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Abstract
Given a profinite group G of finite p-cohomological dimension and a pro-p quotient H of G by a closed normal
subgroup N, we study the filtration on the Iwasawa cohomology of N by powers of the augmentation ideal in the
group algebra of H. We show that the graded pieces are related to the cohomology of G via analogues of Bockstein
maps for the powers of the augmentation ideal. For certain groups H, we relate the values of these generalized
Bockstein maps to Massey products relative to a restricted class of defining systems depending on H. We apply our
study to prove lower bounds on the p-ranks of class groups of certain nonabelian extensions of Q and to give a new
proof of the vanishing of Massey triple products in Galois cohomology.
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1. Introduction

At its essence, this paper revolves around the fundamental question:

How does the continuous cohomology of a profinite group G with compact coefficients compare with
the cohomology of an open normal subgroup N?

As a starting point, if G has cohomological dimension d, then corestriction induces an isomorphism
from the 𝐺/𝑁-coinvariants of a dth cohomology group of N to the dth cohomology group of G with
the same coefficients. We view this corestriction map as the first of a sequence of generalized Bockstein
maps Ψ (𝑛) for 𝑛 ≥ 0, which we extend to closed N by considering Iwasawa cohomology. The powers of
the augmentation ideal I of a completed group ring of 𝐺/𝑁 yield a natural filtration on the domain of
corestriction. In Section 2, we show that the nth graded piece of this augmentation filtration is isomorphic
to the cokernel of Ψ (𝑛) , employing two purely homological results of Appendix A in the proof. In Section
4, we demonstrate how, in many cases, the image of Ψ (𝑛) is described by n-fold Massey products.

Massey products were first introduced by Massey [Ma] as a tool for proving that two topological
spaces are not homotopy equivalent even when they have isomorphic cohomology rings. The best-
known example involves the complement of the Borromean rings in R3, three pairwise unlinked circle
which are nonetheless linked, resulting in a nontrivial Massey triple product in the second cohomology.
In algebra, Massey products are used to study properties of a group G that are not detected by the
group cohomology ring itself. Massey products of tuples of homomorphisms on G valued in a ring R
are obstructions in 𝐻2 (𝐺, 𝑅) to lifting homomorphisms to unipotent matrices from the quotient by the
center.

Our initial motivation for studying this question came from Iwasawa theory. Indeed, Galois groups of
number fields with restricted ramification above a prime p have p-cohomological dimension equal to 2,
and their second cohomology groups with coefficients in p-power roots of unity are closely related to
ideal class groups. In such a setting, the fundamental question above translates to comparing ideal class
groups as one goes up a tower of fields, the original question of Iwasawa theory. In this vein, Mazur
[Mz] described an analogy between knot complements in 3-manifolds and Galois groups with restricted
ramification, relating the Alexander polynomial of a knot and a characteristic ideal of an inverse limit
of class groups. Morishita explored this analogy in terms of Massey products (see, for example, [Mo]).

The third author studied Massey products in an Iwasawa-theoretic context, relating them to the
structure of augmentation-graded pieces of limits of class groups in a nonabelian tower of Kummer
extensions [Sh2]. This paper distills the purely algebraic results of the latter paper from their number-
theoretic application. The distinct perspective using generalized Bockstein maps, that we introduce here,
allows us to go beyond the procyclic setting of [Sh2].
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Massey products of length n are defined only if certain (𝑛 − 1)-fold Massey products vanish. Even
when defined, there is some indeterminacy in their definition, resulting from a choice of defining
system, a homomorphism to the quotient of the (𝑛 + 1)-dimensional unipotent matrices by their center.
The Massey product provides the obstruction to lifting this homomorphism to the full unipotent group.
In order to view n-fold Massey products as values of Ψ (𝑛) , we define an appropriate notion of a proper
defining system, reducing the aforementioned indeterminacy. The requisite definitions are given in
some generality in Section 3, providing the framework for the comparison with Ψ (𝑛) in specific cases
described in Section 4.

In Section 5, we demonstrate how our methods can be used to derive concrete arithmetic results
by proving lower bounds on the p-ranks of class groups of finite p-ramified bicyclic and Heisenberg
extensions of Q(𝜇𝑝). Though we eschew Iwasawa-theoretic applications in this paper to ground our
study, a description of the augmentation filtrations of inverse limits of p-parts of class groups in
Z𝑝-extensions, derived using our methods, may be found in [Sh4].

We also consider applications of generalized Bockstein maps to the study of absolute Galois groups of
fields. Many algebraic properties of absolute Galois groups are encoded cohomologically as properties
of the norm residue symbol. The celebrated norm residue isomorphism theorem of Voevodsky and
Rost [Vo] (formerly the Milnor-Bloch-Kato conjecture), describes cohomology rings of absolute Galois
groups with coefficients in twists of roots of unity as Milnor K-rings of the fields.

The Massey vanishing conjecture of Mináč and Tân [MiTa4] goes beyond the cohomological ring
structure to posit that, for 𝑛 ≥ 3, all definable n-fold Massey products with F𝑝-coefficients vanish for
some choice of defining system. Earlier work of Hopkins–Wickelgren [HoWi] had established this for
𝑛 = 3 and 𝑝 = 2 over number fields. The full 𝑛 = 3 case of this conjecture is the triple Massey vanishing
theorem of Efrat–Matzri [EfMa] and Mináč–Tân [MiTa3]. The introduction to Section 6 provides a
more detailed, yet still incomplete, summary of the history of and rapid progress in this area. In that
section, we show that certain algebraic properties of absolute Galois groups are naturally expressed in
terms of generalized Bockstein maps. This perspective enables us to give a new proof for odd primes of
the triple Massey vanishing theorem.

Mináč and Tân originally formulated the Massey vanishing conjecture, in part, as a way to help
cohomologically characterize which profinite groups are isomorphic to absolute Galois groups of
fields. We suspect that generalized Bockstein maps have an important role to play in formulating and
understanding such cohomological characterizations.

We next provide a more detailed overview of our main results.

1.1. Comparing cohomology using generalized Bockstein maps

Let G be a profinite group of p-cohomological dimension 𝑑 ≥ 1. Let H be a finitely generated pro-p
quotient of G by a closed normal subgroup N. Let Ω = Z𝑝�𝐻� denote the completed Z𝑝-group ring
of H, the inverse limit of the Z𝑝-group rings of the finite quotients of H. Let T be a finitely generated
Z𝑝-module with a continuous action of G. This paper is concerned with the study of connecting maps
in the continuous G-cohomology of the augmentation filtration of the tensor product 𝑇 ⊗Z𝑝 Ω. That is,
if 𝐼 = ker(Ω→ Z𝑝) denotes the augmentation ideal of Ω, then we have exact sequences

0→ 𝑇 ⊗Z𝑝 𝐼
𝑛/𝐼𝑛+1 → 𝑇 ⊗Z𝑝 Ω/𝐼𝑛+1 → 𝑇 ⊗Z𝑝 Ω/𝐼𝑛 → 0 (1.1)

for each 𝑛 ≥ 1, such that Ω/𝐼𝑛 is Z𝑝-flat. Our interest lies in the connecting homomorphisms

Ψ (𝑛) : 𝐻𝑑−1 (𝐺,𝑇 ⊗Z𝑝 Ω/𝐼𝑛) → 𝐻𝑑 (𝐺,𝑇) ⊗Z𝑝 𝐼
𝑛/𝐼𝑛+1

attached to these sequences, which we refer to as generalized Bockstein maps, due to their similarlity to
usual Bockstein maps for exact sequences of p-power order cyclic groups.
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We can use the Bockstein maps to partially describe the second Iwasawa cohomology group
𝐻𝑑

Iw(𝑁,𝑇) of N with T-coefficients. This cohomology group is the inverse limit of the groups 𝐻𝑑 (𝑈,𝑇)
under corestriction maps, where U runs over the open normal subgroups of G containing N. It is naturally
endowed, through the Z𝑝 [𝐺/𝑈]-actions on each𝐻𝑑 (𝑈,𝑇), with the structure of anΩ-module. We prove
that the cokernels of the generalized Bockstein maps describe the graded quotients in the augmentation
filtration of 𝐻𝑑

Iw(𝑁,𝑇) (see Theorem 2.2.4).

Theorem A. There are canonical isomorphisms

𝐼𝑛𝐻𝑑
Iw(𝑁,𝑇)

𝐼𝑛+1𝐻𝑑
Iw(𝑁,𝑇)

�
𝐻𝑑 (𝐺,𝑇) ⊗Z𝑝 𝐼

𝑛/𝐼𝑛+1

imΨ (𝑛)
.

The proof rests on an Iwasawa-cohomological version [LiSh, FuKa] of a descent spectral sequence
of Tate, applied to the terms of our exact sequences for the augmentation filtration of Ω. We verify
the compatibility of these spectral sequences with generalized Bockstein maps and a connecting map in
the H-homology of the Z𝑝-tensor product of 𝐻𝑑

Iw(𝑁,𝑇) with (1.1).

1.2. A brief primer on Massey products

Given a commutative ring R, a Massey product (𝜒1, . . . , 𝜒𝑛) of n homomorphisms 𝜒1, . . . , 𝜒𝑛 in
𝐻1 (𝐺, 𝑅) is an element of 𝐻2 (𝐺, 𝑅) that provides the obstruction to a certain problem of lifting a
homomorphism formed using the tuple of characters 𝜒𝑖 to a homomorphism 𝜌 : 𝐺 → U𝑛+1 (𝑅) of G to
the group of (𝑛 + 1)-dimensional unipotent matrices in R, with 𝜒𝑖 providing the ith off-diagonal entry
𝜌𝑖,𝑖+1.

More precisely, a defining system for a Massey product (𝜒1, . . . , 𝜒𝑛) is a homomorphism 𝜌 : 𝐺 →
U′𝑛+1 (𝑅) to the quotient of U𝑛+1 (𝑅) by its center, with 𝜌𝑖,𝑖+1 = 𝜒𝑖 . The Massey product (𝜒1, . . . , 𝜒𝑛)𝜌
of 𝜒1, . . . , 𝜒𝑛 relative to the defining system 𝜌 is the class in 𝐻2(𝐺, 𝑅) of the 2-cocycle

𝐹 : (𝜎, 𝜏) ↦→
𝑛∑
𝑖=1
𝜌1,𝑖 (𝜎)𝜌𝑖,𝑛+1(𝜏).

It vanishes if and only if 𝜌 lifts to a homomorphism 𝜌̃ : 𝐺 → U𝑛+1(𝑅). In other words, the Massey
product relative to 𝜌 is the obstruction to choosing the remaining upper right-hand entry 𝜌̃1,𝑛+1 to make
𝜌̃ a homomorphism, which is exactly to say that 𝑑𝜌̃1,𝑛+1 = −𝐹.

An n-fold Massey product (𝜒1, . . . , 𝜒𝑛) is said to be defined if a defining system for it exists. For
𝑛 = 2, the Massey product is defined and equals the cup product 𝜒1 ∪ 𝜒2. For 𝑛 ≥ 3, a Massey product
need not be defined, and even if it is, it may have indeterminacy in its values, coming from the different
choices of defining systems. A Massey product is said to contain zero or vanish if it has a defining
system for which the Massey product is zero.

We shall work with profinite groups and compact coefficient rings, so our Massey products take
values in continuous cohomology groups, and all cocycles and homomorphisms involved are required
to be continuous. In fact, we shall allow more general Massey products valued in modules over a group
ring, replacing the group of unipotent matrices with an analogous object in a generalized matrix algebra.

1.3. The images of generalized Bockstein maps

The case 𝑑 = 2 and 𝐻 � Z𝑝 of Theorem A was first studied in [Sh2] from a different perspective and
applied in an Iwasawa-theoretic context. Its main result has a similar form to Theorem A, but in place
of the image of Ψ (𝑛) , it has a group of values of certain (𝑛 + 1)-fold Massey products. We relate the
image of Ψ (𝑛) to Massey products for a variety of groups H.
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In the situation of Section 1.1 with 𝐻 � Z𝑝 , the quotient map 𝐺 → 𝐻 can be thought of as an
element 𝜒 ∈ 𝐻1(𝐺,Z𝑝). This context was considered in [Sh2], and a result like Theorem A is proven,
but with the image of Ψ (𝑛) replaced by (𝑛 + 1)-fold Massey products of the form (𝜒, 𝜒, . . . , 𝜒, · ) with
respect to certain ‘proper’ defining systems. In Section 4.3, we show that, in the case that H is procyclic,
the image of Ψ (𝑛) is generated by these same Massey products. In other words, when H is procyclic,
Theorem A recovers the main result of [Sh2].

This raises the question of whether the relation between the values of generalized Bockstein maps and
Massey products can be extended from procyclic H to more general groups. The most difficult step is to
determine the appropriate notion of proper defining system. The key insight is that the proper defining
systems of [Sh2] are those defining systems that, in a sense, partially have group-theoretic origin. That
is, if H is procyclic, then for every 𝑛 > 0, there is a group homomorphism we call the unipotent binomial
matrix homomorphism [

·

𝑛

]
: 𝐻 → U𝑛+1(Z𝑝)

defined by sending a generator of H to the unipotent matrix with all 1’s on the diagonal and off-diagonal
and 0’s elsewhere (the notation is meant to evoke binomial coefficients, the nonzero entries of

[𝑥
𝑛

]
being binomial coefficients, see Section 4.2). A defining system 𝜌 : 𝐺 → U′𝑛+2 (Z𝑝) for the (𝑛 + 1)-fold
Massey product (𝜒, 𝜒, . . . , 𝜒, ·) is called proper if its restriction to the upper-left copy of U𝑛+1 (Z𝑝) in
U′𝑛+2 (Z𝑝) equals

[ ·
𝑛

]
◦ 𝜒.

This suggests considering defining systems that are, at least partially, of group-theoretic origin. Let
𝑛 ≥ 0, and let 𝑎, 𝑏 ≥ 0 be, such that 𝑎 + 𝑏 = 𝑛. Let

𝜙 : 𝐻 → U𝑎+1(Z𝑝), 𝜃 : 𝐻 → U𝑏+1 (Z𝑝)

be group homomorphisms. By precomposition with 𝐺 → 𝐻, these define an n-tuple of elements of
𝐻1 (𝐺,Z𝑝). We call that pair (𝜙, 𝜃) a partial defining system for (𝑛 + 1)-fold Massey products involving
this n-tuple of characters. Our main general result, Theorem 3.3.4, is that a partial defining system
together with a cocycle 𝑓 ∈ 𝑍1 (𝐺,𝑇 ⊗Z𝑝 Ω/𝐼𝑛) constitutes a defining system. Moreover, a partial
defining system defines a homomorphism of G-modules

𝑝𝜙,𝜃 : 𝑇 ⊗Z𝑝 𝐼
𝑛/𝐼𝑛+1 → 𝑇,

such that 𝑝𝜙,𝜃 (Ψ (𝑛) ( [ 𝑓 ])) ∈ 𝐻2 (𝐺,𝑇) is the (𝑛 + 1)-fold Massey product associated to the defining
system given by (𝜙, 𝜃) and f (see Theorem 4.1.2).

We apply this general machinery to the procyclic case 𝐻 � Z𝑝 in Section 4.3, taking (𝑎, 𝑏) = (𝑛, 0)
and 𝜙 =

[ ·
𝑛

]
. Because H is procyclic, there is an isomorphism 𝐼𝑛/𝐼𝑛+1 � Z𝑝 for all n, and the map

𝑝[ ·𝑛] ,1
is induced by this isomorphism. Hence, the values 𝑝[ ·𝑛] ,1(Ψ

(𝑛) ( [ 𝑓 ])) completely determine the
image of Ψ (𝑛) , and in this way, we show that the image of Ψ (𝑛) is given by Massey products.

For more general H, the graded quotients 𝐼𝑛/𝐼𝑛+1 are more complicated, and we cannot hope for any
𝑝𝜙,𝜃 to be an isomorphism. However, it can happen that 𝐼𝑛/𝐼𝑛+1 is a free module; suppose this is the
case. If we can arrange that the maps 𝑝𝜙,𝜃 for varying (𝜙, 𝜃) give a dual basis to 𝐼𝑛/𝐼𝑛+1, then, again,
this construction gives a way to describe the image of Ψ (𝑛) in terms of Massey products. Said differently,
if 𝐼𝑛/𝐼𝑛+1 is a free module of rank d, then, by fixing a basis, we can think of Ψ (𝑛) ( [ 𝑓 ]) as a d-tuple
of elements of 𝐻2 (𝐺,𝑇). If we can make d choices of pairs (𝜙, 𝜃), such that the maps 𝑝𝜙,𝜃 are the
projectors onto these coordinates, then our results describe Ψ (𝑛) ( [ 𝑓 ]) as a d-tuple of Massey products.

For a general group H and general n, we do not expect that there will exist choices of (𝜙, 𝜃), such
that the 𝑝𝜙,𝜃 constitute a dual basis to 𝐼𝑛/𝐼𝑛+1. However, we give some families of examples where
this is the case: H is procyclic (Section 4.3), H is pro-bicyclic (Section 4.4), H is elementary abelian
(Section 4.5) and H is a Heisenberg group and 𝑛 < 4 (Section 4.6). We explicate the result for 𝐻 � Z2

𝑝

in the following subsection.
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1.4. The bicyclic case: an illustration

Suppose that H is isomorphic to Z2
𝑝 , and let 𝜒, 𝜓 : 𝐻 → Z𝑝 denote the projections onto the two factors.

For each nonnegative integer 𝑎 ≤ 𝑛, there is a partial defining system
( [ ·
𝑎

]
◦ 𝜒,

[ ·
𝑛−𝑎

]
◦ 𝜓

)
. Applying our

general result Theorem 4.1.2 with these defining systems, we obtain the following (see Theorem 4.4.3):

Theorem B. Suppose that 𝜈 = (𝜒, 𝜓) : 𝐻 → Z2
𝑝 is an isomorphism. Let 𝑥, 𝑦 ∈ 𝐼 be, such that 𝑥 + 1 and

𝑦 + 1 are group elements mapping under 𝜈 to the standard ordered basis of Z2
𝑝 . For 𝑛 ≥ 2, the cosets of

𝑥𝑎𝑦𝑛−𝑎 with 0 ≤ 𝑎 ≤ 𝑛 then form a Z𝑝-basis for 𝐼𝑛/𝐼𝑛+1.

a. To a continuous 1-cocycle 𝑓 : 𝐺 → 𝑇 ⊗Z𝑝 Ω/𝐼𝑛 and 0 ≤ 𝑎 ≤ 𝑛, we can associate a proper defining
system for an (𝑛 + 1)-fold Massey product

(𝜒 (𝑎) , 𝜆, 𝜓 (𝑛−𝑎) ) := (𝜒, . . . , 𝜒︸����︷︷����︸
𝑎 times

, 𝜆, 𝜓, . . . , 𝜓︸����︷︷����︸
𝑛−𝑎 times

) ∈ 𝐻2(𝐺,𝑇),

where 𝜆 : 𝐺 → 𝑇 is the composition of f with the quotient map 𝑇 ⊗Z𝑝 Ω/𝐼𝑛 → 𝑇 ⊗Z𝑝 Ω/𝐼 � 𝑇 .
b. With the notation of part a, let [ 𝑓 ] denote the class of f in 𝐻1 (𝐺,𝑇 ⊗Z𝑝 Ω/𝐼𝑛). Then

Ψ (𝑛) ( [ 𝑓 ]) =
𝑛∑
𝑎=0
(𝜒 (𝑎) , 𝜆, 𝜓 (𝑛−𝑎) ) ⊗ 𝑥𝑎𝑦𝑛−𝑎 .

Let us illustrate Theorem B in some detail in the case that 𝑛 = 2 and 𝑎 = 1. In this case, we have

Ω/𝐼2 = Z𝑝 [𝑥, 𝑦]/(𝑥
2, 𝑥𝑦, 𝑦2)

in the notation of the theorem. We can therefore write the 1-cocycle 𝑓 : 𝐺 → 𝑇 ⊗Z𝑝 Ω/𝐼2 as

𝑓 = 𝜆 + 𝜆𝑥𝑥 + 𝜆𝑦𝑦,

with 𝜆𝑥 , 𝜆𝑦 : 𝐺 → 𝑇 , abbreviating the tensor product as formal multiplication. Part a of Theorem B
says that f gives rise to a defining system

𝜌 =

����
1 𝜒

1
𝜆𝑥 ∗
𝜆 𝜆𝑦
1 𝜓

1

����� : 𝐺 → 𝑈/𝑍

for the Massey triple product (𝜒, 𝜆, 𝜓). Here, the values of 𝜌 lie in the quotient of a group U of
generalized upper-triangular unipotent 4-by-4 matrices by its subgroup Z of matrices with zero above-
diagonal entries outside of the upper right-hand corner. The entries in the upper-right hand block are
T-valued (and, in particular, 𝑍 � 𝑇), whereas they are Z𝑝-valued outside of it. Matrix multiplication
proceeds using the Z𝑝-module structure on T. That 𝜌 is a defining system means that 𝜌 : 𝐺 → 𝑈/𝑍 is
a nonabelian 1-cocycle, where G acts on U coordinate-wise. The Massey product (𝜒, 𝜆, 𝜓)𝜌 relative to
the defining system 𝜌 is an element of 𝐻2(𝐺,𝑇) providing the obstruction to lifting 𝜌 to a nonabelian
1-cocycle 𝐺 → 𝑈.

In general, even for such a cocycle 𝜌 and therefore a Massey product (𝜒, 𝜆, 𝜓) to exist, the cup products
𝜒 ∪ 𝜆 and 𝜆 ∪ 𝜓 must vanish in 𝐻2 (𝐺,𝑇) so that cochains 𝜆𝑥 and 𝜆𝑦 can be chosen with 𝑑𝜆𝑥 = −𝜒 ∪ 𝜆
and 𝑑𝜆𝑦 = −𝜆 ∪ 𝜓. Even then, the class (𝜒, 𝜆, 𝜓) depends on these choices. In our description, this
vanishing is encapsulated in the fact that f is a 1-cocycle, and the indeterminacy is removed by fixing f.

The content of part b of Theorem B is that the coefficients of Ψ (2) ( [ 𝑓 ]) in 𝐻2 (𝐺,𝑇) for the Z𝑝-basis
𝑥2, 𝑥𝑦 and 𝑦2 of 𝐼2/𝐼3 are Massey triple products: in particular, the coefficient of 𝑥𝑦 is the Massey
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product (𝜒, 𝜆, 𝜓)𝜌 for the defining system 𝜌. More precisely, (𝜒, 𝜆, 𝜓)𝜌 is defined as the class of the
2-cocycle 𝐹 : 𝐺2 → 𝑇 given by

𝐹 : (𝑔, ℎ) ↦→ 𝜒(𝑔)𝑔𝜆𝑥 (ℎ) + 𝜓(ℎ)𝜆𝑦 (𝑔).

