular unipotent 4-by-4 matrices by its subgroup Z of matrices with zero above-
diagonal entries outside of the upper right-hand corner. The entries in the upper-right hand block are
T-valued (and, in particular, Z = T), whereas they are Z,-valued outside of it. Matrix multiplication
proceeds using the Z,-module structure on 7. That p is a defining system means that p: G — U/Z is
a nonabelian 1-cocycle, where G acts on U coordinate-wise. The Massey product (y, 4, ), relative to
the defining system p is an element of H>(G, T) providing the obstruction to lifting p to a nonabelian
I-cocycle G — U.

In general, even for such a cocycle p and therefore a Massey product (y, 4, ¥) to exist, the cup products
x UAand AUy must vanish in H>(G, T) so that cochains A, and Ay can be chosen with di, = —y U4
and d1, = =1 U . Even then, the class (x,,y) depends on these choices. In our description, this
vanishing is encapsulated in the fact that f is a 1-cocycle, and the indeterminacy is removed by fixing f.

The content of part b of Theorem B is that the coefficients of ¥? ([ f]) in H>(G,T) for the Z p-basis
x2, xy and y? of I?/I? are Massey triple products: in particular, the coefficient of xy is the Massey
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product (x, A,y ), for the defining system p. More precisely, (x,A,y), is defined as the class of the
2-cocycle F: G* — T given by

F: (g, h) — x(8)gAx(h) +y(h)A,(g).

This cocycle F arises as the upper-right hand corner of (g, 1) — g(g) - go(h) for the naive lift of p to
a cochain p: G — U with zero in the upper-right hand corner. The theorem boils down to the fact that
F - xy is also exactly the coboundary of the naive lift of f to a cochain G — Z,[x, y]/ (x2, y?) with a
zero xy-coefficient.

From our perspective, the generalized Bockstein maps are more flexible than Massey products, being
connecting homomorphisms more directly amenable to basic applications of homological algebra. For
instance, the argument proving Theorem A for arbitrary H amounts to a diagram chase for maps of
Grothendieck spectral sequences. Moreover, Theorem B allows us to study defining systems using
abelian, rather than nonabelian, cocycles.

1.5. Galois groups with restricted ramification and class groups

At its core, our work is motivated by the potential arithmetic applications. One has at least something
of an understanding of class groups of cyclotomic fields through Bernoulli numbers, and thereby
L-functions, and most notably via the Iwasawa main conjecture (theorem of Mazur-Wiles [MaWi]).
However, little is known about p-adic analytic invariants describing aspects of class groups of non-CM
extensions of Q.

One does have at least a partial understanding of the structure of p-parts of class groups of
p-ramified F),-extensions of Q(u,) through known values of cup products of cyclotomic p-units, and
in certain instances, one can give lower bounds on p-ranks of these groups (see [Sh2, Section 7]). In
Section 5, we consider more complex extensions, deriving lower bounds on the p-ranks of class groups
of p-ramified bicyclic and Heisenberg extensions of Q(u,) in cases where standard genus theory does
not produce any unramified extensions. The key tools in this work are Theorem A, our descriptions of
the generalized Bockstein maps ¥ for n € {1,2} and computations of cup products of cyclotomic
units from [McSh].

We consider the case that the class group of Q(,) has p-rank 1. Suppose we have an Fﬁ,—extension K
of Q(u,) thatis Galois over Q for which the cup product pairing with the Kummer cocycle of the Kummer
generators of the F%, -extension vanish. Under certain assumptions on the action of Gal(Q(up,)/Q) on
these Kummer generators, we can show that the p-rank of the class group of K is at least 6 (see
Proposition 5.2.1). This F?,-extension K is then further contained in a Heisenberg extension L of Q(u,)
of degree p3 that is Galois over Q, and the p-rank of its class group is at least 7 (see Proposition 5.2.3).
The smallest irregular prime p for which there exist F%,—extensions for which these lower bounds are
shown to hold by our methods is 101.

In [Sh4], the results of this paper are applied in the setting of Iwasawa theory to study inverse limits of
class groups. There, G is the Galois group of the maximal extension of a number field unramified outside
a finite set of primes containing those above p, and H is the Galois group of a Z,-extension. The group
HIZW(N ,Zp (1)) is closely related to, but not always isomorphic to, the inverse limit X of p-parts of class
groups under norm maps in the tower of number fields defined by H. The isomorphisms of Theorem A
are then used to derive exact sequences describing the graded pieces in the augmentation filtration of X.

1.6. Absolute Galois groups and Massey vanishing

Let G be a profinite group, and let p be a prime number. Let y € H'(G,F,) = Hom(G, F,). Consider
the sequence

H' (ker y.Fp) <5 H'(G.F,) X5 HX(G.F,) =5 H(ker . F,). (1.2)
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If G = G is the absolute Galois group of a field F that contains a primitive pth root of unity, then this
sequence is exact, as can be seen using the properties of the norm residue symbol. This exactness is an
important property of absolute Galois groups: for example, it is used heavily in the proof of the norm
residue isomorphism theorem (see [Vo]).

Using Theorem B, we show that:

(i) The sequence (1.2) is exact at H 1(G,IF?’P) if and only if all p-fold Massey products of the form
(x'P~V, ) with y U A = 0 vanish for some proper defining system.
(i) If (1.2) is exact at H*(G,F,), then it is exact.

In light of (i), we say that a group G has the p-cyclic Massey vanishing property if the sequence (1.2) is
exact at H' (G, F,) for every y € H'(G, F,). We prove the following in Theorem 6.2.1.

Theorem C. Let G be a profinite group with the p-cyclic Massey vanishing property for an odd prime p.
Then every Massey triple product on H' (G, F,) which is defined contains zero.

If F is a field containing a primitive pth root of unity, then its absolute Galois group G has the
p-cyclic Massey vanishing property. Hence, Theorem C implies that every Massey triple product on
H'(G r,Fp) which is defined contains zero. This is the triple Massey vanishing theorem of Efrat—
Matzri [EfMa] and Mind¢—Tan [MiTa3] for odd p (which implies the vanishing for arbitrary fields as in
the latter paper). For more discussion about absolute Galois groups and the general Massey vanishing
conjecture of [MiTa4], see the introduction to Section 6.

In our proof of Theorem C, to show that a defined Massey product (y, 4, %) vanishes, we consider
the coimage H of the map (y,¢): G — F%,, let Q = F,[H], and let I C Q be the augmentation ideal.
We then apply a variant of Theorem B to this H to see that the Massey product (y, 4, ) relative to a
certain defining system is the obstruction to lifting A to a class in H'(G,Q/J) for a particular ideal J
between /% and I°. Via an involved diagram chase, we see that the p-cyclic Massey vanishing property
for the quotients of H that are the coimages of y, ¥ and y + ¢ implies that this obstruction equals
vU (x + ) for some v € H' (G, Fp). This is enough to show that the Massey product contains zero.

Theorem C raises several interesting questions that we do not attempt to address here, including
whether or not the vanishing of Massey products (y"”), ) for arbitrary n is sufficient to imply Massey
vanishing.

2. Generalized Bockstein maps

In this section, we define generalized Bockstein maps and employ them in the study of the structure of
inverse limits of cohomology groups. Throughout the paper, we use the following objects:

a prime number p,

a profinite group G,

a topologically finitely generated pro-p quotient H of G by a closed normal subgroup N,

a compact Noetherian Z,-algebra R (usually taken to be a quotient of Z,),

the completed group ring Q = R[H],

the augmentation ideal I of Q, that is, the kernel of the continuous R-algebra homomorphism
Q — R that sends every group element in H to 1,

o apositive integer n, such that Q/I" and I" /I"*! are R-flat and

o acompact R[G]-module T that is R-finitely generated.

O O 0O 0O O ©

Note that a compact R[[ G ||-module is the same as a compact R-module with a continuous R-linear
action of G. We will frequently take tensor products M ®g M’ of compact R[[G]-modules M and M’,
at least one of which is finitely generated over R. These compact R-modules (with the topology of the
isomorphic completed tensor product) have the diagonal action of G.

We are concerned in this paper with the continuous cohomology groups H'(G, M) of compact
R[ G]-modules M for i > 0. In particular, G-cochains are implicitly supposed to be continuous. We use
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square brackets to denote both classes of cocycles and group elements in completed group algebras,
and we denote an element in a module and its coset in a quotient thereof by the same symbol where the
context is clear.

2.1. Augmentation sequences

Since we have assumed that Q/I™ is R-flat, the right exact sequence of compact R[[ G ]-modules
05 TR I"/I"™ S5 Ter Q™ S TerQ/I"—0 2.1)
is exact. For any d > 1, we have the resulting connecting homomorphisms
HYY (G, T ®r Q/I") — HY(G,T @ I"/1™)

on continuous G-cohomology.
Since G acts trivially on the finitely generated R-module 1" /I"*!, we have a homomorphism

HY(G,T)®g I''/I"" — HY(G,T @ I''/ ™) (2.2)

that is an isomorphism as 1" /I"*! is R-flat, so long as we assume either that G has finite p-cohomological
dimension or that I /I"*! has a finite resolution by projective R-modules (see [LiSh, Proposition 3.1.3],
the proof of which does not use the assumption on R in that section). The latter condition is automatic,
given that /" /I"*! is flat, if R is a quotient of Z,,. We let

y . gNG, T @g Q/I") — HY(G,T) @ I /1" (2.3)

denote the resulting composite map, and we refer to it as a generalized Bockstein map.

Remark 2.1.1. We may replace the assumption that Q/I" is R-flat with the assumption that T is
R-flat in order that (2.1) still holds. We may also replace the assumption that 1" /I"*! is R-flat with the
assumption that G has p-cohomological dimension d and still have an isomorphism as in (2.2) (to see
this, choose a presentation of 1" /I"*! by finitely generated free R-modules and use the right exactness
of the dth cohomology functor and the tensor product, noting that HY(G,T") = H4(G,T) ® R" for
any r). With either replacement, ¥ is still a map as in (2.3).

2.2. Graded quotients of Iwasawa cohomology groups

Recall that N denotes the kernel of the surjection G — H. Our interest in this section is in the Iwasawa
cohomology groups

H (N,T) = lim H'(U,T)
N<U=<°G

fori > 1, where the inverse limit is taken with respect to corestriction maps over open normal subgroups
U of G containing N. Note that the Iwasawa cohomology groups are relative to the larger group G,
though this is omitted from our notation. Since each H (U, T) is a R[G/U]-module and the actions are
compatible with corestriction, the group H{W(N ,T) is endowed with the structure of an Q-module.

Remark 2.2.1. If H is finite, then H (N,T) = H'(N,T).

Let us define two notions that we need. First, a profinite group G is p-cohomologically finite if G
has finite p-cohomological dimension and H*(G, M) is finite for every finite Zp[G]-module M and
i > 0. Second, a compact p-adic Lie group is a profinite group that has an open pro-p subgroup, any
closed subgroup of which can be topologically generated by r elements for some fixed r. Equivalently,
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a compact p-adic Lie group is any profinite group continuously isomorphic to a closed subgroup of
GL,(Z,) for some n > 1.
We make the following assumptions for the rest of this section:

o G is p-cohomologically finite of p-cohomological dimension d,
o Ris a complete commutative local Noetherian Z,-algebra with finite residue field and
o either

(i) H is a compact p-adic Lie group or

(ii) T has a finite resolution by a complex of R[ G ]-modules free of finite rank over R.

Recall that the zeroth H-homology group of a compact Q-module M is its coinvariant module
My = M/IM. In our setting, corestriction provides an isomorphism on coinvariants in degree d (see
[NSW, Proposition 3.3.11]), which is to say that we have a natural isomorphism

H{ (N, T)
IHE (N, T)

w

= HY(G,T). (2.4)

This gives rise to a Grothendieck spectral sequence for the implicit composition of right exact functors,
which is a version of Tate’s descent spectral sequence for Iwasawa cohomology.

