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Aretakis hair for extreme Kerr black holes
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We study the evolution of axially symmetric scalar field perturbations on an extreme Kerr spacetime for
initial data with multipole moments £’ higher than the least radiative mode, and we measure modes £—and,
for the first time, also horizon charges—that are excited by mode-coupling interactions. We then find the
Ori-Sela prefactors, a certain quantity that can be evaluated at finite distances, and the Aretakis constant
along the event horizon of the extreme Kerr black hole for a sequence of initial data preparations that differ
only by their distance from the event horizon. We find that for initial data in the near field there is a linear
relationship of the Aretakis constant and the Ori-Sela prefactor. For initial data farther than these, the linear
relationship is not universal, and we propose that stronger numerical simulations would be needed to regain
linearity. The linear relationship suggests that the Aretakis charge along the event horizon can be measured
at a finite distance, thereby extending this type of violation of the no-hair theorems from the least radiative
axisymmetric mode also to situations that involve mode coupling.
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I. INTRODUCTION

Extreme Reissner-Nordstrom (ERN) black hole (BH)
spacetimes exhibit a conformal symmetry [1] that relates
the Newman-Penrose constants at future null infinity (Z1)
with the Aretakis constants at the future event horizon (EH,
‘Ht) [2-5]. This relationship suggests that, at least for ERN,
one could, at least in principle, violate the no-hair theorems
[6] with measurements of Newman-Penrose constants at
7. Later, it was shown that one can indeed measure the
Aretakis constants for ERN along H* with measurements
made at Z+ [7,8] and at finite distances [9]. (Note that in
Ref. [7] no use of the conformal symmetry was made.) In
fact, Refs. [8,9] also extended this result for extreme Kerr
(EK) BHs, specifically for axisymmetric scalar and gravi-
tational perturbations.

The proposed external measurement of BH hair with
Aretakis charges for EK is perhaps surprising, because the
conformal symmetry of ERN does not extend to EK [1].
However, it was pointed out in Ref. [2] that axially
symmetric scalar fields propagating on EK spacetimes
do have such a conformal symmetry, a result closely related
to the symmetry of the radial equation for such perturba-
tions [1]. Therefore, one may expect that, at least in the
axially symmetric case, although possibly not in general,
one could still measure at finite distances Aretakis charges
on ‘H™' and, thereby, violate the no-hair theorems in this
sense.
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In Ref. [9], we considered the case of the lowest radiative
mode of a scalar field propagating on a fixed EK spacetime,
specifically the axisymmetric monopole mode. That is, we
excited in Ref. [9] the monopole mode and then mea-
sured the Ori-Sela prefactor efy] [10,11] and the Aretakis
constant for a set of initial data preparations differing only
by their distance from the EK EH. We showed in Ref. [9]
that there was a linear relationship between the two, such
that measurement of the Ori-Sela prefactor at a finite
distance could allow us to infer the Aretakis constant.
We interpreted this measurement of the Aretakis constant
from measurements made at a finite distance as a violation
of the no-hair theorem.

The Kerr spacetime and, specifically, EK exhibit an
intricate mode-coupling mechanism [12]. We therefore
pose the question of whether the behavior shown in
Ref. [9] for the lowest radiative mode persists also for
modes that are excited by mode-coupling excitations. We
study here the Aretakis charges and their measurements at
finite distances for an initial #’ multipole mode of an axially
symmetric massless scalar field that excites an £ multipole
mode, ... The latter gives rise to an Aretakis charge of
degree k, ,H, ;, of an EK, and we study its relationship to
the generalized Ori-Sela prefactor, e ,[w]. To the best of
the knowledge of the present authors, this is the first time
that horizon charges are calculated for modes that are
created by mode coupling. By showing a linear relationship
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TABLE 1.
and along H*, w(v) ~ o™

The power-law indices n for late-time decay for y: Along r = const, y(t) ~ 1*; along Z, w(u) ~ u",

Horizon data

No horizon data

r = const o _[f+et2 =01 [ +e+3, =01
"= £+, otherwise "= ' +¢+1, otherwise

I+ o 7, < =2 o 7, <=2
S N N "T\t+2 20

H -1, <=2 I
"Y1, 2 "Tlew2, e

of the two, we propose following Ref. [9] that one could, at
least in principle, measure BH hair beyond those discussed
in Ref. [6] also for multipole modes beyond the least
radiative mode. The BH hair we propose is a consequence
of linear perturbation theory and results from a (linear
approximation) of dynamical processes. It remains an open
question whether similar hairs can be found in the fully
nonlinear theory.