This cocycle F arises as the upper-right hand corner of (𝑔, ℎ) ↦→ 𝜌̃(𝑔) · 𝑔𝜌̃(ℎ) for the naive lift of 𝜌 to
a cochain 𝜌̃ : 𝐺 → 𝑈 with zero in the upper-right hand corner. The theorem boils down to the fact that
𝐹 · 𝑥𝑦 is also exactly the coboundary of the naive lift of f to a cochain 𝐺 → Z𝑝 [𝑥, 𝑦]/(𝑥2, 𝑦2) with a
zero 𝑥𝑦-coefficient.

From our perspective, the generalized Bockstein maps are more flexible than Massey products, being
connecting homomorphisms more directly amenable to basic applications of homological algebra. For
instance, the argument proving Theorem A for arbitrary H amounts to a diagram chase for maps of
Grothendieck spectral sequences. Moreover, Theorem B allows us to study defining systems using
abelian, rather than nonabelian, cocycles.

1.5. Galois groups with restricted ramification and class groups

At its core, our work is motivated by the potential arithmetic applications. One has at least something
of an understanding of class groups of cyclotomic fields through Bernoulli numbers, and thereby
L-functions, and most notably via the Iwasawa main conjecture (theorem of Mazur-Wiles [MaWi]).
However, little is known about p-adic analytic invariants describing aspects of class groups of non-CM
extensions of Q.

One does have at least a partial understanding of the structure of p-parts of class groups of
p-ramified F𝑝-extensions of Q(𝜇𝑝) through known values of cup products of cyclotomic p-units, and
in certain instances, one can give lower bounds on p-ranks of these groups (see [Sh2, Section 7]). In
Section 5, we consider more complex extensions, deriving lower bounds on the p-ranks of class groups
of p-ramified bicyclic and Heisenberg extensions of Q(𝜇𝑝) in cases where standard genus theory does
not produce any unramified extensions. The key tools in this work are Theorem A, our descriptions of
the generalized Bockstein maps Ψ (𝑛) for 𝑛 ∈ {1, 2} and computations of cup products of cyclotomic
units from [McSh].

We consider the case that the class group ofQ(𝜇𝑝) has p-rank 1. Suppose we have an F2
𝑝-extension K

ofQ(𝜇𝑝) that is Galois overQ for which the cup product pairing with the Kummer cocycle of the Kummer
generators of the F2

𝑝-extension vanish. Under certain assumptions on the action of Gal(Q(𝜇𝑝)/Q) on
these Kummer generators, we can show that the p-rank of the class group of K is at least 6 (see
Proposition 5.2.1). This F2

𝑝-extension K is then further contained in a Heisenberg extension L of Q(𝜇𝑝)
of degree 𝑝3 that is Galois over Q, and the p-rank of its class group is at least 7 (see Proposition 5.2.3).
The smallest irregular prime p for which there exist F2

𝑝-extensions for which these lower bounds are
shown to hold by our methods is 101.

In [Sh4], the results of this paper are applied in the setting of Iwasawa theory to study inverse limits of
class groups. There, G is the Galois group of the maximal extension of a number field unramified outside
a finite set of primes containing those above p, and H is the Galois group of a Z𝑝-extension. The group
𝐻2

Iw(𝑁,Z𝑝 (1)) is closely related to, but not always isomorphic to, the inverse limit X of p-parts of class
groups under norm maps in the tower of number fields defined by H. The isomorphisms of Theorem A
are then used to derive exact sequences describing the graded pieces in the augmentation filtration of X.

1.6. Absolute Galois groups and Massey vanishing

Let G be a profinite group, and let p be a prime number. Let 𝜒 ∈ 𝐻1 (𝐺, F𝑝) = Hom(𝐺, F𝑝). Consider
the sequence

𝐻1(ker 𝜒, F𝑝)
cor
−−→ 𝐻1(𝐺, F𝑝)

𝜒 ∪
−−→ 𝐻2(𝐺, F𝑝)

res
−−→ 𝐻2(ker 𝜒, F𝑝). (1.2)
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If 𝐺 = 𝐺𝐹 is the absolute Galois group of a field F that contains a primitive pth root of unity, then this
sequence is exact, as can be seen using the properties of the norm residue symbol. This exactness is an
important property of absolute Galois groups: for example, it is used heavily in the proof of the norm
residue isomorphism theorem (see [Vo]).

Using Theorem B, we show that:

(i) The sequence (1.2) is exact at 𝐻1(𝐺, F𝑝) if and only if all p-fold Massey products of the form
(𝜒 (𝑝−1) , 𝜆) with 𝜒 ∪ 𝜆 = 0 vanish for some proper defining system.

(ii) If (1.2) is exact at 𝐻2(𝐺, F𝑝), then it is exact.

In light of (i), we say that a group G has the p-cyclic Massey vanishing property if the sequence (1.2) is
exact at 𝐻1(𝐺, F𝑝) for every 𝜒 ∈ 𝐻1(𝐺, F𝑝). We prove the following in Theorem 6.2.1.

Theorem C. Let G be a profinite group with the p-cyclic Massey vanishing property for an odd prime p.
Then every Massey triple product on 𝐻1(𝐺, F𝑝) which is defined contains zero.

If F is a field containing a primitive pth root of unity, then its absolute Galois group 𝐺𝐹 has the
p-cyclic Massey vanishing property. Hence, Theorem C implies that every Massey triple product on
𝐻1 (𝐺𝐹 , F𝑝) which is defined contains zero. This is the triple Massey vanishing theorem of Efrat–
Matzri [EfMa] and Mináč–Tân [MiTa3] for odd p (which implies the vanishing for arbitrary fields as in
the latter paper). For more discussion about absolute Galois groups and the general Massey vanishing
conjecture of [MiTa4], see the introduction to Section 6.

In our proof of Theorem C, to show that a defined Massey product (𝜒, 𝜆, 𝜓) vanishes, we consider
the coimage H of the map (𝜒, 𝜓) : 𝐺 → F2

𝑝 , let Ω = F𝑝 [𝐻], and let 𝐼 ⊂ Ω be the augmentation ideal.
We then apply a variant of Theorem B to this H to see that the Massey product (𝜒, 𝜆, 𝜓) relative to a
certain defining system is the obstruction to lifting 𝜆 to a class in 𝐻1(𝐺,Ω/𝐽) for a particular ideal J
between 𝐼2 and 𝐼3. Via an involved diagram chase, we see that the p-cyclic Massey vanishing property
for the quotients of H that are the coimages of 𝜒, 𝜓 and 𝜒 + 𝜓 implies that this obstruction equals
𝜈 ∪ (𝜒 + 𝜓) for some 𝜈 ∈ 𝐻1 (𝐺, F𝑝). This is enough to show that the Massey product contains zero.

Theorem C raises several interesting questions that we do not attempt to address here, including
whether or not the vanishing of Massey products (𝜒 (𝑛) , 𝜓) for arbitrary n is sufficient to imply Massey
vanishing.

2. Generalized Bockstein maps

In this section, we define generalized Bockstein maps and employ them in the study of the structure of
inverse limits of cohomology groups. Throughout the paper, we use the following objects:

◦ a prime number p,
◦ a profinite group G,
◦ a topologically finitely generated pro-p quotient H of G by a closed normal subgroup N,
◦ a compact Noetherian Z𝑝-algebra R (usually taken to be a quotient of Z𝑝),
◦ the completed group ring Ω = 𝑅�𝐻�,
◦ the augmentation ideal I of Ω, that is, the kernel of the continuous R-algebra homomorphism

Ω→ 𝑅 that sends every group element in H to 1,
◦ a positive integer n, such that Ω/𝐼𝑛 and 𝐼𝑛/𝐼𝑛+1 are R-flat and
◦ a compact 𝑅�𝐺�-module T that is R-finitely generated.

Note that a compact 𝑅�𝐺�-module is the same as a compact R-module with a continuous R-linear
action of G. We will frequently take tensor products 𝑀 ⊗𝑅 𝑀 ′ of compact 𝑅�𝐺�-modules M and 𝑀 ′,
at least one of which is finitely generated over R. These compact R-modules (with the topology of the
isomorphic completed tensor product) have the diagonal action of G.

We are concerned in this paper with the continuous cohomology groups 𝐻𝑖 (𝐺, 𝑀) of compact
𝑅�𝐺�-modules M for 𝑖 ≥ 0. In particular, G-cochains are implicitly supposed to be continuous. We use
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square brackets to denote both classes of cocycles and group elements in completed group algebras,
and we denote an element in a module and its coset in a quotient thereof by the same symbol where the
context is clear.

2.1. Augmentation sequences

Since we have assumed that Ω/𝐼𝑛 is R-flat, the right exact sequence of compact 𝑅�𝐺�-modules

0→ 𝑇 ⊗𝑅 𝐼𝑛/𝐼𝑛+1 → 𝑇 ⊗𝑅 Ω/𝐼𝑛+1 → 𝑇 ⊗𝑅 Ω/𝐼𝑛 → 0 (2.1)

is exact. For any 𝑑 ≥ 1, we have the resulting connecting homomorphisms

𝐻𝑑−1 (𝐺,𝑇 ⊗𝑅 Ω/𝐼𝑛) → 𝐻𝑑 (𝐺,𝑇 ⊗𝑅 𝐼
𝑛/𝐼𝑛+1)

on continuous G-cohomology.
Since G acts trivially on the finitely generated R-module 𝐼𝑛/𝐼𝑛+1, we have a homomorphism

𝐻𝑑 (𝐺,𝑇) ⊗𝑅 𝐼
𝑛/𝐼𝑛+1 → 𝐻𝑑 (𝐺,𝑇 ⊗𝑅 𝐼

𝑛/𝐼𝑛+1) (2.2)

that is an isomorphism as 𝐼𝑛/𝐼𝑛+1 is R-flat, so long as we assume either that G has finite p-cohomological
dimension or that 𝐼𝑛/𝐼𝑛+1 has a finite resolution by projective R-modules (see [LiSh, Proposition 3.1.3],
the proof of which does not use the assumption on R in that section). The latter condition is automatic,
given that 𝐼𝑛/𝐼𝑛+1 is flat, if R is a quotient of Z𝑝 . We let

Ψ (𝑛) : 𝐻𝑑−1 (𝐺,𝑇 ⊗𝑅 Ω/𝐼𝑛) → 𝐻𝑑 (𝐺,𝑇) ⊗𝑅 𝐼
𝑛/𝐼𝑛+1 (2.3)

denote the resulting composite map, and we refer to it as a generalized Bockstein map.

Remark 2.1.1. We may replace the assumption that Ω/𝐼𝑛 is R-flat with the assumption that T is
R-flat in order that (2.1) still holds. We may also replace the assumption that 𝐼𝑛/𝐼𝑛+1 is R-flat with the
assumption that G has p-cohomological dimension d and still have an isomorphism as in (2.2) (to see
this, choose a presentation of 𝐼𝑛/𝐼𝑛+1 by finitely generated free R-modules and use the right exactness
of the dth cohomology functor and the tensor product, noting that 𝐻𝑑 (𝐺,𝑇𝑟 ) � 𝐻𝑑 (𝐺,𝑇) ⊗𝑅 𝑅

𝑟 for
any r). With either replacement, Ψ (𝑛) is still a map as in (2.3).

2.2. Graded quotients of Iwasawa cohomology groups

Recall that N denotes the kernel of the surjection 𝐺 → 𝐻. Our interest in this section is in the Iwasawa
cohomology groups

𝐻𝑖
Iw(𝑁,𝑇) = lim

←−−
𝑁 ≤𝑈�𝑜𝐺

𝐻𝑖 (𝑈,𝑇)

for 𝑖 ≥ 1, where the inverse limit is taken with respect to corestriction maps over open normal subgroups
U of G containing N. Note that the Iwasawa cohomology groups are relative to the larger group G,
though this is omitted from our notation. Since each 𝐻𝑖 (𝑈,𝑇) is a 𝑅[𝐺/𝑈]-module and the actions are
compatible with corestriction, the group 𝐻𝑖

Iw(𝑁,𝑇) is endowed with the structure of an Ω-module.

Remark 2.2.1. If H is finite, then 𝐻𝑖
Iw(𝑁,𝑇) = 𝐻

𝑖 (𝑁,𝑇).

Let us define two notions that we need. First, a profinite group G is p-cohomologically finite if G
has finite p-cohomological dimension and 𝐻𝑖 (G, 𝑀) is finite for every finite Z𝑝 [G]-module M and
𝑖 ≥ 0. Second, a compact p-adic Lie group is a profinite group that has an open pro-p subgroup, any
closed subgroup of which can be topologically generated by r elements for some fixed r. Equivalently,
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a compact p-adic Lie group is any profinite group continuously isomorphic to a closed subgroup of
GL𝑛 (Z𝑝) for some 𝑛 ≥ 1.

We make the following assumptions for the rest of this section:

◦ G is p-cohomologically finite of p-cohomological dimension d,
◦ R is a complete commutative local Noetherian Z𝑝-algebra with finite residue field and
◦ either

(i) H is a compact p-adic Lie group or
(ii) T has a finite resolution by a complex of 𝑅�𝐺�-modules free of finite rank over R.

Recall that the zeroth H-homology group of a compact Ω-module M is its coinvariant module
𝑀𝐻 � 𝑀/𝐼𝑀 . In our setting, corestriction provides an isomorphism on coinvariants in degree d (see
[NSW, Proposition 3.3.11]), which is to say that we have a natural isomorphism

𝐻𝑑
Iw(𝑁,𝑇)

𝐼𝐻𝑑
Iw(𝑁,𝑇)

� 𝐻𝑑 (𝐺,𝑇). (2.4)

This gives rise to a Grothendieck spectral sequence for the implicit composition of right exact functors,
which is a version of Tate’s descent spectral sequence for Iwasawa cohomology.

Proposition 2.2.2 (Fukaya-Kato, Lim-Sharifi). The Ω-modules 𝐻𝑖
Iw(𝑁,𝑇) are finitely generated for all

𝑖 ≥ 0. Moreover, we have a first quadrant homological spectral sequence of R-modules

𝐸2
𝑖, 𝑗 (𝑇) = 𝐻𝑖 (𝐻, 𝐻

𝑑− 𝑗
Iw (𝑁,𝑇)) ⇒ 𝐸𝑖+ 𝑗 (𝑇) = 𝐻

𝑑−𝑖− 𝑗 (𝐺,𝑇),

where d is the p-cohomological dimension of G.

This result is proven in [Se2, Theorem 1, Ta] if H is finite, and it follows from [FuKa, Proposition
1.6.5] if (ii) holds and from [LiSh, Propositions 3.1.3 and 3.2.4] if (i) holds.

The isomorphism (2.4) and the other edge maps on coinvariant groups in this spectral sequence
are given by the inverse limits of corestriction maps. This isomorphism forces the nth graded quotient
𝐼𝑛𝐴/𝐼𝑛+1𝐴 in the augmentation filtration of 𝐴 = 𝐻𝑑

Iw(𝑁,𝑇) to be a quotient of 𝐻𝑑 (𝐺,𝑇) ⊗𝑅 𝐼
𝑛/𝐼𝑛+1

using the surjective map

𝐴/𝐼 𝐴 ⊗𝑅 𝐼
𝑛/𝐼𝑛+1 → 𝐼𝑛𝐴/𝐼𝑛+1𝐴

induced by the map 𝐴 × 𝐼𝑛 → 𝐼𝑛𝐴 given by the multiplication (𝑎, 𝑥) ↦→ 𝑥𝑎. As we shall see, this
quotient is in fact cokerΨ (𝑛) .

Recall that we have assumed that Ω/𝐼𝑛 is R-flat. Moreover, the fact that H is topologically finitely
generated implies that Ω/𝐼𝑛 is finitely generated over R.

Lemma 2.2.3. Let A be an Ω-module, and consider the exact sequence

0→ 𝐴 ⊗𝑅 𝐼
𝑛/𝐼𝑛+1 → 𝐴 ⊗𝑅 Ω/𝐼𝑛+1 → 𝐴 ⊗𝑅 Ω/𝐼𝑛 → 0. (2.5)

The connecting homomorphism

𝜕𝑛 : 𝐻1(𝐻, 𝐴 ⊗𝑅 Ω/𝐼𝑛) → 𝐴𝐻 ⊗𝑅 𝐼
𝑛/𝐼𝑛+1

in the H-homology of (2.5) has cokernel isomorphic to 𝐼𝑛𝐴/𝐼𝑛+1𝐴.

Proof. We have compatible, natural isomorphisms of R-modules

(𝐴 ⊗𝑅 Ω/𝐼𝑚)𝐻 � Ω/𝐼𝑚 ⊗Ω 𝐴 � 𝐴/𝐼𝑚𝐴
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for 𝑚 ≥ 1 given on 𝑎 ∈ 𝐴 and 𝜔 ∈ Ω (or its quotient by 𝐼𝑚) by

𝑎 ⊗ 𝜔 ↦→ 𝜄(𝜔) ⊗ 𝑎 ↦→ 𝜄(𝜔)𝑎,

where 𝜄 : Ω→ Ω is the unique continuous R-linear map given by inversion of group elements on H. Note
that the switch of terms in the tensor product in the first isomorphism is necessitated by the fact that A
is a left Ω-module (in fact, these become isomorphisms of Ω-modules since 𝑎 ⊗ 𝜔ℎ−1 ↦→ ℎ · 𝜄(𝜔) ⊗ 𝑎
for ℎ ∈ 𝐻 under the first map).

By the long exact sequence in H-homology and the above isomorphisms, the cokernel of interest is
identified with the kernel of the quotient map 𝐴/𝐼𝑛+1𝐴→ 𝐴/𝐼𝑛𝐴, hence, the result. �

We now come to our theorem.

Theorem 2.2.4. For each 𝑛 ≥ 1, there is a canonical isomorphism

𝐼𝑛𝐻𝑑
Iw(𝑁,𝑇)

𝐼𝑛+1𝐻𝑑
Iw(𝑁,𝑇)

�
𝐻𝑑 (𝐺,𝑇) ⊗𝑅 𝐼

𝑛/𝐼𝑛+1

imΨ (𝑛)

of R-modules, where d is the p-cohomological dimension of G.

Proof. There are isomorphisms

𝐻𝑑
Iw(𝑁,𝑇 ⊗𝑅 𝑀) � 𝐻

𝑑
Iw(𝑁,𝑇) ⊗𝑅 𝑀

for any compact 𝑅�𝐺�-module M finitely generated over R, since G has p-cohomological dimension d.
In particular, the following sequence is exact:

0→ 𝐻𝑑
Iw(𝑁,𝑇 ⊗𝑅 𝐼

𝑛/𝐼𝑛+1) → 𝐻𝑑
Iw(𝑁,𝑇 ⊗𝑅 Ω/𝐼𝑛+1) → 𝐻𝑑

Iw(𝑁,𝑇 ⊗𝑅 Ω/𝐼𝑛) → 0.

We consider the connecting homomorphism in H-homology:

𝜕 (𝑛) : 𝐻1(𝐻, 𝐻
𝑑
Iw(𝑁,𝑇) ⊗𝑅 Ω/𝐼𝑛) → 𝐻𝑑

Iw(𝑁,𝑇)𝐻 ⊗𝑅 𝐼
𝑛/𝐼𝑛+1. (2.6)

We next apply Lemma A.0.1 of the appendix, which says that edge maps to total terms in homological
Grothendieck spectral sequences are compatible with connecting maps. Here, the spectral sequence
is that of Proposition 2.2.2, which is associated to the composition of functors 𝐹 = 𝐻0(𝐻, · ) and
𝐹 ′ = 𝐻𝑑

Iw(𝑁, · ), noting that 𝐹 ◦ 𝐹 ′ � 𝐻𝑑 (𝐺, · ) via corestriction. The connecting homomorphisms are
from degrees 1 to 0 and are associated to the short exact sequence of (2.1).

In this setting, the lemma provides a commutative square related to the diagram

𝐻𝑑−1 (𝐺,𝑇 ⊗𝑅 Ω/𝐼𝑛) 𝐻𝑑 (𝐺,𝑇) ⊗𝑅 𝐼
𝑛/𝐼𝑛+1

𝐻1(𝐻, 𝐻
𝑑
Iw(𝑁,𝑇) ⊗𝑅 Ω/𝐼𝑛) 𝐻𝑑

Iw(𝑁,𝑇)𝐻 ⊗𝑅 𝐼
𝑛/𝐼𝑛+1

Ψ (𝑛)

�

𝜕(𝑛)

(2.7)

but with 𝐿1 (𝐹 ◦ 𝐹
′) (𝑇 ⊗𝑅 Ω/𝐼𝑛) in place of 𝐻𝑑−1 (𝐺,𝑇 ⊗𝑅 Ω/𝐼𝑛). By Lemma A.0.2, which is a simple

consequence of the universality of left-derived functors, we have a surjection from the latter object to
the former, compatible with their connecting homomorphisms to 𝐻𝑑 (𝐺,𝑇) ⊗𝑅 𝐼

𝑛/𝐼𝑛+1. This allows us
to make the replacement while maintaining the surjectivity of the left vertical map, so we indeed have
the commutative square (2.7).

By Lemma 2.2.3, the isomorphism in the statement of the theorem is the map on cokernels of the
horizontal maps in (2.7). �
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Although not used in this paper, for the purposes of Iwasawa-theoretic applications, it is useful to
have a slightly stronger version of Theorem 2.2.4. So, we remark that it has the following generalization,
with virtually no additional complications (given that the results of [LiSh, FuKa] hold in this generality).

Remark 2.2.5. Let G be a profinite group, and let Γ be a quotient of G by a closed normal subgroup G.
Let H be a quotient of G by a closed normal subgroup N that is contained in G, and let 𝐻 = 𝐺/𝑁 as
before. We then have Γ � H/𝐻. That is, we have a commutative diagram of exact sequences

𝑁 𝑁

𝐺 G Γ

𝐻 H Γ.

