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Abstract. Generically computable sets, as introduced by Jockusch and
Schupp, have been of great interest in recent years. This idea of approxi-
mate computability was motivated by asymptotic density problems stud-
ied by Gromov in combinatorial group theory. More recently, we have
defined notions of generically computable structures, and studied in par-
ticular equivalence structures and injection structures. A structure is
said to be generically computable if there is a computable substructure
defined on an asymptotically dense set, where the functions are com-
putable and the relations are computably enumerable. It turned out that
every equivalence structure has a generically computable copy, whereas
there is a non-trivial characterization of the injection structures with
generically computable copies.

In this paper, we return to group theory, as we explore the generic
computablity of Abelian groups. We show that any Abelian p-group has
a generically computable copy and that such a group has a X';-generically
computably enumerable copy if and only it has a computable copy. We
also give a partial characterization of the ¥;-generically computably enu-
merable Abelian p-groups. We also give a non-trivial characterization of
the generically computable Abelian groups that are not p-groups.

Keywords: computability + generically computable - Abelian
p-group - X, elementary substructure

1 Introduction

Experts in mathematical logic and computability theory show that many inter-
esting problems are undecidable, that is, there is no algorithm for computing a
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solution to a given problem. Thus it is very important to find unconventional
ways in which a solution to the problem may be approximated. The notion
of dense computability for sets of natural numbers is that there is an algo-
rithm which computes the solution on an asymptotically dense set. The study
of densely computable, generically computable, and coarsely computable sets is
now well-established.

The classic motivating example which comes from structure theory is the
word problem for finitely generated groups. For many groups with undecidable
word problems, including a standard example from [11], the particular words
on which it is difficult to decide equality to the identity are very special words
(and are even called by this term in some expositions). Thus the problem can
be solved on a dense set.

In two recent papers [1,2], the authors have developed the notions of densely
computable structures and isomorphisms. This builds on the concepts of gener-
ically and coarsely computable sets, as studied by Jockusch and Schupp [5,6]
and many others, which have been a focus of research in computability. For
structures, the question is whether some “large” substructure is computable.

There are, roughly, two extremal possibilities (say, in the case of generic
computability):

1. Every countable structure has a generically computable copy, or
2. Any countable structure with a generically computable copy has a computable

copy.

It was shown in [1] that each of these can be achieved in certain classes, and
that they do not exhaust all possibilities.

The authors also explored these conditions under the added hypothesis that
the “large” substructures in question be, in some weak sense, elementary (that
is, elements of the substructure satisfy certain formulas which they satisfy in the
full structure). Again, we find that there are natural extremal possibilities, and
that both they and non-extremal cases are achieved.

Finally, we found that as the elementarity hypotheses are strengthened, all
known cases eventually (for X, elementarity at sufficiently large n) trivialize.
This demonstrates that these notions of dense computability are structural
they depend fundamentally on the semantics of the structure and not only on
the density or algorithmic features of the presentation.

1.1 The Model of Computation

It would be worthwhile to distinguish which results in computable structure the-
ory depend on a “special” (and potentially extremely rare) input, and which
are less sensitive. To achieve this goal in the context of word problems on
groups, Kapovich, Myasnikov, Schupp, and Shpilrain [8] proposed using notions
of asymptotic density to state whether a partial recursive function could solve
“almost all” instances of a problem.

Jockusch and Schupp [5] generalized this approach to the broader context of
computability theory in the following way. For a subset S of N.
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1. The density of S up to n, denoted by p,(S), is given by

1SM1{0,1,2,...,n—1}|
* .

2. The asymptotic density of S, denoted by p(S), is given by lim p,(S).

A set A is said to be generically computable if and only if there is a partial
computable function ¢ such that ¢ agrees with the characteristic function y 4
throughout the domain of ¢, and such that the domain of ¢ has asymptotic
density 1. A set A is said to be coarsely computable if and only if there is a total
computable function ¢ that agrees with x4 on a set of asymptotic density 1.

The study of generically and coarsely computable sets and some related
notions has led to an interesting program of research in recent years; see [6]
for a partial survey.