II. NUMERICAL APPROACH

We solve the scalar wave equation for perturbations in
EK black hole backgrounds, focusing on axisymmetric
modes (m = 0). We modify the equation to work in
compactified hyperboloidal coordinates (z,p,0,¢) that
allow for time evolution on hypersurfaces which bring
Z* to a finite radial coordinate p(Z*) = S < oo [13]. The
relationship between these new coordinates (z,p) and the
spherical Boyer-Lindquist coordinates (z, r) is

o=1-2,
S
r=-2_
Q(p)’
p
vi=t+r,—r=t+-———p—4MlogQ(p), (1
o0 (). (1)

where S denotes the location of Z* in hyperboloidal
coordinates, r, is the usual “tortoise” coordinate, and v
is the modified advanced time. Note that the angular
variables are the same in both coordinate systems.

Our numerical implementation scheme entails rewriting
the second-order partial differential equation in terms of
two coupled first-order differential equations. We solve this
system using a high-order weighted essentially nonoscilla-
tory finite-difference scheme with explicit Shu-Osher time
stepping. Details may be found in our previous work [14].
We choose S = 19.0 and the location of H* such that
p(H") =0.95. The initial data are a truncated Gaussian
centered at p = (1.0,1.1,1.2,1.3, 1.4, 1.5) with a width of
0.22 and nonzero for p € [0.95,8]. This choice ensures
compactly supported initial data but with nonzero support
on the H™" surface.

Finally, to complete these long-duration, high-accuracy,
and high-precision computations in a reasonable time
frame, we make extensive use of general-purpose graphics
processing units based parallel computing. For additional
details on implementation of such intensive computations
on a parallel GPU architecture, we refer the reader to our
earlier work on the subject [14].

III. FALLOFF RATES AT I+, 'H*, AND r=const

We found before the falloff rates for scalar perturbations
(s = 0) along r = const, along Z*, and along H* for the
case of no initial data supported on H™, and we add in
Table I the corresponding decay rates when the initial data
are supported on H*. We have extensive numerical support
for the asymptotic decay rates that appear in Table I. The
results in Table T allow us to predict the triplets ¢, ¢; k,
where £ is the order of the Aretakis charge (which is related
to the order of the transverse derivative operator along ™),
that would produce Aretakis constants.
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FIG. 1. The power-law indices n along H* for the field y ~ "
(solid line) and the transverse derivatives 0, (dashed line), 0%y
(dash-dotted line), and 0%y (dotted line), for #/ =2 and # = 0
[upper panel (a)], £ =2 [center panel (b)], and # = 4 [lower
panel (c)]. The initial data have support on H™.
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FIG. 2. The power-law indices n along Z™ for the field y ~ u"
(solid line) for £’ = 4. Upper panel (a), £ = 0; center panel (b),
¢ = 2; and lower panel (c), £ = 4. The initial data have support
on H*.

The results in Table I were obtained from results such as
Figs. 1 and 2. Along the Z* horizon, data do not change the
decay rate, and the latter is the same as without horizon
data. This conclusion is consistent with Table 2 in Ref. [15].
The reason that with or without horizon data the decay rates
along Z* are the same is that the initial data break the
Couch-Torrence symmetry [1].

We can use the results from Table I to find the power-law
indices for transverse derivatives along H*. Specifically,
without horizon data the pth transverse derivative along
H*, oy (v) ~v" at late advanced times v > M, where

£~ p, £<f -2 -
Mpo horizon data = £+2— », £ > 7
and with horizon data
£ —1—p, < -2
~Mhorizon data = y (3)
C+1—p, 27

We can use the results in Egs. (2) and (3) to predict at what
value of k we expect an Aretakis constant ,H, ,[y] given
¢, ¢. Specifically, setting n = 0, we can solve Eq. (2) for
the derivative order p. Then the required & is just p — 1.
Therefore, with no horizon data we expect

-1, < -2

k1o horizon data = { £+ 1 £> ¢ (4)

and with horizon data

=2, £ -2

Z, 7. ®)

khorizon data — {

Specific examples for the power-law indices for different
Z',¢ values and finding the k corresponding to Aretakis
charges are listed in Appendix A.

