The Journal of Open Source Software

PySensors: A Python package for sparse sensor
placement

Brian M. de Silva!, Krithika Manohar?, Emily Clark?, Bingni W.
Brunton*, Steven L. Brunton?, and J. Nathan Kutz!

1 Department of Applied Mathematics, University of Washington 2 Department of Mechanical
DOI: 10.21105/joss.02828 Engineering, University of Washington 3 Department of Physics, University of Washington 4

Department of Biology, University of Washington
Software

= Review 7 Summary

= Repository &7

Successful predictive modeling and control of engineering and natural processes is often entirely
determined by in situ measurements and feedback from sensors (S. L. Brunton & Kutz, 2019),
which provide measurements of the state of these processes at specific points in space and
time. However, deploying sensors into complex environments, including in application areas
such as manufacturing (Manohar, Hogan, et al., 2018), geophysical environments (Yildirim

= Archive &

Editor: Pierre de Buyl &

Revi : . . .
eviewers et al.,, 2009), and biological processes (Colvert et al., 2017; Mohren et al., 2018), is often
= Qjordanperr expensive and challenging. Furthermore, modeling outcomes are extremely sensitive to the
= Otuelwer location and number of these sensors, motivating optimization strategies for the principled

placement of sensors for different decision-making tasks. In general, choosing the globally
optimal placement within the search space of a large-scale complex system is an intractable
computation, in which the number of possible placements grows combinatorially with the
License number of candidates (Ko et al., 1995). While sensor placement has traditionally been guided
Authors of papers retain by expert knowledge and first principles models, increases in system complexity, emerging
copyright and release the work sensor technologies, and innovations in data-driven modeling strategies motivates automated

und(?r 2 .Creatlve Comm.ons algorithms for optimizing sensor placements.
Attribution 4.0 International

License (CC BY 4.0). PySensors is a Python package for the scalable optimization of sensor placement from data.
In particular, PySensors provides tools for sparse sensor placement optimization approaches
that employ data-driven dimensionality reduction (B. W. Brunton et al., 2016; Manohar,
Brunton, et al., 2018). This approach results in near-optimal placements for various decision-
making tasks and can be readily customized using different optimization algorithms and ob-
jective functions.

Submitted: 24 October 2020
Published: 21 February 2021

The PySensors package can be used by both researchers looking to advance state-of-the-art
methods and practitioners seeking simple sparse sensor selection methods for their applications
of interest. Straightforward methods and abundant examples help new users to quickly and
efficiently leverage existing methods to their advantage. At the same time, modular classes
leave flexibility for users to experiment with and plug in new sensor selection algorithms or
dimensionality reduction techniques. Users of scikit-1learn will find PySensors objects fa-
miliar, intuitive, and compatible with existing scikit-learn routines such as cross-validation
(Pedregosa et al., 2011).

Statement of need

Maximizing the impact of sensor placement algorithms requires tools to make them accessible
to scientists and engineers across various domains and at various levels of mathematical ex-
pertise and sophistication. PySensors unifies the algorithms developed in the papers (B. W.
Brunton et al., 2016; Clark et al., 2018; Manohar, Brunton, et al., 2018) and their accompa-
nying codes SSPOR_pub and SSPOC_pub into one software package. The only other packages

de Silva et al., (2021). PySensors: A Python package for sparse sensor placement. Journal of Open Source Software, 6(58), 2828. https: 1
//doi.org/10.21105/joss.02828

https://doi.org/10.21105/joss.02828
https://github.com/openjournals/joss-reviews/issues/2828
https://github.com/dynamicslab/pysensors/
https://doi.org/10.5281/zenodo.4542530
http://pdebuyl.be/
https://github.com/jordanperr
https://github.com/tuelwer
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02828
https://doi.org/10.21105/joss.02828

S

The Journal of Open Source Software

in this domain of which we are aware are Chama (Klise et al., 2017) and Polire (Narayanan
et al., 2020). While these packages and PySensors all enable sparse sensor placement op-
timization, Chama and Polire are geared towards event detection and Gaussian processes
respectively, whereas PySensors is aimed at signal reconstruction and classification tasks. As
such, there are marked differences in the objective functions optimized by PySensors and its
precursors. In addition to these two packages, researchers and practitioners have made avail-
able various custom scripts for sensor placement. Currently, researchers seeking to employ
modern sensor placement methods must choose between implementing them from scratch or
manually augmenting existing unpolished codes.

