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Abstract
Machine learning provides a promising platform for both forward modeling and the inverse design
of photonic structures. Relying on a data-driven approach, machine learning is especially appealing
for situations when it is not feasible to derive an analytical solution for a complex problem. There
has been a great amount of recent interest in constructing machine learning models suitable for
different electromagnetic problems. In this work, we adapt a region-specified design approach for
the inverse design of multilayered nanoparticles. Given the high computational cost of dataset
generation for electromagnetic problems, we specifically investigate the case of a small training
dataset, enhanced via random region specification in an inverse convolutional neural network. The
trained model is used to design nanoparticles with high absorption levels and different ratios of
absorption over scattering. The central design wavelength is shifted across 350–700 nm without
re-training. We discuss the implications of wavelength, particle size, and the training dataset size
on the performance of the model. Our approach may find interesting applications in the design of
multilayer nanoparticles for biological, chemical, and optical applications as well as the design of
low-scattering absorbers and antennas.

1. Introduction

The quest for computational inverse design of photonic structures is an exploration of many frontiers. A
successful inverse design method seeks to generate physical structures that can achieve a pre-defined set of
outcomes depending on the design goals, or else to determine the limits of the system response based on
available physical parameters [1]. While several analytical and semi-analytical solutions have been devised
for photonic structures, it is not always possible to construct an analytical solution, especially for more
complex structures. If an analytical solution to the inverse problem is not accessible the inverse design turns
into an optimization problem looking for the optimal set of physical parameters that maximize the objective
[2]. This process may entail optimization of a certain number of parameters or treating the entire device
footprint as the parameter space and optimizing for the topology of the structure.

Topology optimization was first introduced in the design of mechanical structures [3] and relies on
iterative refinement of the distribution of the material inside a specified design area. For photonic structures,
the design process adjusts the permittivity distribution inside a fixed region, typically accompanied by a set
of additional rules such as binarization, increased robustness, avoiding unrealistic materials, or removing
small geometrical features that may not be feasible from a fabrication point of view [4, 5]. The outcomes of
topology optimization are rather sophisticated structures, and it is quite challenging to establish a physical
insight into the complex relationship between the input and output of the device. As such, the process is
highly application-oriented, and the physical shape of the device may change drastically depending on the set
objectives [5]. Nevertheless, the design possibilities are very large and topology optimization has found
interesting applications in the inverse design of photonic structures, especially to decrease the physical
footprint of the device by using the full parameter space. Number of recent examples include grating couplers
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[6], wavelength demultiplexers [7], hyperlenses [8], beam steering metasurfaces [9], resonators [10],
nonlinear nanophotonic devices [11], polarization splitters [12, 13], and equation solving elements [14].

On the other side of the spectrum are problems that are constructed based on a limited number of
variables in predetermined geometries. In such cases and relying on the physical insights of the designer, the
general form of the device is already known, and a few parameters are tuned to enhance the device’s
performance. While the number of parameters may not be as large as the topology optimization scenarios,
simultaneously satisfying multiple objectives within a typically constrained parameter space is not a simple
task [1]. Nonetheless, parameter optimization and tuning has been extensively explored in the inverse design
of electromagnetic devices [15–19]. Indeed, given the complexity of typical photonic structures, the number
of tuning parameters may not be small even for a predetermined geometry. Consequently, bio-inspired
inverse design optimization algorithms such as genetic algorithm and particle swarm optimization have
gained a lot of attention, particularly in the field of electromagnetic engineering, due to the possibility of
working with a moderate to a large number of parameters [20–24]. Genetic algorithm is also capable of
avoiding local minima and maxima, a feature that allows for the inverse design of overly complex structures,
comparable with topology-optimized structures [25, 26].