Take T to be a compact 𝑅�G�-module finitely generated over R, and replace the assumptions on G
and H from the beginning of this subsection with the identical assumptions on G and H, respectively.
We have Iwasawa cohomology groups 𝐻𝑖

Iw(𝑁,𝑇) and 𝐻𝑖
Iw(𝐺,𝑇), which are now taken relative to the

larger group G. These are finitely generated as modules over 𝑅�H� and Λ = 𝑅�Γ�, respectively, and
we have, as before, a spectral sequence

𝐸2
𝑖, 𝑗 (𝑇) = 𝐻𝑖 (𝐻, 𝐻

𝑑− 𝑗
Iw (𝑁,𝑇)) ⇒ 𝐸𝑖+ 𝑗 (𝑇) = 𝐻

𝑑−𝑖− 𝑗
Iw (𝐺,𝑇)

but now of Λ-modules. In exactly the same manner as before, this gives rise to isomorphisms

𝐼𝑛𝐻𝑑
Iw(𝑁,𝑇)

𝐼𝑛+1𝐻𝑑
Iw(𝑁,𝑇)

�
𝐻𝑑

Iw(𝐺,𝑇) ⊗𝑅 𝐼
𝑛/𝐼𝑛+1

imΨ (𝑛)
,

again, of Λ-modules.

2.3. The abelian case

We turn to the direct computation of generalized Bockstein maps on 1-cocycles for abelian H. That is,
let us now take H to be a finitely generated, abelian pro-p group, and let us take R to be a quotient
of Z𝑝 . We give an explicit formula for Ψ (𝑛) under a hypothesis on the size of R that ensures our flatness
hypothesis is satisfied. If H has no nonzero p-torsion, no hypothesis is needed.

We begin with the following simple lemma.

Lemma 2.3.1. Let s and t be positive integers with 𝑛 < 𝑝𝑡−𝑠+1. Then (1 + 𝑥) 𝑝𝑡
− 1 is in the ideal

(𝑥𝑛+1, 𝑝𝑠) of Z[𝑥].

Proof. Recall that 𝑝𝑠 divides
(𝑝𝑡

𝑖

)
for 0 < 𝑖 < 𝑝𝑡−𝑠+1. Therefore

(1 + 𝑥) 𝑝
𝑡
=

𝑝𝑡∑
𝑖=0

(
𝑝𝑡

𝑖

)
𝑥𝑖 ≡ 1 mod (𝑥𝑛+1, 𝑝𝑠),

so long as 𝑛 < 𝑝𝑡−𝑠+1. �

Let ℎ1, . . . , ℎ𝑟 be a minimal set of generators for H, labeled such that ℎ1, . . . , ℎ𝑐 have finite orders
𝑝𝑡1 ≤ · · · ≤ 𝑝𝑡𝑐 and ℎ𝑐+1, . . . , ℎ𝑟 have infinite order, for some 0 ≤ 𝑐 ≤ 𝑟 . Define 𝑥𝑖 = [ℎ𝑖] − 1 ∈ Ω for
1 ≤ 𝑖 ≤ 𝑟 , where [ℎ𝑖] denotes the group element of ℎ𝑖 , so that 𝐼 = (𝑥1, . . . , 𝑥𝑟 ). We then have
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Ω �
𝑅�𝑥1, . . . , 𝑥𝑟�

((𝑥1 + 1) 𝑝𝑡1 − 1, . . . , (𝑥𝑐 + 1) 𝑝𝑡𝑐 − 1)
.

We have 𝑐 > 0 if and only if H is not Z𝑝-free, in which case, we suppose that 𝑅 = Z/𝑝𝑠Z with
𝑛 < 𝑝𝑡1−𝑠+1. By Lemma 2.3.1, we have

Ω/𝐼 𝑗 �
𝑅[𝑥1, . . . , 𝑥𝑟 ]

(𝑥1, . . . , 𝑥𝑟 ) 𝑗

for 𝑗 ≤ 𝑛 + 1. Moreover, 𝐼𝑛/𝐼𝑛+1 is a free R-module with a basis consisting of the monomials in the
variables 𝑥𝑖 of degree n. In particular, the generalized Bockstein map Ψ (𝑛) is defined. We may view any
element 𝑞 ∈ 𝑇 ⊗𝑅 Ω/𝐼𝑛 as having the form

𝑞 =
∑

𝑘1+···+𝑘𝑟<𝑛

𝛼𝑘1 ,...,𝑘𝑟 𝑥
𝑘1
1 · · · 𝑥

𝑘𝑟
𝑟 ,

where the sum is taken over r-tuples (𝑘1, . . . , 𝑘𝑟 ) of nonnegative integers with sum less than n and with
𝛼𝑘1 ,...,𝑘𝑟 ∈ 𝑇 , omitting the notation for the tensor product in such an expression. Setting ‖𝑘 ‖ = 𝑘1+· · ·+𝑘𝑟
for an r-tuple (𝑘1, . . . , 𝑘𝑟 ), let’s simplify this notation as

𝑞 =
∑
‖𝑘 ‖<𝑛

𝛼𝑘𝑥
𝑘 , (2.8)

where 𝑥𝑘 = 𝑥𝑘1
1 · · · 𝑥

𝑘𝑟
𝑟 .

Let 𝜋 : 𝐺 → 𝐻 denote the quotient map. For each i, let

𝐴𝑖 =

{
Z/𝑝𝑡𝑖Z if 1 ≤ 𝑖 ≤ 𝑐,
Z𝑝 if 𝑐 < 𝑖 ≤ 𝑟.

For 1 ≤ 𝑖 ≤ 𝑟 , let 𝜒𝑖 : 𝐺 → 𝐴𝑖 be the homomorphisms determined by

𝜋(𝑔) =
𝑟∏
𝑖=1
ℎ
𝜒𝑖 (𝑔)
𝑖

for 𝑔 ∈ 𝐺. The action of 𝑔 ∈ 𝐺 on q as in (2.8) is given by multiplication by
∏𝑟

𝑖=1(1 + 𝑥𝑖)𝜒𝑖 (𝑔) . That is,
we have the formula

𝑔 · 𝑞 =
∑
‖𝑘 ‖<𝑛

( ∑
0≤𝑘′≤𝑘

(
𝜒(𝑔)

𝑘 ′

)
𝑔𝛼𝑘−𝑘′

)
𝑥𝑘 , (2.9)

where the second sum is over r-tuples 𝑘 ′ of nonnegative integers with 𝑘 ′𝑖 ≤ 𝑘𝑖 for each i and where we
have set

(𝜒 (𝑔)
𝑘′

)
=

(𝜒1 (𝑔)
𝑘′1

)
· · ·

(𝜒𝑟 (𝑔)
𝑘′𝑟

)
.

Note that our assumption on the cardinality of R can be rephrased as saying that either 𝑐 = 0 or R is
a quotient of 𝐴1 such that |𝑅 | < 𝑝

𝑛 |𝐴1 |. With our notation and this assumption established, we can give
an explicit formula for Ψ (𝑛) .

Proposition 2.3.2. Let 𝑓 : 𝐺 → 𝑇 ⊗𝑅 Ω/𝐼𝑛 be a 1-cocycle, and write

𝑓 =
∑
‖𝑘 ‖<𝑛

𝜆𝑘𝑥
𝑘
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with 𝜆𝑘 : 𝐺 → 𝑇 . Then Ψ (𝑛) takes the class of f to the class of the 2-cocycle

(𝑔, ℎ) ↦→
∑
‖𝑘 ‖=𝑛

( ∑
0<𝑘′ ≤𝑘

(
𝜒(𝑔)

𝑘 ′

)
𝑔𝜆𝑘−𝑘′ (ℎ)

)
𝑥𝑘 ,

where the first sum is taken over r-tuples 𝑘 = (𝑘1, . . . , 𝑘𝑟 ) of nonnegative integers summing to n and
the second sum is taken over nonzero r-tuples 𝑘 ′ of nonnegative integers with 𝑘 ′𝑖 ≤ 𝑘𝑖 for all i.

Proof. Consider the set-theoretic section

𝑠𝑛 : 𝑇 ⊗𝑅 Ω/𝐼𝑛 → 𝑇 ⊗𝑅 Ω/𝐼𝑛+1 (2.10)

that takes a sum as in (2.8) to the same expression in the larger module. Let 𝑓 = 𝑠𝑛 ◦ 𝑓 . By definition,
Ψ (𝑛) ( [ 𝑓 ]) is the class of 𝑑 𝑓 , where

𝑑 𝑓 (𝑔, ℎ) = 𝑓 (𝑔) + 𝑔 𝑓 (ℎ) − 𝑓 (𝑔ℎ)

for 𝑔, ℎ ∈ 𝐺. Since f is a cocycle, the right-hand side of this expression is equal to the degree n part of
𝑔 𝑓 (ℎ), which by (2.9) is exactly as in the statement of the proposition. �

For general H, pro-p but not necessarily abelian, we can use this computation to see that Ψ (1) is given
by cup products. We consider the case that H is a quotient of G, such that the abelianization 𝐻ab of H
is finitely generated and pro-p. As before, but now for 𝐻ab in place of H, there are nonnegative integers
𝑟 ≥ 𝑐 and positive integers 𝑡1 ≤ · · · ≤ 𝑡𝑐 , such that

𝐻ab �
𝑟⊕
𝑖=1
𝐴𝑖 , (2.11)

where 𝐴𝑖 = Z/𝑝𝑡𝑖Z for 𝑖 = 1, . . . , 𝑐 and 𝐴𝑖 = Z𝑝 for 𝑖 = 𝑐+1, . . . , 𝑟. For 𝑖 = 1, . . . , 𝑟 , we let 𝜒𝑖 : 𝐺 → 𝐴𝑖
denote the quotient map 𝐺 → 𝐴𝑖 . We take 𝑛 = 1, and our condition on the cardinality of R becomes
𝑠 ≤ 𝑡1 when 𝑐 ≥ 1.

Fix generators ℎ1, . . . , ℎ𝑟 of H, such that each ℎ𝑖 maps to 1 ∈ 𝐴𝑖 under the composition of the
quotient map and the isomorphism in (2.11). There is an isomorphism 𝐼/𝐼2 � 𝐻ab ⊗Z𝑝 𝑅 taking the
image of 𝑥𝑖 = [ℎ𝑖] − 1 to ℎ𝑖 ⊗ 1.

Proposition 2.3.3. Let H be a finitely generated pro-p group with 𝐻ab as in (2.11), let I be the augmen-
tation ideal in Ω = 𝑅�𝐻� and let 𝜒𝑖 and 𝑥𝑖 for 1 ≤ 𝑖 ≤ 𝑟 be as in the previous paragraph. For any
1-cocycle 𝑓 : 𝐺 → 𝑇 , we have

Ψ (1) ( [ 𝑓 ]) =
𝑟∑
𝑖=1
(𝜒𝑖 ∪ 𝑓 )𝑥𝑖 ∈ 𝐻

2 (𝐺,𝑇) ⊗𝑅 𝐼/𝐼
2.

Proof. Let Ω′ = 𝑅�𝐻ab� with augmentation ideal 𝐼 ′ ⊂ Ω′. Both Ω/𝐼 and Ω′/𝐼 ′ are identified with R
via the augmentation maps, and there are also compatible isomorphisms between the graded quotients
𝐼/𝐼2 and 𝐼 ′/(𝐼 ′)2 and the R-module 𝐻ab ⊗Z𝑝 𝑅. It follows that the canonical map Ω → Ω′ induces an
isomorphism Ω/𝐼2 � Ω′/(𝐼 ′)2. Thus, Ψ (1) equals the first generalized Bockstein map for 𝐻ab, and the
proposition follows from the case 𝑛 = 1 of Proposition 2.3.2. �

This result was previously studied by the third author in the context of Iwasawa theory, where these
maps are referred to as reciprocity maps with restricted ramification (see, for instance, [Sh3, Lemma 4.1]
for its introduction). In the following section, we study analogous results for Ψ (𝑛) with 𝑛 > 1 in terms
of higher Massey products.
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3. Massey products

In this section, we review the definitions of Massey products and defining systems, with some
modifications from the standard definitions in order to allow for nontrivial coefficient modules. We
also introduce the notions of partial and proper defining systems.

3.1. Upper-triangular generalized matrix algebras

The notion of Massey products that we will use is conveniently stated using the theory of generalized
matrix algebras, as found in [BeCh, Section 1.3, pp. 19–21]. We require only a simple upper-triangular
version of these algebras. Let n be a positive integer, and let R be a commutative ring.

Definition 3.1.1. An n-dimensional upper-triangular generalized matrix algebra A over R
(or, R-UGMA) is an R-algebra formed out of the data of

◦ finitely generated R-modules 𝐴𝑖, 𝑗 for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 with 𝐴𝑖, 𝑗 = 𝑅 if 𝑖 = 𝑗 and
◦ R-module homomorphisms 𝜑𝑖, 𝑗 ,𝑘 : 𝐴𝑖, 𝑗 ⊗𝑅 𝐴 𝑗 ,𝑘 → 𝐴𝑖,𝑘 for all 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 ≤ 𝑛 which are

induced by the given R-actions if 𝑖 = 𝑗 or 𝑗 = 𝑘 ,

such that the two resulting maps

𝐴𝑖, 𝑗 ⊗𝑅 𝐴 𝑗 ,𝑘 ⊗𝑅 𝐴𝑘,𝑙 → 𝐴𝑖,𝑙

coincide for all 1 ≤ 𝑖 < 𝑗 < 𝑘 < 𝑙 ≤ 𝑛. The tuple (𝐴𝑖, 𝑗 , 𝜑𝑖, 𝑗 ,𝑘 ) defines an R-algebra A with underlying
R-module

A =
⊕

1≤𝑖≤ 𝑗≤𝑛
𝐴𝑖, 𝑗

and multiplication given by matrix multiplication: that is, for 𝑎 = (𝑎𝑖, 𝑗 ) and 𝑏 = (𝑏𝑖, 𝑗 ) in A, the
(𝑖, 𝑗)-entry (𝑎𝑏)𝑖, 𝑗 of 𝑎𝑏 is

(𝑎𝑏)𝑖, 𝑗 =
𝑗∑

𝑘=𝑖

𝜑𝑖,𝑘, 𝑗 (𝑎𝑖,𝑘 ⊗ 𝑏𝑘, 𝑗 ).

Our interest is in the multiplicative group U = U (A) of unipotent matrices in a UGMA A, that is,
those 𝑎 = (𝑎𝑖, 𝑗 ) with 𝑎𝑖,𝑖 = 1 for all i. We shall often take the quotient U ′ = U ′(A) of this U by its
central subgroup Z = Z (A) of unipotent central elements, that is, those 𝑎 ∈ U with 𝑎𝑖, 𝑗 = 0 for all
(𝑖, 𝑗) ≠ (1, 𝑛).

The following is the key example for our purposes.

Example 3.1.2. Let M be a finitely generated R-module, and let m be a positive integer less than n. We
define an n-dimensional R-UGMA A𝑛 (𝑀,𝑚) as follows. Set

𝐴𝑖, 𝑗 =

{
𝑀 if 𝑖 ≤ 𝑚 < 𝑗,
𝑅 otherwise,

and take the maps 𝜑𝑖, 𝑗 ,𝑘 to be the R-module structure maps. This makes sense since, given 𝑖 ≤ 𝑗 ≤ 𝑘 ,
at least one of 𝐴𝑖, 𝑗 and 𝐴 𝑗 ,𝑘 must be R, as m cannot satisfy both 𝑚 < 𝑗 and 𝑗 ≤ 𝑚.

Let us write U𝑛 (𝑀,𝑚) for U (A𝑛 (𝑀,𝑚)) and U ′𝑛 (𝑀,𝑚) for U ′(A𝑛 (𝑀,𝑚)). To make this easier to
visualize, note that we can write U𝑛 (𝑀,𝑚) in ‘block matrix’ form as

U𝑛 (𝑀,𝑚) =

(
U𝑚(𝑅) M𝑚,𝑛−𝑚 (𝑀)

0 U𝑛−𝑚 (𝑅)

)
,
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where U𝑘 (𝑅) � GL𝑘 (𝑅) denotes the group of upper-triangular unipotent matrices and M𝑘,𝑙 (𝑀) denotes
the additive group of k-by-l matrices with entries in M for positive integers k and l. The latter group
is endowed with a left U𝑘 (𝑅)-action and a commuting right U𝑙 (𝑅)-action. Put differently, A𝑛 (𝑀,𝑚)
itself is a sort of 2-by-2 generalized matrix algebra, allowing noncommutative rings on the diagonal and
bimodules in the nondiagonal entries.

We actually need to use profinite UGMAs defined just as in Definition 3.1.1 using profinite rings R
and compact R-modules 𝐴𝑖, 𝑗 but now assuming that the induced multiplication maps 𝐴𝑖, 𝑗×𝐴 𝑗 ,𝑘 → 𝐴𝑖,𝑘
are continuous. Alternatively, the maps 𝜑𝑖, 𝑗 ,𝑘 can be replaced by maps of completed tensor products
over R in the definition.

Though unnecessary, to keep things simple, let us suppose that the compact R-modules 𝐴𝑖, 𝑗 in a
profinite R-UGMA are R-finitely generated. This forces them to have the adic topology for any directed
system of ideals that are open neighborhoods of zero. Moreover, their tensor products and completed
tensor products are then abstractly isomorphic, and so we may, in particular, view the tensor products
𝐴𝑖, 𝑗 ⊗𝑅 𝐴 𝑗 ,𝑘 themselves as compact R-modules (for a slightly longer discussion of this, see [LiSh,
Section 2.3]).

Note that any profinite R-UGMAA has a topology as a finite direct product of the compact R-modules
𝐴𝑖, 𝑗 , and U inherits the subspace topology.

We also want to make a second modification, allowing a continuous action of G.
Definition 3.1.3. For a profinite ring R and a profinite group G, a profinite(𝑅, 𝐺)-UGMA is the data of
a profinite R-UGMA A together with a continuous G-action on each 𝐴𝑖, 𝑗 , such that
◦ the action on 𝐴𝑖,𝑖 = 𝑅 is trivial for all i and
◦ the maps 𝜑𝑖, 𝑗 ,𝑘 are maps of 𝑅�𝐺�-modules, where 𝐴𝑖, 𝑗 ⊗𝑅 𝐴 𝑗 ,𝑘 is given the diagonal action of G.

We remark that, aside from issues of finite generation, the difference between a profinite
𝑅�𝐺�-UGMA and a profinite (𝑅, 𝐺)-UGMA is that in the former, each 𝐴𝑖,𝑖 = 𝑅�𝐺�, whereas in
the latter, each 𝐴𝑖,𝑖 is R with the trivial G-action. We are interested in the latter structure.
Example 3.1.4. If R is a profinite ring and T is a compact 𝑅�𝐺�-module (that is R-finitely generated),
then the R-UGMA A𝑛 (𝑇, 𝑚) of Example 3.1.2 has a natural structure of a profinite (𝑅, 𝐺)-UGMA by
letting G act on 𝐴𝑖, 𝑗 via its action on T if 𝑖 ≤ 𝑚 < 𝑗 and trivially otherwise.

3.2. Defining systems and Massey products

Let R be a profinite ring, let G be a profinite group and let 𝑛 ≥ 2. Let 𝑇1, . . . , 𝑇𝑛 be compact 𝑅�𝐺�-
modules that are R-finitely generated for simplicity, and let 𝜒𝑖 : 𝐺 → 𝑇𝑖 be continuous 1-cocycles for
1 ≤ 𝑖 ≤ 𝑛. In this section, we define Massey products of these cocycles, which will be 2-cocycles that
depend on a number of choices constituting a defining system.
Definition 3.2.1. A defining system for the Massey product of 𝜒1, . . . , 𝜒𝑛 is the data of
◦ an (𝑛 + 1)-dimensional profinite (𝑅, 𝐺)-UGMA A and
◦ a (nonabelian) continuous 1-cocycle 𝜌 : 𝐺 → U ′,
such that 𝐴𝑖,𝑖+1 = 𝑇𝑖 for 1 ≤ 𝑖 ≤ 𝑛 and the composition of 𝜌 with projection to 𝐴𝑖,𝑖+1 is 𝜒𝑖 .

Given a defining system 𝜌 : 𝐺 → U ′, there is a unique function 𝜌̃ : 𝐺 → U lifting 𝜌 and having zero
as the (1, 𝑛 + 1)-entry of 𝜌̃(𝑔) for all 𝑔 ∈ 𝐺. We let 𝜌𝑖, 𝑗 : 𝐺 → 𝐴𝑖, 𝑗 be the map given by taking the
(𝑖, 𝑗)-entry of 𝜌̃.
Definition 3.2.2. Given a defining system 𝜌, the n-fold Massey product (𝜒1, . . . , 𝜒𝑛)𝜌 ∈ 𝐻

2(𝐺, 𝐴1,𝑛+1)
is the class of the 2-cocycle

(𝑔, ℎ) ↦→
𝑛∑
𝑖=2
𝜑1,𝑖,𝑛+1 (𝜌1,𝑖 (𝑔) ⊗ 𝑔𝜌𝑖,𝑛+1(ℎ))

that sends (𝑔, ℎ) to the (1, 𝑛 + 1)-entry of 𝜌̃(𝑔) · 𝑔𝜌̃(ℎ).
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In the remainder of the paper, we will restrict our attention to the setting of the (𝑛 + 1)-dimensional
profinite (𝑅, 𝐺)-UGMAs of the form A𝑛+1 (𝑇, 𝑚) defined in Examples 3.1.2 and 3.1.4. This means, in
particular, that we only consider n-fold Massey products for which there is an m with 1 ≤ 𝑚 ≤ 𝑛, such
that 𝑇𝑚 = 𝑇 and 𝑇𝑖 = 𝑅 for 𝑖 ≠ 𝑚. In particular, we will always have (𝜒1, . . . , 𝜒𝑛)𝜌 ∈ 𝐻

2 (𝐺,𝑇).
In [Sh2], the third author considered the case in which 𝑚 = 𝑛 and 𝜒1 = · · · = 𝜒𝑛−1 in a Galois-

cohomological setting. In that case, the key idea for relating Massey products to graded pieces of
Iwasawa cohomology groups was to consider only a restricted set of defining systems referred to as
proper defining systems. We will consider a more general notion of proper defining system that depends
on extra data we call a partial defining system. In [Sh2], the partial defining system comes from unipotent
binomial matrices, which we review in Section 4.2 below.