1.2 Densely Computable Structures

A structure A consists of a set A (the universe or domain of A), together with
finitely many functions {f; : i € I}, each f; of arity p;, and relations {R; : j € J},
each R; of arity r;. The structure A is said to be computable if the set A and the
functions and relations are all computable. A structure B which is isomorphic
to A is said to be a copy of A. Given a structure A, we want to consider what
it means to say that A is generically computable, or “nearly computable” in
some other notion related to density. We now present informal versions of the
definitions, which will be made precise in Sect. 2. The idea is that A is generically
computable if there is a substructure D with universe a computably enumerable
set D of asymptotic density one which is computable in the following sense:
There exist partial computable functions {¢; : i € I} and {¢; : j € J} such
that ¢; agrees with f; on the Cartesian product DP: and 1; agrees with the
characteristic function of R; on D"7. Similarly A is coarsely computable if there
is a computable structure £ and a dense set D such that the structure D with
universe I is a substructure of both A and of £ and all relations and functions
agree on D. A more interesting variation requires that D is a Xy elementary
submodel of A, more generally a X, elementary submodel. That is, if we are
saying that A is “nearly computable” when it has a dense substructure D which
is computable (computably enumerable), then the substructure should be similar
to A by some standard.

To be precise, recall that D is an X, elementary substructure of A provided
that, for any Xy formula ¢(z4,...,z,) and any elements a4, ...,a, € D,

AlEplay,...,a,) <= DEyp(al,...,a,).

We will say that the structure A is X, -generically computably enumerable if
there is an asymptotically dense set D such that

(a) D is a X,-elementary substructure of A;
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(b) there exist partial computable functions {¢; : i € I'} such that ¢; agrees
with f; on DPi;
¢) each R, restricted to D" is a computably enumerable relation.
J p ¥y

We remark that generically computable is the same as generically X, since
B is a submodel of A if and only if it preserves all quantifier-free formulas.

The outline of this paper is as follows. Section2 contains background on
asymptotic density, and gives the generalization of generic computability to
structures and isomorphisms. Section3 presents results on generically com-
putable and X, -generically computably enumerable Abelian groups. We show
that every countable Abelian p-group has a generically computable copy. We
characterize the class of countable Abelian groups which have generically com-
putable copies. We also characterize Abelian p-groups which have X;-generically
computably enumerable copies and those which have generically X5-generically
computably enumerable copies.

2 Background

In this section, we provide some background on the notions of asymptotic density
and generically computable sets. We define the more general notions of X, -
generically computably enumerable structures.

The asymptotic density of a set A C w is defined as follows.

Definition 1. The asymptotic density of A is lim,, Jﬂ{w, if this exists.

In [5], Jockusch and Schupp give the following definition, along with the
notion of coarsely computable sets, which we will not discuss here.

Definition 2. Let S C w. We say that S is generically computable if there is
a partial computable function @ : w — 2 such that ® = xg on the domain of @,
and such that the domain of @ has asymptotic density 1.

The most natural notion for a structure seems to be require that the sub-
structure with domain D resembles the given structure A by agreeing on certain
first-order formulas, existential formulas in particular. Throughout this paper,
X, represents the n’th level of the arithmetical hierarchy, as described in Soare
[12]. Other background on computability may also be found in [12].

We recall the notion of an elementary substructure.

Definition 3. A substructure B of the structure A is said to be a (fully) ele-
mentary substructure (B < A) if for any by,...,by € B, and any formula

d(xy,...,xx),
A ): ¢(b17*"7bk) ~— B |: ¢(b11"‘7bk)'

The substructure B is said to be a X, elementary substructure (B <,, A) if
for any by, ... ,bx € B, and any X, formula ¢(z1,...,xx),

A)qu)(bl,...,bk) — 3|=¢(bl,,bk)
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Definition 4. For any structure A:

1. A substructure B of A, with universe B, is a computable substructure if the
set B is c.e and each function and relation is computable on B, that is, for
any k-ary function f and any k-ary relation R, both f | B* and xr | B* are
the restrictions to B* of partial computable functions.

2. A substructure B of A, with universe B, is a computably enumerable (com-
putably enumerable) structure if the set B is computably enumerable, each
relation is computably enumerable and the graph of each function is com-
putably enumerable (so that the function is partial computable but also total
on B).