Proposition 2.2.2 (Fukaya-Kato, Lim-Sharifi). The Q-modules HfW(N ,T) are finitely generated for all
i > 0. Moreover, we have a first quadrant homological spectral sequence of R-modules

E? (T) = H;(H, Ht ' (N.T)) = Ei;(T) = H (G, T),

where d is the p-cohomological dimension of G.

This result is proven in [Se2, Theorem 1, Ta] if H is finite, and it follows from [FuKa, Proposition
1.6.5] if (ii) holds and from [LiSh, Propositions 3.1.3 and 3.2.4] if (i) holds.

The isomorphism (2.4) and the other edge maps on coinvariant groups in this spectral sequence
are given by the inverse limits of corestriction maps. This isomorphism forces the nth graded quotient
I"A/I" A in the augmentation filtration of A = Hffv (N, T) to be a quotient of H¥(G,T) ®g I"/I"*!
using the surjective map

AJIA @ I"/1"™ — ["A/T' A

induced by the map A x I" — ["A given by the multiplication (a,x) — xa. As we shall see, this
quotient is in fact coker ¥V,

Recall that we have assumed that Q/I" is R-flat. Moreover, the fact that H is topologically finitely
generated implies that Q/I" is finitely generated over R.

Lemma 2.2.3. Let A be an Q-module, and consider the exact sequence
0> AR /I - Aeg Q/I'"' > Aeg Q/I" — 0. (2.5)
The connecting homomorphism
On: Hi(H,A®g Q/I") — Ay ®g I"/I™"
in the H-homology of (2.5) has cokernel isomorphic to I" A 1"+ A.
Proof. We have compatible, natural isomorphisms of R-modules

(A®r Q/I")y =Q/I"®q A =A/l"A
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form > 1 givenona € A and w € Q (or its quotient by I"") by
a®w (w)®a - (w)a,

where ¢: Q — Q is the unique continuous R-linear map given by inversion of group elements on H. Note
that the switch of terms in the tensor product in the first isomorphism is necessitated by the fact that A
is a left Q-module (in fact, these become isomorphisms of Q-modules since a ® wh™' — h - 1(w) ® a
for h € H under the first map).

By the long exact sequence in H-homology and the above isomorphisms, the cokernel of interest is
identified with the kernel of the quotient map A// nlg 5 A /1" A, hence, the result. O

‘We now come to our theorem.

Theorem 2.2.4. For each n > 1, there is a canonical isomorphism

I"H{,(N.T) _ HY(G.T) gg I"/I™!
I"'HE (N, T) im ¥ ()

of R-modules, where d is the p-cohomological dimension of G.

Proof. There are isomorphisms
HE (N, T ®r M) = H. (N,T) @ M

for any compact R[[G ]|-module M finitely generated over R, since G has p-cohomological dimension d.
In particular, the following sequence is exact:

0— HE (N, T og I"/I™") — HE (N, T ®r Q/I"") — HE (N, T ®g Q/I") — 0.

w

We consider the connecting homomorphism in H-homology:
"™ H\(H,H{ (N,T) ® Q/I") — HE (N, T)y ®r I"/I™*". (2.6)

We next apply Lemma A.0.1 of the appendix, which says that edge maps to total terms in homological
Grothendieck spectral sequences are compatible with connecting maps. Here, the spectral sequence
is that of Proposition 2.2.2, which is associated to the composition of functors F = Hy(H, -) and
F’' = H{‘iv (N, -), noting that F o F’ = H?(G, -) via corestriction. The connecting homomorphisms are
from degrees 1 to 0 and are associated to the short exact sequence of (2.1).

In this setting, the lemma provides a commutative square related to the diagram

H NG, T o @/I") —X" 3 HA(G,T) g I"/ 1"

i lz (2.7)

(n)
Hy(H,HL (N, T) @ Q/1") -2 HL (N, Ty g I" /1™

but with L;(F o F’)(T ®g /I") in place of H4™1(G,T ®g Q/I"). By Lemma A.0.2, which is a simple
consequence of the universality of left-derived functors, we have a surjection from the latter object to
the former, compatible with their connecting homomorphisms to H4(G,T) ®g I"/I"*'. This allows us
to make the replacement while maintaining the surjectivity of the left vertical map, so we indeed have
the commutative square (2.7).

By Lemma 2.2.3, the isomorphism in the statement of the theorem is the map on cokernels of the
horizontal maps in (2.7). ]
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Although not used in this paper, for the purposes of Iwasawa-theoretic applications, it is useful to
have a slightly stronger version of Theorem 2.2.4. So, we remark that it has the following generalization,
with virtually no additional complications (given that the results of [LiSh, FuKa] hold in this generality).

Remark 2.2.5. Let G be a profinite group, and let I" be a quotient of G by a closed normal subgroup G.
Let H be a quotient of G by a closed normal subgroup N that is contained in G, and let H = G/N as
before. We then have I = #/H. That is, we have a commutative diagram of exact sequences

X4— Q> =

r

I

I(&I(ﬁz

—
—»

Take T to be a compact R[|G]-module finitely generated over R, and replace the assumptions on G
and H from the beginning of this subsection with the identical assumptions on G and H, respectively.
We have Iwasawa cohomology groups HfW(N ,T) and H{W(G, T), which are now taken relative to the
larger group G. These are finitely generated as modules over R[#] and A = R[[T'], respectively, and
we have, as before, a spectral sequence

E} /(T) = Hi(H, Hy,” (N, T)) = Ei;(T) = Hy " (G, T)

w

but now of A-modules. In exactly the same manner as before, this gives rise to isomorphisms

I"HE (N,T)  HZ (G,T)®g I"/I™!

"'HE (N, T) im ¥ ()

again, of A-modules.

2.3. The abelian case

We turn to the direct computation of generalized Bockstein maps on 1-cocycles for abelian H. That is,
let us now take H to be a finitely generated, abelian pro-p group, and let us take R to be a quotient
of Z,,. We give an explicit formula for W) ynder a hypothesis on the size of R that ensures our flatness
hypothesis is satisfied. If H has no nonzero p-torsion, no hypothesis is needed.

We begin with the following simple lemma.

Lemma 2.3.1. Let s and t be positive integers with n < p'™*!. Then (1 + x)PI — 1 is in the ideal
("1, p*) of Zlx].

Proof. Recall that p* divides (”lt) for 0 < i < p'~s*!. Therefore

t

P t
(1 +x)pt = Z (p ) =1 mod (x™, p*),
ico \ !
solong as n < p'~s+1, mi
Let hy, ..., h, be a minimal set of generators for H, labeled such that A1, ..., h. have finite orders
p"t <--- < p'and heyy, ..., h, have infinite order, for some 0 < ¢ < r. Define x; = [h;] — 1 € Q for

1 <i < r, where [h;] denotes the group element of /;, so that I = (xy,...,x,). We then have
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Rlx1,. .. x/]

((x1+ )P =1, (xc + )P = 1)

1R

We have ¢ > 0 if and only if H is not Z,-free, in which case, we suppose that R = Z/p*Z with
n < p"~s*1. By Lemma 2.3.1, we have

Q/Ij N R[xl,...,xr]
(1,0 0,x0))

for j < n+ 1. Moreover, I"/I"*! is a free R-module with a basis consisting of the monomials in the
variables x; of degree n. In particular, the generalized Bockstein map ¥ is defined. We may view any
element g € T Qg Q/I" as having the form

where the sum is taken over r-tuples (ky, . .., k,) of nonnegative integers with sum less than n and with
Qk,....k, € T,omitting the notation for the tensor product in such an expression. Setting || k|| = k1+: - -+k,
for an r-tuple (k1, ..., k,), let’s simplify this notation as
_ k
g= ), aut, 28)
llkll<n
where xk = x]]‘I . ~x’§r.

Let 7: G — H denote the quotient map. For each i, let

A= Z/piZ ifl<i<ec,
e Zp ifc<i<r.

For1 <i <vr,let y;: G — A; be the homomorphisms determined by
ﬂ(g) — l—[ ]’l?/'(g)
i=1

for g € G. The action of g € G on ¢ as in (2.8) is given by multiplication by [T_, (1 +x;)¥ (&), That is,
we have the formula

g a= ) ( > (X,E?))gakkr)xk, 2.9)
Ik l<n \0<k’ <k

where the second sum is over r-tuples k’ of nonnegative integers with k] < k; for each i and where we
X (@)Y — (x1(g) xr(8)
have set () = ( K, ) ()
Note that our assumption on the cardinality of R can be rephrased as saying that either ¢ = 0 or R is
a quotient of A} such that |R| < §|A1 |. With our notation and this assumption established, we can give

an explicit formula for ¥
Proposition 2.3.2. Let f: G — T ®g Q/I" be a 1-cocycle, and write

f= Z /lkxk

likll<n
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with A;.: G — T. Then ¥™ takes the class of f to the class of the 2-cocycle

DY ( D (",ﬁi"’))gak_kwh))xk,
Ik ]=n \0<k’ <k

where the first sum is taken over r-tuples k = (ky, ..., k,) of nonnegative integers summing to n and
the second sum is taken over nonzero r-tuples k' of nonnegative integers with ki < k; for all i.

Proof. Consider the set-theoretic section
sn: T ®r Q/I" > T ®g Q)" (2.10)

that takes a sum as in (2.8) to the same expression in the larger module. Let f = s, o f. By definition,
P ([ f]) is the class of d f, where

df(g,h) = f(g) +gf(h) ~ f(gh)

for g, h € G. Since f is a cocycle, the right-hand side of this expression is equal to the degree n part of
gf (h), which by (2.9) is exactly as in the statement of the proposition. O

For general H, pro-p but not necessarily abelian, we can use this computation to see that ¥(!) is given
by cup products. We consider the case that H is a quotient of G, such that the abelianization H*® of H
is finitely generated and pro-p. As before, but now for H% in place of H, there are nonnegative integers
r > ¢ and positive integers | < --- < t., such that

H™ = @Ai, 2.11)
i=1

where A; =Z/p'iZfori=1,...,cand A; = Zpfori=c+1,...,r.Fori=1,...,r,welety;: G — A;
denote the quotient map G — A;. We take n = 1, and our condition on the cardinality of R becomes
s <ty whenc > 1.

Fix generators Ay, ..., h, of H, such that each h; maps to 1 € A; under the composition of the
quotient map and the isomorphism in (2.11). There is an isomorphism /1> = H® ®z, R taking the
image of x; = [h;] — 1to h; ® 1.

Proposition 2.3.3. Let H be a finitely generated pro-p group with H*® as in (2.11), let I be the augmen-
tation ideal in Q = R[H] and let x; and x; for 1 < i < r be as in the previous paragraph. For any
1-cocycle f: G — T, we have

YOS = D 6 U flxi € H(GT) o 1)1,

i=1

Proof. Let Q" = R[H®] with augmentation ideal I’ ¢ Q’. Both Q/I and Q'/I’ are identified with R
via the augmentation maps, and there are also compatible isomorphisms between the graded quotients
[/1? and I’/(I")? and the R-module H®® ®z, R. It follows that the canonical map € — €’ induces an
isomorphism Q/1% = Q’/(1’)%. Thus, ¥(!) equals the first generalized Bockstein map for H?°, and the
proposition follows from the case n = 1 of Proposition 2.3.2. O

This result was previously studied by the third author in the context of Iwasawa theory, where these
maps are referred to as reciprocity maps with restricted ramification (see, for instance, [Sh3, Lemma 4.1]
for its introduction). In the following section, we study analogous results for ¥ with n > 1 in terms
of higher Massey products.
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3. Massey products

In this section, we review the definitions of Massey products and defining systems, with some
modifications from the standard definitions in order to allow for nontrivial coefficient modules. We
also introduce the notions of partial and proper defining systems.

3.1. Upper-triangular generalized matrix algebras

The notion of Massey products that we will use is conveniently stated using the theory of generalized
matrix algebras, as found in [BeCh, Section 1.3, pp. 19-21]. We require only a simple upper-triangular
version of these algebras. Let n be a positive integer, and let R be a commutative ring.