3.3. Massey products relative to proper defining systems

Fix an integer 𝑛 ≥ 2 and two integers 𝑎, 𝑏 ≥ 0 with 𝑎+𝑏 = 𝑛. Let 𝑍 𝑖 (𝐺, 𝑀) for a profinite 𝑅�𝐺�-module
M denote the group of continuous i-cocycles on G valued in M. Choose tuples

𝛼 = (𝛼1, . . . , 𝛼𝑎) ∈ 𝑍
1 (𝐺, 𝑅)𝑎 and 𝛽 = (𝛽1, . . . , 𝛽𝑏) ∈ 𝑍

1 (𝐺, 𝑅)𝑏

and a compact 𝑅�𝐺�-module T that is finitely generated as an R-module.
We next consider a pair of homomorphisms that constitute a part of the defining systems for (𝑛 + 1)-

fold Massey products (𝛼1, . . . , 𝛼𝑎, 𝜆, 𝛽1, . . . , 𝛽𝑏), where 𝜆 ∈ 𝑍1 (𝐺,𝑇) is allowed to vary. We write the
collection of such Massey products as (𝛼, · , 𝛽) for short.
Definition 3.3.1. A partial defining system for (𝑛 + 1)-fold Massey products (𝛼, · , 𝛽) is a pair of
homomorphisms

𝜙 : 𝐺 → U𝑎+1(𝑅) and 𝜃 : 𝐺 → U𝑏+1(𝑅),

such that 𝛼 is the off-diagonal of 𝜙 and 𝛽 is the off-diagonal of 𝜃, that is, 𝜙𝑖,𝑖+1 = 𝛼𝑖 for 1 ≤ 𝑖 ≤ 𝑎 and
𝜃𝑖,𝑖+1 = 𝛽𝑖 for 1 ≤ 𝑖 ≤ 𝑏.

More specifically, an (𝑎, 𝑏)-partial defining system is a partial defining system restricting to some
pair (𝛼, 𝛽) ∈ 𝑍1 (𝐺, 𝑅)𝑎 × 𝑍1 (𝐺, 𝑅)𝑏 .

Recall that

U𝑛+2 (𝑇, 𝑎 + 1) =
(
U𝑎+1 (𝑅) 𝑀𝑎+1,𝑏+1 (𝑇)

U𝑏+1 (𝑅)

)
.

We may then write the quotient by the unipotent central matrices as

U ′𝑛+2(𝑇, 𝑎 + 1) =
(
U𝑎+1 (𝑅) 𝑀

′
𝑎+1,𝑏+1 (𝑇)

U𝑏+1(𝑅)

)
for 𝑀 ′𝑎+1,𝑏+1 (𝑇) = 𝑀𝑎+1,𝑏+1 (𝑇)/𝑇 , where T is identified with the matrices that are zero outside the
(1, 𝑏 + 1)-entry.
Definition 3.3.2. Given a 1-cocycle 𝜆 : 𝐺 → 𝑇 , a proper defining system for an (𝑛 + 1)-fold Massey
product (𝛼, 𝜆, 𝛽) relative to a partial defining system(𝜙, 𝜃) is a continuous 1-cocycle

𝜌 : 𝐺 → U ′𝑛+2(𝑇, 𝑎 + 1)

of the form

𝜌 =

(
𝜙 𝜅
0 𝜃

)
for some 𝜅 : 𝐺 → 𝑀 ′𝑎+1,𝑏+1 (𝑇) with 𝜅𝑎+1,1 = 𝜆.
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The advantage of proper defining systems is that they are parameterized by abelian, rather than
nonabelian, cocycles. To show this, we introduce a compact 𝑅�𝐺�-module 𝔘𝜙,𝜃 (𝑇), such that proper
defining systems in T relative to (𝜙, 𝜃) correspond to 1-cocycles with values in 𝔘𝜙,𝜃 (𝑇).

Consider the compact R-module 𝔘𝑛+2 (𝑅) that is the R-module of strictly upper-triangular (𝑛 + 2)-
dimensional square matrices. The group U𝑛+2(𝑅) acts continuously on 𝔘𝑛+2 (𝑅) by conjugation. We
consider a 𝑅�U𝑛+2 (𝑅)�-submodule 𝔘𝑎,𝑏 (𝑅) of 𝔘𝑛+2 (𝑅) given by

{𝑥 = (𝑥𝑖 𝑗 ) ∈ 𝑀𝑛+2 (𝑅) | 𝑥𝑖 𝑗 = 0 if 𝑗 ≤ 𝑎 + 1 or 𝑖 ≥ 𝑎 + 2}.

In other words, breaking 𝑀𝑛+2 (𝑅) into blocks using the partition 𝑛 + 2 = (𝑎 + 1) + (𝑏 + 1) and using
block-matrix notation, we have

𝔘𝑎,𝑏 (𝑅) =

(
0 𝑀𝑎+1,𝑏+1 (𝑅)
0 0

)
.

Given a partial defining system (𝜙, 𝜃), we consider 𝔘𝑎,𝑏 (𝑅) as a G-module via the continuous
homomorphism

𝐺 → U𝑛+2 (𝑅), 𝑔 ↦→

(
𝜙(𝑔) 0

0 𝜃 (𝑔)

)
.

We define an 𝑅�𝐺�-module 𝔘𝜙,𝜃 (𝑇) as 𝔘𝑎,𝑏 (𝑅) ⊗𝑅 𝑇 with the diagonal G-action. We also have the
following equivalent definition, which has the benefit of being more explicit:

◦ 𝔘𝜙,𝜃 (𝑇) = 𝑀𝑎+1,𝑏+1 (𝑇) as an R-module,
◦ the action map 𝐺 → End(𝑀𝑎+1,𝑏+1 (𝑇)) is given, for 𝑔 ∈ 𝐺 and 𝑥 ∈ 𝑀𝑎+1,𝑏+1 (𝑇), by

𝑔 ★ 𝑥 = 𝜙(𝑔) · 𝑔𝑥 · 𝜃 (𝑔)−1,

where 𝑔𝑥 means apply the g action on T to each matrix entry, and the multiplication denoted by ‘·’ is
of matrices.

Going forward, we use the latter description of 𝔘𝜙,𝜃 (𝑇), so consider it as consisting of (𝑎 + 1)-by-
(𝑏 + 1) matrices, rather than as a subgroup of 𝑀𝑛+2 (𝑅). Note that 𝔘𝜙,𝜃 (𝑇) contains a copy of T as an
𝑅�𝐺�-submodule by inclusion in the (1, 𝑏 + 1)-entry. Let

𝔘′𝜙,𝜃 (𝑇) = 𝔘𝜙,𝜃 (𝑇)/𝑇.

Let 𝑥 ↦→ 𝑥 denote the R-module section𝔘′𝜙,𝜃 (𝑇) → 𝔘𝜙,𝜃 (𝑇) given by filling in the (1, 𝑏+1)-entry as 0.

Lemma 3.3.3. Let (𝜙, 𝜃) be a partial defining system for Massey products (𝛼, · , 𝛽). Then the map that
takes a continuous 1-cocycle 𝜅′ : 𝐺 → 𝔘′𝜙,𝜃 (𝑇) to a map 𝜌 : 𝐺 → U ′𝑛+2(𝑇, 𝑎) given by

𝜌 =

(
𝜙 𝜅′𝜃
0 𝜃

)
is a bijection between 𝑍1 (𝐺,𝔘′𝜙,𝜃 (𝑇)) and the set of proper defining systems in T relative to (𝜙, 𝜃).

Proof. Given a cochain 𝜅′ : 𝐺 → 𝔘′𝜙,𝜃 (𝑇), set 𝜅 = 𝜅′𝜃 : 𝐺 → 𝔘′𝜙,𝜃 (𝑇). We have to check that

𝜌 =

(
𝜙 𝜅
0 𝜃

)
is a cocycle if and only if 𝜅′ is a cocycle. Matrix multiplication tells us that 𝜌 is a cocycle if and only if

𝜅(𝑔ℎ) = 𝜙(𝑔)𝑔𝜅(ℎ) + 𝜅(𝑔)𝜃 (ℎ). (3.1)
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The cochain 𝜅′ is a cocycle if and only if the second equality holds in the following string of equalities

𝜅(𝑔ℎ) = 𝜅′(𝑔ℎ)𝜃 (𝑔ℎ)

= (𝑔 ★ 𝜅′(ℎ) + 𝜅′(𝑔))𝜃 (𝑔ℎ)

= (𝜙(𝑔)𝑔𝜅′(ℎ)𝜃 (𝑔)−1 + 𝜅′(𝑔))𝜃 (𝑔)𝜃 (ℎ)

= 𝜙(𝑔)𝑔𝜅′(ℎ)𝜃 (ℎ) + 𝜅′(𝑔)𝜃 (𝑔)𝜃 (ℎ)

= 𝜙(𝑔)𝑔𝜅(ℎ) + 𝜅(𝑔)𝜃 (ℎ),

hence, the result. �

The value of the Massey product associated to a proper defining system is also a value of a connecting
homomorphism for an exact sequence attached to the underlying partial defining system.

Theorem 3.3.4. Let (𝜙, 𝜃) be a partial defining system for (𝛼, · , 𝛽). Let 𝜅′ ∈ 𝑍1 (𝐺,𝔘′𝜙,𝜃 (𝑇)), and

let 𝜌 =
(
𝜙 𝜅′𝜃

𝜃

)
be the associated proper defining system as in Lemma 3.3.3. Consider the short exact

sequence

0→ 𝑇 → 𝔘𝜙,𝜃 (𝑇) → 𝔘′𝜙,𝜃 (𝑇) → 0.

Then the image of the class of 𝜅′ under the connecting map

𝜕 : 𝐻1(𝐺,𝔘′𝜙,𝜃 (𝑇)) → 𝐻2(𝐺,𝑇)

is the (𝑛 + 1)-fold Massey product (𝛼1, . . . , 𝛼𝑎, 𝜅
′
𝑎+1,1, 𝛽1, . . . , 𝛽𝑏)𝜌.

Proof. Let 𝜅 = 𝜅′𝜃 : 𝐺 → 𝔘′𝜙,𝜃 (𝑇), and let 𝜅 be its unique lift to 𝔘𝜙,𝜃 (𝑇) with 𝜅(𝑔) having zero
(1, 𝑏 + 1)-entry for all 𝑔 ∈ 𝐺. The map 𝜅′ = 𝜅𝜃−1 : 𝐺 → 𝔘𝜙,𝜃 (𝑇) is then a lift of 𝜅′. By definition, the
image of 𝜅 is represented by the 2-cocycle that is given by taking the (1, 𝑏 + 1)-entry of 𝑑𝜅′. We have

𝑑𝜅′(𝑔, ℎ) = 𝜅′(𝑔) + 𝑔 ★ 𝜅′(ℎ) − 𝜅′(𝑔ℎ)

= 𝜅(𝑔)𝜃 (𝑔)−1 + 𝜙(𝑔)𝑔𝜅(ℎ)𝜃 (ℎ)−1𝜃 (𝑔)−1 − 𝜅(𝑔ℎ)𝜃 (𝑔ℎ)−1

= (𝜅(𝑔)𝜃 (ℎ) + 𝜙(𝑔)𝑔𝜅(ℎ) − 𝜅(𝑔ℎ))𝜃 (𝑔ℎ)−1.

Since 𝜅 satisfies (3.1), we have 𝜅(𝑔)𝜃 (ℎ) + 𝜙(𝑔)𝑔𝜅(ℎ) − 𝜅(𝑔ℎ) ∈ 𝑇 , and T is fixed under the action of
right multiplication by an element of U𝑏+1 (𝑅). Since 𝜅(𝑔ℎ) has zero (1, 𝑏 + 1)-entry, the (1, 𝑏 + 1)-
entries of 𝑑𝜅′(𝑔, ℎ) and 𝜅(𝑔)𝜃 (ℎ) + 𝜙(𝑔)𝑔𝜅(ℎ) are equal.

The Massey product (𝛼1, . . . , 𝛼𝑎, 𝜅𝑎+1,1, 𝛽1, . . . , 𝛽𝑏)𝜌 (and note that 𝜅𝑎+1,1 = 𝜅′𝑎+1,1) is the (1, 𝑛+2)-
entry of 𝜌̃(𝑔) · 𝑔𝜌̃(ℎ), where

𝜌̃ =

(
𝜙 𝜅
0 𝜃

)
.

The result then follows from the fact that

𝜌̃(𝑔) · 𝑔𝜌̃(ℎ) =

(
𝜙(𝑔) 𝜅(𝑔)

0 𝜃 (𝑔)

) (
𝜙(ℎ) 𝑔𝜅(ℎ)

0 𝜃 (ℎ)

)
=

(
𝜙(𝑔ℎ) 𝜙(𝑔)𝑔𝜅(ℎ) + 𝜅(𝑔)𝜃 (ℎ)

0 𝜃 (𝑔ℎ)

)
. �

In fact, the proof of Theorem 3.3.4 gives an explicit map 𝑍1 (𝐺,𝔘′𝜙,𝜃 (𝑇)) → 𝑍2 (𝐺,𝑇), taking a
1-cocycle 𝜅′ to the (1, 𝑏 + 1)-entry of 𝑑𝜅′, for the specific lift 𝜅′ of 𝜅′ defined therein.
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4. Massey products as values of Bockstein maps

We return to the setting and notation of Section 2. We first discuss a general result that gives partial
information about the generalized Bockstein map Ψ (𝑛) in terms of Massey products. Then we discuss
specific examples where this information completely determines Ψ (𝑛) .

4.1. Partial defining systems and Bockstein maps

Fix integers 𝑎, 𝑏 ≥ 0, such that 𝑎 + 𝑏 = 𝑛 and group homomorphisms

𝜙 : 𝐻 → U𝑎+1(𝑅) and 𝜃 : 𝐻 → U𝑏+1(𝑅),

so viewing 𝜙 and 𝜃 as maps from G via precomposition with the quotient map, the pair (𝜙, 𝜃) is an
(𝑎, 𝑏)-partial defining system. We let 𝛼 = (𝜙𝑖,𝑖+1)𝑖 and 𝛽 = (𝜃𝑖,𝑖+1)𝑖 , so this partial defining system is
of Massey products (𝛼, · , 𝛽). If 𝑏 = 0, we often refer to the pair (𝜙, 𝜃) simply as 𝜙.

Lemma 4.1.1. Let 𝑒 ∈ 𝔘𝑎,𝑏 (𝑅) be the matrix with (𝑎 + 1, 1)-entry equal to 1 and all other entries 0.
There is a continuous 𝑅�𝐺�-module homomorphism 𝑝𝜙,𝜃 : Ω/𝐼𝑛+1 → 𝔘𝑎,𝑏 (𝑅) given on the cosets of
images of group elements by

𝑝𝜙,𝜃 ([ℎ]) = 𝜙(ℎ) · 𝑒 · 𝜃 (ℎ)
−1.

The image of 𝐼𝑛 is contained in the submodule of matrices that are zero outside of their (1, 𝑏+1)-entries.

Proof. The map 𝑝𝜙,𝜃 : Ω → 𝔘𝑎,𝑏 (𝑅) inducing 𝑝𝜙,𝜃 is given by the action of H on 𝑒 ∈ 𝔘𝑎,𝑏 (𝑅) via
the composite homomorphism

𝐻
𝜌𝜙,𝜃
−−−→ U𝑛+2(𝑅)

ad
−→ Aut(𝔘𝑎,𝑏 (𝑅)),

where 𝜌𝜙,𝜃 : 𝐻 → U𝑛+2 (𝑅) is given by

𝜌𝜙,𝜃 (ℎ) =

(
𝜙(ℎ) 0

0 𝜃 (ℎ)

)
and ad denotes the conjugation action. The action of G on Ω is given by the homomorphism 𝐺 → 𝐻,
and the action of G on 𝔘𝑎,𝑏 (𝑅) is given by the composite of this map with 𝐻 → Aut(𝔘𝑎,𝑏 (𝑅)), so 𝑝𝜙,𝜃
is G-equivariant. We must show it factors through Ω/𝐼𝑛+1.

Let 𝐽 ⊂ 𝑅�U𝑛+2 (𝑅)� be the augmentation ideal. Since the H-action factors through U𝑛+2 (𝑅), we
have 𝐼𝑘𝔘𝑎,𝑏 (𝑅) ⊆ 𝐽

𝑘𝔘𝑎,𝑏 (𝑅) for all k. It is easy to see inductively that

𝐽𝑘𝔘𝑛+2(𝑅) = {(𝑎𝑖 𝑗 ) ∈ 𝑀𝑛+2 (𝑅) | 𝑎𝑖 𝑗 = 0 if 𝑗 − 𝑖 ≤ 𝑘}.

In particular, 𝐽𝑛+1𝔘𝑛+2 (𝑅) = 0 and

𝐽𝑛𝔘𝑛+2 (𝑅) = {(𝑎𝑖 𝑗 ) ∈ 𝑀𝑛+2 (𝑅) | 𝑎𝑖 𝑗 = 0 if (𝑖, 𝑗) ≠ (1, 𝑛 + 2)}.

Still viewing 𝔘𝑎,𝑏 (𝑅) as a subgroup of 𝔘𝑛+2 (𝑅), the containments

𝐼𝑘𝔘𝑎,𝑏 (𝑅) ⊆ 𝐽
𝑘𝔘𝑎,𝑏 (𝑅) ⊆ 𝐽

𝑘𝔘𝑛+2 (𝑅)

imply the result. �
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Lemma 4.1.1 implies that there is a map of short exact sequences of 𝑅�𝐺�-modules

0 𝑇 ⊗𝑅 𝐼
𝑛/𝐼𝑛+1 𝑇 ⊗𝑅 Ω/𝐼𝑛+1 𝑇 ⊗𝑅 Ω/𝐼𝑛 0

0 𝑇 𝔘𝜙,𝜃 (𝑇) 𝔘′𝜙,𝜃 (𝑇) 0,

𝑝𝜙,𝜃 𝑝𝜙,𝜃 𝑝𝜙,𝜃 (4.1)

where 𝑝𝜙,𝜃 is the tensor product with T of the map in Lemma 4.1.1 coming from 𝜌𝜙,𝜃 . As a direct
consequence of this commutativity and Theorem 3.3.4, we have the following.

Theorem 4.1.2. Let 𝜙 : 𝐺 → U𝑎+1 (𝑅) and 𝜃 : 𝐺 → U𝑏+1(𝑅) restrict to 𝛼 ∈ 𝑍1 (𝐺, 𝑅)𝑎 and 𝛽 ∈
𝑍1 (𝐺, 𝑅)𝑏 as above. Let 𝑓 ∈ 𝑍1 (𝐺,𝑇 ⊗𝑅 Ω/𝐼𝑛), and let 𝜌 denote the proper defining system relative to
(𝜙, 𝜃) associated to 𝑝𝜙,𝜃 ◦ 𝑓 by Lemma 3.3.3. Then we have

𝑝𝜙,𝜃 (Ψ
(𝑛) ( [ 𝑓 ])) = (𝛼, (𝑝𝜙,𝜃 ◦ 𝑓 )𝑎+1,1, 𝛽)𝜌

in 𝐻2(𝐺,𝑇). Here, the maps 𝑝𝜙,𝜃 on the left and right are those induced on cohomology by the left and
right vertical maps in (4.1).

We will give examples of groups H and integers n, such that there is a set X of choices of (𝜙, 𝜃) for
which the map

𝐻2 (𝐺,𝑇) ⊗𝑅 𝐼
𝑛/𝐼𝑛+1

∏
(𝜙,𝜃 )∈𝑋 𝑝𝜙,𝜃

−−−−−−−−−−−→
∏

(𝜙,𝜃) ∈𝑋

𝐻2(𝐺,𝑇)

is injective. In such cases, Theorem 4.1.2 shows that the generalized Bockstein map Ψ (𝑛) is determined
by Massey products. In the rest of this section, we consider some specific examples in detail.

4.2. Unipotent binomial matrices

We introduce the unipotent binomial matrices, which are a source of many partial defining systems. Let
n denote a positive integer, and let p be a prime number.

Let 𝑢𝑛 denote the (𝑛 + 1)-dimensional nilpotent upper triangular matrix

𝑢𝑛 =


���������

0 1 0 · · · 0

0 1
. . .

...

0
. . . 0
. . . 1

0

����������
.

For any 𝑘 ≥ 1, the matrix 𝑢𝑘𝑛 has (𝑖, 𝑗)-entry 1 if 𝑗 − 𝑖 = 𝑘 and 0 otherwise. In particular, we have
𝑢𝑛+1𝑛 = 0.

Let
[ ·
𝑛

]
: Z𝑝 → U𝑛+1 (Z𝑝) denote the unique continuous homomorphism to (𝑛 + 1)-dimensional

unipotent matrices with Z𝑝-entries such that
[1
𝑛

]
= 1 + 𝑢𝑛. By the binomial theorem, for 𝑎 ∈ Z, we have
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[
𝑎

𝑛

]
= (1 + 𝑢𝑛)𝑎 =

𝑛∑
𝑘=0

(
𝑎

𝑘

)
𝑢𝑘𝑛 =


���������

1 𝑎
(𝑎
2
)
· · ·

(𝑎
𝑛

)
1 𝑎

. . .
...

1
. . .

(𝑎
2
)

. . . 𝑎
1

����������
.

If 𝑡 ≥ 𝑠 and 𝑛 < 𝑝𝑡−𝑠+1, then the composite map

Z
[ ·𝑛]
−−−→ U𝑛+1 (Z𝑝) → U𝑛+1 (Z/𝑝

𝑠Z)

that sends a to (1 + 𝑢𝑛)𝑎 modulo 𝑝𝑠 factors through Z/𝑝𝑡Z by Lemma 2.3.1 applied with 𝑥 = 𝑢𝑛. By
abuse of notation, we again denote the resulting map Z/𝑝𝑡Z→ U𝑛+1 (Z/𝑝

𝑠Z) by
[ ·
𝑛

]
. In particular, the

map
( ·
𝑛

)
: Z → Z/𝑝𝑠Z given by 𝑎 ↦→

(𝑎
𝑛

)
(mod 𝑝𝑠) factors through Z/𝑝𝑡Z, and we abuse notation to

also denote the resulting map Z/𝑝𝑡Z→ Z/𝑝𝑠Z by
( ·
𝑛

)
.

The following lemma, phrased conveniently for our purposes, summarizes the above discussion.

Lemma 4.2.1. Let A be a quotient of the ring Z𝑝 and R be a quotient of A. Let H be a profinite group
and 𝜒 : 𝐻 → 𝐴 be a continuous homomorphism. Suppose that either 𝐴 = Z𝑝 or |𝑅 | < 𝑝

𝑛 |𝐴|. Then there
is a homomorphism [

𝜒

𝑛

]
: 𝐻 → U𝑛+1 (𝑅),

defined by
[𝜒
𝑛

]
(ℎ) =

[𝜒 (ℎ)
𝑛

]
for all ℎ ∈ 𝐻.