3. A is generically computable if there is a substructure D with universe a com-
putably enumerable set D of asymptotic density one such that the substructure
D with universe D is a computable substructure.

4. A is X, -generically computably enumerable if there is a dense computably
enumerable set D such that the substructure D with universe D is a com-
putably enumerable substructure and also a X, -elementary substructure of

A.

For n > 0, any X, .i-generically computably enumerable structure X,-
generically computably enumerable. For structures with functions but no rela-
tions, this also holds for n = 0. However, a computably enumerable substructure
might not be computable, so a structure .4 with relations which is X' -generically
computably enumerable is not necessarily generically computable.

Countable Abelian groups have been thoroughly studied by Kaplansky [7],
Fuchs [4] and many others. Here is some background from Fuchs [4].

Definition 5. Let A be an Abelian group and let p be a prime number.

1. A is a p-group if every element has order a power of p.

2. Alp| is the subgroup of elements with order a power of p.

3. The p-height htpﬁ(m) of an element x € A is the largest n such that p™ |z, that
18, there exists y such that p"y = .

4. A subgroup B of A is pure if, for every prime q and every b € B, htqs(b) =
hta"‘(b). The subscript ¢ will be omitted if it is clear from the context.

5. A is divisible if every element of A has infinite height, that is, for every
z € A and every n € N, there exists y € A such that x = n - y.

6. A group is reduced if it has no divisible subgroup.

For any prime p, the group Z(p™) may be realized as the rational numbers
with denominators a power of p, with addition modulo one. These groups are
said to be quasicyclic.

We need the following results from [4].

Theorem 1 (Baer). Every Abelian group is a direct sum of a divisible group
and a reduced group.

Theorem 2 (Priifer). A countable Abelian p-group is a direct sum of cyclic
groups if and only if it contains no elements of infinite height.
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Theorem 3 (Szele). Let B be a subgroup of the Abelian p-group A such that
B is the direct sum of cyclic subgroups of the same order p*, for some finite k.
Then B is a direct summand of A if and only if B is a pure subgroup of A.

The following standard result is Theorem 1 of Kaplansky [7].
Theorem 4. Any torsion group A is the direct sum of p-groups A|p|.

Definition 6. For an Abelian group A, the Ulm subgroup U(A) is the set of
elements of infinite height. This operation may be iterated to obtain the Ulm
sequence Ag = A, Ay = U(A), Ay = U(A,),... and eztended to the transfinite
ordinals by A* = NperAa and Aoy1 = U(AL). The length of a group is the
least o such that Ap41 = A,

Corollary 1. Let A be a countable Abelian p-group and let A = C & D, where
C has no elements of infinite height and D is divisible. Then A has the form

@i(w Z(pni) © @iﬂ_ik Z(p'x), where k < w.

In computability theory, the character x(A) of an Abelian p-group A is
defined to be the set

{(n,k) € (w\ {0})* : A has at least n factors of the form Z(p*)}.

We say that K C (w\ {0})? is a character if whenever (n + 1,k) € K, then
(n,k) € K. As for injection structures and equivalence structures, it is easy to
see that K is a character if and only if K = x(.A) for some Abelian p-group A.

Computable Abelian p-groups were studied by A. Morozov and the authors
in [3]. See Khisamiev [9] for more background.

Proposition 1 (Kulikov). For any countable Abelian p-group Aand any
n,k > 1, (n,k) € x(A) if and only if A has a pure subgroup isomorphic to
@i(n Z(pk)

Proposition 2. Let A be an Abelian p-group and let n and k be positive integers.
Then

1. There is a quantifier-free formula ¢, ;. such that, for any Abelian group A and
any ay,...,a, € A, ¢opr(ai,...,a,) if and only if ay, ..., a, are independent
elements each of order p*, that is, if and only if {a1) ® {a2) & --- @ (a,) is
isomorphic to @, _,, Z(p*).

2. There is a Xy formula 0, such that A |= 0, 1 if and only if A has a subgroup
of the form @,_,, Z(p**), with each k; > k.

