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Abstract

SARS-CoV-2 mutation is minimized through a proofreading function encoded by NSP-14. Most estimates of the SARS-
CoV-2 mutation rate are derived from population based sequence data. Our understanding of SARS-CoV-2 evolution might
be enhanced through analysis of intra-host viral mutation rates in specific populations. Viral genome analysis was performed
between paired samples and mutations quantified at allele frequencies (AF)>0.25,>0.5 and >0.75. Mutation rate was deter-
mined employing F81 and JC69 evolution models and compared between isolates with (ANSP-14) and without (wtNSP-14)
non-synonymous mutations in NSP-14 and by patient comorbidity. Forty paired samples with median interval of 13 days [IQR
8.5-20] were analyzed. The estimated mutation rate by F81 modeling was 93.6 (95%CI 90.8-96.4], 40.7 (95%CI 38.9-42.6)
and 34.7 (95%CI 33.0-36.4) substitutions/genome/year at AF >0.25,>0.5,>0.75 respectively. Mutation rate in ANSP-14
were significantly elevated at AF>0.25 vs wtNSP-14. Patients with immune comorbidities had higher mutation rate at all
allele frequencies. Intra-host SARS-CoV-2 mutation rates are substantially higher than those reported through population
analysis. Virus strains with altered NSP-14 have accelerated mutation rate at low AF. Immunosuppressed patients have
elevated mutation rate at all AF. Understanding intra-host virus evolution will aid in current and future pandemic modeling.
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Background

Since the onset of the pandemic, evolution of SARS-CoV-2
has produced multiple variants associated with changes in
disease severity and transmission dynamics [1]. The rate
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of SARS-CoV-2 mutation is commonly estimated using
population based approach predicted through phylogenetic
analysis of global databases comprised of unrelated virus
sequences submitted ad hoc[2, 3]. This population-based
rate began at a modest 21.9 substitutions/genome/year in the
initial months and is now estimated at ~28.4 substitutions/
genome/year [4]. However, few studies quantify the viral
mutation rate within infected individuals. Our understand-
ing of this virus’ ability to mutate during the course of an
infection and those viral and host factors which may impact
this rate is minimal.

The mutation rate of SARS-CoV-2 genome is slower
than most RNA viruses predominantly through the action
of nonstructural protein 14 (NSP-14) [5]. NSP-14 is present
in all coronaviruses and contains an N-terminal exonuclease
(ExoN) domain providing replication fidelity for the RNA
dependent RNA polymerase [6—8]. Mutagenesis or inactiva-
tion of ExoN was shown to increase genomic diversity and
creates a “mutator phenotype,” leading to a 15- to 21-fold
rise in mutations during replication but adversely affects
viral fitness [7, 9].
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Additionally, viral mutation can be influenced by host
factors [10, 11]. Descriptions of higher mutation rates
occurring in immunosuppressed individuals with chronic
SARS-CoV-2 infection have been reported [12—14]. Con-
sequently, there is concern that novel variants may emerge
within such hosts [15]. However, there is little data on
SARS-CoV-2 mutation dynamics in patients with cardio-
vascular diseases, endocrine disorders or pulmonary condi-
tions despite also having more severe and prolonged infec-
tions [16].

Here, we perform paired analysis of SARS-CoV-2
infected patients and calculate the intra-host mutation
rate. Additionally we determine if changes to NSP-14 or
host comorbidity alter this rate. Insight on this virus’s
ability to evolve has importance for accurate prediction
modelling in current and future coronavirus pandemics
[17].