Proof. If |𝑅 | = 𝑝𝑠 and |𝐴| = 𝑝𝑡 , then |𝑅 | < 𝑝
𝑛 |𝐴| if and only if 𝑛 < 𝑝𝑡−𝑠+1. �

4.3. Procyclic case

In this subsection, we fix a surjective homomorphism 𝜒 : 𝐺 → 𝐴, where A is a nonzero quotient of Z𝑝 .
We suppose that our ring R is a nonzero quotient of A with 𝐴 = Z𝑝 or 𝑛|𝑅 | < 𝑝 |𝐴|. We define H to be
the coimage of 𝜒, so 𝐻 � 𝐴. We fix ℎ ∈ 𝐻 to be the preimage of 1 ∈ 𝐴 and let 𝑥 = [ℎ] −1 ∈ Ω, which is
a generator of the augmentation ideal I. Our assumption on the size of R implies that Ω/𝐼 𝑗 � 𝑅[𝑥]/(𝑥 𝑗 )
for all 𝑗 ≤ 𝑛 + 1 by the discussion of Section 2.3. In particular, we have 𝐼𝑛/𝐼𝑛+1 = 𝑅𝑥𝑛.

The (𝑛, 0)-proper defining systems relative to 𝜙 =
[𝜒
𝑛

]
and the trivial map 𝜃 to U1 (𝑅) = {1} agree

with the proper defining systems considered in [Sh2] for Galois groups. We give an interpretation of the
resulting Massey products in terms of generalized Bockstein maps. That is, let us apply the discussion
of Section 4.1 to this situation. We have 𝛼 = (𝜒, . . . , 𝜒) ∈ 𝑍1 (𝐺, 𝑅)𝑛, which we denote by 𝜒 (𝑛) . We
denote 𝔘𝜙,𝜃 (𝑇) by 𝔘[𝜒𝑛] (𝑇).

The diagram (4.1) becomes

0 𝑇 · 𝑥𝑛 𝑇 ⊗𝑅 Ω/𝐼𝑛+1 𝑇 ⊗𝑅 Ω/𝐼𝑛 0

0 𝑇 𝔘[𝜒𝑛] (𝑇) 𝔘′
[𝜒𝑛]
(𝑇) 0,

𝑝𝑛 𝑝𝑛

where 𝑝𝑛 is the map attached to (
[𝜒
𝑛

]
, 0) by Lemma 4.1.1. Explicitly, the vector 𝑝𝑛 (

∑𝑛
𝑘=0 𝑎𝑘𝑥

𝑘 ) in
𝑀𝑛+1,1 (𝑇) has ith entry 𝑎𝑛+1−𝑖 (see the more general case proven in Lemma 4.4.1 of the next subsection).
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By Lemma 3.3.3, it follows that the proper defining system 𝜌𝑥𝑛 relative to
[𝜒
𝑛

]
that is attached to

𝑝𝑛 ◦ 𝑓 , where

𝑓 =
𝑛−1∑
𝑘=0
𝜆𝑘𝑥

𝑘 ∈ 𝑍1 (𝐺,𝑇 ⊗𝑅 Ω/𝐼𝑛),

satisfies (𝜌𝑥𝑛 )𝑛+1−𝑘,𝑛+2 = 𝜆𝑘 for 0 ≤ 𝑘 ≤ 𝑛 − 1. In particular, the element 𝜆 = 𝜆0 = (𝜌𝑥𝑛 )𝑛+1,𝑛+2 is the
image of f under the map

𝑍1 (𝐺,𝑇 ⊗𝑅 Ω/𝐼𝑛) → 𝑍1 (𝐺,𝑇)

induced by the augmentation Ω/𝐼𝑛 ↦→ Ω/𝐼 = 𝑅.
Theorem 4.1.2 then gives us an explicit description of the values of the generalized Bockstein

homomorphism on classes in𝐻1(𝐺,𝑇 ⊗𝑅Ω/𝐼𝑛) as Massey products (𝜒 (𝑛) , · ) relative to
[𝜒
𝑛

]
, as follows.

Theorem 4.3.1. For 𝑓 ∈ 𝑍1 (𝐺,𝑇 ⊗𝑅 Ω/𝐼𝑛), we have

Ψ (𝑛) ( [ 𝑓 ]) = (𝜒 (𝑛) , 𝜆)𝜌𝑥𝑛 · 𝑥
𝑛,

where 𝜌𝑥𝑛 is the proper defining system relative to
[𝜒
𝑛

]
attached to f, and 𝜆 is the image of f in 𝑍1 (𝐺,𝑇).

In particular, we have the following description of the image of Ψ (𝑛) .

Corollary 4.3.2. The image of the generalized Bockstein map Ψ (𝑛) is the set of all (𝜒 (𝑛) , 𝜆)𝜌 · 𝑥𝑛 for
Massey products of n copies of 𝜒 with 1-cocycles 𝜆 ∈ 𝑍1 (𝐺,𝑇) for proper defining systems 𝜌 relative
to

[𝜒
𝑛

]
with 𝜌𝑛+1,𝑛+2 = 𝜆.

Theorem 2.2.4 provides the following application to the graded quotients of Iwasawa cohomology
groups of 𝑁 = ker(𝜒 : 𝐺 → 𝐻).

Corollary 4.3.3. Suppose that G is p-cohomologically finite of p-cohomological dimension 2. Let 𝑃𝑛 (𝐻)
denote the subgroup of 𝐻2 (𝐺,𝑇) ⊗𝑅 𝐼

𝑛/𝐼𝑛+1 generated by all (𝜒 (𝑛) , 𝜆)𝜌 · 𝑥𝑛 for proper defining systems
𝜌 relative to

[𝜒
𝑛

]
and 𝜆 = 𝜌𝑛+1,𝑛+2. We have a canonical isomorphism of R-modules

𝐼𝑛𝐻2
Iw(𝑁,𝑇)

𝐼𝑛+1𝐻2
Iw(𝑁,𝑇)

�
𝐻2(𝐺,𝑇) ⊗𝑅 𝐼

𝑛/𝐼𝑛+1

𝑃𝑛 (𝐻)
.

4.4. Pro-bicyclic case

In this subsection, we

◦ fix a surjective homomorphism (𝜒, 𝜓) : 𝐺 � 𝐴 × 𝐵, where A and B are nonzero quotients of Z𝑝 ,
◦ let 𝑎, 𝑏 ≥ 0 denote integers, such that 𝑎 + 𝑏 = 𝑛 and
◦ suppose that R is a nonzero quotient of both A and B with 𝑎 |𝑅 | < 𝑝 |𝐴| if A is finite and 𝑏 |𝑅 | < 𝑝 |𝐵 |

if B is finite.

Let H be the coimage of (𝜒, 𝜓) so that 𝐻 � 𝐴 × 𝐵. Let ℎ𝐴, ℎ𝐵 ∈ 𝐻 be the preimages of (1, 0), (0, 1) ∈
𝐴 × 𝐵, respectively, and let 𝑥 = [ℎ𝐴] − 1 and 𝑦 = [ℎ𝐵] − 1 so that (𝑥, 𝑦) is the augmentation ideal I of
Ω = 𝑅�𝐻�. We have Ω/𝐼 𝑗 = 𝑅[𝑥, 𝑦]/(𝑥, 𝑦) 𝑗 for all 𝑗 ≤ 𝑛. In particular, we have

𝐼𝑛/𝐼𝑛+1 =
⊕
𝑖+ 𝑗=𝑛

𝑅𝑥𝑖𝑦 𝑗 .

We apply the discussion of Section 4.1 to this situation. We take 𝜙 =
[𝜒
𝑎

]
: 𝐻 → U𝑎 (𝑅) and

𝜃 =
[𝜓
𝑏

]
: 𝐻 → U𝑏 (𝑅). We have 𝛼 = 𝜒 (𝑎) ∈ 𝑍1 (𝐺, 𝑅)𝑎 and 𝛽 = 𝜓 (𝑏) ∈ 𝑍1 (𝐺, 𝑅)𝑏.
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Set 𝑝𝑎,𝑏 = 𝑝[𝜒𝑎] ,[
𝜓
𝑏]

for brevity. In this setting, the diagram (4.1) becomes

0
⊕

𝑖+ 𝑗=𝑛 𝑇 · 𝑥
𝑖𝑦 𝑗 𝑇 ⊗𝑅 Ω/𝐼𝑛+1 𝑇 ⊗𝑅 Ω/𝐼𝑛 0

0 𝑇 𝔘[𝜒𝑎] ,[
𝜓
𝑏]
(𝑇) 𝔘′

[𝜒𝑎] ,[
𝜓
𝑏]
(𝑇) 0.

𝑝𝑎,𝑏 𝑝𝑎,𝑏 (4.2)

Lemma 4.4.1. The 𝑅�𝐺�-module map 𝑝𝑎,𝑏 : 𝑇⊗𝑅Ω/𝐼𝑛+1 → 𝔘[𝜒𝑎] ,[
𝜓
𝑏]
(𝑇) is an isomorphism satisfying

𝑝𝑎,𝑏

( ∑
𝑘1+𝑘2≤𝑛

𝑐𝑘1 ,𝑘2𝑥
𝑘1 𝑦𝑘2

)
= (𝑐𝑎+1−𝑖, 𝑗−1)𝑖, 𝑗 .

In particular, the left-hand vertical map in (4.2) is given by projection onto the factor 𝑇 · 𝑥𝑎𝑦𝑏 � 𝑇 .

Proof. This reduces immediately to the case that 𝑇 = 𝑅, since we can obtain the case of arbitrary T by
R-tensor product with the identity of T. Let e be as in Lemma 4.1.1, the matrix with a single nonzero
entry of 1 in the (𝑎 + 1, 1)-coordinate of 𝑀𝑎+1,𝑏+1 (𝑅). The (𝑖, 𝑗)-entry of 𝑔 ★ 𝑒 =

[𝜒 (𝑔)
𝑎

]
𝑒
[𝜓 (𝑔)

𝑏

]
is(

𝜒(𝑔)

𝑎 + 1 − 𝑖

) (
𝜓(𝑔)

𝑗 − 1

)
,

which agrees with the coefficient of 𝑥𝑎+1−𝑖𝑦 𝑗−1 in 𝑔 · 1 by (2.9). �

Corollary 4.4.2. For

𝑓 =
∑

𝑘1+𝑘2<𝑛

𝜆𝑘1 ,𝑘2𝑥
𝑘1 𝑦𝑘2 ∈ 𝑍1 (𝐺,Ω/𝐼𝑛 ⊗𝑅 𝑇)

and 𝜌𝑥𝑎𝑦𝑏 the proper defining system relative to (
[𝜒
𝑎

]
,
[𝜓
𝑏

]
) attached to 𝑝𝑎,𝑏 ◦ 𝑓 by Lemma 3.3.3, we have

(𝜌𝑥𝑎𝑦𝑏 )𝑎+1−𝑘1 ,𝑎+2+𝑘2 = 𝜆𝑘1 ,𝑘2

for all 0 ≤ (𝑘1, 𝑘2) < (𝑎, 𝑏). In particular, we have (𝜌𝑥𝑎𝑦𝑏 )𝑎+1,𝑎+2 = 𝜆0,0, which is the image of f in
𝑍1 (𝐺,𝑇) under the map induced by the quotient Ω/𝐼𝑛 → Ω/𝐼 = 𝑅.

The following is then a direct consequence of Theorem 4.1.2.
Theorem 4.4.3. For 𝑓 ∈ 𝑍1 (𝐺,Ω/𝐼𝑛 ⊗𝑅 𝑇), the image of Ψ (𝑛) ( [ 𝑓 ]) in

𝐻2 (𝐺,𝑇) ⊗𝑅 𝐼
𝑛/𝐼𝑛+1 �

⊕
𝑎+𝑏=𝑛

𝐻2 (𝐺,𝑇) · 𝑥𝑎𝑦𝑏

is ∑
𝑎+𝑏=𝑛

(𝜒 (𝑎) , 𝜆, 𝜓 (𝑏) )𝜌𝑥𝑎𝑦𝑏
· 𝑥𝑎𝑦𝑏 ,

where 𝜌𝑥𝑎𝑦𝑏 is the proper defining system relative to (
[𝜒
𝑎

]
,
[𝜓
𝑏

]
) attached to 𝑝𝑎,𝑏 ◦ 𝑓 and 𝜆 is the image

of f in 𝑍1 (𝐺,𝑇).
Applying Theorem 2.2.4, we obtain the following description of graded quotients of Iwasawa coho-

mology.
Corollary 4.4.4. Suppose that G is p-cohomologically finite of p-cohomological dimension 2. Let 𝑃𝑛 (𝐻)
denote the subgroup of 𝐻2(𝐺,𝑇) ⊗𝑅 𝐼

𝑛/𝐼𝑛+1 consisting of all sums
∑

𝑎+𝑏=𝑛 (𝜒
(𝑎) , 𝜆, 𝜓 (𝑏) )𝜌𝑥𝑎𝑦𝑏

· 𝑥𝑎𝑦𝑏 ,
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where the 𝜌𝑥𝑎𝑦𝑏 and 𝜆 are associated to a cocycle in 𝑍1 (𝐺,Ω/𝐼𝑛 ⊗𝑅 𝑇) as in Proposition 4.4.3. We
then have a canonical isomorphism of R-modules

𝐼𝑛𝐻2
Iw(𝑁,𝑇)

𝐼𝑛+1𝐻2
Iw(𝑁,𝑇)

�
𝐻2(𝐺,𝑇) ⊗𝑅 𝐼

𝑛/𝐼𝑛+1

𝑃𝑛 (𝐻)
.

4.5. Elementary abelian p-groups

The pattern seen in the cyclic and bicyclic cases does not continue for all finitely generated abelian pro-p
groups. To see why, consider the case that 𝐻 � F3

𝑝 with basis (𝛾1, 𝛾2, 𝛾3) and dual basis (𝜒1, 𝜒2, 𝜒3).
For 𝑥𝑖 = [𝛾𝑖] − 1, we have a basis of 𝐼𝑛/𝐼𝑛+1 consisting of monomials 𝑥𝑖11 𝑥

𝑖2
2 𝑥

𝑖3
3 with 𝑖1 + 𝑖2 + 𝑖3 = 𝑛.

Following the pattern of the cyclic and bicyclic cases, one might guess that the coefficient of 𝑥𝑖11 𝑥
𝑖2
2 𝑥

𝑖3
3

in Ψ (𝑛) ( [ 𝑓 ]) is an (𝑛 + 1)-fold Massey product involving 𝑖 𝑗 copies of each 𝜒 𝑗 and another cocycle 𝜆
determined by f. However, this pattern fails already for 𝑛 = 3 and the coefficient of 𝑥1𝑥2𝑥3: any 4-fold
Massey product involving the 𝜒𝑖 must have two of these characters beside each other, and thus, to be
defined, the cup product of those two characters must vanish. Since these cup products will not vanish
in general, we cannot hope for such a general statement to hold.

Nevertheless, at least in some cases, one can still describe the generalized Bockstein maps Ψ (𝑛) in
terms of Massey products, at the expense of taking a nonstandard basis for 𝐼𝑛/𝐼𝑛+1. In this subsection,
we assume that 𝐻 � F𝑟𝑝 for some 𝑟 ≥ 1. Correspondingly, we take 𝑛 < 𝑝 and 𝑅 = F𝑝 .

We let𝑉∨ = Hom(𝑉, F𝑝) for an abelian group V. For any element 𝜒 ∈ 𝐻∨, we have a homomorphism[
𝜒

𝑛

]
: 𝐻 → U𝑛+1 (F𝑝).

Precomposing with 𝐺 → 𝐻, we may view 𝜒 as a character of G. This gives an (𝑛, 0)-partial defining
system, and we set 𝑝𝜒,𝑛 = 𝑝[𝜒𝑛] ,0 for brevity. By (4.1), the map 𝑝𝜒,𝑛 induces a map 𝑝𝜒,𝑛 : 𝐼𝑛/𝐼𝑛+1 → F𝑝 ,
so 𝑝𝜒,𝑛 ∈ (𝐼𝑛/𝐼𝑛+1)∨. This defines a function 𝑝−,𝑛 : 𝐻∨ → (𝐼𝑛/𝐼𝑛+1)∨.

Let us fix an isomorphism 𝐻 ∼
−→ F𝑟𝑝 , which, in turn, fixes an ordered dual basis (𝛾𝑖)𝑟𝑖=1 of H. Setting

𝑥𝑖 = [𝛾𝑖] − 1 ∈ Ω, this provides an identification

Ω/𝐼𝑛+1 = F𝑝 [𝑥1, . . . , 𝑥𝑛]/(𝑥1, . . . , 𝑥𝑟 )
𝑛+1. (4.3)

Then 𝐼𝑛/𝐼𝑛+1 has a basis given by 𝑥𝑑1
1 · · · 𝑥

𝑑𝑟
𝑟 with (𝑑1, . . . , 𝑑𝑟 ) ranging over r-tuples of nonnegative

integers with 𝑑1 + · · · + 𝑑𝑟 = 𝑛. We compute 𝑝𝜒,𝑛 on this basis.

Lemma 4.5.1. Let 𝜒 ∈ 𝐻∨. For any nonnegative integers 𝑑1, . . . , 𝑑𝑟 with sum n, we have

𝑝𝜒,𝑛 (𝑥
𝑑1
1 · · · 𝑥

𝑑𝑟
𝑟 ) =

𝑟∏
𝑖=1
𝜒(𝛾𝑖)

𝑑𝑖 .

Proof. We have

𝑝𝜒,𝑛 (𝑥𝑖) =

( [
𝜒(𝛾𝑖)

𝑛

]
− 1

)
𝑒 = ((1 + 𝑢𝑛)𝜒 (𝛾𝑖) − 1)𝑒 ∈ 𝔘[𝜒𝑛] ,

where 𝑢𝑛 is as in Section 4.2 and e is as in Lemma 4.1.1. Note that 𝑢𝑛𝑛 has a 1 in its (1, 𝑛 + 1) entry and
all other entries 0, and 𝑢𝑛+1𝑛 = 0. For 𝑑1 + · · · + 𝑑𝑟 = 𝑛, the value 𝑝𝜒,𝑛 (𝑥𝑑1

1 · · · 𝑥
𝑑𝑟
𝑟 ) is the (1, 𝑛 + 1)-entry

of the matrix
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𝑟∏
𝑖=1
((1 + 𝑢𝑛)𝜒 (𝛾𝑖) − 1)𝑑𝑖 =

𝑟∏
𝑖=1
(𝜒(𝛾𝑖)𝑢𝑛)

𝑑𝑖 =

(
𝑟∏
𝑖=1
𝜒(𝛾𝑖)

𝑑𝑖

)
𝑢𝑛𝑛,

proving the lemma. �

The key lemma is then the following.

Lemma 4.5.2. The image of 𝑝−,𝑛 : 𝐻∨ → (𝐼𝑛/𝐼𝑛+1)∨ generates (𝐼𝑛/𝐼𝑛+1)∨.

Proof. Using our identification (4.3), any nonzero 𝐹 ∈ 𝐼𝑛/𝐼𝑛+1 has a unique representative also denoted
F in F𝑝 [𝑥1, . . . , 𝑥𝑟 ] that is homogeneous of degree n and Lemma 4.5.1 implies that

𝑝𝜒,𝑛 (𝐹) = 𝐹 (𝜒(𝛾1), . . . , 𝜒(𝛾𝑟 )).

Writing Γ : 𝐻∨ → F𝑟𝑝 for the isomorphism given by Γ(𝜒) = (𝜒(𝛾1), . . . , 𝜒(𝛾𝑟 )), this can be succinctly
written as 𝑝𝜒,𝑛 (𝐹) = 𝐹 (Γ(𝜒)).

For a finite set S and an 𝑠 ∈ 𝑆, we denote by F𝑆𝑝 the vector space of functions 𝑆 → F𝑝 and by 1𝑠 ∈ F𝑆𝑝
the indicator function of s. The lemma may then be rephrased as the statement that the linearization
𝑝−,𝑛 of 𝑝−,𝑛, given by

𝑝−,𝑛 : F𝐻
∨

𝑝 → (𝐼
𝑛/𝐼𝑛+1)∨, 1𝜒 ↦→ 𝑝𝜒,𝑛

is surjective, or, equivalently, that the dual map

𝑝∨−,𝑛 : 𝐼𝑛/𝐼𝑛+1 → (F𝐻
∨

𝑝 )
∨

is injective. For any nonzero 𝐹 ∈ 𝐼𝑛/𝐼𝑛+1, since 𝑛 < 𝑝, the finite field Nullstellensatz provides the
existence of 𝑣 ∈ F𝑟𝑝 for which 𝐹 (𝑣) ≠ 0. Then

𝑝∨−,𝑛 (𝐹) (1Γ−1 (𝑣) ) = 𝑝Γ−1 (𝑣) ,𝑛 (𝐹) = 𝐹 (𝑣) ≠ 0,

so 𝑝∨−,𝑛 (𝐹) ≠ 0. �

Remark 4.5.3. This lemma is the reason for our assumption that 𝑛 < 𝑝 in this section rather than the
assumption 𝑛|𝑅 | < 𝑝 |𝐴| used in other sections. To see that this argument cannot work for torsion-
free abelian groups H and arbitrary n, take 𝑅 = F𝑝 and 𝐻 � Z2

𝑝 . Then we know that 𝐼𝑛/𝐼𝑛+1 has
dimension 𝑛 + 1 for any n, and the proof of Lemma 4.5.2 shows that 𝑝−,𝑛 : Hom(𝐻, F𝑝) → (𝐼𝑛/𝐼𝑛+1)∨
is homogeneous of degree n in the sense that 𝑝𝑎𝜑,𝑛 = 𝑎𝑛𝑝𝜑,𝑛 for 𝜑 ∈ Hom(𝐻, F𝑝) and 𝑎 ∈ F𝑝 , so the
span of its image has dimension at most the cardinality of Hom(𝐻, F𝑝)/F×𝑝 , which is 𝑝 + 1.

We now come to our result expressing values of the generalized Bockstein maps as sums of ‘cyclic’
Massey products. If 𝜒 ∈ 𝐻∨ and 𝑓 ∈ 𝑍1 (𝐺,𝑇⊗𝑅Ω/𝐼𝑛), then we say that a proper defining system relative
to

[𝜒
𝑛

]
is attached to f if it is attached to the image of f in 𝑍1 (𝐺,𝑇 ⊗𝑅 Ω𝜒/𝐼

𝑛
𝜒), where Ω𝜒 = 𝑅[𝐻/ker 𝜒]

and 𝐼𝜒 is its augmentation ideal.