Definition 3.1.1. An n-dimensional upper-triangular generalized matrix algebra A over R
(or, R-UGMA) is an R-algebra formed out of the data of

o finitely generated R-modules A; ; for 1 <i < j < nwith A; ; = Rifi = j and
o R-module homomorphisms ¢; j x: A; j ®r Ajx — A;x forall 1 <i < j <k < n which are
induced by the given R-actions if i = j or j =k,

such that the two resulting maps
Aij®RAj | ®r Ar, — Ay

coincide forall 1 <i < j < k <[ < n. The tuple (A; j, ¢; ;) defines an R-algebra A with underlying
R-module

and multiplication given by matrix multiplication: that is, for a = (a; ;) and b = (b; ;) in A, the
(i, j)-entry (ab); j of ab is

J
(ab);j = Z @ik, jaix ®bgj).
=i

Our interest is in the multiplicative group U = U(A) of unipotent matrices in a UGMA A, that is,
those a = (a; ;) with a;; = 1 for all i. We shall often take the quotient /" = U’ (.A) of this U by its
central subgroup Z = Z(A) of unipotent central elements, that is, those a € U with a; ; = 0 for all
(i,7) # (1,n).

The following is the key example for our purposes.

Example 3.1.2. Let M be a finitely generated R-module, and let m be a positive integer less than n. We
define an n-dimensional R-UGMA A,,(M, m) as follows. Set
M ifi<m<j,
A= ,
R otherwise,
and take the maps ¢; ;  to be the R-module structure maps. This makes sense since, giveni < j < k,
at least one of A; ; and A; ; must be R, as m cannot satisfy both m < j and j < m.

Let us write U, (M, m) for U(A,(M,m)) and U, (M, m) for U’ (A, (M, m)). To make this easier to
visualize, note that we can write U4, (M, m) in ‘block matrix’ form as

Ui (R) My, n-m (M)

”"(M””):( 0 Upwi®) |
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where Ug (R) < GL (R) denotes the group of upper-triangular unipotent matrices and My ; (M) denotes
the additive group of k-by-/ matrices with entries in M for positive integers k and [. The latter group
is endowed with a left Uy (R)-action and a commuting right U;(R)-action. Put differently, A4, (M, m)
itself is a sort of 2-by-2 generalized matrix algebra, allowing noncommutative rings on the diagonal and
bimodules in the nondiagonal entries.

We actually need to use profinite UGMAs defined just as in Definition 3.1.1 using profinite rings R
and compact R-modules A; ; but now assuming that the induced multiplication maps A; ; XA x — A; «
are continuous. Alternatively, the maps ¢; ; x can be replaced by maps of completed tensor products
over R in the definition.

Though unnecessary, to keep things simple, let us suppose that the compact R-modules A; ; in a
profinite R-UGMA are R-finitely generated. This forces them to have the adic topology for any directed
system of ideals that are open neighborhoods of zero. Moreover, their tensor products and completed
tensor products are then abstractly isomorphic, and so we may, in particular, view the tensor products
A; j ®r Aj i themselves as compact R-modules (for a slightly longer discussion of this, see [LiSh,
Section 2.3]).

Note that any profinite R-UGMA A has a topology as a finite direct product of the compact R-modules
A, j, and U inherits the subspace topology.

We also want to make a second modification, allowing a continuous action of G.

Definition 3.1.3. For a profinite ring R and a profinite group G, a profinite(R, G)-UGMA is the data of
a profinite R-UGMA A together with a continuous G-action on each A; ;, such that

o the action on A; ; = R is trivial for all i and
o the maps ¢; ; x are maps of R[G ]-modules, where A; ; ®g Aj i is given the diagonal action of G.

We remark that, aside from issues of finite generation, the difference between a profinite
R[G]-UGMA and a profinite (R, G)-UGMA is that in the former, each A;; = R[G], whereas in
the latter, each A; ; is R with the trivial G-action. We are interested in the latter structure.

Example 3.1.4. If R is a profinite ring and T is a compact R[[ G ]-module (that is R-finitely generated),
then the R-UGMA A,, (T, m) of Example 3.1.2 has a natural structure of a profinite (R, G)-UGMA by
letting G act on A; ; viaits action on T if i < m < j and trivially otherwise.

3.2. Defining systems and Massey products

Let R be a profinite ring, let G be a profinite group and let n > 2. Let Ty, ..., T, be compact R[G]-
modules that are R-finitely generated for simplicity, and let y;: G — T; be continuous 1-cocycles for
1 < i < n. In this section, we define Massey products of these cocycles, which will be 2-cocycles that
depend on a number of choices constituting a defining system.

Definition 3.2.1. A defining system for the Massey product of y1, ..., xn is the data of

o an (n + 1)-dimensional profinite (R, G)-UGMA A and

o a (nonabelian) continuous 1-cocycle p: G — U’,

such that A; ;41 = 7; for 1 <i < n and the composition of p with projection to A; ;11 is y;.

Given a defining system p: G — U’, there is a unique function 5: G — U lifting p and having zero
as the (1,n + 1)-entry of g(g) for all g € G. We let p; j: G — A; ; be the map given by taking the
(i, j)-entry of .

Definition 3.2.2. Given a defining system p, the n-fold Massey product (x1, ..., xn)p € H*(G, Ay ns1)
is the class of the 2-cocycle

n
(g, h) — Z @1,i,n+1(01,:(8) ® gPins1())
P

that sends (g, /) to the (1,n + 1)-entry of 5(g) - go(h).
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In the remainder of the paper, we will restrict our attention to the setting of the (n + 1)-dimensional
profinite (R, G)-UGMAs of the form 4,41 (T, m) defined in Examples 3.1.2 and 3.1.4. This means, in
particular, that we only consider n-fold Massey products for which there is an m with 1 < m < n, such
that 7,,, = T and T; = R for i # m. In particular, we will always have (x1,..., Xn)p € H*(G,T).

In [Sh2], the third author considered the case in which m = n and y; = -+ = y,-1 in a Galois-
cohomological setting. In that case, the key idea for relating Massey products to graded pieces of
Iwasawa cohomology groups was to consider only a restricted set of defining systems referred to as
proper defining systems. We will consider a more general notion of proper defining system that depends
on extra data we call a partial defining system. In [Sh2], the partial defining system comes from unipotent
binomial matrices, which we review in Section 4.2 below.

3.3. Massey products relative to proper defining systems

Fix aninteger n > 2 and two integers a, b > 0 witha+b = n. Let Z!(G, M) for a profinite R[| G]-module
M denote the group of continuous i-cocycles on G valued in M. Choose tuples

a=(al,...,aq) € Z"(G,R)*and B = (Bi,...,Bs) € Z'(G,R)®

and a compact R[[G]-module T that is finitely generated as an R-module.

We next consider a pair of homomorphisms that constitute a part of the defining systems for (n+ 1)-
fold Massey products (a1, . .., @4, 4,81, .. .,Bp), where 1 € Z'(G,T) is allowed to vary. We write the
collection of such Massey products as (a, -, ) for short.

Definition 3.3.1. A partial defining system for (n + 1)-fold Massey products (a, -, ) is a pair of
homomorphisms

¢: G = Ugpi(R) and 6: G — Up41(R),

such that « is the off-diagonal of ¢ and g is the off-diagonal of 6, that is, ¢; ;+1 = a; for 1 <i < a and
0iiv1 = Bi forl <i<b.

More specifically, an (a, b)-partial defining system is a partial defining system restricting to some
pair (@, B) € Z'(G,R)* x Z' (G, R)".

Recall that

Upir(T,a+1) = (Ua“(R) Ma+l,b+1(T)).

Up+1 (R)
We may then write the quotient by the unipotent central matrices as

Ug+1 (R) Mc’¢+1,b+1 (T))

ur/l+2(T’a + 1) = ( Ub+l (R)

for M/ ‘b 1 (T) = Mgs1 41 (T)/T, where T is identified with the matrices that are zero outside the

(1,b + 1)-entry.

Definition 3.3.2. Given a 1-cocycle 1: G — T, a proper defining system for an (n + 1)-fold Massey
product (a, A, B) relative to a partial defining system(¢, 0) is a continuous 1-cocycle

p:G—-U ,(T,a+1)

of the form

for some k: G — M;+l,b+1(T) with k41,1 = 4.
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The advantage of proper defining systems is that they are parameterized by abelian, rather than
nonabelian, cocycles. To show this, we introduce a compact R[[G [-module Wy ¢(7), such that proper
defining systems in 7 relative to (¢, §) correspond to 1-cocycles with values in Uy o (7).

Consider the compact R-module ., (R) that is the R-module of strictly upper-triangular (n + 2)-
dimensional square matrices. The group U,+2(R) acts continuously on U,,,»(R) by conjugation. We
consider a R[[U,;42(R) ]|-submodule U, 5, (R) of U,,,»(R) given by

{x:(xl-j) € M,.»(R) |xij=Oifj§a+10ri2a+2}.

In other words, breaking M,,,>(R) into blocks using the partition n +2 = (a + 1) + (b + 1) and using
block-matrix notation, we have

ua,b(R) — (8 Ma+1,8+l(R))'

Given a partial defining system (¢, 8), we consider U, ,(R) as a G-module via the continuous
homomorphism

G - Uya(R), g (¢E)g) G(Og))~

We define an R[[G ||-module Uy ¢(7T) as U, 5 (R) ®r T with the diagonal G-action. We also have the
following equivalent definition, which has the benefit of being more explicit:

o Uy (T) = Mas1,5+1(T) as an R-module,
o the action map G — End(M41,541(T)) is given, for g € G and x € My41,p41(T), by

gxx=¢(g) gx-0(g)",

where gx means apply the g action on 7 to each matrix entry, and the multiplication denoted by *-’ is
of matrices.

Going forward, we use the latter description of Uy ¢(T'), so consider it as consisting of (a + 1)-by-
(b + 1) matrices, rather than as a subgroup of M,,.»(R). Note that 24 ¢(T) contains a copy of T as an
R[ G]|-submodule by inclusion in the (1, b + 1)-entry. Let

W, 4(T) = Wy o(T)/T.

Let x — % denote the R-module section II;, o(T) = Uy o(T) given by filling in the (1, b+ 1)-entry as 0.

Lemma 3.3.3. Let (¢, 0) be a partial defining system for Massey products («, -, 3). Then the map that
takes a continuous 1-cocycle k' : G — u;),g(T) toamap p: G — U, ,(T,a) given by

_ (¢ k'0
p= (0 0
is a bijection between Z' (G, II;j’ o(T)) and the set of proper defining systems in T relative to (¢, 6).
Proof. Given a cochain «”: G — II;S’H(T), setk =k'0: G — lI;)’g(T). We have to check that

o= (i)

is a cocycle if and only if «” is a cocycle. Matrix multiplication tells us that p is a cocycle if and only if

k(gh) = ¢(g)gk(h) + k(g)6(h). 3.1
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The cochain «’ is a cocycle if and only if the second equality holds in the following string of equalities

k(gh) = k' (gh)0(gh)
= (g * «'(h) +«'(g))0(gh)
= ($(g)gk’ (MO(8) ™" +«'(2))0(2)0(h)
= ¢(8)gx’ (M6 (h) +«'(8)6(g)0(h)
= ¢(g)gk(h) + k(g)8(h),

hence, the result. O

The value of the Massey product associated to a proper defining system is also a value of a connecting
homomorphism for an exact sequence attached to the underlying partial defining system.