Methods
Sample identification and collection

Patient samples were identified through The Cleveland
Clinic Pathology and Laboratory Medicine Institute (PLMI)
SARS-CoV-2 variant surveillance project[1]. Selected sam-
ples focused on the period of the initial pandemic wave
between 3/17/2020 and 5/27/2020. By selecting this period,
we aimed to minimize external factors which could influ-
ence the viral mutation rate. This selected period had lim-
ited treatment options beyond supportive care and preceded
preventive measures such as immunization and monoclonal
antibodies. Additionally, it was unlikely that individuals had
prior immunity to SARS-CoV-2 during this time frame.
Adults age > 18 years with multiple positive nasopharyn-
geal samples occurring within 5 to 60 days of initial screen-
ing were identified. This interval time frame was selected to
prevent skewing of model results from short sampling inter-
vals while further minimizing chance of re-infection [10,
18]. Only pairings where initial and subsequent samples had
cycle threshold (CT) <30 were included to ensure high qual-
ity genomic sequencing. Children < 18 years were excluded
as identification of SARS-CoV-2 in children during the ini-
tial pandemic wave was minimal. Those specimens with an
indeterminate result, obtained from locations other than the
nasopharynx, or whose samples contained discordant viral
lineages (suggesting reinfection) were also excluded.
Patient comorbidities were identified through the COVID-
19 registry [19]. Patients were classified into four comor-
bidity categories: Endocrine (obesity and diabetes mel-
litus), cardiac (hypertension and coronary artery disease),
pulmonary (asthma, obstructive sleep apnea and COPD)
and immunologic (autoimmune diseases, history of prior/
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current cancer and current immunosuppression therapy).
Sample collection and medical review is approved by the
Internal Review Board at Cleveland Clinic.

Library preparation and sequence data analysis

Following patient identification, initial and subsequent naso-
pharyngeal samples were retrieved from Biobank freezers
housed at PLMI and processed for viral genome analysis
though next generation sequencing (NGS). Total nucleic
acids were purified from each specimen and subjected
to reverse transcription (RT), NGS library preparation,
sequencing, and data analysis according to the manufac-
turer’s recommendation (Paragon Genomics, Hayward CA)
[20]. Briefly: Total RNA from SARS-CoV-2 was converted
into complementary deoxyribonucleic acid (¢cDNA) synthe-
sis via RT in 20 pL reactions (10 min at 8 °C and 80 min
at 42 °C). The derived panel of 343 amplicons utilized for
SARS-CoV-2 enrichment covers 99.7% of the viral genome
(MN908947/NC_045512.2) with 92 bases uncovered at each
end. Purified cDNA was subject to multiplex PCR (10 min
at 95 °C, followed by 10 cycles at 98 °C for 15 s each and
60 °C for 5 min). Excess primers and oligonucleotides were
subsequently removed from the purified PCR products, after
which a second round of PCR to append indexing primers
was performed (initial denaturation, 10 min at 95 °C, fol-
lowed by 24 cycles of 98 °C for 15 s and 60 °C for 75 s).
Sequencing libraries were then prepared and quality was
assessed visually using an Agilent® 2100 Bioanalyzer®
(Agilent, Santa Clara CA). The presence of a~275 bp peak
indicated successful amplification and these libraries were
then sequenced using a MiSeq instrument (Illumina, San
Diego, CA). Raw fastq reads was extracted by Illumina
bcel2fastq (v2.20.0) and mapped to the reference genome
Wuhan-Hu- 1 (NC_045512.2) using BWA program [21].
Variants were called using FreeBayes program [22] and fil-
tered at 5% and 10% allele fractions for insertion or deletion
(INDEL) and single nucleotide variants (SNV), respectively.
Amino acid changes were annotated using snpEff (v4.5) pro-
gram [23]. All variant data was visually examined in Integra-
tive Genome Browser (IGV, version 2.11.0) [24] to eliminate
artifacts. Quality was ensured by monitoring mapping qual-
ity, phred score, and manual review. Sequences used in this
study were submitted to GISAID database and accession
numbers are available upon request.

Variant calling

Analysis of SARS-CoV-2 mutations within a host during
the course of an infection have been highly variable and are
affected by sequencing protocols and data analysis param-
eters (i.e. variant-calling) [15, 25]. Variant calling meth-
odology is strongly dependent on the library protocol and
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sequencing technology and requires tuning of parameters
to distinguish true variants from false positive calls [26].
Variant calling was expanded from established WHO crite-
ria [27] and was performed by manual review of each SNV
by three independent investigators through IGV [24]. We
used a minimum depth of > 100 reads at each position for all
samples and quantified SNV at 3 separate allele frequencies
(AF>0.25, AF>0.5, and AF>0.75). AF was defined as the
proportion of SNV in the sample reads. Mutation change
represents the discordance in SNVs between initial and the
subsequent samples at each AF. In addition, SNVs below
0.25 AF and those mutations where investigator consensus
was not achieved were excluded from the analysis.