Photonic inverse design using machine learning is conceptually different from the previously discussed
traditional techniques. In contrast to iterative optimization approaches, here a neural network is trained to
learn the dynamics of the system, and subsequently, model a physical system or design a device with the
desired performance [27, 28]. It is worth mentioning that the recent rapid advances in using machine
learning for the modeling and design of nano-optic structures are undeniably rooted in increased
computation capacity and availability of high-performance hardware, allowing for extensive computations at
the training stage. To date, machine learning algorithms have been applied to several forward and inverse
photonic problems including, modeling lossless particles [29], design of chiral metamaterials [30], design
and characterization of optical elements for metasurfaces [31], inverse design [32–36] and response
prediction [37–39] in one-dimensional (1D) photonic crystals, inverse design of multilayered nanostructures
[40], modeling and design of electric and magnetic dipole response [41], modeling three-dimensional
nanostructures [42], and dielectric metasurface design [43]. Interestingly, the machine learning-based design
approach is not necessarily a blind data-driven method, and information about the physics of the problem
may also be included in the model [44, 45]. Aside from all these advantages, data-driven approaches require a
large number of good-quality training data [40, 46] for fast convergence and the computational cost at the
data generation stage, which requires full-wave electromagnetic simulation, can be high.

In this work, we use convolutional neural networks (CNNs) to design multilayered nanoparticles using a
small training dataset. While the training dataset is generated analytically here (see section 3), for devices and
structures that an analytical or numerically fast approach is not accessible, generating the training dataset
itself is a computationally expensive part of the inverse design. Therefore, it is crucial to devise and investigate
techniques that rely on smaller training datasets. The particle geometry is designed to simultaneously control
the relative levels of (i) absorption to maximum dipolar absorption, and (ii) absorption to scattering. Using a
region-specified training, the same model is re-used to design particles across the 350–700 nm wavelength
spectrum. The structure of the manuscript is as follows: section 2 gives a brief illustration of the
electromagnetic problem under study and the formulation, section 3 describes the configuration and
properties of our neural network and the training process, and the results are discussed in section 4.

2. Electromagnetic modeling

The structure of the multilayered spherical nanoparticle is illustrated in figure 1(a). The core and outer shell
are made of silicon dioxide [47], and the inner shell is a plasmonic material (silver, with parameters adapted
from [48]). Through the inverse design, three scaling parameters α1, α2, and α3 are determined, which are
related to the radius of each interface as r1 = α1α2α3 × 700nm, r2 = α1α2 × 700nm, and r3 = α1 × 700nm.
This allows us to normalize the design parameters as 0< α2,α3 < 1 and 0< α1 < 0.2, indicating the
maximum particle diameter of 280 nm. The scaling parameters may alternatively be written in terms of
radius of each interface as α1 = r3/700nm, α2 = r2/ r3, α3 = r1/ r2. As mentioned above, by choosing
α1,max = 0.2, the maximum diameter of particle is 280 nm. This is an intentional choice which allows us to
quantify the importance of the quality of the training dataset (more discussion in section 3). In summary, we
pick a suitable maximum diameter such that we can achieve a rich and highly varying scattering response
near 350 nm and a featureless scattering response closer to 700 nm.

The particles are illuminated with a plane wave and the first ten Mie scattering coefficients (five
transverse magnetic, TM, and five transverse electric, TE) are calculated. Mie theory solves the scattering of a
plane wave from a spherical particle through spherical harmonics expansion [49]. Here we follow the
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Figure 1. (a) Configuration of the three-layer particle under plane wave illumination. Gray and blue regions indicate silicon
dioxide and silver, respectively. (b) Configuration of the implemented CNN modeling the inverse scattering problem from the
particle in panel (a).

notation used in [50, 51]. The scattering and absorption cross sections of the particle are then
given by
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in which σscs is the total scattering cross section, σabs is the total absorption cross section, N is set at five, λ is
the operation wavelength, and CTM

n and CTE
n are the nth TM and TE Mie scattering coefficients, respectively.