Theorem 3.3.4. Let (¢,0) be a partial defining system for (a, -, ). Let k¥’ € Z'(G, lI('ﬁ’e(T)), and
let p = ( ¢ K;)Q) be the associated proper defining system as in Lemma 3.3.3. Consider the short exact
sequence

0T — Uy o(T) > W, ,(T) — 0.
Then the image of the class of k’ under the connecting map

a: H'(G, W), ,(T)) — H*(G,T)

is the (n + 1)-fold Massey product (ay, ..., aq, K, s B1>- - Bb)p-

Proof. Let k = K'0: G — H;w(T), and let & be its unique lift to Wy ¢(7T) with #(g) having zero

(1,b+ 1)-entry forall g € G. Themap &’ = k0™': G — Uy ¢(T) is then a lift of «’. By definition, the
image of « is represented by the 2-cocycle that is given by taking the (1, b + 1)-entry of d&’. We have

dr'(g,h) =&'(g) + g x K’ (h) = k'(gh)
= R(g)0(g)™" + ¢(g)gk(h)O(h)~'o(g)™" — k(gh)0(gh)™
= (R(g)0(h) + ¢(g)gk(h) — R(gh))0(gh)™".

Since « satisfies (3.1), we have K(g)0(h) + ¢(g)gk(h) — k(gh) € T, and T is fixed under the action of
right multiplication by an element of Up;(R). Since K(gh) has zero (1,5 + 1)-entry, the (1,5 + 1)-
entries of d&’(g, h) and £(g)0(h) + ¢(g)gk(h) are equal.

The Massey product (i, . .., ®a, Ka+1,1, B1, - - - » Bb)p (and note that k41,1 = K;H’l) isthe (1,n+2)-
entry of 5(g) - go(h), where

The result then follows from the fact that

scon oo — [2(8) k(@) (¢(h) gk(h)\ _ (#(gh) ¢(g)gk(h) + k()6 (h)

p(g) gp(h)— ( 0 Q(g) 0 9(/’1) - 0 Q(gh) . O
In fact, the proof of Theorem 3.3.4 gives an explicit map Z' (G, u:;s,e(T)) — Z*(G,T), taking a

1-cocycle k’ to the (1, b + 1)-entry of d&’, for the specific lift & of x” defined therein.
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4. Massey products as values of Bockstein maps

We return to the setting and notation of Section 2. We first discuss a general result that gives partial
information about the generalized Bockstein map ¥ in terms of Massey products. Then we discuss
specific examples where this information completely determines W),

4.1. Partial defining systems and Bockstein maps

Fix integers a, b > 0, such that a + b = n and group homomorphisms
¢: H—>Ug(R)and 0: H — Up,(R),

so viewing ¢ and 6 as maps from G via precomposition with the quotient map, the pair (¢, 6) is an
(a, b)-partial defining system. We let @ = (¢; ;+1); and 8 = (0, i+1);, so this partial defining system is
of Massey products (a, -, ). If b = 0, we often refer to the pair (¢, ) simply as ¢.

Lemma 4.1.1. Let e € U, 5, (R) be the matrix with (a + 1, 1)-entry equal to 1 and all other entries 0.
There is a continuous R G ||-module homomorphism p 4 ¢: Q/ "' — U, ,(R) given on the cosets of
images of group elements by

Po.o([h]) = ¢(h)-e-6(h)".
The image of I is contained in the submodule of matrices that are zero outside of their (1, b+1)-entries.

Proof. The map pg ¢: Q — U, ;(R) inducing py ¢ is given by the action of H on e € U, ;,(R) via
the composite homomorphism

H 2% Ua(R) 25 Aut(, 0 (R)),

where pg ¢: H — U,2(R) is given by

h) 0
p¢,9(h) = (¢E) ) G(h))

and ad denotes the conjugation action. The action of G on Q is given by the homomorphism G — H,
and the action of G on U, 5 (R) is given by the composite of this map with H — Aut(U, 5 (R)),s0 g0
is G-equivariant. We must show it factors through Q/1"*!.

Let J € R[U,42(R)] be the augmentation ideal. Since the H-action factors through U, 42 (R), we
have ¥, ;, (R) C J¥U, 5 (R) for all k. It is easy to see inductively that

T W0 (R) = {(aij) € Musa(R) | a;; = 0if j —i < k}.
In particular, J"*'2[,,,»(R) = 0 and
J" Wpi2(R) = {(aij) € Mpi2(R) | ai; = 0if (i, j) # (1,n+2)}.

Still viewing U, 5 (R) as a subgroup of U,,.»(R), the containments

Ikua,b(R) c ]kua,b(R) c Jkun+2(R)

imply the result. O
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Lemma 4.1.1 implies that there is a map of short exact sequences of R[[G]-modules

0 —=> TR I"/I"™ ——= TerQ/I" —— Tr Q/I" —— 0

lw lpd,.e lpwi .1

0 > T > g0 (T) —— W, () ——> 0,

where p 4 ¢ is the tensor product with T of the map in Lemma 4.1.1 coming from pg ¢. As a direct
consequence of this commutativity and Theorem 3.3.4, we have the following.

Theorem 4.1.2. Let ¢: G — Uy (R) and 0: G — Upy((R) restrict to a € Z'(G,R)* and 8 €
Z'(G,R)? as above. Let f € Z (G, T ®g Q/I""), and let p denote the proper defining system relative to
(¢, 0) associated to pg ¢ o f by Lemma 3.3.3. Then we have

Po.0 (P (D) = (@, (pg.6 © Flari1, B)p

in H*(G,T). Here, the maps D ¢,0 on the left and right are those induced on cohomology by the left and
right vertical maps in (4.1).

We will give examples of groups H and integers n, such that there is a set X of choices of (¢, 6) for
which the map

Mig.0ex Po,
H2(G,T) @ I/ 1" =000, [T #G.1)
(¢,0)eX

is injective. In such cases, Theorem 4.1.2 shows that the generalized Bockstein map ¥ is determined
by Massey products. In the rest of this section, we consider some specific examples in detail.

4.2. Unipotent binomial matrices

We introduce the unipotent binomial matrices, which are a source of many partial defining systems. Let
n denote a positive integer, and let p be a prime number.
Let u, denote the (n + 1)-dimensional nilpotent upper triangular matrix

010 0
0 1
Uy = 0 ol
1
0

For any k > 1, the matrix u,/; has (i, j)-entry 1 if j —i = k and O otherwise. In particular, we have
u™l =0,
Let [,]: Z, — Un1(Zp) denote the unique continuous homomorphism to (n + 1)-dimensional

unipotent matrices with Z ,-entries such that [,11] = 1+ u,. By the binomial theorem, for a € Z, we have
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n 1 a
[ ] = (1+u,)° =Z(Z)u5 - 1 ()
k=0
a
1

If 1 > sand n < p'~5*!, then the composite map

Z [—n]—> Un+1(Zp) - Un+l(Z/pSZ)

that sends a to (1 + u,)® modulo p* factors through Z/p'Z by Lemma 2.3.1 applied with x = u,. By
abuse of notation, we again denote the resulting map Z/p'Z — U, (Z/p*Z) by [n] In particular, the
map (,): Z — Z/p*Z given by a — (%)(mod p*) factors through Z/p’Z, and we abuse notation to
also denote the resulting map Z/p'Z — Z/pSZ by ;).

The following lemma, phrased conveniently for our purposes, summarizes the above discussion.
Lemma 4.2.1. Let A be a quotient of the ring Z,, and R be a quotient of A. Let H be a profinite group
and y : H — A be a continuous homomorphism. Suppose that either A = Z,, or |R| < §|A|. Then there

is a homomorphism
|ii:j| : H - Un+l(R)7

defined by [¥]|(h) = [¥\M] for all h € H.

Proof Tf|R| = p* and |A] = p', then |R| < Z|A| if and only if n < p/~*!, 5

4.3. Procyclic case

In this subsection, we fix a surjective homomorphism y: G — A, where A is a nonzero quotient of Z,.
We suppose that our ring R is a nonzero quotient of A with A = Z,, or n|R| < p|A|. We define H to be
the coimage of y, so H = A. We fix h € H to be the preimage of 1 € A andletx = [h] — 1 € Q, which is
a generator of the augmentation ideal 1. Our assumption on the size of R implies that Q/I/ = R[x]/(x/)
for all j < n + 1 by the discussion of Section 2.3. In particular, we have 1" /I"*! = Rx".

The (n,0)-proper defining systems relative to ¢ = [*r: ] and the trivial map 6 to U;(R) = {1} agree
with the proper defining systems considered in [Sh2] for Galois groups. We give an interpretation of the
resulting Massey products in terms of generalized Bockstein maps. That is, let us apply the discussion
of Section 4.1 to this situation. We have @ = (y,...,x) € Z'(G,R)", which we denote by y ™. We
denote Uy ¢ (T) by llm (7).

The diagram (4.1) becomes

0 —> T-x" — 3 TR QI — 3 TerQ/I" — 0

; b I

> Uy (T) ——— Wy (1) —— 0.

where p, is the map attached to ([’yf ],0) by Lemma 4.1.1. Explicitly, the vector p,(X}_, agx®) in
M,,111(T) has ith entry a,,.—; (see the more general case proven in Lemma 4.4.1 of the next subsection).
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By Lemma 3.3.3, it follows that the proper defining system p,n relative to [’; ] that is attached to
pn o f, where

n-1

f= Z/lkxk € Z'(G,T ®g Q/I"),
k=0

satisfies (Oxn Jn+1-k,n+2 = Ak for 0 < k < n — 1. In particular, the element A = Ao = (pxn )n+1,0+2 is the
image of f under the map

ZY(G, T ®g Q/I") — Z'(G,T)

induced by the augmentation Q/I" +— Q/I = R.
Theorem 4.1.2 then gives us an explicit description of the values of the generalized Bockstein
homomorphism on classes in H' (G, T®g Q/1") as Massey products (y ™, -) relative to [’,Vl ] , as follows.

Theorem 4.3.1. For f € Z'(G,T ®g Q/I"), we have
PO = 0™, -2
where pyn is the proper defining system relative to [’rf ] attached to f, and A is the image of fin Z' (G, T).

In particular, we have the following description of the image of ¥,

Corollary 4.3.2. The image of the generalized Bockstein map W™ is the set of all (y™, A)p - x" for
Massey products of n copies of x with 1-cocycles A € Z'(G,T) for proper defining systems p relative
to [’ﬂ With Ppil e = A

Theorem 2.2.4 provides the following application to the graded quotients of Iwasawa cohomology
groups of N =ker(y: G — H).

Corollary 4.3.3. Suppose that G is p-cohomologically finite of p-cohomological dimension 2. Let P,,(H)
denote the subgroup of H*(G,T) ®g I"/I"*" generated by all (y™, A)p - X" for proper defining systems
p relative to [*,; ] and A = pyy1 p+2. We have a canonical isomorphism of R-modules

I"HZ (N,T) _HXG. T)eg 1"/ 1"
I"'H2 (N,T) P, (H)

4.4. Pro-bicyclic case
In this subsection, we

o fix a surjective homomorphism (y,%): G -» A X B, where A and B are nonzero quotients of Z,,

o leta, b > 0 denote integers, such that a + b = n and

o suppose that R is a nonzero quotient of both A and B with a|R| < p|A]| if A is finite and b|R| < p|B]|
if B is finite.

Let H be the coimage of (y,y) sothat H = A X B. Let ha, hg € H be the preimages of (1,0), (0,1) €
A X B, respectively, and let x = [ha] — 1 and y = [hp] — 1 so that (x, y) is the augmentation ideal I of
Q = R[H]. We have Q/I’ = R[x, y]/(x,y)/ forall j < n. In particular, we have

In/1n+1 — @ Rxlyj

i+j=n

We apply the discussion of Section 4.1 to this situation. We take ¢ = [2’ ]: H — Ug,(R) and
0= ['g] :H — Up(R). Wehave @ = @ € Z'(G,R)% and B =y ® € Z'(G, R)®.



24 Y. H. J Lam et al.
Setpap=p [].14] for brevity. In this setting, the diagram (4.1) becomes
al’Lb

0 — Pyyjen T ¥y —> TR Q™ —— TR Q/I" —— 0

l lpa.b lpa,b 42)

0 > T > u[)‘g]’[ﬁ] (1) — u’ﬂ’[z] (1) — 0.