ANSP-14 and wt NSP-14 group assignment

Following viral genome analysis, patients with any isolates
(either initial or subsequent) containing non-synonymous
mutations of NSP-14 (ORF 1la/b amino acid position 5930
to 6450) were placed in the ANSP-14 group. As our under-
standing of SARS-CoV-2 NSP-14 is evolving, no weight
was given to mutation types (Missense vs frameshift vs
nonsense) or location within NSP-14 (active vs structural
site).

Calculation of genome mutation rate

Changes in genome between initial and subsequent sam-
ples were quantified for each pair and used for calculation
of mutation rate (standardized to mutations/genome/year)
through both F81 and JC69 models. Given the limited
sample size, we chose to employ two mutation models
(F81 and JC69) for estimating the overall substitution rates
among samples. These two models were selected because
they assume uniform mutation rates across nucleotides
(A,T,C,G), thereby reducing the number of parameters
required [28, 29]. JC69 also assumes equal base frequen-
cies indicating that mutation rate is assumed to be constant
over time and across all nucleotide changes. Whereas F§81
allows for variable base frequencies with equal over time
providing a more realistic calculation of the mutation rate.
For both models, mutation rates were estimated by the use
of maximum likelihood algorithms. Hereafter, the results
detail findings from the F81 model while results detailing
findings from the JC69 analysis appear in the supplemen-
tary materials.

F81 model derivation

For each of the n patients, we obtained two virus specimens
at different time points and the time interval is denoted as

1, for patient k. To obtain the maximum likelihood estimate
of the mutation rate based on the evolutionary model F81,
we assume all the patients are independent. Therefore, the
likelihood of the data (L) is the product of the likelihood (L)
of each patient k, measuring the probability of observing the
sequence evolving over time f,. Because for each patient,
both initial and subsequent sequences were available, under
the assumption that all the nucleotides are independent, the
probability L, is the product of the probability over all nucle-
otides. Under the model F81, the probability that a nucleo-
tidei (€{A, T, G, C}) remains unchanged over time ¢ is

Pi(u) =e* +p,(1 —e™)

and the probability of a nucleotide i to change to a nucleotide
j over time 7 is

ij(/”) = Pj(l — e

where u is the mutation rate per nucleotide per year, and p,
is the frequency of nucleotide i. Let /5, denote the number
of nucleotide i changed to nucleotide j for patient k (in the
case of i is the same as j, the nucleotide remains unchanged),
the overall likelihood can thus be represented as

n n T T
L=TTta=TTTTTT b Pitoe)]
k=1 k=1 i=A j=A

where p,, is the frequency of nucleotide i in the first speci-
men of the kth patient (in practice, these frequencies are very
similar to the frequencies from the SARS-CoV2 reference
sequence). The log likelihood is

n T T
l=log(L)=C+ Z Z Z l(ij),klog(Pij(/,ttk))]
k=1 i=A j=A

The maximum likelihood estimate cannot be obtained
analytically. We relied on the Newton—Raphson method
[30], which iteratively updates the new value of the muta-
tion rate u until convergence.

The detailed derivations for both F81 and JC69 models
can be found in the supplementary methods.

Statistical analysis

Continuous variables were described using median and
range; categorical variables were described using frequency
and percentage. Demographics and variant characteristics
were compared between patients in different virus groups by
using ANOVA or Wilcoxon rank sum tests for continuous
variables and Fisher’s exact or Pearson’s chi-square tests
for categorical variables. The estimated mutation rates from
two different groups are compared using the t-test, assuming
the maximum likelihood estimates follow approximately a
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Table 1 Patient demographics

] ¢ Total wt NSP-14 A NSP-14 p-value
of paired SARS-CoV-2 isolates

Total pairs 40 28 (70.0%) 12 (30.0% )

Median interval (days) [ IQR ] 13 [8.5, 20] 13 [8.5, 20] 14 [8.5, 20] 0.72°

Demographics
Median Age (yr) [IQR] 54 [31, 66] 56 [31, 69] 53 [32, 62] 0.65°
Males 20 (50.0%) 14 (50.0%) 6 (50.0%) 0.99¢
Race* 0.46¢
White 26 (67.0%) 16 (59.0%) 10 (83.3%)
African American 10 (26.0%) 8 (30.0%) 2 (16.7%)
Asian 3(7.5%) 3 (11.0%) 0 (0% )