At optical frequencies, both these cross sections are typically very small as they scale with λ2. As such,
relevant quantities that are typically used to gain better insight into the strength of absorption and scattering
are dimensionless scattering and absorption efficiencies, defined as

Qscs =
σscs

π r23
, Qabs =

σabs

π r23
, (2)

which are normalized to the physical cross section of the particle [52].
We should point out that even a very large scattering (or absorption) efficiency does not necessarily

imply that the particle is a good scatterer (or absorber). Indeed, a large efficiency simply indicates that the
particle scatters (or absorbs) well compared to its physical size [53]. In this work, we aim to design particles
with high overall absorption (modeling good sensors, emitters, or receivers) independent of their physical
size. At the same time, we aim to control the ratio between absorbed and scattered powers to implement
structures ranging from low-scattering absorbers to bright (high-scattering) absorbers. For this purpose, we
define two new metrics

σNorm =
σabs

σ1, abs−max
, σRatio =

σabs

σscs
. (3)

The first metric, σNorm, measures the level of absorption compared to the maximum attainable
absorption from a dipole at the same frequency (σ1, abs−max = 3λ2

/
8π ). This metric, while normalized, is

independent of the size of the particle and provides a physically meaningful measure to assess the power
absorbed by the structure. The second metric is simply the ratio between the two cross sections. For small
dielectric particles, the scattering coefficients for n> 1 are typically negligible, and a trade-off is present
between the scattered and absorbed powers [51, 54, 55]. By increasing the size of the particle, incorporating
plasmonic materials, and carefully arranging the contribution of higher-order scattering modes, in principle,
it should be possible to break this trade-off and control these ratios at will [51]. However, while it has been
proven theoretically that such particles do not violate any physical bounds, designing one is not a
straightforward problem and requires an optimization approach. Here we use a CNN, as detailed in the next
section, to model this inverse problem and design such particles. The choice of a neural network (as opposed
to an iterative search algorithm) is rooted in several practical considerations: First, after the training stage,
the inverse designs are immediately accessible through the trained neural networks. While the accuracy of the
design is not typically as good as an iterative model, the speed is considerably higher. Second, after generating
the training dataset, continued access to a photonic simulator is not required and the network itself will
mimic the physical system. Third, by using a region-specified design, our goal is to encapsulate the localized
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wavelength-dependent behaviors of the desired metrics in a one-time training process. Upon this one-time
training, all the designs presented throughout the paper are immediately accessible with no additional
computational cost. This also allows us to easily quantify the importance of the quality of the training dataset
to achieve good designs with a neural network (see section 4). Finally, the specific choice of 1D CNN, is
further rooted in the nature of the optimized metrics and again, the adaptation of region-specified design.
CNNs are typically used in image and pattern recognition application due to their ability in identifying
features of response [56]. As such, CNNs can be useful in capturing the correlations and features of the
spectral response [28]. The analytical calculations of generalized optimal low-scattering absorbers indicate
that such optimal condition is associated with aligned and balanced resonances of scattering coefficients
[51]. As we are interested in identifying these features over different wavelength ranges, a CNN is used here.

The three-layer particle considered here includes a plasmonic material and the overall diameter can be as
large as 280 nm. Therefore, we expect to achieve a reasonable scattering (and absorption) response across
350–700 nm, especially closer to the lower wavelength bound. As we get closer to 700 nm, the particle size is
too small compared with the wavelength to support multiple scattering harmonics. This gradual evolution
allows us to observe the trend of the inverse design based on the quality of the training data. Naturally, we
expect to see better results close to 350 nm. We also note that the choice of a three-layer plasmonic
nanoparticle allows for a variety of characteristics such as strong light–matter interaction at the
subwavelength scale, reasonable control on scattering and absorption properties across a wide range of
wavelengths, realistic choice of materials, and realistic fabrication constraints. On the other hand, the same
framework matches other relevant scenarios such as radio frequency antennas or optical nano-antennas,
where the scattering response is a combination of only few harmonics (i.e. dipole, quadrupole, etc).