Lemma4.4.1. The R G]-module map p,p: TORQ/I™ — lI[X] 4] (T) is an isomorphism satisfying
al’Lb

ki k
Pa,b( Z Chy X 'Y 2) = (Cari-i,j-1)i,j-

ki+ky <n
In particular, the left-hand vertical map in (4.2) is given by projection onto the factor T - x%y? = T.

Proof. This reduces immediately to the case that 7 = R, since we can obtain the case of arbitrary T by
R-tensor product with the identity of 7. Let e be as in Lemma 4.1.1, the matrix with a single nonzero
entry of 1 in the (a + 1, 1)-coordinate of M 41 p+1(R). The (i, j)-entry of g x e = [X(ag)]e ['/’zg)] is

(X(g) )(W(g))
a+1-il\j -1/

which agrees with the coefficient of x**'=7y/~!in g - 1 by (2.9). O
Corollary 4.4.2. For

= D Awxy? eZ'(G.0/I"erT)

ki+ky<n
and p b the proper defining system relative to ( [); ] , [Z]) attachedto p4 p o f by Lemma 3.3.3, we have

(Pxayb)ari—ka+2+ky = Ak ky
forall 0 < (ki,k2) < (a,b). In particular, we have (pyayb)a+1,a+2 = Ao,0, which is the image of f in
Z'(G,T) under the map induced by the quotient Q/I" — Q/I = R.

The following is then a direct consequence of Theorem 4.1.2.
Theorem 4.4.3. For f € Z'(G,Q/I" ® T), the image of ¥™ ([ f]) in
HYG.T) &g I"/I™' = 5 HA(G.T) -xy"
a+b=n

is

2, APy, L xy,

a+b=n

where pyayb is the proper defining system relative to ( [)é]’ ['g]) attached to p, p © f and A is the image
of fin Z\(G,T).

Applying Theorem 2.2.4, we obtain the following description of graded quotients of Iwasawa coho-
mology.

Corollary 4.4.4. Suppose that G is p-cohomologically finite of p-cohomological dimension 2. Let P,,(H)
denote the subgroup of H*(G,T) ®g I/ I"*" consisting of all sums ¥, 4op-pn ('Y, A, w(b))pxu b x4yb,
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where the pay» and A are associated to a cocycle in Z1(G,Q/I" ®g T) as in Proposition 4.4.3. We
then have a canonical isomorphism of R-modules

I"H{,(N.T) _ H*(G.T) @ I"/I"*!
I"H2 (N, T) P, (H)

4.5. Elementary abelian p-groups

The pattern seen in the cyclic and bicyclic cases does not continue for all finitely generated abelian pro-p
groups. To see why, consider the case that H = ]F?, with basis (1, ¥2,7y3) and dual basis (1, x2, x3)-

For x; = [y;] — 1, we have a basis of I" /I"*! consisting of monomials x’;‘xézx? with iy + iy +i3 = n.
Following the pattern of the cyclic and bicyclic cases, one might guess that the coefficient of x’l' x’zz)c;3

in W ([f]) is an (n + 1)-fold Massey product involving i ; copies of each y; and another cocycle A
determined by f. However, this pattern fails already for n = 3 and the coefficient of x;x,x3: any 4-fold
Massey product involving the y; must have two of these characters beside each other, and thus, to be
defined, the cup product of those two characters must vanish. Since these cup products will not vanish
in general, we cannot hope for such a general statement to hold.

Nevertheless, at least in some cases, one can still describe the generalized Bockstein maps p) in
terms of Massey products, at the expense of taking a nonstandard basis for /" /I"*!. In this subsection,
we assume that H = F), for some r > 1. Correspondingly, we take n < p and R = .

We let V¥ = Hom(V, F),) for an abelian group V. For any element y € H", we have a homomorphism

m L H = Uy ().

Precomposing with G — H, we may view y as a character of G. This gives an (n, 0)-partial defining
system,and wesetp, , = p [¥].0 for brevity. By (4.1), the map p, , inducesamap p, ,: n/r+ - Fp,

SO py.n € (I"/I"™")V. This defines a function p_,,: HY — (I"/I"*1)Y.
Let us fix an isomorphism H SF , which, in turn, fixes an ordered dual basis ()/i)l.r:l of H. Setting
x; = [yi] — 1 € Q, this provides an identification

QI =F,[xy, .., xal/(x1s o xp)™ (4.3)

Then I"/I"*! has a basis given by xf‘ oo x® with (dy, ..., d,) ranging over r-tuples of nonnegative
integers with d; +- -+ + d, = n. We compute p, , on this basis.

Lemma 4.5.1. Let y € H. For any nonnegative integers dy, . . ., d, with sum n, we have
r
d .
P oxfy = [ T rro®.
i=1
Proof. We have

p)(,n(xi) = ([X(Zl)

- l)e = ((1+u)¥") — e e Uy

where u,, is as in Section 4.2 and e is as in Lemma 4.1.1. Note that u); has a 1 in its (1, n + 1) entry and
all other entries 0, and u*' = 0. For d; +- - - + d, = n, the value p)(,n(xil‘ cx%yisthe (1,n+ 1)-entry
of the matrix
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ﬁ((l +up) ¥ — 1) = ﬁ(x(y,->un>df =
i=1 i=1

,
]_[X(%-)d")uﬁ,

i=1

proving the lemma. O

The key lemma is then the following.
Lemma 4.5.2. The image of p_,: H' — (I"/I"*") generates (1" /I"*")V.

Proof. Using our identification (4.3), any nonzero F € I" /I"*! has a unique representative also denoted
FinFp[x1,...,x,] that is homogeneous of degree n and Lemma 4.5.1 implies that

p)(,n(F) =F(x(1),.- > x(yr)).

WritingI': HY — [, for the isomorphism given by I'(x) = (x(y1). - .., x(¥»)), this can be succinctly
written as p, ,(F) = F(I'(x)).

For a finite set S and an s € S, we denote by ]P'f, the vector space of functions § — F, and by 1, € ]Fi
the indicator function of s. The lemma may then be rephrased as the statement that the linearization
P-n of p_ 5, given by

~ v
Pt By = ("1™, 1o Py
is surjective, or, equivalently, that the dual map
- \
Pt 1M1 — (F)Y

is injective. For any nonzero F € I"/I"*!, since n < p, the finite field Nullstellensatz provides the
existence of v € F, for which F(v) # 0. Then

PLa(F)(Ip-1(y) = proi(vy n(F) = F(v) 0,
so pY ,(F) #0. o

Remark 4.5.3. This lemma is the reason for our assumption that n < p in this section rather than the
assumption n|R| < p|A| used in other sections. To see that this argument cannot work for torsion-
free abelian groups H and arbitrary n, take R = F,, and H = Zf,. Then we know that I /I"™*! has
dimension n + 1 for any »n, and the proof of Lemma 4.5.2 shows that p_ ,,: Hom(H,F,) — (I /mhv
is homogeneous of degree n in the sense that p,y , = a”py., for ¢ € Hom(H,Fp,) and a € Fp, so the
span of its image has dimension at most the cardinality of Hom(H, F,,) /F;, which is p + 1.

We now come to our result expressing values of the generalized Bockstein maps as sums of ‘cyclic’
Massey products.If y € HY and f € Z'(G, T®gQ/I"), then we say that a proper defining system relative
to [¥] is attached to f if it is attached to the image of f in Z' (G, T ®g Q,/I7}), where Q, = R[H [Ker x|
and I, is its augmentation ideal.

Theorem 4.5.4. There exist N > 1 and y1,...,xn € HY, such that (p)(l.,n)l.lz1 is an ordered F,-basis
of (I"/I'™*YYV. For any such ()(i)l.l\:jl, let (yl-)iIZl be the basis of I/ I"*" dual to (pX,.,n)l.IZl. Then for any
f€Z (G, T ® Q/I"), we have

N
YD) = D 0™ Ay, i
i=1

where p; is the proper defining system relative to [)fl' ] attached to f and A is the image of fin Z'(G,T).
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Proof. The first statement is clear from Lemma 4.5.2. For the second statement, let
N

YD) = e yi

i=1
for some c¢; € H2(G,T). Since py,.n»--->Pyn.n is the dual basis to yi,...,yn, we have ¢; =

pXi,n(‘I’(")([f])) for 1 <i < N. But by Theorem 4.1.2, we have

Pren (PO LD) = (0, V- -

4.6. Heisenberg case

In this section, assume that H = U3 (A) for a nonzero quotient A of Z,,, and that R is a quotient of A,
such that either R = Z,, or n|R| < p|A|. We study the generalized Bockstein maps Y™ in the cases
n=2andn = 3.

Let

] S 1111 R 1] ISP

Then [ is the two-sided ideal generated by x and y, and I/I> = Rx@® Ry. Let y,: G — A be the unique
characters factoring through H such that

() =1 A(GED =0 el

Then (y,¢¥): G — A X A defines a homomorphism.
Lemma 4.6.1. The R-module I | I? is freely generated by the image of the set

Sy ={x*,y*,yx, 2},
and I’ |1* is R-freely generated by the image of
S3 = {x°, xz, yx%, y%x, ¥, yz}.

Proof. For any n, Lemma 2.3.1 and the condition that n|R| < p|A] in the case that A is finite are enough
to guarantee that the quotient Q/I*! is isomorphic to the analogous quotient with A replaced by Z D>
so we may suppose in this proof that H = U3(Z,,).

Let ¥ be the noncommutative R[z]]-power series ring ¥ in variables x and y. It follows from the
standard presentation of U3(Z,,) as a finitely generated pro-p group that Q@ = R[[U3(Z,) | is the quotient
of Z by the ideal generated by

w=(1+y)(1+x)z—- (xy— yx). 4.5)

The augmentation ideal 7 of Q is (x,y), so I" is generated by the monomials in x and y of degree at
least n. Using (4.5), we can reduce this to

1" = (Y/x'Z5 i+ j+2k > n).

It is therefore enough to check that the image of the set S,, is R-linearly independent in I”/I™*! for
n € {2,3}.

Consider X as a graded R-algebra with x, y and z in degrees 1, 1 and 2, respectively. Let J,, denote
the ideal of elements of X of degree at least n. Suppose that f € X lies in the intersection of the R-span
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of the elements of S,, with (w) + J,,41. When n = 2, one can easily see that f = 0. When n = 3, there
are a, b, c,d € R, such that

f+Js=(ax+Dby)w+w(cx +dy) + Js.

By the hypothesis on f; the degree 3 terms above are in the R-span of S3, which forcesa =b=c=d =0,
and, hence, f = 0. m]

Let us first consider the case n = 2. By Lemma 4.6.1, we see that 12 / I3 is a free R-module on the set
Sy = {x2,¥%, yx, z}. We consider the three partial defining systems

¢x2 = [)2(]’ ¢y2 = [lg]’ ¢Z: H— U3(R) X Ul (R) = U’;(R),

with @ =2 and b = 0, where ¢, is the quotient map on coefficients and the partial defining system
dyx = () H— Uz (R) X Uz(R) =RXR

for a = b = 1. By Theorem 3.3.4, the partial defining systems ¢,2, ¢2, ¢, and ¢y, correspond to

Massey products (y, x, ), (¥, ¢, -), (x.¥, -) and (x, -, ), respectively.
As for n = 3, the graded quotient 13/14 is a free R-module on S3 of Lemma 4.6.1. For each s € S3,
we define a partial defining system ¢, (viewed as a pair of homomorphisms) as follows:

[§].0
¢y3: H —— Ug(R) X Ui (R),

N
$re: H—5 Us(R) x Up(R),

oo # LB Uy Ry x UL (R).

"
$yoc: H {HER Us(R) x Uy (R),

gy 150
¢y3: H =" Uy(R) X U (R),

W,id
¢yzi H— Uz(R) X U3(R).