Comorbidity
Any 28 (70.0%) 19 (67.9%) 9 (75.0%) 0.72¢
Endocrine 23 (57.5%) 14 (50.0%) 9 (75.0%) 0.14°
Cardiac 17 (42.5%) 12 (42.9%) 5 (41.7%) 0.94°¢
Pulmonary 8 (20.0%) 5(17.9%) 3 (25.0%) 0.68¢
Immune/oncologic 6 (15.0%) 4 (14.3%) 2 (16.7%) 0.994

*Data not available for all subjects. Missing values: Race = 1.
Statistics presented as Median [P25, P75], N (column %).
P-values: b=Wilcoxon Rank Sum test, c=Pearson's chi-square test, d=Fisher's Exact test

normal distribution. The confidence interval of the estimated
mutation rate is calculated based on the maximum likelihood
estimate following approximately a normal distribution N(u,
1/I(u)), where u is the true value, and I(u) is the Fisher infor-
mation. PRISM software (version 8.4.3, GraphPad Software,
San Diego, CA) and Python (version 3.7.4) with statsmodel
package (version 0.13.2, for construction of ML models)
was used for analysis.

Results

From 3/17/2020 through 5/27/2020, a total of 40 paired naso-
pharyngeal samples (initial and subsequent) from acutely
infected individuals with SARS-CoV-2 were identified and
retrieved from the COVID19 biobank. Median days between
paired tests was 13 days [IQR 8.5-20]. Median patient age
was 54 years [IQR 31, 66], included 20/40(50.0%) males
with 26/40 (67.0%) being white, and with 28/40 (70.0%)
having at least one comorbidity (Table 1). Comorbidities
included endocrine 23/40 (57.5%), cardiac 17/40 (42.5%),
pulmonary 8/40 (20.0%) and Immune/Oncologic 6/40
(15.0%).

SARS-CoV-2 genomes of each pair were sequenced
and mapped against the reference Wuhan strain (Wuhan-
Hu-1, NC_045512.2). SNVs were identified for each
pairing through IGV and filtered at allele frequencies
(AF)>0.25,>0.5 and >0.75. A total of 120 SNVs changes
between initial and subsequent samples were identified at
AF>0.25,53 at AF>0.5 and 33 at AF>0.75 (Table 2). The
majority of SNV changes were gained over the course of the
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Table2 Type and Location of SARS-CoV-2 Intra-host SNVs by
Allele Fraction

AF>0.25 AF>05% AF>0.75
%

SNV changes 120 53 (44.2) 33 (35.0)
Mutations Gained 93 (77.5%) 32 (60.4) 18 (54.8)
Mutations Lost 27 (22.5%) 21 (39.6) 15 (45.2)
Missense 71 (59.2%) 36 (67.9) 23 (69.7)
Silent 30 (25.0%) 11 (20.8) 7 (21.2)
INDEL 2 (1.6%) 2 (3.8) 1(3.0)
Other 17 (14.2%) 4(7.5) 2(6.1)
ORF1 a/b 82 (68.3%) 36 (67.9) 26 (61.9)
ORF3 4(3.3%) 3(5.7) 3(7.1)
ORF6 2 (1.7%) 1(1.9) 1(2.4)
ORF7 1(0.8%) 0(0) 0 ()
ORF8 3(2.5%) 2 (3.8) 2 (4.8)
ORF10 1(0.8%) 0(0) 0(0)
Spike 16 (13.3%) 6(11.3) 5(11.9)
Membrane 2 (1.7%) 1(1.9) 1(2.4)
Envelope 0 (0%) 0(0) 00
Nucleocapsid 6 (5.0%) 4.(7.5) 4.(9.5)
Untranslated region (UTR) 3 (2.5%) 0(0) 00

infection (93/120 (77.5%), 32/53 (60.4%), 18/33 (54.8%) at
AF>0.25,>0.5,>0.75 respectively). Predominant SNVs
were missense with most occurring in the ORF1a/b region
and the spike protein region. While more SN'Vs were gained
at low AF, there was no substantial difference between SNV
types or gene location among different AF.
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F81 Mutation Modeling by Allele Frequency with and without alteration in NSP-14
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Allele Frequency Allele Frequency
Total (n=40) wt NSP-14 (n= 28) ANSP-14 (n=12)
Mutation rate Mutation rate Mutation rate p-value