Finally, we also note that since the denominator of σRatio is the scattering cross section, which can be very
small, this metric can reach very large values for particles with small scattering. Due to their typically small
absorption, these particles are not of our interest and will be removed from training, as detailed in the next
section.

3. Data generation and network configuration

For the dataset, we used Mie theory to model 2310 different particles (which corresponds to approximately
13 sampling for each scaling factor α1,2,3). After removing particles with extremely high σRatio, 1452 particles
are selected as a suitable dataset. Each datapoint has two input channels of σNorm and σRatio, defined in
equation (3), across 200 evenly spaced wavelengths. The outputs of each datapoint are the three scaling
parameters (α1, α2, and α3). All datapoints are augmented to include two additional input functions, to
specify the wavelength range of interest [57], for each metric. As discussed in the next section, for all the
designs we assume that these wavelength ranges are the same, i.e. σNorm and σRatio are optimized over the
same wavelength range indicated by R(λ). Each R(λ) is of a random length and is positioned to start at a
random wavelength. At each point R(λ) is either zero or one depending on the represented wavelengths.
Metrics in the original two channels are multiplied by their respective R(λ) to zero out the contribution
from outside the specific design region [57]. Each datapoint was combined with 25 R(λ) functions from a
pre-defined pool containing 300 (not necessarily unique) functions. This expands our dataset from 1452
datapoints to 36 300. Overall, 90% of datapoints are used for training and the remaining 10% are used for
testing. The minimum bandwidth of each R(λ) in the pool is 3% and the maximum bandwidth is 50% of the
overall maximum bandwidth (i.e. 350 nm). In addition, there is a 10% chance to generate R(λ) with only
zeros and an additional 10% chance to generate R(λ) with only ones.

The data we are using is spectral, so we used a residual 1D CNN with a 1D convolutional layer, five
residual blocks (ResBlock1D), and a flatten layer followed by a dense network. Each residual block consists of
three convolutions with Leaky ReLU (Leaky Rectified Linear Unit) activations and a skip connection. Also,
each residual block maintains its input size as the output size, and hence each one is followed by a max
pooling layer, cutting the size in half each time. This is done to take the original size of 200 wavelengths down
to a final size of 12 before flattening for the dense network. The model is trained and optimized using Adam
with the mean squared error as the loss function. A batch size of 128 and an initial learning rate of 5× 10−3

are used. The learning rate is decayed exponentially every 1000 steps with a rate of 0.92 [58, 59]. Figures 1(b)
and 2 illustrates network configuration and the training convergence, respectively.

4. Results and discussions

In the first step, we evaluate the performance of the trained network for physical test samples (figure 3).
Afterwards we will investigate inverse design for non-physical test samples (figures 4–6). For physical test
samples the inputs of the CNN are σNorm and σRatio for actual three-layer particles. We randomly pick these
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Figure 2. Training convergence of the model: (a) training, and (b) validation. Mean squared error is used as the loss function:

Loss= 1
n

n∑
i=1

(
yi,true − yi,predicted

)2
, where n is number of outputs (400 points) and y refers to either of the two metrics.

Table 1. Scaling parameters for figure 3. Actual values correspond to solid lines and predicted values correspond to dashed lines in
figure 3.

The panel
in figure 3 (a) (b) (c) (d) (e) (f) (g) (h)

α1: actual,
predicted

0.118, 0.126 0.171, 0.171 0.135, 0.141 0.157, 0.159 0.134, 0.167 0.181, 0.192 0.107, 0.095 0.088, 0.066

α2: actual,
predicted

0.736, 0.723 0.441, 0.436 0.558, 0.544 0.424, 0.39 0.51, 0.422 0.382, 0.417 0.072, 0.058 0.23, 0.105

α3: actual,
predicted

0.078, 0.08 0.705, 0.719 0.223, 0.12 0.422, 0.42 0.926, 0.927 0.48, 0.477 0.453, 0.411 0.6, 0.513

eight particles (as explained below), which in return implies that we expect the network to provide α
parameters that we are sure that they should exist. For non-physical test samples, on the other hand, we do
not start from any specific particles. Quite contrary, we assume σNorm and σRatio values that might be
physically inaccessible from particles made with characteristics shown in figure 1(a). In this case, we expect
the network to find the closest possible solution to such non-physical inputs [57].