Reconstruction and classification tasks often arise in the modeling, prediction, and control
of complex processes in geophysics, fluid dynamics, biology, and manufacturing. The goal
of reconstruction is to recover a high-dimensional signal x € RY from a limited number of

p measurements y; = c;-rx, where each c¢; € R¥ represents the action of a sensor. For
example, ¢/ = [1,0,0,...,0] represents a sensor which takes a point measurement of the

first dimension of the signal x. PySensors selects a set of p sensors out of N candidates
T

c, (rows of a measurement matrix C : y = Cx) that minimize reconstruction error in a

data-dependent basis & € RV*"

C* = argmin|jx — ®(C®)'y||2,
CeRpXN

where t denotes the Moore-Penrose pseudoinverse. The key innovation is to recover the low-
dimensional representation x, € R” satisfying x = ®x,. via the reconstruction map ®(C®)*,
ultimately reducing sensor placement to a highly efficient matrix pivoting operation (Manohar,
Brunton, et al., 2018). Similarly, sensor placement for classification (B. W. Brunton et al.,
2016) optimizes the sparsest vector s* that reconstructs w : s = w in the low-dimensional
feature space, where w is the the set of weights learned by a linear classifier fit to x,.. In this
case, the optimal sensor locations are determined by the nonzero components of s*.

The basis ® is explicitly computed from the data using powerful dimensionality reduction
techniques such as principal components analysis (PCA) and random projections, which enable
significant compression of most signals to » < N dimensions. PCA extracts the dominant
spatial correlations or principal components, the leading eigenvectors of the data covariance
matrix. It is computed using the matrix singular value decomposition (SVD) and is closely
related to proper orthogonal decomposition (POD); POD modes and principal components
are equivalent. Other basis choices are possible, such as dynamic mode decomposition for
extracting temporally correlated features (Manohar et al., 2019).

Features

PySensors enables the sparse placement of sensors for two classes of problems: reconstruction
and classification. For reconstruction problems the package implements a unified SensorSe
lector class, with methods for efficiently analyzing the effects that data or sensor quantity
have on reconstruction performance (Manohar, Brunton, et al., 2018). Sensor selection is
based on the computationally efficient QR algorithm. Often different sensor locations impose
variable costs, e.g. if measuring sea-surface temperature, it may be more expensive to place
buoys/sensors in the middle of the ocean than close to shore. These costs can be taken
into account during sensor selection via a built-in cost-sensitive optimization routine (Clark
et al., 2018). For classification tasks, the package implements the Sparse Sensor Placement
Optimization for Classification (SSPOC) algorithm (B. W. Brunton et al., 2016), allowing
one to optimize sensor placement for classification accuracy. The algorithm is related to
compressed sensing optimization (Baraniuk, 2007; Candes et al., 2006; Donoho, 2006), but
identifies the sparsest set of sensors that reconstructs a discriminating plane in a feature
subspace. This SSPOC implementation is fully general in the sense that it can be used in
conjunction with any linear classifier. Additionally, PySensors provides methods to enable

de Silva et al., (2021). PySensors: A Python package for sparse sensor placement. Journal of Open Source Software, 6(58), 2828. https: 2

//doi.org/10.21105 /joss.02828

https://doi.org/10.21105/joss.02828
https://doi.org/10.21105/joss.02828

The Journal of Open Source Software

straightforward exploration of the impacts of primary hyperparameters like the number of
sensors or basis modes.

It is well known (Manohar, Brunton, et al., 2018) that the basis in which one represents
measurement data can have a pronounced effect on the sensors that are selected and the quality
of the reconstruction. Users can readily switch between different bases typically employed for
sparse sensor selection, including POD modes and random projections. Because PySensors
was built with scikit-learn compatibility in mind, it is easy to use cross-validation to select
among possible choices of bases, basis modes, and other hyperparameters.

Finally, included with PySensors is a large suite of examples, implemented as Jupyter note-
books. Some of the examples are written in a tutorial format and introduce new users to
the objects, methods, and syntax of the package. Other examples demonstrate intermediate-
level concepts such as how to visualize model parameters and performance, how to combine
scikit-learn and PySensors objects, selecting appropriate parameter values via cross-
validation, and other best-practices. Further notebooks use PySensors to solve challenging
real-world problems. The notebooks reproduce many of the examples from the papers upon
which the package is based (B. W. Brunton et al., 2016; Clark et al., 2018; Manohar, Brun-
ton, et al., 2018). To help users begin applying PySensors to their own datasets even faster,
interactive versions of every notebook are available on Binder. Together with comprehensive
documentation, the examples will compress the learning curve of learning a new software
package.

Acknowledgments

The authors acknowledge support from the Air Force Office of Scientific Research (AFOSR
FA9550-19-1-0386) and The Boeing Corporation. The work of KM is supported by the Na-
tional Science Foundation Mathematical Sciences Postdoctoral Research Fellowship (award
1803663). JNK acknowledges support from the Air Force Office of Scientific Research (AFOSR
FA9550-19-1-0011)

References

Baraniuk, R. G. (2007). Compressive sensing. [EEE Signal Processing Magazine, 24(4),
118-120. https://doi.org/10.1109/MSP.2007.4286571

Brunton, B. W., Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2016). Sparse sensor placement
optimization for classification. SIAM Journal on Applied Mathematics, 76(5), 2099-2122.
https://doi.org/10.1137/15M1036713