3. There is a Xy formula v, ;. such that A |= ¥, x if and only if (n, k) € x(A),
that is, if and only if A has a pure subgroup of the form @, _, Z(p*).

This was used by Khisamiev [9] to obtain the following.
Theorem 5 (Khisamiev). For any computable p-group A, x(A) is a X9 set.

The following was shown in [3].
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Proposition 3. Let K be a X8 character and let p be a prime number. Then
there is a computable Abelian p-group A with character K and with infinitely
many divisible components.

Definition 7. A function f : w? — w is said to be an si-function if the following
hold:

1. For everyi and s, f(i,8) < f(i,s +1).

2. For every i, the limit m; = lim f(i,s) exists.
S—0O0

3. For every i, m; < m;41.

The character K is said to possess the s;-function f if (1,m;) € K for each
i. Here are some useful results about the characters of Abelian p-groups.
The next lemma is based on Corollary 2.11 and Corollary 2.14 of [3].

Lemma 1. For any X9 character K which is either bounded or possesses a
computable s1-function, there is a computable Abelian p-group A with character
K and no divisible factors.

3 2X,.-Generically Computably Enumerable Abelian
Groups

This section contains the new results about generically computably enumerable
Abelian groups. The following result is immediate from the definition of gener-
ically computable structures, and begins to suggest the ubiquity of generically
computable copies.

Lemma 2. Let A be an Abelian group, and B an infinite subgroup of A. If B
has a generically computable copy, then A has a generically computable copy.

The following phenomenon was unexpected when we first observed the anal-
ogous result for equivalence structures.

Proposition 4. Every countable Abelian p-group A has a generically com-
putable copy.

Proof. If the group A is finite, then of course it is computable. The proof for
countably infinite structures is in two steps. First, we show that A = (w,+4)
always has a subgroup B which is isomorphic to a computable group. Second,
we obtain a computable group D = (D, +p) isomorphic to B with universe D a
dense co-infinite set, and then extend D to generically computable C = (w, +¢)
isomorphic to A.

The first step is in three cases.

Case 1: A has a divisible subgroup B. Then it is known that B has a com-
putable copy.

Case 2: Every element of A has finite height. Then, by Theorem 2, A has
the form @@, Z(p™). Let {a; : i < w} be a set of generators for A, so that
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A = ®;(a;) and a; has order p™ For each i, p" la; has order p. Let B =
@;(p™~1a;). Then B is a subgroup of A isomorphic to ©;,Z(p), which is known
to have a computable copy.

Case 3: A has an element a of infinite height, but no divisible subgroup.
Without loss of generaility, we may assume that a has order p. Let a = ag, and
for each n > 0, choose a,, so that p™a,, = a. For any m € w, let A,,, = {p" ™a, :
n < w}. In particular, A; = {p" 'a, : n > 0}, so that every element of A; has
order p?. Every element of A,, has order p™+1.

Claim: A has an element b such that {z : pz = b} is infinite.

Proof of Claim: Suppose not. Then in particular A, is finite. We will con-
struct a divisible subgroup of A, contradicting our assumption. This will be
done by finding a sequence (b;);<. C {an : n < w} of elements of infinite height,
beginning with by = a, such that pb,41 = b, for each n. It will then follow
that {bp,b1,...} generates a divisible group. For each element b of A;, there is
some n so that b = p"~'a,. Given that A; is finite, there must be some b; such
that b, = p" 'a,, for infinitely many n. It follows that b has infinite height. Let
by = b and consider By = {p"~2a, : p"la, = b1 }. If By is infinite, then the
claim is established. If B; is finite, then, as above, there is some by € Bs such
that by = p"~2a,, for infinitely many n. Continuing in this way we reach one of
two outcomes.

(1) There will be some n such that {z : px = b, } is infinite.

or
(2) For each n, pb,+1 = by,. In this case, {b, : n = 1,2,...} will generate a
divisible subgroup.
This completes the proof of the Claim.
Thus we have found b such that C' = {z : pxr = b} is infinite.

Let b have order p". Then each element of C has order p"t1. It follows that
C generates an infinite subgroup B of A with all elements of order < p". The
group B is therefore isomorphic to a computable group, as desired.