(Subs/genome/year) [95% CI] (Subs/genome/year) [95% ClI] (Subs/genome/year) [95% CI]

AF 2 >0.25 93.6 [90.8-96.4] 86.0 [82.1-89.9] 109.4 [99.7-119.1] <0.001
F81 AF 2 >0.5 40.7 [38.9-42.6] 44.9 [42.1-47.7] 32.0[26.8-37.2] <0.001
AF 2 >0.75 34.7 [33.0-36.4] 39.8 [25.0-54.5] 16.0[7.0-25.1] <0.001

Fig. 1 F81 Mutation Modeling by Allele Frequency with and without
alteration in NSP-14. Graphic representation of F81 evolution mod-
eling at AF>0.25,>0.5,>0.75 of A total patient sample and B com-

We identified 12/40 (30.0%) pairs with a non-synony-
mous mutation in NSP-14 (ANSP-14). Median age, gender,
race and comorbidities were similar between both groups.
Of NSP-14 mutations (n=15), 11/15 (73.3%) were identi-
fied in the subsequent sample only while the remainder 4/15
(26.7%) occurred in both initial and subsequent samples. For
both ANSP-14 and wtNSP-14 groups, the majority of SNVs
were gained over the course of infection. Mutation types
and locations were similar between groups (supplementary
table 1 and 2).

Mutation rates were calculated through the F81 and JC69
models (Fig. 1, supplementary Fig. 1 for JC69). Focus-
ing on F81 modeling, the mutation rate from all samples
was found to be 93.6 substitutions/genome/year [95%CI
90.8-96.4] at AF>0.25, 40.7 [95% CI 38.9-42.6] at
AF>0.5 and 34.7 [95%CI 33.0-36.4] at AF >0.75. Muta-
tion rate of ANSP-14 were significantly higher at low AF
compared to wtNSP-14 group (109.4 [95%CI 99.7-119.1]
vs 86.0 [95%CI 82.1-89.9] substitutions/genome/year,
p-value < 0.001). Interestingly, mutation rates were lower
in ANSP-14 compared to wtNSP-14 both at AF>0.5 (32.0
[95% CI 26.8-37.2] vs 44.9 [95% CI 42.1-47.7] substitu-
tions/genome/year, p-value <0.001) and at AF>0.75 (16.0

parison between wt and ANSP-14. Bars represent 95%CI. Table dis-
playing data for F81 modeling is displayed below. P-values displayed
represent comparison of wt and ANSP-14 groups

[95% CI 7.0-25.1] vs 39.8 [95% CI 25.0-54.5] substitutions/
genome/year, p-value <0.001).

Lastly, patients with underlying immunologic/onco-
logic comorbidities had substantially higher mutation rates
than other comorbidities at all three AF (Fig. 2, supple-
mentary Fig. 2 for JC69). Mutation rates in patients with
immunologic/oncologic comorbidities were 160 [95% CI
136.2-183.7] vs 81.2 [95% CI 78.1- 84.2] substitutions/
genome/year at AF>0.25, 137.9 [95% CI 115.8-160.0]
vs 22.6 [95% CI 21.0-24.2] at AF>0.5 and 126.9[95% CI
105.7-148.0] vs 17.4 [95%CI 16.0-18.9] at AF>0.75.

Overall mutation rates calculated through JC69 modeling
were comparable to those with F81 at all three AF (sup-
plementary Fig. 3). Results based on JC69 modeling are
presented in Supplementary Figs. 1 and 2.