By Theorem 3.3.4, each partial defining system corresponds to a collection of Massey products as
follows:

b (o xs X, ),
$xz «— (X, ¥, X),
Pyx2 > (W, x5 X)),
G2y > (W4, - x)s
¢y — W ¥y, -),
by > (Y, L x,¥).

For each s € S,, with n € {2, 3}, the diagram (4.1) becomes

0 —= TR I"/I — 3> TR QI — 3> TRrQ/I" — 0

0 > T > U (T) ——— WU(T) —> 0,
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where the maps p are induced by the map ¢, and we have used the shorthand U (7’) for Wy (T') (and
similarly for the quotients). Note that py: T ®g I"/I"*! — T is just the R-tensor product of the likewise-
defined py: I"/I"*' — R with the identity on T. The maps p,: I"/I"*! — R for s € S,, form the dual
basis to the R-basis S,, of I" /I"*!. This can be seen by an omitted direct computation, proceeding as in
the following example.

Example 4.6.2. Suppose that n = 2, and take s = z € S,. Recall that ¢,: H — Uj3(R) is given by
the canonical surjection A — R on coefficients. By definition of p,: Q/I° — Uy (R) = M31(R) in
Lemma 4.1.1, we have

p=([h]) = 6.(h)(0) € M3 (R)

for all h € H. Recalling that x + 1, y + 1 and z + | are the group elements of matrices as in (4.4), we

compute
pa= () -2(1) ) o
pes=(2) -2(1)+ (1) =0
pe00= (1) (1) +(4) - (§) =0
re@=(0)- (1) =)
and note that (é) gives the identity of R ¢ Wy_(R).
By Theorem 4.1.2, we then have the following.
Theorem 4.6.3. Forn € {2,3} and f € Z'(G,T ® Q/I"), the element ¥™ ([ f]) of
H*(G,T) ®g I/ I = @HZ(G,T)S
s€Sy
is the sum
O X Do X+ (6 ) Y+ (W Dp ¥ + (¥, D, 2 @7
for n = 2 and the sum
0 XX p 3+ O A X)p X2+ (Y, 4 X0 Xp, 93 ws)

+ (U0, A X)p s X (W, D, v+ (A XYy, 92

for n = 3, where each p for s € Sy, is the proper defining system relative to ¢, attached to ps o f by
Lemma 3.3.3, and A is the image of fin Z' (G, T).

As before, Theorem 2.2.4 then provides the following isomorphisms.

Corollary 4.6.4. Suppose that G is p-cohomologically finite of p-cohomological dimension 2. For
n € {2,3}, let P,,(H) denote the subgroup of H*(G,T) ®g I"*/1"*" consisting of all sums in (4.7) for
n=2andin (4.8) for n = 3. We then have a canonical isomorphism of R-modules

I"H{,(N.T) _ H*(G.T) @ I"/I"*!
I"'H2 (N, T) P, (H)
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5. Applications to cyclotomic fields

In this section, we apply our general results to study class groups of finite extensions of a cyclotomic
field Q(up) with p an irregular prime. That is, under assumptions that include vanishing of certain
cup products, we are able to bound the sizes of the p-parts of the class groups from below. We satisfy
ourselves with describing a particularly clean setting of p-ramified p-extensions of Q(u,), wherein
the p-parts of class groups can be directly identified with second cohomology groups. Rather general
results in an Iwasawa-theoretic context may be obtained as in [Sh4, Section 4]. We consider p-ramified
bicyclic and Heisenberg extensions; some simpler examples over cyclic extensions can be gleaned from
the Iwasawa-theoretic treatment given in [Sh2, Section 7].

We note the existence of a variety of works on Massey products in Galois groups with restricted
ramification and the structure of class groups from perspectives different than ours, ranging from the
much earlier work of Morishita [Mo] and Vogel [Vg] to the very recent preprint of Ahlgvist—Carlson
[AhCa] concerning Massey products in étale cohomology.

5.1. Notation and preliminaries

In this subsection, we recall some standard facts regarding the mod p unramified outside p cohomology
of the pth cyclotomic field, for an odd prime p. Most of these may be found, for instance, in [McSh].
Let Clg denote the ideal class group of a number field K. Let S denote the set of primes over p in
any number field. Let Clg s denote the S-class group of K, which is to say the class group of the ring
Ok s of S-integers of K. Let Gk s denote the Galois group of the maximal unramified outside S, or
p-ramified, extension of K.

For any number field K and prime p, Kummer theory provides an exact sequence

0— Of s ®F, = H'(Gk s 1p) = Clg s[p] = 0
and a canonical injection
Clg,s ®2 Fp = H*(Gk s, 1p)

of F,[A]-modules. The latter injection is an isomorphism if K is a p-ramified, purely imaginary
extension of Q with a unique prime over p. We shall write Massey products of elements of H' (G s, p)
as products of elements of F*/F*P whose Kummer cocycles (in this case, characters) give classes in
HY(GF.s, 1), as opposed to the cocycles themselves.

Now let F' = Q({,) for an odd prime p and a primitive pth root of unity {,,. Note that Of s = Z[{), %]
and Clr s = ClF, since the prime (1 — £},) over p is principal. Let A = Gal(F/Q), and let w: A — Zj
be unique lift of the mod p cyclotomic character. For j € Z, the w/-isotypical component, or eigenspace,
of a Z,[A]-module M is

MY ={meM|ém=w(s) mforalseA}.

We say that a positive even integer k < p is an irregular index for p if Clg[p]"=® # 0, or
equivalently, p divides the numerator of the kth Bernoulli number By. As p divides the denominator of
B,_1, every irregular index k for p satisfies k < p — 3.

We suppose that p satisfies Vandiver’s conjecture that Clg Lo+ [p] = 0. By Leopoldt’s reflection

principle, this implies that for each irregular index k, the eigenspace Clg[p]"'~%) is cyclic, so we
fix a generator and let ax € H'(Gr s, u,) "7 be its unique lift. This also allows us to identify
H*(Gr s, ptp)1 ™ with F,, via the isomorphisms

l—ar

Fp —= H'(Gr.s,p1p)""™ = Cle[p] "™ = (Clp @2 7)™ 5 B (Gr s, p1p) '™,

where the isomorphism (Clr ®z F,)!"8) = Clz[p] =% is multiplication by a power of p.
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For an odd integer i, we define
ni € (OF g @ Fp) ™

to be the projection of 1 — ), into that eigenspace. We often refer to the index 7 as taking values in
Z/(p — 1)Z. Via Kummer theory, we identify 7; with an element of

H'(Gp.s,1p)"™ = (H' (GF s, 11p) ®2 ﬂﬁ(i_l))A = H'(Gps,1u5)"

and {,, with an element of H YGr.s.u ,,)(1). Vandiver’s conjecture for p is equivalent to the statement
that every 7; is nontrivial. We codify all this and a bit more in the following remark.

Remark 5.1.1. For any positive integer j < p, the eigenspace H'(GF s, ,up)“’f) is cyclic, generated
by the element

o njifjis odd,
o Lpiftj=p-1,
o a; if j is an irregular index,

and is trivial for all other j. If i is odd, then the cup product with 7; vanishes on H!'(Gf s, u p) if and
only if n; U nx—; = O for all irregular indices k for p.

Given a p-extension L/F that is unramified outside p and for which L/Q is Galois, we can consider
its Galois group H = Gal(L/F), which is of course normal inside Gal(L/Q). Set Q = F,, [H] as before.
We have an action of Gg_s on Q, such that g € Gg s sends the group element [A] of h € H to [ghg™'],
where g is the image of g in G.

Since G s is normal in Gg,s, this Gg s-action (together with right conjugation on G s in the usual
fashion) induces a Gal(L/Q)-action on H*(GF s, up ®g, I" /I™) forevery 0 < n <m.Form =n+1,
this action factors through A. We fix a lift of A to a subgroup of Gal(L/Q) so that we may speak of the
A-action on these cohomology groups for all n < m, though, in general, this action depends upon the
choice of lift. The generalized Bockstein maps ¥ (™) are then A-equivariant.

5.2. Class groups of bicyclic and Heisenberg extensions

In this subsection, we let i, j < p be distinct odd positive integers and set K = F (nil/ L) 77;./ 7Y, with the
slight abuse of notation that we are in fact taking pth roots of any lifts of 7; and 7;. Note that K/Q is
Galois. We assume throughout this subsection that

o Clg|[p] is cyclic and
o the cup products 7; U n_; and 1; U nx_; vanish for even k.

By the first assumption, p has a unique irregular index k and Vandiver’s conjecture holds for p. In
particular, K is an F?, -extension of F. The interested reader might calculate how the bounds we give are
worsened as one weakens these assumptions.

ForheZ/(p - 1)Z, let

P 1 ifhe {0k},
b= 0 otherwise.

Proposition 5.2.1. We have

dimg, H*(Gk 5, 1tp) 2 6= 82 — 8isj — 2.
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Proof. We will apply the results of Section 4.4 in the case that G = Gg s and H = Gal(K/F). To
construct our lower bound, we will use the fact that dimg,, H*(Gk.s. 1t p) = Zi:o d,, where

I"H*(Gk 5. 1p)

dn = dim]Fp In+1H2(GK S’#p) .

So, first note that

H*(Gk s, 1p)
IH*(Gk s, Hp)

and the latter group has F,-dimension 1 by our assumption of Vandiver’s conjecture, so do = 1.

Let x and y be the ordered basis of I/I?> = H that is Kummer dual to 7; and 5 ;. The quantity
(i UA)x + (n; U )y is zero for A one of the generators of H'(Gr.s, tp) listed in Remark 5.1.1 unless
(perhaps) if A is one of 77x_; or nx—, in which case, it equals (1; Unk—;)x and (17; Unk—;)y, respectively.
Thus, by Proposition 2.3.3 and Theorem 2.2.4 for n = 1, we have

= H*(Gp.s,1p) = (Clp ®2F,) 170,

IH*(Gk s.1p) _ H*(Grs,pp) ®, /17
PHX(Gk 5. p1p) (i Unr—i)x, (nj Uni—;)y)’

and given the vanishing of the cup products on the right, we see that d; = 2.
Theorem 2.2.4 tells us that d, = dimg, coker W2 For 1 € H' (G 5,Q/I* ®z, up) with image
e H (G s, Hp), Corollary 4.4.4 provides the explicit formula

‘P(z) (/i) = (771', ni’/l)pxzxz + (771', /19 nj)pxyxy + (/l’ nj, nj)pyzy2- (51)

Since cup products with 77; and 17 are trivial by assumption and Remark 5.1.1, we see that the expression
on the right of (5.1) is independent of the proper defining systems, and, therefore, ¥(? factors through
H' (GF,s, /Jp)~

Now suppose that for some & we have 1 € H' (G s, /,tp)(l_h), a space of dimension at most 1. Note
that A acts on x? through w?, on xy through w*/ and on y? through w?/. We then see by Remark 5.1.1
that the Massey products in (5.1) can be nontrivial if and only if & —2i, h —i — j or h—2j (in that order)
is congruent to 0 or kK modulo p — 1, which is to say if and only if 6; = 1, §;3; = 1 or §2; = 1. Since
dimg, H*(GF s, pp) ®g, I*/I° = dimg, I?/I° = 3, we have dy > 3 — 62 — 64 — 02, as required. O

Note that 7; Un; = 0, since we must have j = k —i mod p — 1 for this cup product not to vanish, and
we have assumed that r7; U nx—; = 0. Thus, there exists a degree p extension L of K, Galois over F' and
unramified outside p, such that Gal(L/F) = U3z(F,). We can and do choose L to be Galois over Q: in
fact, [Sh1, Proposition 2.7] provides the following description of Kummer generators of such fields L,
viewed as extensions of K.

Remark 5.2.2. Set E = F(nl/p) and let o be a generator of Gal(E/F). Write n; = H Pl o' B’ for
some B’ € EX/E*P. Pick a lift of A to a subgroup of Gal(E/Q). Let § be the prOJectlon of B’ to the
w- elgenspace of E*/E*P for the action of this lift. The fact that n; € (F*/F*P ) implies that 7 ; ;=
I—[i: o3 as well. We then have L = K ((cy)'/P) fory = ]_[p] o'Blandany c € H (G5, up) 7" ’).
The latter group is zero if 6;;; = 0 (see Remark 5.1.1), in which case, L is unique.