Theorem 4.5.4. There exist 𝑁 ≥ 1 and 𝜒1, . . . , 𝜒𝑁 ∈ 𝐻
∨, such that (𝑝𝜒𝑖 ,𝑛)𝑁𝑖=1 is an ordered F𝑝-basis

of (𝐼𝑛/𝐼𝑛+1)∨. For any such (𝜒𝑖)𝑁𝑖=1, let (𝑦𝑖)𝑁𝑖=1 be the basis of 𝐼𝑛/𝐼𝑛+1 dual to (𝑝𝜒𝑖 ,𝑛)𝑁𝑖=1. Then for any
𝑓 ∈ 𝑍1 (𝐺,𝑇 ⊗𝑅 Ω/𝐼𝑛), we have

Ψ (𝑛) ( [ 𝑓 ]) =
𝑁∑
𝑖=1
(𝜒 (𝑛)𝑖 , 𝜆)𝜌𝑖 · 𝑦𝑖 ,

where 𝜌𝑖 is the proper defining system relative to
[𝜒𝑖
𝑛

]
attached to f and 𝜆 is the image of f in 𝑍1 (𝐺,𝑇).
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Proof. The first statement is clear from Lemma 4.5.2. For the second statement, let

Ψ (𝑛) ( [ 𝑓 ]) =
𝑁∑
𝑖=1
𝑐𝑖 · 𝑦𝑖 ,

for some 𝑐𝑖 ∈ 𝐻2(𝐺,𝑇). Since 𝑝𝜒1 ,𝑛, . . . , 𝑝𝜒𝑁 ,𝑛 is the dual basis to 𝑦1, . . . , 𝑦𝑁 , we have 𝑐𝑖 =
𝑝𝜒𝑖 ,𝑛 (Ψ

(𝑛) ( [ 𝑓 ])) for 1 ≤ 𝑖 ≤ 𝑁 . But by Theorem 4.1.2, we have

𝑝𝜒𝑖 ,𝑛 (Ψ
(𝑛) ( [ 𝑓 ])) = (𝜒 (𝑛)𝑖 , 𝜆)𝜌𝑖 . �

4.6. Heisenberg case

In this section, assume that 𝐻 = U3(𝐴) for a nonzero quotient A of Z𝑝 , and that R is a quotient of A,
such that either 𝑅 = Z𝑝 or 𝑛|𝑅 | < 𝑝 |𝐴|. We study the generalized Bockstein maps Ψ (𝑛) in the cases
𝑛 = 2 and 𝑛 = 3.

Let

𝑥 =
[( 1 1 0

0 1 0
0 0 1

)]
− 1, 𝑦 =

[( 1 0 0
0 1 1
0 0 1

)]
− 1, 𝑧 =

[( 1 0 1
0 1 0
0 0 1

)]
− 1 ∈ Ω. (4.4)

Then I is the two-sided ideal generated by x and y, and 𝐼/𝐼2 � 𝑅𝑥 ⊕ 𝑅𝑦. Let 𝜒, 𝜓 : 𝐺 → 𝐴 be the unique
characters factoring through H such that

𝜒
(( 1 1 0

0 1 0
0 0 1

))
= 1, 𝜒

(( 1 0 0
0 1 1
0 0 1

))
= 0, 𝜓

(( 1 1 0
0 1 0
0 0 1

))
= 0, and 𝜓

(( 1 0 0
0 1 1
0 0 1

))
= 1.

Then (𝜒, 𝜓) : 𝐺 → 𝐴 × 𝐴 defines a homomorphism.

Lemma 4.6.1. The R-module 𝐼2/𝐼3 is freely generated by the image of the set

𝑆2 = {𝑥2, 𝑦2, 𝑦𝑥, 𝑧},

and 𝐼3/𝐼4 is R-freely generated by the image of

𝑆3 = {𝑥3, 𝑥𝑧, 𝑦𝑥2, 𝑦2𝑥, 𝑦3, 𝑦𝑧}.

Proof. For any n, Lemma 2.3.1 and the condition that 𝑛|𝑅 | < 𝑝 |𝐴| in the case that A is finite are enough
to guarantee that the quotient Ω/𝐼𝑛+1 is isomorphic to the analogous quotient with A replaced by Z𝑝 ,
so we may suppose in this proof that 𝐻 = U3(Z𝑝).

Let Σ be the noncommutative 𝑅�𝑧�-power series ring Σ in variables x and y. It follows from the
standard presentation of U3(Z𝑝) as a finitely generated pro-p group that Ω = 𝑅�U3 (Z𝑝)� is the quotient
of Σ by the ideal generated by

𝑤 = (1 + 𝑦) (1 + 𝑥)𝑧 − (𝑥𝑦 − 𝑦𝑥). (4.5)

The augmentation ideal I of Ω is (𝑥, 𝑦), so 𝐼𝑛 is generated by the monomials in x and y of degree at
least n. Using (4.5), we can reduce this to

𝐼𝑛 = (𝑦 𝑗𝑥𝑖𝑧𝑘 | 𝑖 + 𝑗 + 2𝑘 ≥ 𝑛).

It is therefore enough to check that the image of the set 𝑆𝑛 is R-linearly independent in 𝐼𝑛/𝐼𝑛+1 for
𝑛 ∈ {2, 3}.

Consider Σ as a graded R-algebra with x, y and z in degrees 1, 1 and 2, respectively. Let 𝐽𝑛 denote
the ideal of elements of Σ of degree at least n. Suppose that 𝑓 ∈ Σ lies in the intersection of the R-span
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of the elements of 𝑆𝑛 with (𝑤) + 𝐽𝑛+1. When 𝑛 = 2, one can easily see that 𝑓 = 0. When 𝑛 = 3, there
are 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅, such that

𝑓 + 𝐽4 = (𝑎𝑥 + 𝑏𝑦)𝑤 + 𝑤(𝑐𝑥 + 𝑑𝑦) + 𝐽4.

By the hypothesis on f, the degree 3 terms above are in the R-span of 𝑆3, which forces 𝑎 = 𝑏 = 𝑐 = 𝑑 = 0,
and, hence, 𝑓 = 0. �

Let us first consider the case 𝑛 = 2. By Lemma 4.6.1, we see that 𝐼2/𝐼3 is a free R-module on the set
𝑆2 = {𝑥2, 𝑦2, 𝑦𝑥, 𝑧}. We consider the three partial defining systems

𝜙𝑥2 =

[
𝜒

2

]
, 𝜙𝑦2 =

[
𝜓

2

]
, 𝜙𝑧 : 𝐻 → U3 (𝑅) × U1(𝑅) = U3 (𝑅),

with 𝑎 = 2 and 𝑏 = 0, where 𝜙𝑧 is the quotient map on coefficients and the partial defining system

𝜙𝑦𝑥 = (𝜒, 𝜓) : 𝐻 → U2(𝑅) × U2 (𝑅) = 𝑅 × 𝑅

for 𝑎 = 𝑏 = 1. By Theorem 3.3.4, the partial defining systems 𝜙𝑥2 , 𝜙𝑦2 , 𝜙𝑧 and 𝜙𝑦𝑥 correspond to
Massey products (𝜒, 𝜒, · ), (𝜓, 𝜓, · ), (𝜒, 𝜓, · ) and (𝜒, · , 𝜓), respectively.

As for 𝑛 = 3, the graded quotient 𝐼3/𝐼4 is a free R-module on 𝑆3 of Lemma 4.6.1. For each 𝑠 ∈ 𝑆3,
we define a partial defining system 𝜙𝑠 (viewed as a pair of homomorphisms) as follows:

𝜙𝑥3 : 𝐻
[𝜒3] ,0
−−−−→ U4 (𝑅) × U1 (𝑅),

𝜙𝑥𝑧 : 𝐻
id,𝜒
−−−→ U3 (𝑅) × U2 (𝑅),

𝜙𝑦𝑥2 : 𝐻
𝜓,[𝜒2]
−−−−−→ U2 (𝑅) × U3 (𝑅),

𝜙𝑦2𝑥 : 𝐻
[𝜓2] ,𝜒
−−−−−→ U3 (𝑅) × U2 (𝑅),

𝜙𝑦3 : 𝐻
[𝜓3] ,0
−−−−→ U4 (𝑅) × U1 (𝑅),

𝜙𝑦𝑧 : 𝐻
𝜓,id
−−−→ U2(𝑅) × U3 (𝑅).

By Theorem 3.3.4, each partial defining system corresponds to a collection of Massey products as
follows:

𝜙𝑥3 ←→ (𝜒, 𝜒, 𝜒, · ),

𝜙𝑥𝑧 ←→ (𝜒, 𝜓, ·, 𝜒),

𝜙𝑦𝑥2 ←→ (𝜓, ·, 𝜒, 𝜒),

𝜙𝑦2𝑥 ←→ (𝜓, 𝜓, ·, 𝜒),

𝜙𝑦3 ←→ (𝜓, 𝜓, 𝜓, · ),

𝜙𝑦𝑧 ←→ (𝜓, ·, 𝜒, 𝜓).

For each 𝑠 ∈ 𝑆𝑛 with 𝑛 ∈ {2, 3}, the diagram (4.1) becomes

0 𝑇 ⊗𝑅 𝐼
𝑛/𝐼𝑛+1 𝑇 ⊗𝑅 Ω/𝐼𝑛+1 𝑇 ⊗𝑅 Ω/𝐼𝑛 0

0 𝑇 𝔘𝑠 (𝑇) 𝔘′𝑠 (𝑇) 0,

𝑝𝑠 𝑝𝑠 𝑝𝑠
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where the maps 𝑝𝑠 are induced by the map 𝜙𝑠 , and we have used the shorthand 𝔘𝑠 (𝑇) for 𝔘𝜙𝑠 (𝑇) (and
similarly for the quotients). Note that 𝑝𝑠 : 𝑇 ⊗𝑅 𝐼𝑛/𝐼𝑛+1 → 𝑇 is just the R-tensor product of the likewise-
defined 𝑝𝑠 : 𝐼𝑛/𝐼𝑛+1 → 𝑅 with the identity on T. The maps 𝑝𝑠 : 𝐼𝑛/𝐼𝑛+1 → 𝑅 for 𝑠 ∈ 𝑆𝑛 form the dual
basis to the R-basis 𝑆𝑛 of 𝐼𝑛/𝐼𝑛+1. This can be seen by an omitted direct computation, proceeding as in
the following example.

Example 4.6.2. Suppose that 𝑛 = 2, and take 𝑠 = 𝑧 ∈ 𝑆2. Recall that 𝜙𝑧 : 𝐻 → U3(𝑅) is given by
the canonical surjection 𝐴 → 𝑅 on coefficients. By definition of 𝑝𝑧 : Ω/𝐼3 → 𝔘𝜙𝑧 (𝑅) = 𝑀3,1 (𝑅) in
Lemma 4.1.1, we have

𝑝𝑧 ([ℎ]) = 𝜙𝑧 (ℎ)
( 0

0
1

)
∈ 𝑀3,1 (𝑅)

for all ℎ ∈ 𝐻. Recalling that 𝑥 + 1, 𝑦 + 1 and 𝑧 + 1 are the group elements of matrices as in (4.4), we
compute

𝑝𝑧 (𝑥
2) =

( 0
0
1

)
− 2

( 0
0
1

)
+

( 0
0
1

)
= 0,

𝑝𝑧 (𝑦
2) =

( 0
2
1

)
− 2

( 0
1
1

)
+

( 0
0
1

)
= 0,

𝑝𝑧 (𝑦𝑥) =
( 0

1
1

)
−

( 0
1
1

)
+

( 0
0
1

)
−

( 0
0
1

)
= 0,

𝑝𝑧 (𝑧) =
( 1

0
1

)
−

( 0
0
1

)
=

( 1
0
0

)
,

(4.6)

and note that
( 1

0
0

)
gives the identity of 𝑅 ⊂ 𝔘𝜙𝑧 (𝑅).

By Theorem 4.1.2, we then have the following.

Theorem 4.6.3. For 𝑛 ∈ {2, 3} and 𝑓 ∈ 𝑍1 (𝐺,𝑇 ⊗𝑅 Ω/𝐼𝑛), the element Ψ (𝑛) ( [ 𝑓 ]) of

𝐻2 (𝐺,𝑇) ⊗𝑅 𝐼
𝑛/𝐼𝑛+1 �

⊕
𝑠∈𝑆𝑛

𝐻2(𝐺,𝑇)𝑠

is the sum

(𝜒, 𝜒, 𝜆)𝜌𝑥2 𝑥
2 + (𝜒, 𝜆, 𝜓)𝜌𝑦𝑥 𝑦𝑥 + (𝜓, 𝜓, 𝜆)𝜌𝑦2 𝑦

2 + (𝜒, 𝜓, 𝜆)𝜌𝑧 𝑧 (4.7)

for 𝑛 = 2 and the sum

(𝜒, 𝜒,𝜒, 𝜆)𝜌𝑥3 𝑥
3 + (𝜒, 𝜓, 𝜆, 𝜒)𝜌𝑥𝑧𝑥𝑧 + (𝜓, 𝜆, 𝜒, 𝜒)𝜌𝑦𝑥2 𝑦𝑥

2

+ (𝜓, 𝜓, 𝜆, 𝜒)𝜌𝑦2𝑥
𝑦2𝑥 + (𝜓, 𝜓, 𝜓, 𝜆)𝜌𝑦3 𝑦

3 + (𝜓, 𝜆, 𝜒, 𝜓)𝜌𝑦𝑧 𝑦𝑧
(4.8)

for 𝑛 = 3, where each 𝜌𝑠 for 𝑠 ∈ 𝑆𝑛 is the proper defining system relative to 𝜙𝑠 attached to 𝑝𝑠 ◦ 𝑓 by
Lemma 3.3.3, and 𝜆 is the image of f in 𝑍1 (𝐺,𝑇).

As before, Theorem 2.2.4 then provides the following isomorphisms.

Corollary 4.6.4. Suppose that G is p-cohomologically finite of p-cohomological dimension 2. For
𝑛 ∈ {2, 3}, let 𝑃𝑛 (𝐻) denote the subgroup of 𝐻2(𝐺,𝑇) ⊗𝑅 𝐼

𝑛/𝐼𝑛+1 consisting of all sums in (4.7) for
𝑛 = 2 and in (4.8) for 𝑛 = 3. We then have a canonical isomorphism of R-modules

𝐼𝑛𝐻2
Iw(𝑁,𝑇)

𝐼𝑛+1𝐻2
Iw(𝑁,𝑇)

�
𝐻2(𝐺,𝑇) ⊗𝑅 𝐼

𝑛/𝐼𝑛+1

𝑃𝑛 (𝐻)
.
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5. Applications to cyclotomic fields

In this section, we apply our general results to study class groups of finite extensions of a cyclotomic
field Q(𝜇𝑝) with p an irregular prime. That is, under assumptions that include vanishing of certain
cup products, we are able to bound the sizes of the p-parts of the class groups from below. We satisfy
ourselves with describing a particularly clean setting of p-ramified p-extensions of Q(𝜇𝑝), wherein
the p-parts of class groups can be directly identified with second cohomology groups. Rather general
results in an Iwasawa-theoretic context may be obtained as in [Sh4, Section 4]. We consider p-ramified
bicyclic and Heisenberg extensions; some simpler examples over cyclic extensions can be gleaned from
the Iwasawa-theoretic treatment given in [Sh2, Section 7].

We note the existence of a variety of works on Massey products in Galois groups with restricted
ramification and the structure of class groups from perspectives different than ours, ranging from the
much earlier work of Morishita [Mo] and Vogel [Vg] to the very recent preprint of Ahlqvist–Carlson
[AhCa] concerning Massey products in étale cohomology.

5.1. Notation and preliminaries

In this subsection, we recall some standard facts regarding the mod p unramified outside p cohomology
of the pth cyclotomic field, for an odd prime p. Most of these may be found, for instance, in [McSh].
Let Cl𝐾 denote the ideal class group of a number field K. Let S denote the set of primes over p in
any number field. Let Cl𝐾,𝑆 denote the S-class group of K, which is to say the class group of the ring
O𝐾,𝑆 of S-integers of K. Let 𝐺𝐾,𝑆 denote the Galois group of the maximal unramified outside S, or
p-ramified, extension of K.

For any number field K and prime p, Kummer theory provides an exact sequence

0→ O×𝐾,𝑆 ⊗Z F𝑝 → 𝐻1 (𝐺𝐾,𝑆 , 𝜇𝑝) → Cl𝐾,𝑆 [𝑝] → 0

and a canonical injection

Cl𝐾,𝑆 ⊗Z F𝑝 ↩−→ 𝐻2(𝐺𝐾,𝑆 , 𝜇𝑝)

of F𝑝 [Δ]-modules. The latter injection is an isomorphism if K is a p-ramified, purely imaginary
extension ofQwith a unique prime over p. We shall write Massey products of elements of𝐻1(𝐺𝐹,𝑆 , 𝜇𝑝)
as products of elements of 𝐹×/𝐹×𝑝 whose Kummer cocycles (in this case, characters) give classes in
𝐻1 (𝐺𝐹,𝑆 , 𝜇𝑝), as opposed to the cocycles themselves.

Now let 𝐹 = Q(𝜁𝑝) for an odd prime p and a primitive pth root of unity 𝜁𝑝 . Note thatO𝐹,𝑆 = Z[𝜁𝑝 , 1
𝑝 ]

and Cl𝐹,𝑆 = Cl𝐹 , since the prime (1 − 𝜁𝑝) over p is principal. Let Δ = Gal(𝐹/Q), and let 𝜔 : Δ → Z×𝑝
be unique lift of the mod p cyclotomic character. For 𝑗 ∈ Z, the𝜔 𝑗 -isotypical component, or eigenspace,
of a Z𝑝 [Δ]-module M is

𝑀 ( 𝑗) = {𝑚 ∈ 𝑀 | 𝛿𝑚 = 𝜔(𝛿) 𝑗𝑚 for all 𝛿 ∈ Δ}.

We say that a positive even integer 𝑘 < 𝑝 is an irregular index for p if Cl𝐹 [𝑝] (1−𝑘) ≠ 0, or
equivalently, p divides the numerator of the kth Bernoulli number 𝐵𝑘 . As p divides the denominator of
𝐵𝑝−1, every irregular index k for p satisfies 𝑘 ≤ 𝑝 − 3.

We suppose that p satisfies Vandiver’s conjecture that ClQ(𝜁𝑝+𝜁 −1
𝑝 )
[𝑝] = 0. By Leopoldt’s reflection

principle, this implies that for each irregular index k, the eigenspace Cl𝐹 [𝑝] (1−𝑘) is cyclic, so we
fix a generator and let 𝛼𝑘 ∈ 𝐻1 (𝐺𝐹,𝑆 , 𝜇𝑝)

(1−𝑘) be its unique lift. This also allows us to identify
𝐻2 (𝐺𝐹,𝑆 , 𝜇𝑝)

(1−𝑘) with F𝑝 via the isomorphisms

F𝑝
1↦→𝛼𝑘
−−−−−→ 𝐻1(𝐺𝐹,𝑆 , 𝜇𝑝)

(1−𝑘) ∼−→ Cl𝐹 [𝑝] (1−𝑘)
∼
−→ (Cl𝐹 ⊗Z F𝑝) (1−𝑘)

∼
−→ 𝐻2(𝐺𝐹,𝑆 , 𝜇𝑝)

(1−𝑘) ,

where the isomorphism (Cl𝐹 ⊗Z F𝑝) (1−𝑘)
∼
−→ Cl𝐹 [𝑝] (1−𝑘) is multiplication by a power of p.
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For an odd integer i, we define

𝜂𝑖 ∈ (O×𝐹,𝑆 ⊗Z F𝑝) (1−𝑖)

to be the projection of 1 − 𝜁𝑝 into that eigenspace. We often refer to the index i as taking values in
Z/(𝑝 − 1)Z. Via Kummer theory, we identify 𝜂𝑖 with an element of

𝐻1(𝐺𝐹,𝑆 , 𝜇𝑝)
(1−𝑖) � (𝐻1 (𝐺𝐹,𝑆 , 𝜇𝑝) ⊗Z 𝜇

⊗(𝑖−1)
𝑝 )Δ � 𝐻1 (𝐺𝐹,𝑆 , 𝜇

⊗𝑖
𝑝 )

Δ

and 𝜁𝑝 with an element of 𝐻1(𝐺𝐹,𝑆 , 𝜇𝑝)
(1) . Vandiver’s conjecture for p is equivalent to the statement

that every 𝜂𝑖 is nontrivial. We codify all this and a bit more in the following remark.

Remark 5.1.1. For any positive integer 𝑗 < 𝑝, the eigenspace 𝐻1(𝐺𝐹,𝑆 , 𝜇𝑝)
(1− 𝑗) is cyclic, generated

by the element

◦ 𝜂 𝑗 if j is odd,
◦ 𝜁𝑝 if 𝑗 = 𝑝 − 1,
◦ 𝛼 𝑗 if j is an irregular index,

and is trivial for all other j. If i is odd, then the cup product with 𝜂𝑖 vanishes on 𝐻1(𝐺𝐹,𝑆 , 𝜇𝑝) if and
only if 𝜂𝑖 ∪ 𝜂𝑘−𝑖 = 0 for all irregular indices k for p.

Given a p-extension 𝐿/𝐹 that is unramified outside p and for which 𝐿/Q is Galois, we can consider
its Galois group 𝐻 = Gal(𝐿/𝐹), which is of course normal inside Gal(𝐿/Q). Set Ω = F𝑝 [𝐻] as before.
We have an action of 𝐺Q,𝑆 on Ω, such that 𝑔 ∈ 𝐺Q,𝑆 sends the group element [ℎ] of ℎ ∈ 𝐻 to [𝑔̄ℎ𝑔̄−1],
where 𝑔̄ is the image of g in G.

Since𝐺𝐹,𝑆 is normal in𝐺Q,𝑆 , this𝐺Q,𝑆-action (together with right conjugation on𝐺𝐹,𝑆 in the usual
fashion) induces a Gal(𝐿/Q)-action on 𝐻∗(𝐺𝐹,𝑆 , 𝜇𝑝 ⊗F𝑝 𝐼

𝑛/𝐼𝑚) for every 0 ≤ 𝑛 < 𝑚. For 𝑚 = 𝑛 + 1,
this action factors through Δ . We fix a lift of Δ to a subgroup of Gal(𝐿/Q) so that we may speak of the
Δ-action on these cohomology groups for all 𝑛 < 𝑚, though, in general, this action depends upon the
choice of lift. The generalized Bockstein maps Ψ (𝑛) are then Δ-equivariant.