Now let D = (D, +p) be computable and isomorphic to B, where D is asymp-
totically dense and co-infinite. Let H be a permutation of w which maps D to
B.

Define the extension C = (w,+¢) of D by

z+cy=H"(H(z)+4 H(y))

Then H is an isomorphism from C to A since H(z +¢ y) = H(z) +4 H(y).
In particular, for x,y € D,

s+cy=H '(H(z)+a H(y))=H '(H(z)+p H(y) =z +py,

since H is a group isomorphism from D to B.

It follows that D is a computable subgroup of C. Since D is a dense set, C is
generically computable. So A is isomorphic to a generically computable group,
as desired. O
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Next, we consider countable Abelian groups in general. For each such group
A, let Alp| = {z € A:p"z =0 for some n}.

Theorem 6. A countable Abelian group has a generically computable copy if
and only if either

1. Alp] is infinite for some prime p, or
2. {p: Alp| # 0} has an infinite computably enumerable subset.

Proof. Suppose first that A has a generically computable copy C and let D =
(D,+p) be a subgroup of C, where D is a computably enumerable dense set
and +p is computable on D. Suppose that D[p| is finite for all primes p. Then
D[p] must be nonempty for infinitely many p. Now {p : D[p] # 0} is an infinite
computably enumerable subset of {p : C[p] # 0} = {p : Alp] # 0}.

Next let p be a prime such that A[p| is infinite. Then A[p| has a generically
computable copy B. Let C = Alp| & @,..,, Algl. Then C is isomorphic to A and
C[p| is generically computable since C [pi = B is generically computable.

Finally, suppose that there is an infinite computably enumerable set P of
primes p such that A[p] # 0. Then A will have a subgroup isomorphic to
@,cp Z(p), and we proceed as usual. O

Note that Theorem 6 implies that there are countable Abelian groups with
no generically computable copy, in contrast to Proposition 4 on primary groups.

We now turn to the topic of X, elementary substructures and X,,-generically
computably enumerable structures.

Proposition 5. Let A be an Abelian group and let B be a subgroup of A. B is
a Xy elementary subgroup of A if and only if it satisfies condition

(*): For any finite subgroup C of A, there is a subgroup D of B isomorphic
to C, such that BNC = D NC and the isomorphism is the identity on BN C.

Proof. Suppose first that B is a X elementary subgroup of A.

Let C = {ay,...,am,b1,...,b,} be the domain of a finite subgroup of A
with BNC = {by,...,b,} and let ¢(aq,...,am,b1,...,b,) be a sentence which
captures the atomic diagram of C. Then

AE (3z1)(3xs) ... Bzm)d(z1, .o Ty by, oo by).

Since B is a Y, elementary submodel, it follows that there are ¢q,...,¢,, € B
such that

¢(Cl, - .-,Crn.‘, b]_, ...,bn_).

Then the subgroup D with domain D = {ey,...,€m,b1,...,b,) is isomorphic to
C under the isomorphism mapping each ¢; to a; and mapping each b; to itself.

Furthermore, BNC = DNC = {by,...,b,}.
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For the other direction, suppose that B satisfies condition (*). Let by,...,b, €
B and consider an arbitrary X formula

@by, ....bn) : (Fzy, .., 3T )0(z1, .., T, b1y oo b)),

where 6 is quantifier-free. By distributing disjunctions in the usual way,
we may assume without loss of generality that # gives a full descrip-
tion of the subgroup generated by zq,...,Zm,b1,...,b,. Suppose now that
A E 6(ay,...,am,b1,...,b,) and consider the subgroup C generated by
{ay,...,am,b1,...,by}. Then, by assumption, there is a subgroup D of B with
BNC = DNC and an isomorphism F' : C — D with F(b) = bfor all b € B. It fol-
lows that B =8(F(ay),..., F(amn),b1,...,b,) and therefore B = @(by,...,by).
O

Proposition 6. Let A be an Abelian p-group such that A = B@ £ for some
subgroups B and £, where B has unbounded character. Then B is a Xy elementary
subgroup of A.