Going back to physical test samples, the scattering responses of eight randomly chosen particles with
0< α2,α3 < 1 and 0< α1 < 0.2 are calculated using Mie theory. The results, along with eight different R(λ)
functions are fed into the inverse network shown in figure 1(b) to generate the predicted values of α1, α2,
and α3. Table 1 reports the actual and predicted values of these three parameters. We note that
electromagnetic problems are highly non-unique and different particles can create similar scattering and
absorption responses over limited bandwidths [40]. As such, the values reported in table 1 are not necessarily
the best measures to evaluate the performance of the network and the metrics must be directly compared.

Subsequently, the predicted values are used to calculate the metrics σNorm and σRatio across the
350–700 nm range by using the Mie theory. The results are summarized in figure 3. First, we chose R(λ) to
sweep the entire wavelength range in five equal steps of 70 nm width (figures 3(a)–(e)). Then, the effect of
changing bandwidth is investigated in the last three panels of figures 3(f)–(h), where the bandwidth is
changed between 52.5 nm, 35 nm, and 17.5 nm. Investigating figure 3, we observe a good performance from
the trained model, with slight peak shifts in (a), (b) and (f). The shift is more apparent when the
scattering/absorption spectrum has closely packed features, as in panel (f). Interestingly, and quite
expectedly, the predictions are less accurate when σNorm is small. In such cases, σRatio is very sensitive to small
changes in absorption and scattering and thus, the predictions become less accurate. These values, however,
are not of interest to us as we aim to design particles with reasonably high absorption levels.

Next, we use the same model, which has been trained in the previous step, to inverse design particles with
different levels of σNorm and σRatio near shorter wavelengths (figure 4). The function R(λ) is set to one for
wavelengths between 350 and 367.5 nm (5% of the overall bandwidth) and is set to zero everywhere else. In
these examples, the absorption metric σNorm is set to one, indicating a rather highly absorptive particle. This
particle would essentially absorb the same level of power as an ideal dipole absorber (a conjugate matched
dipole) which operates at the same wavelengths [51]. σRatio is also varied between 0.25 and 4.75 (see the
caption of figure 4 for more details). The smaller values of σRatio indicate that the majority of the interaction
of the incident wave with the particle is toward scattering. Although the particle is a good absorber, it still
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Figure 3. Inverse design performance of physical test samples. (a)–(h) σNorm (red-dashed) and σRatio (blue-dashed) calculated
based on the predicted values of α1, α2, and α3. The solid lines indicate the desired response.

Figure 4. Inverse design performance of non-physical test samples. (a)–(l) σNorm (red-dashed) and σRatio (blue-dashed) calculated
based on the predicted values of α1, α2, and α3. The solid lines indicate the desired response. σNorm is fixed at 1 in all panels, and
σRatio is set to (a) 0.25, (b) 0.5, (c) 0.75, (d) 1, (e) 1.25, (f) 1.75, (g) 2.25, (h) 2.75, (i) 3.25, (j) 3.75, (k) 4.25, and (l) 4.75. The
relative prediction error is indicated at the top of each panel.

scatters a significant amount of power, which in the sensor/antenna design realm, would be considered as
wasted power. Larger values of σRatio, on the other hand, indicate that the particle mainly absorbs the
incident power, without any additional and unnecessary scattering [60, 61]. While σRatio may be chosen as
large as desired and without violating the optical theorem [51, 62], the physical size of the particle imposes a
limit on the maximum number of scattering harmonics that may be realistically excited. As such, we set the
maximum value of σRatio at around 5.