5.2. Class groups of bicyclic and Heisenberg extensions

In this subsection, we let 𝑖, 𝑗 < 𝑝 be distinct odd positive integers and set 𝐾 = 𝐹 (𝜂1/𝑝
𝑖 , 𝜂1/𝑝

𝑗 ), with the
slight abuse of notation that we are in fact taking pth roots of any lifts of 𝜂𝑖 and 𝜂 𝑗 . Note that 𝐾/Q is
Galois. We assume throughout this subsection that

◦ Cl𝐹 [𝑝] is cyclic and
◦ the cup products 𝜂𝑖 ∪ 𝜂𝑘−𝑖 and 𝜂 𝑗 ∪ 𝜂𝑘− 𝑗 vanish for even k.

By the first assumption, p has a unique irregular index k and Vandiver’s conjecture holds for p. In
particular, K is an F2

𝑝-extension of F. The interested reader might calculate how the bounds we give are
worsened as one weakens these assumptions.

For ℎ ∈ Z/(𝑝 − 1)Z, let

𝛿ℎ =

{
1 if ℎ ∈ {0, 𝑘},
0 otherwise.

Proposition 5.2.1. We have

dimF𝑝 𝐻
2 (𝐺𝐾,𝑆 , 𝜇𝑝) ≥ 6 − 𝛿2𝑖 − 𝛿𝑖+ 𝑗 − 𝛿2 𝑗 .
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Proof. We will apply the results of Section 4.4 in the case that 𝐺 = 𝐺𝐹,𝑆 and 𝐻 = Gal(𝐾/𝐹). To
construct our lower bound, we will use the fact that dimF𝑝 𝐻2 (𝐺𝐾,𝑆 , 𝜇𝑝) ≥

∑2
𝑛=0 𝑑𝑛, where

𝑑𝑛 = dimF𝑝
𝐼𝑛𝐻2(𝐺𝐾,𝑆 , 𝜇𝑝)

𝐼𝑛+1𝐻2(𝐺𝐾,𝑆 , 𝜇𝑝)
.

So, first note that

𝐻2(𝐺𝐾,𝑆 , 𝜇𝑝)

𝐼𝐻2(𝐺𝐾,𝑆 , 𝜇𝑝)
� 𝐻2(𝐺𝐹,𝑆 , 𝜇𝑝) � (Cl𝐹 ⊗Z F𝑝) (1−𝑘) ,

and the latter group has F𝑝-dimension 1 by our assumption of Vandiver’s conjecture, so 𝑑0 = 1.
Let x and y be the ordered basis of 𝐼/𝐼2 � 𝐻 that is Kummer dual to 𝜂𝑖 and 𝜂 𝑗 . The quantity

(𝜂𝑖 ∪ 𝜆)𝑥 + (𝜂 𝑗 ∪ 𝜆)𝑦 is zero for 𝜆 one of the generators of 𝐻1 (𝐺𝐹,𝑆 , 𝜇𝑝) listed in Remark 5.1.1 unless
(perhaps) if 𝜆 is one of 𝜂𝑘−𝑖 or 𝜂𝑘− 𝑗 , in which case, it equals (𝜂𝑖 ∪𝜂𝑘−𝑖)𝑥 and (𝜂 𝑗 ∪𝜂𝑘− 𝑗 )𝑦, respectively.
Thus, by Proposition 2.3.3 and Theorem 2.2.4 for 𝑛 = 1, we have

𝐼𝐻2(𝐺𝐾,𝑆 , 𝜇𝑝)

𝐼2𝐻2 (𝐺𝐾,𝑆 , 𝜇𝑝)
�

𝐻2 (𝐺𝐹,𝑆 , 𝜇𝑝) ⊗F𝑝 𝐼/𝐼
2

〈(𝜂𝑖 ∪ 𝜂𝑘−𝑖)𝑥, (𝜂 𝑗 ∪ 𝜂𝑘− 𝑗 )𝑦〉
,

and given the vanishing of the cup products on the right, we see that 𝑑1 = 2.
Theorem 2.2.4 tells us that 𝑑2 = dimF𝑝 cokerΨ (2) . For 𝜆̃ ∈ 𝐻1(𝐺𝐹,𝑆 ,Ω/𝐼2 ⊗F𝑝 𝜇𝑝) with image

𝜆 ∈ 𝐻1 (𝐺𝐹,𝑆 , 𝜇𝑝), Corollary 4.4.4 provides the explicit formula

Ψ (2) (𝜆̃) = (𝜂𝑖 , 𝜂𝑖 , 𝜆)𝜌𝑥2 𝑥
2 + (𝜂𝑖 , 𝜆, 𝜂 𝑗 )𝜌𝑥𝑦𝑥𝑦 + (𝜆, 𝜂 𝑗 , 𝜂 𝑗 )𝜌𝑦2 𝑦

2. (5.1)

Since cup products with 𝜂𝑖 and 𝜂 𝑗 are trivial by assumption and Remark 5.1.1, we see that the expression
on the right of (5.1) is independent of the proper defining systems, and, therefore, Ψ (2) factors through
𝐻1 (𝐺𝐹,𝑆 , 𝜇𝑝).

Now suppose that for some h we have 𝜆 ∈ 𝐻1(𝐺𝐹,𝑆 , 𝜇𝑝)
(1−ℎ) , a space of dimension at most 1. Note

that Δ acts on 𝑥2 through 𝜔2𝑖 , on 𝑥𝑦 through 𝜔𝑖+ 𝑗 and on 𝑦2 through 𝜔2 𝑗 . We then see by Remark 5.1.1
that the Massey products in (5.1) can be nontrivial if and only if ℎ− 2𝑖, ℎ− 𝑖 − 𝑗 or ℎ− 2 𝑗 (in that order)
is congruent to 0 or k modulo 𝑝 − 1, which is to say if and only if 𝛿2𝑖 = 1, 𝛿𝑖+ 𝑗 = 1 or 𝛿2 𝑗 = 1. Since
dimF𝑝 𝐻2(𝐺𝐹,𝑆 , 𝜇𝑝) ⊗F𝑝 𝐼

2/𝐼3 = dimF𝑝 𝐼2/𝐼3 = 3, we have 𝑑2 ≥ 3 − 𝛿2𝑖 − 𝛿𝑖+ 𝑗 − 𝛿2 𝑗 , as required. �

Note that 𝜂𝑖 ∪ 𝜂 𝑗 = 0, since we must have 𝑗 ≡ 𝑘 − 𝑖 mod 𝑝 − 1 for this cup product not to vanish, and
we have assumed that 𝜂𝑖 ∪ 𝜂𝑘−𝑖 = 0. Thus, there exists a degree p extension L of K, Galois over F and
unramified outside p, such that Gal(𝐿/𝐹) � U3(F𝑝). We can and do choose L to be Galois over Q: in
fact, [Sh1, Proposition 2.7] provides the following description of Kummer generators of such fields L,
viewed as extensions of K.

Remark 5.2.2. Set 𝐸 = 𝐹 (𝜂1/𝑝
𝑖 ), and let 𝜎 be a generator of Gal(𝐸/𝐹). Write 𝜂 𝑗 =

∏𝑝−1
𝑖=0 𝜎

𝑖𝛽′ for
some 𝛽′ ∈ 𝐸×/𝐸×𝑝 . Pick a lift of Δ to a subgroup of Gal(𝐸/Q). Let 𝛽 be the projection of 𝛽′ to the
𝜔 𝑗 -eigenspace of 𝐸×/𝐸×𝑝 for the action of this lift. The fact that 𝜂 𝑗 ∈ (𝐹×/𝐹×𝑝) ( 𝑗) implies that 𝜂 𝑗 =∏𝑝−1

𝑖=0 𝜎
𝑖𝛽 as well. We then have 𝐿 = 𝐾 ((𝑐𝛾)1/𝑝) for 𝛾 =

∏𝑝−1
𝑖=1 𝜎

𝑖𝛽𝑖 and any 𝑐 ∈ 𝐻1 (𝐺𝐹,𝑆 , 𝜇𝑝)
(1−𝑖− 𝑗) .

The latter group is zero if 𝛿𝑖+ 𝑗 = 0 (see Remark 5.1.1), in which case, L is unique.

The group Δ acts on Gal(𝐿/𝐾) by conjugation through 𝜔𝑖+ 𝑗 . It may be helpful for the reader to view
Gal(𝐿/Q) as the group of matrices


��
𝜔(𝛿)𝑖 ∗ ∗

0 1 ∗
0 0 𝜔(𝛿)− 𝑗

���
for some 𝛿 ∈ Δ .
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Proposition 5.2.3. We have

dimF𝑝 𝐻
2(𝐺𝐿,𝑆 , 𝜇𝑝) ≥ 7 − 𝛿2𝑖 − 𝛿2 𝑗 − 𝛿𝑖+ 𝑗 .

Proof. We will apply the results of Section 4.6 in the case that 𝐺 = 𝐺𝐹,𝑆 and 𝐻 = Gal(𝐿/𝐹). Set

𝑑𝑛 = dimF𝑝
𝐼𝑛𝐻2 (𝐺𝐿,𝑆 , 𝜇𝑝)

𝐼𝑛+1𝐻2 (𝐺𝐿,𝑆 , 𝜇𝑝)
.

We have 𝑑0 = 1 and 𝑑1 = 2 by the same arguments as for 𝐾/𝐹 (noting that in the Heisenberg case,
we still have 𝐼/𝐼2 � 𝐻ab � F2

𝑝). As in the proof of Proposition 5.2.1, we must give a lower bound on
𝑑2 = dimF𝑝 cokerΨ (2) .

Corollary 4.6.4 tells us that for 𝜆̃ ∈ 𝐻1(𝐺𝐹,𝑆 ,Ω/𝐼2 ⊗F𝑝 𝜇𝑝) with image 𝜆 ∈ 𝐻1(𝐺𝐹,𝑆 , 𝜇𝑝), we have

Ψ (2) (𝜆̃) = (𝜂𝑖 , 𝜂𝑖 , 𝜆)𝜌𝑥2 𝑥
2 + (𝜂𝑖 , 𝜆, 𝜂 𝑗 )𝜌𝑦𝑥 𝑦𝑥 + (𝜂 𝑗 , 𝜂 𝑗 , 𝜆)𝜌𝑦2 𝑦

2 + (𝜂𝑖 , 𝜂 𝑗 , 𝜆)𝜌𝑧 𝑧.

Again, the vanishing of 𝜂𝑖 ∪ 𝜂𝑘−𝑖 and 𝜂 𝑗 ∪ 𝜂𝑘− 𝑗 ensures that Ψ (2) (𝜆̃) depends only on 𝜆. As before, but
now noting also that Δ acts on 𝑧 ∈ 𝐼2/𝐼3 by 𝜔𝑖+ 𝑗 , we see that these Massey products must vanish unless
𝛿2𝑖 = 1, 𝛿𝑖+ 𝑗 = 1, 𝛿2 𝑗 = 1 and 𝛿𝑖+ 𝑗 = 1, respectively. Moreover, if 𝛿𝑖+ 𝑗 = 1, then the image of Ψ (2)
on 𝐻1(𝐺𝐹,𝑆 , 𝐼/𝐼

2 ⊗F𝑝 𝜇𝑝)
(𝑘−𝑖− 𝑗) is at most one-dimensional, generated by (𝜂𝑖 , 𝜆, 𝜂 𝑗 )𝑦𝑥 + (𝜂𝑖 , 𝜂 𝑗 , 𝜆)𝑧

for 𝜆 = 𝜁𝑝 or 𝜆 = 𝛼𝑘 , by Remark 5.1.1 (and similarly for the other cases). Thus, we have 𝑑2 ≥
4 − 𝛿2𝑖 − 𝛿2 𝑗 − 𝛿𝑖+ 𝑗 . �

Remark 5.2.4.

1. If 2𝑖 ≡ 𝑘 mod 𝑝 − 1, so, in particular, 𝛿2𝑖 = 1, then the condition that 𝜂𝑖 ∪ 𝜂𝑖 = 0 is automatic by
antisymmetry of the cup product.

2. It occurs that 𝛿2𝑖 , 𝛿2 𝑗 and 𝛿𝑖+ 𝑗 are all 1 if and only if p is 1 modulo 4 but not 8 and 𝑘 = 𝑝−1
2 , so that

we have {𝑖, 𝑗} = { 𝑝−1
4 ,

3(𝑝−1)
4 }.

We can have 2𝑖 ≡ 0 mod 𝑝−1 only if 𝑝 ≡ 3 mod 4, in which case, 𝑖 = 𝑝−1
2 . We can then also choose j

such that 2 𝑗 ≡ 𝑘 mod 𝑝 − 1 (see Example 5.2.5), but then 𝑖 + 𝑗 is either 𝑘
2 or 𝑘

2 +
𝑝−1

2 modulo 𝑝 − 1,
which cannot be 0 or k, so 𝛿𝑖+ 𝑗 = 0.

3. The pth root of 𝜂𝑝−𝑘 generates the unique degree p unramified extension of F, and it satisfies
𝜂𝑝−𝑘 ∪ 𝜂2𝑘−1 = 0. In such a setting, dimF𝑝 𝐻2(𝐺

𝐹 (𝜂
1/𝑝
𝑝−𝑘
) ,𝑆
, 𝜇𝑝) = 𝑝 − 1, coming entirely from the

Brauer part of this second cohomology group.
On the other hand, suppose that i and j are not 𝑝 − 𝑘 modulo 𝑝 − 1 (by what we have just said, we

can take one of them to be 2𝑘 −1, so long as 2𝑘 −1 is not 𝑝− 𝑘 modulo 𝑝−1, i.e. 3𝑘 � 2 mod 𝑝−1).
Then 𝐾/Q is totally ramified at p, which forces 𝐿/Q to be as well. This implies that

𝐻2(𝐺𝐾,𝑆 , 𝜇𝑝) � Cl𝐾,𝑆 ⊗ F𝑝 and 𝐻2 (𝐺𝐿,𝑆 , 𝜇𝑝) � Cl𝐿,𝑆 ⊗ F𝑝 .

In particular, our lower bounds on the F𝑝-dimensions of these S-class groups give lower bounds on
the dimensions of the class groups Cl𝐾 ⊗ F𝑝 and Cl𝐿 ⊗ F𝑝 .

We conclude with some numerical examples. Many more are available using the tables referenced in
[McSh], which compute the cup product pairings up to scalar for primes less than 25,000.

Example 5.2.5. Let 𝑝 = 59, for which 𝑘 = 44 is the unique irregular index. For 𝑖 = 29 and 𝑗 = 51,
we have 2𝑖 ≡ 0 mod 𝑝 − 1 and 2 𝑗 ≡ 𝑘 mod 𝑝 − 1, so 𝛿2𝑖 = 𝛿2 𝑗 = 1, while 𝛿𝑖+ 𝑗 = 0. We then have
𝜂 𝑗 ∪ 𝜂𝑘− 𝑗 = 𝜂51 ∪ 𝜂51 = 0 and 𝜂𝑖 ∪ 𝜂𝑘−𝑖 = 𝜂29 ∪ 𝜂15 = 0 as in Remark 5.2.4, noting that 15 = 𝑝 − 𝑘 .
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Given this, Propositions 5.2.1 and 5.2.3 provide the following lower bounds on the p-ranks of the class
groups of K and L:

dimF𝑝 Cl𝐾 ⊗ F𝑝 ≥ 4 and dimF𝑝 Cl𝐿 ⊗ F𝑝 ≥ 5.

The relevant, potentially nonzero, Massey triple products in this example are (𝜂51, 𝜂51, 𝜁59) and
(𝜂29, 𝜂29, 𝛼44).

Example 5.2.6. Let 𝑝 = 67, for which 𝑘 = 58 is the unique irregular index. For 𝑖 = 29 and 𝑗 = 49, we
have 𝛿2𝑖 = 1 and 𝛿2 𝑗 = 𝛿𝑖+ 𝑗 = 0. Since 𝑝 − 𝑘 = 9 ∉ {29, 49}, we have

dimF𝑝 Cl𝐾 ⊗ F𝑝 ≥ 5 and dimF𝑝 Cl𝐿 ⊗ F𝑝 ≥ 6.

Here, the interesting Massey product is (𝜂29, 𝜂29, 𝜁67).

It is not hard to find examples in which all the error terms vanish, so the maximal lower bounds are
achieved.

Example 5.2.7. Let 𝑝 = 101, which has unique irregular index 𝑘 = 68. Take 𝑖 = 13 and 𝑗 = 35. The
computations referenced in [McSh] show that 𝜂13 ∪ 𝜂55 = 0, and 𝜂35 ∪ 𝜂33 = 0 holds since 𝑝 − 𝑘 = 33.
Since 𝛿𝑖+ 𝑗 = 𝛿2𝑖 = 𝛿2 𝑗 = 0, we have

dimF𝑝 Cl𝐾 ⊗ F𝑝 ≥ 6 and dimF𝑝 Cl𝐿 ⊗ F𝑝 ≥ 7.

The same lower bounds are achieved for {𝑖, 𝑗} = {35, 55} (note that {𝑖, 𝑗} = {13, 55} has 𝛿𝑖+ 𝑗 = 1, so
the bounds for this pair are one worse).

Notice that genus theory has no contribution to the lower bounds (for S-class groups) in the above
examples. Indeed, an unramified F𝑝-extension of either K or L which descends to an abelian extension
of F would contribute to the zeroth graded piece in the augmentation filtration, but in these examples,
this is entirely accounted for the class group of F (i.e. all such extensions are already unramified over F).

6. Massey vanishing for absolute Galois groups

In this final section of this paper, we apply our techniques to study absolute Galois groups of fields.
The motivating problem is to determine which profinite groups can be isomorphic to the absolute
Galois group 𝐺𝐹 of a field F. Artin and Schreier showed in 1927 that any nontrivial finite group with
this property is the cyclic group of order two. Other restrictions are reflected in the cohomological
properties of 𝐺𝐹 .

The norm residue isomorphism theorem, or Milnor-Bloch-Kato conjecture, proven by Voevodsky
and Rost (see [Vo]), tells us that the algebra 𝐻∗(𝐺𝐹 , F𝑝) under cup product is isomorphic to the mod-p
Milnor K-theory of F (for F containing a primitive pth root of 1). In particular, this implies that the
F𝑝-cohomology algebra is generated in degree 1 with all relations generated in degree 2.

Going beyond cup products to higher cohomological operations, Mináč and Tân formulated a re-
markable conjecture, known as the Massey vanishing conjecture, for Massey products of F𝑝-valued
characters on the absolute Galois group 𝐺𝐹 of a field F in [MiTa4]. For 𝑛 ≥ 3, it states that any n-fold
Massey product of characters 𝐺𝐹 → F𝑝 that has a defining system has some defining system for which
the resulting Massey product is zero. The Massey product is said to contain zero if such a defining sys-
tem exists. As evidence for this, Efrat–Matzri [EfMa] and Mináč–Tân [MiTa3] independently proved
triple Massey vanishing, which is to say the conjecture for 𝑛 = 3 and arbitrary p.

The Massey vanishing conjecture was inspired by work of Hopkins–Wickelgren [HoWi]: using
splitting varieties, they had proven that 3-fold Massey products over number fields that are defined
contain zero when 𝑝 = 2 [HoWi]. Massey vanishing over number fields was extended to successively
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general n for arbitrary primes p: to 𝑛 = 3 in [MiTa2], to 𝑛 = 4 in [GMT] and to all n in work of Harpaz–
Wittenberg [HrWt]. In each of these cases, the method is specific to number fields because it uses a
local-to-global principal to prove the existence of rational points on a splitting variety. For local fields,
the Massey vanishing conjecture is known due to [MiTa4].

The differential graded ring 𝐶 (𝐺𝐹 , F𝑝) of continuous F𝑝-valued 𝐺𝐹 -cochains is said to be formal
if it is quasi-isomorphic to 𝐻∗(𝐺𝐹 , F𝑝). The question of whether or not 𝐶 (𝐺𝐹 , F𝑝) is always formal
was raised by Hopkins and Wickelgren in their aforementioned work and answered in the negative by
Positselski [Po]. If formality holds for some F and p, then a stronger version of Massey vanishing, that
moreover the vanishing of the consecutive cup products yields definedness, holds in that instance. Pal
and Quick [PaQc] have recently shown that if 𝐺𝐹 is real projective (e.g. has virtual cohomological
dimension at most 1), then 𝐶 (𝐺𝐹 , F𝑝) is in fact formal. Also very recently, Quadrelli [Qd] showed
that if G is a pro-p group of elementary type, then G has the strong Massey vanishing property, which
applies to several classes of fields.

The latter two results suppose a condition on the structure of 𝐺𝐹 . Other results tend to require that
several of the characters in the Massey products be the same. For instance, the third author had long
ago proved in [Sh2] what we refer to here as the p-cyclic Massey vanishing property for absolute Galois
groups of fields containing a primitive pth root of unity: for 𝑛 ≤ 𝑝 − 1, all definable (𝑛 + 1)-fold Massey
products with identical first n entries vanish with respect to some proper defining system (i.e. (𝜒 (𝑛) , 𝜓)
contains 0 for 𝜒, 𝜓 ∈ 𝐻1(𝐺𝐹 , F𝑝) with 𝜒 ∪ 𝜓 = 0). Beyond this, Mináč and Tân [MiTa1] proved
the vanishing of n-fold Massey products when all n characters are the same, for arbitrary n and fields
containing 2𝑝th roots of unity. In sufficiently large characteristic, Efrat proved the vanishing of n-fold
Massey products with all entries coming from either z or 1 − 𝑧 for a fixed field element 𝑧 ∈ 𝐹× − {1},
improving upon a result of Wickelgren [Wi]. In another very recent preprint, Merkurjev and Scavia
[MeSc] prove that quadruple Massey products with the same first and last entries vanish for 𝑝 = 2 for F
of characteristic not 2.

As should be expected, the Massey vanishing conjecture has strong implications for the structure of
absolute Galois groups. For instance, it often allows for the realization of nilpotent field extensions: we
mention [GuMi] as an example of a recent work in this direction.

6.1. The cyclic Massey vanishing property

Definition 6.1.1. Let G be a profinite group, and let p be a prime number. We say that G has the p-cyclic
Massey vanishing property if for all homomorphisms 𝜒, 𝜆 : 𝐺 → F𝑝 with 𝜒 ∪ 𝜆 = 0, there exists a
proper defining system, such that (𝜒 (𝑝−1) , 𝜆) vanishes.