Proof. We prove this assertion using Proposition 5. Let C be any finite subgroup
of A. Let By be the projection of C onto B and let &, be the projection onto £.
Since B has unbounded character, there is a subgroup B; of B independent of
B, and isomorphism v from &, to By. Now let D = {z +y : x € By,y € B}
and define the isomorphism from C to D by ¢(b+ ¢) = b+ ¢¥(c). Then ¢ is an
isomorphism from C to D which preserves elements of B. We note that BNC =
DNC = By. Thus, condition (*) is satisfied, and the result follows. O

Proposition 7. Suppose that A is a countable Abelian p-group which is a prod-
uct of cyclic subgroups and let K be a subcharacter of x(A). That is, K is a subset
of x(A) such that, for any n and k, (n+ 1,k) € K implies (n,k) € K.Then A
has a pure subgroup B which is a factor of A.

Proof. We have A = @, (a;), where each (a;) is a pure cyclic subgroup of
order p™i. We can select a subset I of w so that B = P, (a;) has character K
and then C = €D, ¢,(a:) is a factor of A, that is, A=B&C. O

Proposition 8. Let A be a countable Abelian p-group and let B be a X, ele-
mentary subgroup of A. Then the following conditions hold:

1. B is a pure subgroup of A.

2. x(B) € x(A).

3. B = b, for any (n,k) € x(A), that is, whenever A has a pure subgroup of
the form @t-{nZ(pk), then B has a subgroup of the form QBMHZ(pk"), with
each k; > k.

4. If A has a divisible component, then either B has a divisible component or
x(B) is unbounded.

Proof. Suppose first that B is a X'; elementary subgroup of the Abelian p-group
A.
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(1) Let b € B and suppose htA(b) > n. Then b = p"a for some a € A. Thus
A = (3z)p™z = b. Since B is a Y| elementary subgroup of B, B |= (3z)p"z = b,
so that htP(b) > n as well. It follows that B is a pure subgroup of A.

(2) Suppose that (n,k) € x(B). Then B has a pure subgroup C isomorphic
to P, .., Z(p*). Since B is pure in A, it follows that C is a pure subgroup of A.
Thus (n, k) € x(A).

For part (3), suppose that (n,k) € x(A). Then A = 6, x. Since B is a X

elementary submodel of A and 6, ; is a X sentence, it follows that B |= 6, &,
and therefore B has a subgroup of the form @,__ Z(p*i), with each k; > k.

For part (4), suppose that A has a divisible component. Then A = 6, . for
each k. It follows as above that B |= 60 for all k and therefore either B has a
divisible component or x(B) is unbounded. a

11

We conjecture that the converse of Proposition 8 also holds.

Proposition 9. Let A be a countable Abelian p-group and let B be a X5 ele-
mentary subgroup of A. Then

1. B is a pure subgroup of A.

2. x(A) = x(B)

3. If A has a divisible component, then either B has a divisible component or
x(B) is unbounded.

Proof. First suppose that B is a X5 elementary subgroup of A.
Parts (1) and (3) follow as in the proof of Proposition 8.

(2) Suppose that (n, k) € A. Then by Proposition 1, A has a pure subgroup C
isomorphic to &;,Z(p*). Thus A k= 1, ;.. Since B is a X, elementary submodel
of A and ¢, ; is a X5 sentence, it follows that B = 9, i, and therefore (n,k) €

x(B). O
We conjecture that the converse of Proposition 9 also holds.

Theorem 7. Let A be an Abelian p-group with no elements of infinite height in
the reduced part. That is, A is a product of cyclic and quasi-cyclic components.
Then A has a X1 -generically computably enumerable copy if and only if at least
one of the following holds:

(a) x(A) is bounded;
(b) x(A) has a £ subset K with a computable s,-function.
(c) A has a divisible component.

Proof. First suppose that A has a X'i-generically computably enumerable copy.
Then A has a X', elementary substructure B which is isomorphic to a computably
enumerable structure C. If A has no divisible component, then C has no divisible
component. If y(A) is unbounded, then x(C) is unbounded, by Proposition 8.
Thus C has a 2§ character K with a computable s;-function, and it follows from
Proposition 8 that x(C) C x(A).