We find empirically that for r > M, outside the EH, the
radial profile for the dominant # mode can be modeled by

f’l//f ~ f/efra(r - M)btnt(a)’ (6)
where
a=1, = -1, ?'is even,
a=1, = -2, ?'is odd, (7)

and where ,e, is the generalized Ori-Sela prefactor.

IV. LINEAR RELATIONSHIP OF ¢ AND H

We label the Aretakis constant ,,H, ., where k is related
to the order of the differential operator, ¢’ is the multipole
order of the perturbation field, and ¢ is the multipole order
of the field of interest. Specifically,

oHielw] = o5 [ro, (r ). (8)

In practice, we approximate the Aretakis constant ,.H ,[y]
with 1y .lw], where

f’hk,f[l”} ~ Mza]r(+1f"//zf’ )

as is shown in Fig. 3.
Table II shows the values of # and # for which we
studied the relationship of the Aretakis charge ,H; , and
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FIG. 3. The approximation of the Aretakis charge ,H;, by

oNie- Top panel (a): ,H,, (solid line) and ,h,, (dashed line).
Bottom panel (b): ,H,, —,h;, (solid line) and the reference
curve 160M /v (dashed line).
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TABLE II. The value of the order k of the Aretakis charge
~H ¢ for which a linear relationship to the Ori-Sela prefactor e,
is found. In boldface, we show the cases for which deviations
from linearity are found.

/e £'=0 £=2 £ =4
£=0 0 0 2
£=2 2 2 2

the Ori-Sela prefactor ,e,. We find linear relationships
Mie = Ppes+ a (see Figs. 4-6). See Appendix B for
details. In two of the cases studied, we find deviations from
linearity, specifically, for #/ =0, £ =2 and for £/ =2,
¢ = 2. These deviations from linearity occur when the
initial data are far from the EH, but for near initial data the
linear behavior is still observed.

In three of the cases studied (see Appendix B), we
find that at the 95% confidence level one cannot reject
the claim that the intercept o = 0. We propose that
more robust investigation may find this result to be a
general rule.

Fully explaining these deviations from linearity is as yet
an open question. We propose that more powerful numeri-
cal simulations would find linearity also for distant initial
data: When plotting different £ projections as functions of p
for different sets of initial data (distinguished by the
location of the peak), we find that up excitations behave
differently for different initial datasets (and also for £/ = ¢
when 7 is not the lowest radiative mode), but the behavior
is the same for £ = ¢’ (when ¢ is the lowest radiative
mode). This conclusion suggests that higher excitations
may take longer to settle for far out initial datasets. This
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FIG. 4. Top panel (a): (H( versus ;e,. We find M‘IOHO,O =
(0.07075 % 0.00045)ye0 — (0.0034 & 0.0045). Bottom panel
(b): (H,, versus je,. We find M H, , = (—0.647 & 0.058) e, +
(3.29 £ 0.50) (from the linear part of the figure).
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FIG. 5. Top panel (a): ,H versus ye,. We find M~!,Hy, =
(—0.07259 £ 0.00017),¢¢ — (2.34 & 1.08) x 10~*. Bottom panel
(b) 2H24,2 Versus ,e,. We find M2H2,2 = (—218i31)2€2 +
(90 £ 17) (from the linear part of the figure).

idea is strengthened by noticing that all deviations from
linearity occur with |.H, .| being undervalued, never
overvalued. We cautiously propose that the dominant mode
has saturated, but subdominant modes have not saturated
yet, and, therefore, their contributions to ,H , are not full.

To test this idea, we compare the contribution of
subdominant modes to ,H,, (nonlinear deviations) and
to ,Hgy (no deviations from linearity). In the former case
we take the subdominant mode ¢’ = 2, £ = 4 (up excita-
tion), and in the latter case we take the subdominant mode
¢ =2, ¢ =2 (up excitation). We find the results in Fig. 7.
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FIG. 6. Top panel (a): ,H, versus 4eo. We find M,H,, =
(=0.01195 £ 0.00034) ¢ — (1.46 & 1.60) x 10~*. Bottom panel
(b): ,H,, versus ,e,. We find M,H,, = (—0.03297 £+
0.00064) e, — (0.038 £ 0.085).
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FIG. 7. Comparison of the behavior of subdominant modes.
Top panel: 21//(21) for close initial data (upper curve at late times)
and for far initial data (lower curve at late times). Bottom panel:
21//? for close initial data (upper curve at late times) and for far

initial data (lower curve at late times).