Discussion

SARS-CoV-2 has lead to the emergence of new variants
adversely affecting pandemic response [31]. The mutation
rate commonly cited is calculated through analysis of unre-
lated regional and global sequences. These population based
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F81 Mutation Clock Modeling by Allele Frequency with Respect to Age and Comorbidity

; F81 Modelin
b’;sgoh:'no:rﬂilgigy Immune Comorl;gdity
5 200 o Immune E 0 + Absent
% 150 % % 4 Any Comorbidity E 150 % % o Present
A g } v Cardiac B g %
ga’ 100 ; + Endocrine % 100 )
? Pulmonary 5
'«g;- 50 L i % A Age>50 g 50 .
: ) 8 0
: 20.25 205 2075 20.25 20.5 20.75
Allele Frequency Allele Frequency
Allele Frequency Mutation Rate (subs/genome/yr) 95% CI
AF 20.25 93.6 90.8-96.4
Total (n=40) AF 20.5 40.7 38.9-42.6
AF 20.75 34.7 33.0-36.4
AF 2 0.25 99.3 88.8-109.8
Age > 50 (n=22) AF>05 416 34.8-48.5
AF 2 0.75 36.8 30.4- 43.3
AF20.25 107.9 103.4-112.3
Medical Comorbidity (n=28) AF20.5 45.4 42.5-48.2
AF 2 0.75 39.2 36.6-41.2
AF 2 0.25 89.2 84.6-93.6
Endocrine (n=23) AF>0.5 33.1 30.3-35.9
AF 2 0.75 25.9 23.4-28.4
AF 2 0.25 80.1 74.2-86.1
Cardiac (n=17) AF20.5 21.5 18.4-24.6
AF 2 0.75 17.6 14.8-20.4
AF 20.25 67.54 57.0-78.0
Pulmonary (n=8) AF>0.5 13.5 8.8-18.2
AF 2 0.75 13.5 8.8-18.2
AF 2 0.25 160.0 136.2-183.7
Immune/Oncologic (n=6) AF20.5 137.9 115.8-160.0
AF 20.75 126.9 105.7-148.0

Fig.2 F81 Mutation Clock Modeling by Allele Frequency with
Respect to Age and Comorbidity. Graphic representations of muta-
tion rates at AF>0.25,>0.5,>0.75 for A age and comorbidities and

rates have ranged from 21.6 to 28.4 substitutions/genome/
year [4]. The rate of evolution of SARS-CoV-2 was seem-
ingly slow during the pandemics initial months with several
reports suggesting the virus acquiring only two mutations
per month [32, 33]. However, recently the viral mutation
rate has accelerated and now lies at its fastest point with the
emergence of the Omicron variant [34].

Here, we analyze intra-host viral mutation rates at mul-
tiple allele frequencies to better characterize and under-
stand the capacity for SARS-CoV-2 to evolve following
its initial introduction and prior to external influence by
antivirals, vaccinations and prior immunity. While intra-
host mutation dynamics have been previously described
[35], the intra-host mutation rate over the course of an
infection, needed for pandemic prediction has been poorly
studied. We find the intra-host mutation rate was over 50%
greater than estimated through population based surveil-
lance at AF >0.75 (the WHO standard). Moreover, the
intra-host mutation rate may be even higher if analyses
include SNV with lower AF, 80% higher at AF>0.5 and
nearly 350% greater at AF>0.25. Recognition that low
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B those with and without immunologic/oncologic comorbidity. Bars
represent 95%CI. Table displaying data for F81 modeling is displayed
below

frequency SNV contribute substantially to the estimated
viral mutation rate, especially if these mutations serve as
a reservoir for the generation of dominant mutations, may
aid in our understanding of the evolutionary dynamics
of this virus and could be useful in planning response to
future coronavirus pandemics [36, 37].

By analyzing the genomic changes at lower AF, our study
provides a better appreciation of intra-host SARS-CoV-2
diversity. We find the highest diversity at lowest AF (>0.25)
demonstrating that potential SNVs occur nearly 4 times
higher than when analyses are performed at the AF utilized
by the WHO (AF > 0.75). Fitness of these low frequency
SNVs and their effect on transmission remains poorly under-
stood. Current literature is skeptical of significant person to
person spread of low AF SNVs and report only rare trans-
mission recognized among individuals within the same
household [15, 25, 38]. However, it is suggested that acceler-
ated intra-host episodic increases in mutation rate (~ fourfold
higher than the background substitution rate) may drive the
emergence of variants of concern [39]. We hypothesize that
low AF SNVs could play a role in such a process.
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Prior studies report that alteration in NSP-14 is associated
with increased mutation load across the genome compared
to other NSP changes [40]. NSP-14 is vital for survival of
various coronaviruses including SARS-CoV-2 [41]. Inacti-
vating NSP-14-ExoN in murine hepatitis virus (MHV-CoV)
significantly altered recombination patterns and decreased
recombination frequency compared with wild-type MHV-
CoV [7]. While virus diversity has been found to contrib-
ute to disease severity in certain coronaviruses [36], further
studies showed ExoN knockout mutants of MERS-CoV
and SARS-CoV-2 are nonviable, suggesting excess muta-
tion may have a deleterious effect [8, 42]. Our findings are
consistent with this. While the mutation rate is significantly
higher in ANSP-14, such change occurs only at low AF. This
suggests SARS-CoV-2 viruses with altered NSP-14 may be
less fit or are less likely to undergo purifying selection [41].
In this regard, SARS-CoV-2 NSP-14 is now being evaluated
as a potential therapeutic target [7, 9].