The group A acts on Gal(L/K) by conjugation through w"*/. It may be helpful for the reader to view
Gal(L/Q) as the group of matrices

w(6) = x
0 1 =
0 0w()/

for some 6 € A.
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Proposition 5.2.3. We have
dimg, H*(GL,s, ptp) 2 7 = 62i = 2 = 6.
Proof. We will apply the results of Section 4.6 in the case that G = Gp s and H = Gal(L/F). Set

I"H*(G s, 1)
P IHX(GLs, up)

dn = dim]y

We have dyp = 1 and d| = 2 by the same arguments as for K/F (noting that in the Heisenberg case,
we still have 1/I? = H® = }Fi). As in the proof of Proposition 5.2.1, we must give a lower bound on
dy = dimg,, coker @),

Corollary 4.6.4 tells us that for 1 € H' (G s, Q/I? ®F, Hp) With image 4 € H'(Gr.s, Hp), we have

WD) = (13m0 Vp 28 + (10 A1 )py Y3+ (1775 Dp o 7 + (115775 D 2

Again, the vanishing of ; U ny_; and n7; U ni—; ensures that ¥(2) (1) depends only on A. As before, but
now noting also that A acts on z € I?/I° by w™*/, we see that these Massey products must vanish unless
62 =1, 0ij = 1,62 = 1 and 6;4; = 1, respectively. Moreover, if §;4; = 1, then the image of ¥(?)
on H'(Gps,1/1? ®F, y,,)(k_i‘j) is at most one-dimensional, generated by (1;, 4,7;)yx + (1;,1;, 1)z
for A = {, or A = ay, by Remark 5.1.1 (and similarly for the other cases). Thus, we have d» >
4_62i_62j_6i+j- [m}

Remark 5.2.4.

1. If 2 = k mod p — 1, so, in particular, §5; = 1, then the condition that ; U n7; = 0 is automatic by
antisymmetry of the cup product.

2. It occurs that 62;, 62 and 6;4; are all 1 if and only if p is 1 modulo 4 but not 8 and k = ’%1, so that
we have {i, j} = {pT_], 3(’1—_]) .
We can have 2/ = 0 mod p —1 only if p = 3 mod 4, in which case, i = pT_l. We can then also choose j
such that 2j = k mod p — 1 (see Example 5.2.5), but then i + j is either % or % + pT_l modulo p -1,
which cannot be 0 or &, 50 6;4; = 0.

3. The pth root of 7,_ generates the unique degree p unramified extension of F, and it satisfies

Np-k U n2k-1 = 0. In such a setting, dimg,, HZ(GF(UI/,,U’S,#[,) = p — 1, coming entirely from the
p-k

Brauer part of this second cohomology group.

On the other hand, suppose that i and j are not p — k modulo p — 1 (by what we have just said, we
can take one of them to be 2k — 1, so long as 2k — 1 isnot p —k modulo p—1,i.e. 3k # 2 mod p—1).
Then K/Q is totally ramified at p, which forces L/Q to be as well. This implies that

H*(Gk s, 1p) = Clg s ® F,, and H* (G5, f1p) = Clp s ® F,.

In particular, our lower bounds on the F,,-dimensions of these S-class groups give lower bounds on
the dimensions of the class groups Clg ® F, and Clp ® F,.

We conclude with some numerical examples. Many more are available using the tables referenced in
[McSh], which compute the cup product pairings up to scalar for primes less than 25,000.

Example 5.2.5. Let p = 59, for which k = 44 is the unique irregular index. For i = 29 and j = 51,
we have 2i = Omod p — 1 and 2j = k mod p — 1, so 62; = d2; = 1, while 6;;; = 0. We then have
njUng—j =ns1Uns; =0and n; Ung_; = 129 Unys = 0 as in Remark 5.2.4, noting that 15 = p — k.



34 Y. H J. Lam et al.

Given this, Propositions 5.2.1 and 5.2.3 provide the following lower bounds on the p-ranks of the class
groups of K and L:

dim}-p Clg ® F, > 4 and dimpp Cly ®F, > 5.

The relevant, potentially nonzero, Massey triple products in this example are (751,751, {59) and
(1729, 1729, @44).

Example 5.2.6. Let p = 67, for which k = 58 is the unique irregular index. For i = 29 and j = 49, we
have §7; = 1 and 62 = §;4; = 0. Since p — k =9 ¢ {29,49}, we have

dimg, Clg ® F), > 5 and dimg, Cl, ® F,, > 6.

Here, the interesting Massey product is (1729, 1729, {67)-

It is not hard to find examples in which all the error terms vanish, so the maximal lower bounds are
achieved.

Example 5.2.7. Let p = 101, which has unique irregular index k = 68. Take i = 13 and j = 35. The
computations referenced in [McSh] show that 13 U nss = 0, and 1735 U 1733 = 0 holds since p — k = 33.
Since 6;1j = 02; = 625 = 0, we have

dimg, Clg ®F, > 6 and dimz, Cl, ® F), > 7.

The same lower bounds are achieved for {i, j} = {35,55} (note that {7, j} = {13,55} has 6;4; = 1, so
the bounds for this pair are one worse).

Notice that genus theory has no contribution to the lower bounds (for S-class groups) in the above
examples. Indeed, an unramified F,-extension of either K or L which descends to an abelian extension
of F would contribute to the zeroth graded piece in the augmentation filtration, but in these examples,
this is entirely accounted for the class group of F (i.e. all such extensions are already unramified over F).

6. Massey vanishing for absolute Galois groups

In this final section of this paper, we apply our techniques to study absolute Galois groups of fields.
The motivating problem is to determine which profinite groups can be isomorphic to the absolute
Galois group G of a field F. Artin and Schreier showed in 1927 that any nontrivial finite group with
this property is the cyclic group of order two. Other restrictions are reflected in the cohomological
properties of G .

The norm residue isomorphism theorem, or Milnor-Bloch-Kato conjecture, proven by Voevodsky
and Rost (see [Vo]), tells us that the algebra H*(G r, F,) under cup product is isomorphic to the mod-p
Milnor K-theory of F (for F containing a primitive pth root of 1). In particular, this implies that the
F,,-cohomology algebra is generated in degree 1 with all relations generated in degree 2.

Going beyond cup products to higher cohomological operations, Mina¢ and Tan formulated a re-
markable conjecture, known as the Massey vanishing conjecture, for Massey products of F,-valued
characters on the absolute Galois group G of a field F in [MiTa4]. For n > 3, it states that any n-fold
Massey product of characters Gr — F, that has a defining system has some defining system for which
the resulting Massey product is zero. The Massey product is said to contain zero if such a defining sys-
tem exists. As evidence for this, Efrat-Matzri [EfMa] and Mind¢-Tan [MiTa3] independently proved
triple Massey vanishing, which is to say the conjecture for n = 3 and arbitrary p.

The Massey vanishing conjecture was inspired by work of Hopkins—Wickelgren [HoWi]: using
splitting varieties, they had proven that 3-fold Massey products over number fields that are defined
contain zero when p = 2 [HoWi]. Massey vanishing over number fields was extended to successively
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general n for arbitrary primes p: to n = 3 in [MiTa2], ton = 4 in [GMT] and to all n in work of Harpaz—
Wittenberg [HrWt]. In each of these cases, the method is specific to number fields because it uses a
local-to-global principal to prove the existence of rational points on a splitting variety. For local fields,
the Massey vanishing conjecture is known due to [MiTa4].

The differential graded ring C(Gr,F,) of continuous F,-valued G r-cochains is said to be formal
if it is quasi-isomorphic to H*(GFr,Fp). The question of whether or not C(GF,F)) is always formal
was raised by Hopkins and Wickelgren in their aforementioned work and answered in the negative by
Positselski [Po]. If formality holds for some F and p, then a stronger version of Massey vanishing, that
moreover the vanishing of the consecutive cup products yields definedness, holds in that instance. Pal
and Quick [PaQc] have recently shown that if G is real projective (e.g. has virtual cohomological
dimension at most 1), then C(GF,F) is in fact formal. Also very recently, Quadrelli [Qd] showed
that if G is a pro-p group of elementary type, then G has the strong Massey vanishing property, which
applies to several classes of fields.

The latter two results suppose a condition on the structure of Gr. Other results tend to require that
several of the characters in the Massey products be the same. For instance, the third author had long
ago proved in [Sh2] what we refer to here as the p-cyclic Massey vanishing property for absolute Galois
groups of fields containing a primitive pth root of unity: for n < p — 1, all definable (n + 1)-fold Massey
products with identical first n entries vanish with respect to some proper defining system (i.e. (y ", %)
contains 0 for y,y € HI(GF,]FP) with y Uy = 0). Beyond this, Mind¢ and Tan [MiTal] proved
the vanishing of n-fold Massey products when all n characters are the same, for arbitrary n and fields
containing 2pth roots of unity. In sufficiently large characteristic, Efrat proved the vanishing of n-fold
Massey products with all entries coming from either z or 1 — z for a fixed field element z € F* — {1},
improving upon a result of Wickelgren [Wi]. In another very recent preprint, Merkurjev and Scavia
[MeSc] prove that quadruple Massey products with the same first and last entries vanish for p = 2 for F
of characteristic not 2.

As should be expected, the Massey vanishing conjecture has strong implications for the structure of
absolute Galois groups. For instance, it often allows for the realization of nilpotent field extensions: we
mention [GuMi] as an example of a recent work in this direction.

6.1. The cyclic Massey vanishing property

Definition 6.1.1. Let G be a profinite group, and let p be a prime number. We say that G has the p-cyclic
Massey vanishing property if for all homomorphisms y,1: G — F, with y U A = 0, there exists a
proper defining system, such that (y(P~"), 1) vanishes.

As a simple corollary of [Sh2, Theorem 4.3], the absolute Galois group of field F containing a
primitive pth root of unity has the p-cyclic Massey vanishing property (for this, consider the case that
Q is the separable closure of K and m = 1 in the notation of said theorem). The proof uses only the
fact that if the norm residue symbol (a, b), r vanishes, then b is a norm from F (a'/P). We shall give a
streamlined proof of this and more, using the following abstract characterization of a standard property
of absolute Galois groups.

Definition 6.1.2. Let m > 1, and set R = Z/mZ. We say that a profinite group G is of m-absolute Galois
type if it has the property that, for any y € H'(G, R), the sequence

H'(G.R[H,]) - H'(G.R) X5 HX(G,R) — H*(G,R[H,]) (6.1)

is exact, where H, = G /ker(y) is the coimage of y.

Under Shapiro’s lemma, the first and last maps in (6.1) are identified with corestriction and restriction
maps, respectively [NSW, Proposition 1.6.5]. It is well known that an absolute Galois group G is of
m-absolute Galois type if F contains a primitive mth root of unity (see, for instance, [Se, Propositions
XIV.2 and XIV.4]). This condition on G generalized to arbitrary cohomological degree is heavily used
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in the proof of the norm residue isomorphism theorem (see [HsWe, Theorem 3.6]). We focus on the
comparison of p-absolute Galois type with p-cyclic Massey vanishing. In fact, our results would allow
us to prove a more general but analogous result for profinite groups with the property that characters on
G of order p* lift to characters of order p’ for some large enough ¢ relative to s, under conditions as in
Section 4.3.

Remark 6.1.3. It is known that there exist groups that of p-absolute Galois type that are not isomorphic
to the absolute Galois group of any field [BCQ].

Proposition 6.1.4. Let G be a profinite group. Then G has the p-cyclic Massey vanishing property if
and only if the sequence (6.1) is exact at H' (G, Fp).