Figure 4 summarizes the performance of the model in this scenario. The gradual increase in the level of
σRatio can be clearly observed between different cases. An intuitive measure of relative error is also defined as
the mean value of the difference between the ideal and inverse designed metrics, also reported in figure 4.

Next, we evaluate the performance of the model for the same trend of desired metrics over 437.5–455 nm
(figures 5(a)–(h)) and 595–612.5 nm (figures 5(i)–(l)), each covering 5% of the overall bandwidth but now
moving toward longer wavelengths. Inspecting figure 5, the importance of the quality of training data is

6



J. Phys. Photonics 5 (2023) 024002 A Vallone et al

Figure 5. Inverse design performance of non-physical test samples. (a)–(l) σNorm (red-dashed) and σRatio (blue-dashed) calculated
based on the predicted values of α1, α2, and α3. The solid lines indicate the desired response. σNorm is fixed at 1 in all panels, and
σRatio is set to (a) 0.25, (b) 0.75, (c) 1.5, (d) 2, (e) 2.75, (f) 3.25, (g) 4, (h) 4.75, (i) 0.25, (j) 1.25, (k) 2.25, and (l) 3.25. The relative
prediction error is indicated at the top of each panel.

evident. As mentioned before, for the training of this model, we have used particles with a maximum radius
of 140 nm. For such particles, the scattering and absorption values are typically smaller and featureless for
longer wavelengths. In particular, for small values of scattering, σRatio does not follow a meaningful physical
behavior and creates an unsuitable training data. Consequently, the relative error for longer wavelengths is
higher and the model simply cannot predict a meaningful response. We emphasize that the model was
trained with only 1306 different particles and increasing the number of training data and maximum radius
can, in principle, improve the performance at larger wavelengths.

Comparing the results in figure 3 with figures 4 and 5, an immediate observation is the importance of
choosing the design goal [57]. The model performs well when provided with physically accessible metrics (as
in figure 3), yet for non-physical flat σNorm and σRatio functions, even across a small bandwidth of 17.5 nm,
the performance deteriorates. This is understandable by inspecting the width of typical resonance peaks in
these figures (e.g. figures 4(c) and 5(a)). To accommodate for the possibility of near-resonance response and
without enforcing the presence of a resonance at the design point, next, we slightly modify the metrics to
include different relative slopes. For each pair of desired σNorm and σRatio, nine different objectives are
generated, where:

(i) σNorm and σRatio are both flat,
(ii) σNorm is flat and σRatio has a positive slope,
(iii) σNorm is flat and σRatio has a negative slope,
(iv) σNorm has a positive slope and σRatio is flat,
(v) σNorm has a negative slope and σRatio is flat,
(vi) σNorm has a negative slope and σRatio has a positive slope,
(vii) σNorm has a positive slope and σRatio has a negative slope,
(viii) σNorm and σRatio both have positive slopes,
(ix) σNorm and σRatio both have negative slopes.

We then pick the best overall performance out of the nine alterations of the same objective. In this
example, σNorm is again set around one (with a slope), maintaining a high absorption level, and σRatio is again
between 0.25 and 4.75 (with a slope, see the caption of figure 6 for more details) across the same three
wavelength ranges as before. Figure 6 reports the best overall inverse designs along with the desired response
and their relative slopes (each panel is the best out of nine objectives listed above). Inspecting
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Figure 6. Inverse design performance of sloped non-physical test samples. (a)–(t) σNorm (red-dashed) and σRatio (blue-dashed)
calculated based on the predicted values of α1, α2, and α3. The solid lines indicate the desired response. σNorm is fixed around 1 in
all panels, and σRatio is varied. Three different wavelength ranges are considered:(a)–(j) 350–367.5 nm, (k)–(p) 437.5–455 nm,
and (q)–(t) 595–612.5 nm. For each panel, the average of σRatio is set to: (a) 0.25, (b) 0.75, (c) 1.25, (d) 1.75 (e) 2.25, (f) 2.75,
(g) 3.25, (h) 3.75, (i) 4.25, (j) 4.75, (k) 0.25, (l) 1.25, (m) 2.25, (n) 3.25, (o) 3.75, (p) 4.75, (q) 0.25, (r) 1.25, (s) 2.75, and (t) 4.75.