Author Proof

12 W. Calvert et al.

The other direction is in three cases.
(a) If x(A) is bounded, then A has a computable copy.

In cases (b) and (c), we will assume that x(.A) is unbounded and show that
there is a structure B C A which is isomorphic to a computable p-group D. Then
we will build a copy C of A with a dense computable subgroup D and fill out
the rest of C to make it isomorphic to A, as explained in (b).

(b) In this case, A has no divisible component, and is a product of cyelic
subgroups. Thus by Proposition 7, A has a pure subgroup B with character K
and B is a factor of A. It follows from Proposition 6 that B is a X elementary
subgroup of A.

By Lemma 1, there is a computable p-group D with character K isomorphic
to B. We may assume that the universe D of D is a computable asymptotically
dense set. Let ¢ be an isomorphism from D to B and extend this to a bijection

from w to w. Then we extend D to a group C with universe w by letting z+y =
o~ (o(z) +4 ¢(y)). For z,y € D, we have

z+Cy=0¢ Yp(2) +* o)) = ¢ ¢z +Py) =z +Py,
since ¢ is an isomorphism from D to B C A. For arbitrary =,y € w,

Bz +°y) = (o (o(z) +1 () = d(z) +* B(v),

80 ¢ is an isomorphism from C to A. Since B is a Xy elementary subgroup of A,
and ¢ is an isomorphism mapping B to D, it follows that D is a 2 elementary
subgroup of C. Thus C is X;-generically computably enumerable.

(¢) In this case, the divisible component B will be a X elementary substruc-
ture and we proceed as in (b) to define a computable group D with infinitely
many divisible components, and extend this to a X;-generically computably
enumerable structure which is isomorphic to A. O

We observe that the argument above also proves that A is Yi-generically
computably enumerable if and only if it has a subgroup B which is isomorphic
to a computable group.

Theorem 8. The group A is Xy-generically computably enumerable if and only
if it has a computable copy.

Proof. Suppose that A = (w,+*) is generically X, and let D be a dense com-
putably enumerable set such that D = (D,+’4) is a computably enumerable
group and also a X5 elementary subgroup of A. Then x(D) is a XY set since D is
computably enumerable and x(D) = x(.A) since D is a X5 elementary submodel
of A. If x(.A) is bounded, then A has a computable copy. So suppose that y(.A)
is unbounded. If D has no divisible component, then (D) has a computable s,
function, so that A has a computable copy. If D has a divisible component, then
A also has a divisible component and therefore has a computable copy. O
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4 Conclusion and Future Research

We have shown that any Abelian p-group has a generically computable copy
and that such a group has a X5-generically computably enumerable copy if
and only it has a computable copy. We also gave a partial characterization of
the X' -generically computably enumerable Abelian p-groups, and a non-trivial
characterization of the generically computable Abelian groups. It remains to
consider more general Abelian p-groups with transfinite length.

We obtained necessary conditions for a subgroup of a countable Abelian p-
group to be a Xy or a Xy elementary substructure. The conjecture is that these
conditions are also necessary. We conjecture that a subgroup of an Abelian p-
group is Y5 elementary if and only if it is (fully) elementary. This might even
hold for Y5 elementary substructures.

It is interesting to consider whether any appropriate class of structures (per-
haps with bounded Scott rank or some similar condition) would trivialize at some
level, and we propose that a general result may be possible. Perhaps a general
connection can be made in terms of the level at which X,, elementarity implies
full elementarity. To our thinking, this recalls the feature of computable cate-
goricity by which every structure with a II,; Scott sentence is AY-categorical
[10]. So there might be results in the general hyperarithmetic hierarchy.

Previous papers also examined coarsely computable structures, so future
work should examine X, -coarsely computably enumerable Abelian groups.

Generically computable and coarsely computable isomorphisms were also
studied in [2|. Future plans involve the study of densely computable isomor-
phisms for Abelian groups. We have the following preliminary result.

Theorem 9. Let A and B be computable Abelian p-groups each isomorphic to
P, Zp) B, Z(p?) such that the elements of order p? are asymptotically
dense.

Then A and B are generically computably isomorphic.
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