Proof. Let y,A: G — F,, with y UA =0, and set Q = F,[H,]. The pth power of the augmentation
ideal in Q is zero, and the kernel of the generalized Bockstein map WP~V is the image of H' (G, Q) —
H'(G,Q/IP7"). Theorem 4.3.1 tells us that the Massey product (y(?~", 1) is defined and vanishes for
some choice of proper defining system in H'(G,Q/I”~") if and only if A lifts to H'(G, Q). From this,
we have the proposition. |

Proposition 6.1.4 applies, in particular, to the absolute Galois group of any field F containing a
primitive pth root of unity, that is, Gr has the p-cyclic Massey vanishing property. We also have the
following result, which may be of independent interest.

Proposition 6.1.5. Let G be a profinite group. If (6.1) is exact at H*(G, Fp) for a given x € H'(G, Fp),
then it is exact at H' (G, Fp), so G is of p-absolute Galois type.

Proof. Let y,A: G — F, with y UA = 0, and suppose that (6.1) is exact at H*(G, [F,,). We have to show
that there is a proper defining system p, such that (y(?~1, A)p vanishes. We may suppose that y # 0. Let
x = [h] = 1for h € H, with y(h) = 1. By induction on 7, we can assume that there is a proper defining
system pyn for (y™, 1) with n < p determined by some f = Z’;;& Axk e ZY(G,Q/1™), with A
necessarily equal to 1. Writing (y"”, 1) r for the corresponding Massey product ( x™, A)p,n» We have

(X ™, ) = x Udyoy + (’2‘) Udpo+- -+ (’;) U

Clearly, the restriction of (y ", 1) r to ker()y) vanishes, so, by the exactness of (6.1) at H*(G, Fp), we
have (y ™, A)f = x Uy for some ¥ € H'(G,F). Then we see that f’ = f - wx""!is a proper defining
system, such that the Massey product (y ", 1) - vanishes. By Theorem 4.3.1, this implies that the class
of f’ is in the kernel of ¥ so it lifts to the class of some f € Z'(G,Q/I""), which gives rise to
a proper defining system p 1 for (x "V, ). If n + 1 = p, then the class of f is the desired lift to
H'(G,Q). O

It is unclear that exactness of (6.1) at H' (G, FF,,) should imply exactness at H*(G, Fp).

6.2. Triple Massey vanishing

In this subsection, let us suppose that p is an odd prime. The following theorem gives a new proof of
the vanishing of Massey triple products for absolute Galois groups due to Efrat-Matzri [EfMa] and
Minac¢-Tan [MiTa3]. Both proofs utilized the fact that the absolute Galois groups of a field containing a
primitive pth root of unity are of p-absolute Galois type. We show that the potentially weaker condition
of p-cyclic Massey vanishing suffices.

Theorem 6.2.1. Let G be a profinite group with the p-cyclic Massey vanishing property for an odd
prime p. Let y, ¢, A € H(G, Fp) be, such that y UA =AUy = 0. Then there exists a defining system
p for (x, A, ), such that the Massey triple product (x, A, ), vanishes.
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The case where y and ¢ are linearly dependent follows easily from the p-cyclic Massey vanishing
property, so we can and do assume that (y,¢): G — F?, is surjective, and we let H be the coimage. Let
Q =TF,[H], and let I C Q be the augmentation ideal. Let &, h, € H be the dual basis to (y, ), and
letx =[hy]—1andy=[hy] —1sothat ] = xQ+ yQ.

We want to make maximal use of the fact that G has the cyclic Massey vanishing property. For this,
we let C1, C, and Cj3 be the coimages of @ = y, @2 = ¢ and a3 = y +, respectively. Let ; = F, [C;],
and let I; C Q; be its augmentation ideal. Let y; € C; with @;(y;) = 1, and let x; = [y;] — 1 € I;. Note
that each «; factors through H, so «@; induces a surjective ring homomorphism Q — Q; that we also
call ;. Then note that

(a1(x), a1(y)) = (x1,0),  (@2(x),@2(y)) = (0,x2),  (@3(x),a3(y)) = (x3,x3). (6.2)

Now consider the ideal J = I° + xyQ, and let J; = a;(J). By (6.2), we have J, = I3, J, = I3 and
Jz = I%. Hence, we have a commutative diagram with exact rows

0 s J/ 1P > I/ > 1/J 5 0

l* £ i (6.3)

0 — B/ —— @0, /I — @ LilJi — 0,

where the vertical maps are induced by the maps a;. Note that J/I° = Fp,xy, so the leftmost vertical
arrow is an isomorphism, I/J = F,x & prz oF,y® ]F,,y2, and the map 1/J — 11/113 ® 12/1; is an
isomorphism, so the rightmost vertical arrow is split injective.

Lemma 6.2.2. There is a commutative diagram with exact rows

HY(G,1]J) — H*(G,J|I’) —— H?*(G,I/I’) ——— > H*(G,1/J)

l flz gl l (6.4)

HY(G,F,) -2 HX(G,F,) —— @) H* (G, L,/I}) — P, HX(G, L] J)y),

where fis the isomorphism & - xy +— & and g is the map induced by the center vertical arrow in (6.3).

Proof. The lower sequence in (6.3) is a direct sum of three exact sequences for i € {1, 2,3}, where for
i € {1,2}, the sequence has zero as its first term. Taking cohomology of (6.3), we obtain the commutative
diagram with exact rows

H'(G,1]J) —— H*(G,J|PP) —— H*(G,1/I’) ——— H*(G,1]J)

I } | [ e

B HG, L)) D HAG, 121 = @ HAG, LD — @, HX(G, Li/T,),

where 05 is zero on the first two terms of the summand and the connecting map on the third. Note that
the rightmost vertical arrow is injective by the split injectivity of the underlying map on coefficients. To
complete the proof, we have to show that d3(8) = a3 U S for 8 € H'(G, I3/J3). But the lower sequence
in (6.3) for i = 3 is isomorphic to

0— I3/I§ - 93/132 —F,—0

via the isomorphism /3/J3 — F, taking the image of x3 to 1, so this follows from Proposition 2.3.3. O
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Proof of Theorem 6.2.1. Consider the commutative diagram of exact sequences

0 s J/P > Q/I > QlJ >0
0 s 1/ s Q/13 > F), 5 0

and the associated diagram in cohomology

H'(G,Q/PP) — HY(G,Q/]) —L H2(G,J/IP) — H%(G,Q/P)

H | I H ¢

H'(G,Q/I*) —— H'(G.F,) —2— H*(G,1/I’) — H*(G,Q/P),

where ¢ is as in (6.4).

Now let 1 € H! (G,Fp) be as in the statement of the theorem and consider the element 9(4) €
H*(G,1/I%). Then g(9(Q)) € @?:] H?*(G, Il-/Ii3) is the obstruction to lifting A to H' (G, 9/11.3) for all
i € {1,2,3}, and this vanishes by the p-cyclic Massey vanishing property. Hence, g(d(1)) = 0.

By Lemma 6.2.2 and the injectivity of the rightmost vertical arrow in (6.4), this implies that 9 (1)
is in the image of «. By the commutativity of (6.6), there is then a lift 1 € H'(G,Q/J) of A. Using
Corollary 4.4.2, we see that A determines a proper defining system Pxy for (x, A,4), such that 8’ (1) =

(X’ 4, w)pxy tXy.
By Lemma 6.2.2, we have

hf(9'(2)) = gu(d' (D) = g(d(1)) =0,
50 f(8’(1)) € ker(h) = im(a3 U). Hence, we have
FO' )= (A, =a3Uv=xUv—vUy (6.7)
in H*(G,F,), for some v € H'(G,F,). In particular, we have that

x> 4, ¥)p,, € im(y V) +im(Uy),
which implies that there is a defining system p such that (x, 4, ¢), = 0. O

The reader may note that in Theorem 6.2.1, we used something weaker than p-cyclic Massey
vanishing. Namely, the actual condition employed is that for any character y : G — F,, the sequence

H'(G,F,[H,/1}) — H'(G,F,) 5 H*(G,F,) (6.8)

is exact, where H, = G/ker(x) and I, is the augmentation ideal in FF,,[H]. This is equivalent to the
statement that if y U A = 0 for some A € H'(G,F),), then (y, x,A) is zero for some proper defining
system.

Remark 6.2.3. In [Mt, Corollary 3.5], Matzri proved that triple Massey vanishing follows from defined
Massey products of the form (y, 4, y) containing zero. The proof exploits the exactness of (6.1) at
HZ(G,IFP) to obtain this vanishing. From our perspective, the vanishing of these Massey products
follows directly from the exactness of (6.8).

Remark 6.2.4. The proof of Theorem 6.2.1 does not show that G has the ‘bicyclic Massey vanishing
property’ that any A € H'(G,F,,) that lifts to H'(G, Q/1?) lifts further to H' (G, Q/I%). Equivalently,
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this condition can be formulated as saying that if y U4 =AUy =0, then (1) = 0. One can show that
this is equivalent to showing that there exists v € H' (G, F p) satisfying (6.7) that lies in the subgroup

ker(y U) + ker(¢ U) + ker((y + ) U).

A. Two lemmas from homological algebra

We provide a proof of the following simple lemma from homological algebra for the reader’s
convenience.

Lemma A.0.1. Let O, R and S be abelian categories, such that Q and R have enough projectives,
and let F: R — S and F': Q — R be right exact functors, such that F' sends projective objects to
F-acyclic objects. Let
0-A—-B—->C—0
be an exact sequence in Q, such that
0— F'(A) > F'(B) > F'(C)—>0

is exact. For each j > 0, we have commutative diagrams

Lisi(F o F)(C) — Li(F o F')(A)

l |

LinF(F'(C)) — L;F(F'(A)),
in which the vertical arrows are edge maps in the Grothendieck spectral sequence attached to the

composition F o F' and the horizontal maps are connecting morphisms, where L; denotes the ith left
derived functor.

Proof. Let X denote any of A, B and C. We may choose projection resolutions PX of X with each term of
0— F'(P") - F'(P?) - F'(P€) > 0

split exact. Then we may choose first quadrant Cartan-Eilenberg resolutions QX of the F’(PX) fitting
in split exact sequences

0—0% =08 - 05, =0
so that, in particular, we have exact sequences
0 — Hi(Q}) — Hi(Q% ) — Hy(05)) — 0,
and the complexes H, k(Qi(_) — Hy (F’(PX)) are projective resolutions. Note that
H;(F(H(QY)) = LiF(Li F' (X)),
and we have canonical isomorphisms

H;(F(Tot0X)) = H;(F o F'(PX)) = L;(F o F')(X),
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the first isomorphism as the terms of F’(PX) are F-acyclic. The diagram in question is then simply

Hju1 (F(Tot 0€)) —— H;(F(TotQ%))

l !

Hjs1(F(Ho(Q5))) — H,(F(Ho(Q%))),

the horizontal arrows being the connecting homomorphisms and the vertical arising from the augmen-
tation maps on the total complexes. O

The following lemma is rather elementary but also useful to us.

Lemma A.0.2. Let R and S be abelian categories, such that R has enough projectives. Let F: R — S
be a left exact functor. Suppose that G: R — S is a functor, such that the pair (F,G) extends to a
Sfunctor from short exact sequences 0 - A — B — C — 0in R to exact sequences

G(A) = G(B) = G(C) > F(A) = F(B) — F(C) — 0.
Then there is a natural transformation G ~~» L1 F for which the resulting diagrams

G(C)

L

LF(C) 2— F(A),

are commutative for the usual connecting homomorphisms 0 and such that G(A) — L1F(A) is an
epimorphism for all objects A of R.

Proof. Put any object A of R in an exact sequence
0->K—>P—>A—>0

in R, where P is a projective object. We then have a commutative diagram

G(P) > G(A) > F(K) —— F(P)

| | H

0 —— L1F(A) — F(K) —— F(P),

with exact rows, where the vertical morphism is unique making the diagram commute. That this gives a
natural transformation is standard, and the fact that the morphisms are epimorphisms follows from the
four lemmas. O
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