Lastly, SARS-CoV-2 diversity and clinical outcome are
influenced by host environment [37]. There is evidence that
SARS-CoV-2 morbidity is worse in patients with underly-
ing comorbidities. To date, there is little data on SARS-
CoV-2 mutation rate in patients with cardiac, endocrine or
pulmonary comorbidities whereas several reports describe
elevated mutation rates in immunosuppressed individuals
[12—14]. Prolonged viral shedding can occur in immuno-
compromised patients allowing increased time to for virus to
acquire mutations [43]. In one example of a patient suffering
from advanced lymphocytic leukemia and B-cell lymphoma,
SARS-CoV-2 shedding was observed for 471 days. During
this infection an unusually high number of mutations was
detected and the mutation rate was calculated at 35.6 (95%
CI: 31.6-39.5) substitutions per year through the Bayesian
Skyline Model [44]. In our study, we included patients with
several comorbidities and find that only those viruses origi-
nating from hosts with immune comorbidities had acceler-
ated mutation rates [45]. This suggests that impaired host
immune responses may contribute to intra-host viral evo-
lution [44]. Better delineation of specific immune factors
associated with alteration of evolutionary rate are needed.

There are several limitations to this study. First, while
our pilot investigation of 40 SARS-CoV-2 patient pairs
demonstrated substantially higher mutation rate than com-
monly reported, further analysis with larger cohorts would
improve accuracy. Similarly, patients were grouped in broad
comorbidity categories rather than by more specific underly-
ing disease. Studies with greater characterization of under-
lying comorbidities, particularly immune, will provide a
better picture of host factors associated with alteration in
SARS-CoV-2 mutation [43, 46]. While a cutoff AF>0.75
was based on WHO guide for global variant surveillance,
the significance of lower frequency SNVs remains unclear.
This study sheds more light on the virus diversity present at

lower AF thresholds. By analyzing viral isolates obtained
from the initial pandemic wave, our study determined the
intra-host mutation rate of SARS-CoV-2 in the absence of
influence from external factors (e.g. antiviral medications,
monoclonal antibody therapy, immunization, and natural
immunity from prior infection). Determining the effect of
pharmacologic interventions, immunization and previous
infection on the mutation rate of subsequent SARS-CoV-2
isolates is a logical next step. Additionally, analysis of sub-
sequent SARS-CoV-2 variants (Alpha, Delta, and Omicron)
with parameter rich models such as HKY or GTR are cur-
rently being planned. Lastly, placement of patients within
wt and ANSP-14 groups occurred without association to
SNV location within the gene. It is possible that several NS
mutations placed in this group did not substantially affect
exonuclease function. Further study focusing on those SNV
with a defined effect on NSP-14 activity are needed [46].

Conclusion

Our study demonstrates the intra-host mutation rate of
SARS-CoV-2 is substantially higher than previously
reported through population-based analysis. In addition,
low frequency intra-host mutations may be an important
reservoir contributing to possible future variant emergence.
When an NSP-14 variant was detected, an increased muta-
tion rate was observed but only at low AF. In addition,
among immunocompromised patients, but not patients with
other co-morbidities, elevated mutation rates were observed
at all AF. Understanding SARS-CoV-2 intra-host evolution-
ary dynamics may have important implications for pandemic
planning, vaccine development and antiviral therapy.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11262-023-02011-0.
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