figures 6(a)–(j), it can be seen that the addition of artificial slopes to the objective clearly improves the
performance. For longer wavelengths (figures 6(k)–(t)), the results are still affected by the quality of training
data over these wavelengths, yet importantly, they are also improved compared to figure 5.

5. Conclusions

Machine learning has been used for scattering simulation and inverse design [29, 63], multipole placement
[41, 57], and scattering reduction in nanoparticles [46]. Here, we adapted the region-specified design
approach to design highly absorptive nanoparticles with different levels of relative scattering. We investigated
the case of∼1400 datapoints for the training since the dataset generation is typically a computationally
expensive task for electromagnetic problems. Our results indicate that if the training data is of good quality,
the model can successfully accomplish the goals of the inverse design. We also showed that the performance
of the model can be well-boosted by choosing objectives to mimic the physical response of the system. Our
results are relevant to the design of nanoparticles for biological, chemical, and optical applications as well as
the design of low-scattering absorbers and antennas.
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[10] Lin Z, Lončar M and Rodriguez A W 2017 Opt. Lett. 42 2818–21
[11] Hughes T W, Minkov M, Williamson I A and Fan S 2018 ACS Photonics 5 4781–7
[12] Callewaert F, Velev V, Kumar P, Sahakian A V and Aydin K 2018 Sci. Rep. 8 1–8
[13] Mohammadi Estakhri N and Engheta N 2020 C. R. Physique 21 625–39
[14] Mohammadi Estakhri N, Edwards B and Engheta N 2019 Science 363 1333–8
[15] Carroll L, Gerace D, Cristiani I, Menezo S and Andreani L C 2013 Opt. Express 21 21556–68
[16] Gagnon D, Dumont J and Dubé L J 2013 Opt. Lett. 38 2181–4
[17] Cong L, Manjappa M, Xu N, Al-Naib I, Zhang W and Singh R 2015 Adv. Opt. Mater. 3 1537–43
[18] Zhou Y, Wang B, Guo Z and Wu X 2019 Nanomaterials 9 837
[19] Estakhri N M and Norris T B 2021 Opt. Express 29 14245–59
[20] Weile D S and Michielssen E 1997 IEEE Trans. Antennas Propag. 45 343–53
[21] Robinson J and Rahmat-Samii Y 2004 IEEE Trans. Antennas Propag. 52 397–407
[22] Forestiere C, Pasquale A J, Capretti A, Miano G, Tamburrino A, Lee S Y, Reinhard BM and Dal Negro L 2012Nano Lett. 12 2037–44
[23] Jafar-Zanjani S, Inampudi S and Mosallaei H 2018 Sci. Rep. 8 1–16
[24] Zhu D Z, Whiting E B, Campbell S D, Burckel D B and Werner D H 2019 ACS Photonics 6 2741–8
[25] Im C H, Jung H K and Kim Y J 2003 IEEE Trans. Magn. 39 2163–9
[26] Yu Z, Cui H and Sun X 2017 Photon. Res. 5 B15–B19
[27] Kudyshev Z A, Kildishev A V, Shalaev V M and Boltasseva A 2021 Nanophotonics 10 371–83
[28] Liu Z, Zhu D, Raju L and Cai W 2021 Adv. Sci. 8 2002923
[29] Peurifoy J, Shen Y, Jing L, Yang Y, Cano-Renteria F, DeLacy B G, Joannopoulos J D, Tegmark M and Soljačíc M 2018 Sci. Adv.
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