As a simple corollary of [Sh2, Theorem 4.3], the absolute Galois group of field F containing a
primitive pth root of unity has the p-cyclic Massey vanishing property (for this, consider the case that
Ω is the separable closure of K and 𝑚 = 1 in the notation of said theorem). The proof uses only the
fact that if the norm residue symbol (𝑎, 𝑏)𝑝,𝐹 vanishes, then b is a norm from 𝐹 (𝑎1/𝑝). We shall give a
streamlined proof of this and more, using the following abstract characterization of a standard property
of absolute Galois groups.

Definition 6.1.2. Let 𝑚 ≥ 1, and set 𝑅 = Z/𝑚Z. We say that a profinite group G is of m-absolute Galois
type if it has the property that, for any 𝜒 ∈ 𝐻1(𝐺, 𝑅), the sequence

𝐻1(𝐺, 𝑅[𝐻𝜒]) → 𝐻1 (𝐺, 𝑅)
𝜒 ∪
−−→ 𝐻2(𝐺, 𝑅) → 𝐻2 (𝐺, 𝑅[𝐻𝜒]) (6.1)

is exact, where 𝐻𝜒 = 𝐺/ker(𝜒) is the coimage of 𝜒.

Under Shapiro’s lemma, the first and last maps in (6.1) are identified with corestriction and restriction
maps, respectively [NSW, Proposition 1.6.5]. It is well known that an absolute Galois group 𝐺𝐹 is of
m-absolute Galois type if F contains a primitive mth root of unity (see, for instance, [Se, Propositions
XIV.2 and XIV.4]). This condition on𝐺𝐹 generalized to arbitrary cohomological degree is heavily used
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in the proof of the norm residue isomorphism theorem (see [HsWe, Theorem 3.6]). We focus on the
comparison of p-absolute Galois type with p-cyclic Massey vanishing. In fact, our results would allow
us to prove a more general but analogous result for profinite groups with the property that characters on
G of order 𝑝𝑠 lift to characters of order 𝑝𝑡 for some large enough t relative to s, under conditions as in
Section 4.3.

Remark 6.1.3. It is known that there exist groups that of p-absolute Galois type that are not isomorphic
to the absolute Galois group of any field [BCQ].

Proposition 6.1.4. Let G be a profinite group. Then G has the p-cyclic Massey vanishing property if
and only if the sequence (6.1) is exact at 𝐻1(𝐺, F𝑝).

Proof. Let 𝜒, 𝜆 : 𝐺 → F𝑝 with 𝜒 ∪ 𝜆 = 0, and set Ω = F𝑝 [𝐻𝜒]. The pth power of the augmentation
ideal in Ω is zero, and the kernel of the generalized Bockstein map Ψ (𝑝−1) is the image of 𝐻1(𝐺,Ω) →
𝐻1 (𝐺,Ω/𝐼 𝑝−1). Theorem 4.3.1 tells us that the Massey product (𝜒 (𝑝−1) , 𝜆) is defined and vanishes for
some choice of proper defining system in 𝐻1 (𝐺,Ω/𝐼 𝑝−1) if and only if 𝜆 lifts to 𝐻1(𝐺,Ω). From this,
we have the proposition. �

Proposition 6.1.4 applies, in particular, to the absolute Galois group of any field F containing a
primitive pth root of unity, that is, 𝐺𝐹 has the p-cyclic Massey vanishing property. We also have the
following result, which may be of independent interest.

Proposition 6.1.5. Let G be a profinite group. If (6.1) is exact at 𝐻2(𝐺, F𝑝) for a given 𝜒 ∈ 𝐻1(𝐺, F𝑝),
then it is exact at 𝐻1(𝐺, F𝑝), so G is of p-absolute Galois type.

Proof. Let 𝜒, 𝜆 : 𝐺 → F𝑝 with 𝜒∪𝜆 = 0, and suppose that (6.1) is exact at 𝐻2 (𝐺, F𝑝). We have to show
that there is a proper defining system 𝜌, such that (𝜒 (𝑝−1) , 𝜆)𝜌 vanishes. We may suppose that 𝜒 ≠ 0. Let
𝑥 = [ℎ] − 1 for ℎ ∈ 𝐻𝜒 with 𝜒(ℎ) = 1. By induction on n, we can assume that there is a proper defining
system 𝜌𝑥𝑛 for (𝜒 (𝑛) , 𝜆) with 𝑛 < 𝑝 determined by some 𝑓 =

∑𝑛−1
𝑘=0 𝜆𝑘𝑥

𝑘 ∈ 𝑍1 (𝐺,Ω/𝐼𝑛), with 𝜆
necessarily equal to 𝜆0. Writing (𝜒 (𝑛) , 𝜆) 𝑓 for the corresponding Massey product (𝜒 (𝑛) , 𝜆)𝜌𝑥𝑛 , we have

(𝜒 (𝑛) , 𝜆) 𝑓 = 𝜒 ∪ 𝜆𝑛−1 +

(
𝜒

2

)
∪ 𝜆𝑛−2 + · · · +

(
𝜒

𝑛

)
∪ 𝜆.

Clearly, the restriction of (𝜒 (𝑛) , 𝜆) 𝑓 to ker(𝜒) vanishes, so, by the exactness of (6.1) at 𝐻2(𝐺, F𝑝), we
have (𝜒 (𝑛) , 𝜆) 𝑓 = 𝜒∪𝜓 for some 𝜓 ∈ 𝐻1 (𝐺, F𝑝). Then we see that 𝑓 ′ = 𝑓 −𝜓𝑥𝑛−1 is a proper defining
system, such that the Massey product (𝜒 (𝑛) , 𝜆) 𝑓 ′ vanishes. By Theorem 4.3.1, this implies that the class
of 𝑓 ′ is in the kernel of Ψ (𝑛) , so it lifts to the class of some 𝑓 ∈ 𝑍1 (𝐺,Ω/𝐼𝑛+1), which gives rise to
a proper defining system 𝜌𝑥𝑛+1 for (𝜒 (𝑛+1) , 𝜆). If 𝑛 + 1 = 𝑝, then the class of 𝑓 is the desired lift to
𝐻1 (𝐺,Ω). �

It is unclear that exactness of (6.1) at 𝐻1(𝐺, F𝑝) should imply exactness at 𝐻2 (𝐺, F𝑝).

6.2. Triple Massey vanishing

In this subsection, let us suppose that p is an odd prime. The following theorem gives a new proof of
the vanishing of Massey triple products for absolute Galois groups due to Efrat–Matzri [EfMa] and
Mináč–Tân [MiTa3]. Both proofs utilized the fact that the absolute Galois groups of a field containing a
primitive pth root of unity are of p-absolute Galois type. We show that the potentially weaker condition
of p-cyclic Massey vanishing suffices.

Theorem 6.2.1. Let G be a profinite group with the p-cyclic Massey vanishing property for an odd
prime p. Let 𝜒, 𝜓, 𝜆 ∈ 𝐻1 (𝐺, F𝑝) be, such that 𝜒 ∪ 𝜆 = 𝜆 ∪ 𝜓 = 0. Then there exists a defining system
𝜌 for (𝜒, 𝜆, 𝜓), such that the Massey triple product (𝜒, 𝜆, 𝜓)𝜌 vanishes.
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The case where 𝜒 and 𝜓 are linearly dependent follows easily from the p-cyclic Massey vanishing
property, so we can and do assume that (𝜒, 𝜓) : 𝐺 → F2

𝑝 is surjective, and we let H be the coimage. Let
Ω = F𝑝 [𝐻], and let 𝐼 ⊂ Ω be the augmentation ideal. Let ℎ𝜒, ℎ𝜓 ∈ 𝐻 be the dual basis to (𝜒, 𝜓), and
let 𝑥 = [ℎ𝜒] − 1 and 𝑦 = [ℎ𝜓] − 1 so that 𝐼 = 𝑥Ω + 𝑦Ω.

We want to make maximal use of the fact that G has the cyclic Massey vanishing property. For this,
we let 𝐶1, 𝐶2 and 𝐶3 be the coimages of 𝛼1 = 𝜒, 𝛼2 = 𝜓 and 𝛼3 = 𝜒 +𝜓, respectively. Let Ω𝑖 = F𝑝 [𝐶𝑖],
and let 𝐼𝑖 ⊂ Ω𝑖 be its augmentation ideal. Let 𝛾𝑖 ∈ 𝐶𝑖 with 𝛼𝑖 (𝛾𝑖) = 1, and let 𝑥𝑖 = [𝛾𝑖] − 1 ∈ 𝐼𝑖 . Note
that each 𝛼𝑖 factors through H, so 𝛼𝑖 induces a surjective ring homomorphism Ω → Ω𝑖 that we also
call 𝛼𝑖 . Then note that

(𝛼1 (𝑥), 𝛼1 (𝑦)) = (𝑥1, 0), (𝛼2 (𝑥), 𝛼2 (𝑦)) = (0, 𝑥2), (𝛼3 (𝑥), 𝛼3 (𝑦)) = (𝑥3, 𝑥3). (6.2)

Now consider the ideal 𝐽 = 𝐼3 + 𝑥𝑦Ω, and let 𝐽𝑖 = 𝛼𝑖 (𝐽). By (6.2), we have 𝐽1 = 𝐼31 , 𝐽2 = 𝐼32 and
𝐽3 = 𝐼23 . Hence, we have a commutative diagram with exact rows

0 𝐽/𝐼3 𝐼/𝐼3 𝐼/𝐽 0

0 𝐼23/𝐼
3
3

⊕3
𝑖=1 𝐼𝑖/𝐼

3
𝑖

⊕3
𝑖=1 𝐼𝑖/𝐽𝑖 0,

� (6.3)

where the vertical maps are induced by the maps 𝛼𝑖 . Note that 𝐽/𝐼3 = F𝑝𝑥𝑦, so the leftmost vertical
arrow is an isomorphism, 𝐼/𝐽 = F𝑝𝑥 ⊕ F𝑝𝑥2 ⊕ F𝑝𝑦 ⊕ F𝑝𝑦

2, and the map 𝐼/𝐽 → 𝐼1/𝐼
3
1 ⊕ 𝐼2/𝐼

3
2 is an

isomorphism, so the rightmost vertical arrow is split injective.

Lemma 6.2.2. There is a commutative diagram with exact rows

𝐻1 (𝐺, 𝐼/𝐽) 𝐻2 (𝐺, 𝐽/𝐼3) 𝐻2(𝐺, 𝐼/𝐼3) 𝐻2(𝐺, 𝐼/𝐽)

𝐻1 (𝐺, F𝑝) 𝐻2 (𝐺, F𝑝)
⊕3

𝑖=1 𝐻
2 (𝐺, 𝐼𝑖/𝐼

3
𝑖 )

⊕3
𝑖=1 𝐻

2(𝐺, 𝐼𝑖/𝐽𝑖),

𝜄

�𝑓 𝑔

𝛼3 ∪ ℎ

(6.4)

where f is the isomorphism 𝜉 · 𝑥𝑦 ↦→ 𝜉 and g is the map induced by the center vertical arrow in (6.3).

Proof. The lower sequence in (6.3) is a direct sum of three exact sequences for 𝑖 ∈ {1, 2, 3}, where for
𝑖 ∈ {1, 2}, the sequence has zero as its first term. Taking cohomology of (6.3), we obtain the commutative
diagram with exact rows

𝐻1(𝐺, 𝐼/𝐽) 𝐻2 (𝐺, 𝐽/𝐼3) 𝐻2(𝐺, 𝐼/𝐼3) 𝐻2(𝐺, 𝐼/𝐽)

⊕3
𝑖=1 𝐻

1(𝐺, 𝐼𝑖/𝐽𝑖) 𝐻2 (𝐺, 𝐼23/𝐼
3
3 )

⊕3
𝑖=1 𝐻

2 (𝐺, 𝐼𝑖/𝐼
3
𝑖 )

⊕3
𝑖=1 𝐻

2 (𝐺, 𝐼𝑖/𝐽𝑖),

𝜄

� 𝑔

𝜕3

(6.5)

where 𝜕3 is zero on the first two terms of the summand and the connecting map on the third. Note that
the rightmost vertical arrow is injective by the split injectivity of the underlying map on coefficients. To
complete the proof, we have to show that 𝜕3(𝛽) = 𝛼3 ∪ 𝛽 for 𝛽 ∈ 𝐻1(𝐺, 𝐼3/𝐽3). But the lower sequence
in (6.3) for 𝑖 = 3 is isomorphic to

0→ 𝐼3/𝐼
2
3 → Ω3/𝐼

2
3 → F𝑝 → 0

via the isomorphism 𝐼3/𝐽3
∼
−→ F𝑝 taking the image of 𝑥3 to 1, so this follows from Proposition 2.3.3. �
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Proof of Theorem 6.2.1. Consider the commutative diagram of exact sequences

0 𝐽/𝐼3 Ω/𝐼3 Ω/𝐽 0

0 𝐼/𝐼3 Ω/𝐼3 F𝑝 0

and the associated diagram in cohomology

𝐻1(𝐺,Ω/𝐼3) 𝐻1 (𝐺,Ω/𝐽) 𝐻2 (𝐺, 𝐽/𝐼3) 𝐻2(𝐺,Ω/𝐼3)

𝐻1(𝐺,Ω/𝐼3) 𝐻1 (𝐺, F𝑝) 𝐻2 (𝐺, 𝐼/𝐼3) 𝐻2(𝐺,Ω/𝐼3),

𝜕′

𝜄

𝜕

(6.6)

where 𝜄 is as in (6.4).
Now let 𝜆 ∈ 𝐻1(𝐺, F𝑝) be as in the statement of the theorem and consider the element 𝜕 (𝜆) ∈

𝐻2 (𝐺, 𝐼/𝐼3). Then 𝑔(𝜕 (𝜆)) ∈
⊕3

𝑖=1 𝐻
2(𝐺, 𝐼𝑖/𝐼

3
𝑖 ) is the obstruction to lifting 𝜆 to 𝐻1(𝐺,Ω/𝐼3𝑖 ) for all

𝑖 ∈ {1, 2, 3}, and this vanishes by the p-cyclic Massey vanishing property. Hence, 𝑔(𝜕 (𝜆)) = 0.
By Lemma 6.2.2 and the injectivity of the rightmost vertical arrow in (6.4), this implies that 𝜕 (𝜆)

is in the image of 𝜄. By the commutativity of (6.6), there is then a lift 𝜆̃ ∈ 𝐻1(𝐺,Ω/𝐽) of 𝜆. Using
Corollary 4.4.2, we see that 𝜆̃ determines a proper defining system 𝜌𝑥𝑦 for (𝜒, 𝜆, 𝜓), such that 𝜕 ′(𝜆̃) =
(𝜒, 𝜆, 𝜓)𝜌𝑥𝑦 · 𝑥𝑦.

By Lemma 6.2.2, we have

ℎ 𝑓 (𝜕 ′(𝜆̃)) = 𝑔𝜄(𝜕 ′(𝜆̃)) = 𝑔(𝜕 (𝜆)) = 0,

so 𝑓 (𝜕 ′(𝜆̃)) ∈ ker(ℎ) = im(𝛼3 ∪). Hence, we have

𝑓 (𝜕 ′(𝜆̃)) = (𝜒, 𝜆, 𝜓)𝜌𝑥𝑦 = 𝛼3 ∪ 𝜈 = 𝜒 ∪ 𝜈 − 𝜈 ∪ 𝜓 (6.7)

in 𝐻2 (𝐺, F𝑝), for some 𝜈 ∈ 𝐻1(𝐺, F𝑝). In particular, we have that

(𝜒, 𝜆, 𝜓)𝜌𝑥𝑦 ∈ im(𝜒∪) + im(∪𝜓),

which implies that there is a defining system 𝜌 such that (𝜒, 𝜆, 𝜓)𝜌 = 0. �

The reader may note that in Theorem 6.2.1, we used something weaker than p-cyclic Massey
vanishing. Namely, the actual condition employed is that for any character 𝜒 : 𝐺 → F𝑝 , the sequence

𝐻1(𝐺, F𝑝 [𝐻𝜒]/𝐼
3
𝜒) → 𝐻1 (𝐺, F𝑝)

𝜒 ∪
−−→ 𝐻2 (𝐺, F𝑝) (6.8)

is exact, where 𝐻𝜒 = 𝐺/ker(𝜒) and 𝐼𝜒 is the augmentation ideal in F𝑝 [𝐻𝜒]. This is equivalent to the
statement that if 𝜒 ∪ 𝜆 = 0 for some 𝜆 ∈ 𝐻1 (𝐺, F𝑝), then (𝜒, 𝜒, 𝜆) is zero for some proper defining
system.

Remark 6.2.3. In [Mt, Corollary 3.5], Matzri proved that triple Massey vanishing follows from defined
Massey products of the form (𝜒, 𝜆, 𝜒) containing zero. The proof exploits the exactness of (6.1) at
𝐻2 (𝐺, F𝑝) to obtain this vanishing. From our perspective, the vanishing of these Massey products
follows directly from the exactness of (6.8).

Remark 6.2.4. The proof of Theorem 6.2.1 does not show that G has the ‘bicyclic Massey vanishing
property’ that any 𝜆 ∈ 𝐻1(𝐺, F𝑝) that lifts to 𝐻1(𝐺,Ω/𝐼2) lifts further to 𝐻1 (𝐺,Ω/𝐼3). Equivalently,
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this condition can be formulated as saying that if 𝜒 ∪ 𝜆 = 𝜆 ∪ 𝜓 = 0, then 𝜕 (𝜆) = 0. One can show that
this is equivalent to showing that there exists 𝜈 ∈ 𝐻1(𝐺, F𝑝) satisfying (6.7) that lies in the subgroup

ker(𝜒∪) + ker(𝜓 ∪) + ker((𝜒 + 𝜓) ∪).

A. Two lemmas from homological algebra

We provide a proof of the following simple lemma from homological algebra for the reader’s
convenience.

Lemma A.0.1. Let Q, R and S be abelian categories, such that Q and R have enough projectives,
and let 𝐹 : R → S and 𝐹 ′ : Q → R be right exact functors, such that 𝐹 ′ sends projective objects to
F-acyclic objects. Let

0→ 𝐴→ 𝐵→ 𝐶 → 0

be an exact sequence in Q, such that

0→ 𝐹 ′(𝐴) → 𝐹 ′(𝐵) → 𝐹 ′(𝐶) → 0

is exact. For each 𝑗 ≥ 0, we have commutative diagrams

𝐿 𝑗+1 (𝐹 ◦ 𝐹
′) (𝐶) 𝐿 𝑗 (𝐹 ◦ 𝐹

′) (𝐴)

𝐿 𝑗+1𝐹 (𝐹
′(𝐶)) 𝐿 𝑗𝐹 (𝐹

′(𝐴)),

in which the vertical arrows are edge maps in the Grothendieck spectral sequence attached to the
composition 𝐹 ◦ 𝐹 ′ and the horizontal maps are connecting morphisms, where 𝐿𝑖 denotes the ith left
derived functor.

Proof. Let X denote any of A, B and C. We may choose projection resolutions 𝑃𝑋· of X with each term of

0→ 𝐹 ′(𝑃𝐴· ) → 𝐹 ′(𝑃𝐵· ) → 𝐹 ′(𝑃𝐶· ) → 0

split exact. Then we may choose first quadrant Cartan-Eilenberg resolutions 𝑄𝑋
·, · of the 𝐹 ′(𝑃𝑋· ) fitting

in split exact sequences

0→ 𝑄𝐴
𝑗,𝑘 → 𝑄

𝐵
𝑗,𝑘 → 𝑄

𝐶
𝑗,𝑘 → 0

so that, in particular, we have exact sequences

0→ 𝐻𝑘 (𝑄
𝐴
𝑗, ·) → 𝐻𝑘 (𝑄

𝐵
𝑗, ·) → 𝐻𝑘 (𝑄

𝐶
𝑗, ·) → 0,

and the complexes 𝐻𝑘 (𝑄
𝑋
·, ·) → 𝐻𝑘 (𝐹

′(𝑃𝑋· )) are projective resolutions. Note that

𝐻 𝑗 (𝐹 (𝐻𝑘 (𝑄
𝑋
·, ·))) = 𝐿 𝑗𝐹 (𝐿𝑘𝐹

′(𝑋)),

and we have canonical isomorphisms

𝐻 𝑗 (𝐹 (Tot𝑄𝑋
·, ·))

∼
−→ 𝐻 𝑗 (𝐹 ◦ 𝐹

′(𝑃𝑋· )) = 𝐿 𝑗 (𝐹 ◦ 𝐹
′) (𝑋),
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the first isomorphism as the terms of 𝐹 ′(𝑃𝑋· ) are F-acyclic. The diagram in question is then simply

𝐻 𝑗+1 (𝐹 (Tot𝑄𝐶
·, ·)) 𝐻 𝑗 (𝐹 (Tot𝑄𝐴

·, ·))

𝐻 𝑗+1 (𝐹 (𝐻0 (𝑄
𝐶
·, ·))) 𝐻 𝑗 (𝐹 (𝐻0 (𝑄

𝐴
·, ·))),

the horizontal arrows being the connecting homomorphisms and the vertical arising from the augmen-
tation maps on the total complexes. �

The following lemma is rather elementary but also useful to us.

Lemma A.0.2. Let R and S be abelian categories, such that R has enough projectives. Let 𝐹 : R→ S
be a left exact functor. Suppose that 𝐺 : R → S is a functor, such that the pair (𝐹, 𝐺) extends to a
functor from short exact sequences 0→ 𝐴→ 𝐵→ 𝐶 → 0 in R to exact sequences

𝐺 (𝐴) → 𝐺 (𝐵) → 𝐺 (𝐶)
𝛿
−→ 𝐹 (𝐴) → 𝐹 (𝐵) → 𝐹 (𝐶) → 0.

Then there is a natural transformation 𝐺 � 𝐿1𝐹 for which the resulting diagrams

𝐺 (𝐶)

𝐿1𝐹 (𝐶) 𝐹 (𝐴),

𝛿

𝜕

are commutative for the usual connecting homomorphisms 𝜕 and such that 𝐺 (𝐴) → 𝐿1𝐹 (𝐴) is an
epimorphism for all objects A of R.

Proof. Put any object A of R in an exact sequence

0→ 𝐾 → 𝑃→ 𝐴→ 0

in R, where P is a projective object. We then have a commutative diagram

𝐺 (𝑃) 𝐺 (𝐴) 𝐹 (𝐾) 𝐹 (𝑃)

0 𝐿1𝐹 (𝐴) 𝐹 (𝐾) 𝐹 (𝑃),

with exact rows, where the vertical morphism is unique making the diagram commute. That this gives a
natural transformation is standard, and the fact that the morphisms are epimorphisms follows from the
four lemmas. �
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