The deviations from power-law behavior for 21//9 at late

time suggest that we do not get an accurate determination of
,H,, which could explain the deviations shown in
Fig. 5(b).

We comment that, before the deviation from linearity in
Fig. 5(b) starts, asymptotic behavior is observed. Perhaps
we need to evaluate the Aretakis constant in that domain,
before presumably numerical effects change the behavior.
If this is right, it is possible that one could still read the
Aretakis constant from measurements made at finite dis-
tances via the Ori-Sela prefactor.

V. CONCLUDING REMARKS

We show that Aretakis charges on H™ for extreme Kerr
BH with axisymmetric scalar field perturbations are
associated with generalized Ori-Sela prefactors that are
measured at finite distances. For all cases studied, we find
a linear relationship of the two quantities when the initial
datasets are in the near field. This relationship suggests
that one could, at least in principle, measure the gener-
alized Ori-Sela prefactor at a finite distance and infer on
the associated Aretakis charge on H™*. If robust, this
procedure would violate the no-hair theorems [6] in
this sense.

The cases that lead to deviation from linearity for initial
datasets that are farther away from the EH warrant further
investigation, possibly using stronger computational resources
than those currently available to us. Our proposal regarding the
role played by subdominant modes can be investigated with
the case # =0, £ =4, which is a subdominant mode
for (H, ,.

It is currently not known whether the linearity found for
the relationship of the Aretakis charges and the generalized
Ori-Sela prefactors are specific for axisymmetric modes of
a linearized scalar field, or whether they extend also to
nonaxisymmetric modes.

The question of extending our work to gravitational
perturbations of extreme Kerr spacetimes is of much
interest and awaits further study, as is the question of
the fully nonlinear theory, where analogous results may be
of a transient nature.
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APPENDIX A

Specific examples for the value of n are given in
Tables III and IV.

TABLEIII. The value of the power-law indices n for the field y
and its transverse derivatives 0w ~ v" for m =0, 1, 2, 3, 4
(m = 0 corresponds to the field y itself)/ Here, £/ = 0 or £’ = 2,
and there are horizon data. The boldfaced values correspond to
Aretakis constants: H g, (H22, ,Hop, and ,H, .

=0 =0 =2 =4
i

4 1 3 5
o, 0 2 4
()31// -1 1 3
azl// -2 0 2
6?,1// -3 -1 1

TABLE IV. The value of the power-law indices n for the field y
and its transverse derivatives d)'y ~ v" for m =0, 1, 2, 3, 4
(m = 0 corresponds to the field y itself). Here, £/ = 4, and there
are horizon data. The boldfaced values correspond to Aretakis
constants: ,H,, and ,H ;.

=4 £=0 £=2 =4
W 3 3 5
oW 2 2 4
oy 1 1 3
By 0 0 2
oy -1 -1 1
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APPENDIX B

We calculate the slope and intercept of the least squares
regression lines ,H; , = p e, + a + ¢; with t-confidence
intervals for 95% confidence level. Here, ¢; are the
regression residuals of the n data points. We first find
the standard error for the slope:

= \/(n —2)

where e; are short notation for the Ori-Sela prefactors
for the n data points. We then find the standard error for the

intercept, s; = 51/ >_; ¢;. Then, the margins of error for
the slope and the intercept are, respectively, given by

2

i

" (e —e;)?

n
i=1 €

’

Op = Spty—2

and

TABLE V. The 95% t-confidence intervals for the coefficient
(slope) and «a (intercept) for the regression expression ,Hy , =
poen+a. Here, dof. is the number of r-statistics degrees
of freedom.

N B a do.f.
0,0,0 —0.07075£0.00045  —0.0034 % 0.0045 4
0,2,2 —0.647 + 0.058 3.29 £ 0.50 3
2,0,0 —0.07259+0.00017 —0.00023+0.00011 3
2,2,2 218 +31 90 + 17 2
4,0,2 —0.01195+0.00034  0.00015+0.00016 6
4,2,2  —0.03297 £0.00064  —0.038 £ 0.085 6

_ *
5(1 = s&tn—Z’

where ¢* is the critical value for n — 2 degrees of freedom.
In Table V, we show the slope and intercept coefficients
for the six cases we study.
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