Brunton, S. L., & Kutz, J. N. (2019). Data-driven science and engineering: Machine learning,
dynamical systems, and control. Cambridge University Press. https://doi.org/10.1017/
9781108380690

Candes, E. J., Romberg, J. K., & Tao, T. (2006). Stable signal recovery from incomplete
and inaccurate measurements. Communications in Pure and Applied Mathematics, 59(8).
https://doi.org/10.1002/cpa.20124

Clark, E., Askham, T., Brunton, S. L., & Kutz, J. N. (2018). Greedy sensor placement
with cost constraints. IEEE Sensors Journal, 19(7), 2642-2656. https://doi.org/10.1109/
JSEN.2018.2887044

Colvert, B., Chen, K., & Kanso, E. (2017). Local flow characterization using bioinspired
sensory information. Journal of Fluid Mechanics, 818, 366-381. https://doi.org/10.1017/
jfm.2017.137

de Silva et al., (2021). PySensors: A Python package for sparse sensor placement. Journal of Open Source Software, 6(58), 2828. https: 3

//doi.org/10.21105/joss.02828

https://doi.org/10.1109/MSP.2007.4286571
https://doi.org/10.1137/15M1036713
https://doi.org/10.1017/9781108380690
https://doi.org/10.1017/9781108380690
https://doi.org/10.1002/cpa.20124
https://doi.org/10.1109/JSEN.2018.2887044
https://doi.org/10.1109/JSEN.2018.2887044
https://doi.org/10.1017/jfm.2017.137
https://doi.org/10.1017/jfm.2017.137
https://doi.org/10.21105/joss.02828
https://doi.org/10.21105/joss.02828

The Journal of Open Source Software

Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4),
1289-1306. https://doi.org/10.1109/TIT.2006.871582

Klise, K. A., Nicholson, B., & Laird, C. D. (2017). Sensor placement optimization using chama.
Number Sand2017-11472. Albuquerque, NM: Sandia National Laboratories. https://doi.
org/10.2172/1405271

Ko, C.-W., Lee, J., & Queyranne, M. (1995). An exact algorithm for maximum entropy
sampling. Operations Research, 43(4), 684—691. https://doi.org/10.1287 /opre.43.4.684

Manohar, K., Brunton, B. W., Kutz, J. N., & Brunton, S. L. (2018). Data-driven sparse
sensor placement for reconstruction: Demonstrating the benefits of exploiting known pat-
terns. |EEE Control Systems Magazine, 38(3), 63-86. https://doi.org/10.1109/mcs.2018.
2810460

Manohar, K., Hogan, T., Buttrick, J., Banerjee, A. G., Kutz, J. N., & Brunton, S. L. (2018).
Predicting shim gaps in aircraft assembly with machine learning and sparse sensing. Journal
of Manufacturing Systems, 48, 87-95. https://doi.org/10.1016/j.jmsy.2018.01.011

Manohar, K., Kaiser, E., Brunton, S. L., & Kutz, J. N. (2019). Optimized sampling for
multiscale dynamics. Multiscale Modeling & Simulation, 17(1), 117-136. https://doi.
org/10.1137/17M1162366

Mohren, T. L., Daniel, T. L., Brunton, S. L., & Brunton, B. W. (2018). Neural-inspired sensors
enable sparse, efficient classification of spatiotemporal data. Proceedings of the National
Academy of Sciences, 115(42), 10564-10569. https://doi.org/10.1073/pnas.1808909115

Narayanan, S. D., Patel, Z. B., Agnihotri, A., & Batra, N. (2020). A toolkit for spatial
interpolation and sensor placement. Proceedings of the 18th Conference on Embedded
Networked Sensor Systems, 653—-654. https://doi.org/10.1145/3384419.3430407

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12, 2825-2830.

Yildirim, B., Chryssostomidis, C., & Karniadakis, G. (2009). Efficient sensor placement for
ocean measurements using low-dimensional concepts. Ocean Modelling, 27, 160-173.
https://doi.org/10.1016/j.ocemod.2009.01.001

de Silva et al., (2021). PySensors: A Python package for sparse sensor placement. Journal of Open Source Software, 6(58), 2828. https: 4

//doi.org/10.21105/joss.02828

https://doi.org/10.1109/TIT.2006.871582
https://doi.org/10.2172/1405271
https://doi.org/10.2172/1405271
https://doi.org/10.1287/opre.43.4.684
https://doi.org/10.1109/mcs.2018.2810460
https://doi.org/10.1109/mcs.2018.2810460
https://doi.org/10.1016/j.jmsy.2018.01.011
https://doi.org/10.1137/17M1162366
https://doi.org/10.1137/17M1162366
https://doi.org/10.1073/pnas.1808909115
https://doi.org/10.1145/3384419.3430407
https://doi.org/10.1016/j.ocemod.2009.01.001
https://doi.org/10.21105/joss.02828
https://doi.org/10.21105/joss.02828

	Summary
	Statement of need
	Features
	Acknowledgments
	References

