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We study the evolution of axially symmetric scalar field perturbations on an extreme Kerr spacetime for

initial data with multipole moments l0 higher than the least radiative mode, and we measure modes l—and,

for the first time, also horizon charges—that are excited by mode-coupling interactions. We then find the

Ori-Sela prefactors, a certain quantity that can be evaluated at finite distances, and the Aretakis constant

along the event horizon of the extreme Kerr black hole for a sequence of initial data preparations that differ

only by their distance from the event horizon. We find that for initial data in the near field there is a linear

relationship of the Aretakis constant and the Ori-Sela prefactor. For initial data farther than these, the linear

relationship is not universal, and we propose that stronger numerical simulations would be needed to regain

linearity. The linear relationship suggests that the Aretakis charge along the event horizon can be measured

at a finite distance, thereby extending this type of violation of the no-hair theorems from the least radiative

axisymmetric mode also to situations that involve mode coupling.
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I. INTRODUCTION

Extreme Reissner-Nordström (ERN) black hole (BH)

spacetimes exhibit a conformal symmetry [1] that relates

the Newman-Penrose constants at future null infinity (Iþ)

with the Aretakis constants at the future event horizon (EH,

Hþ) [2–5]. This relationship suggests that, at least for ERN,

one could, at least in principle, violate the no-hair theorems

[6] with measurements of Newman-Penrose constants at

Iþ. Later, it was shown that one can indeed measure the

Aretakis constants for ERN along Hþ with measurements

made at Iþ [7,8] and at finite distances [9]. (Note that in

Ref. [7] no use of the conformal symmetry was made.) In

fact, Refs. [8,9] also extended this result for extreme Kerr

(EK) BHs, specifically for axisymmetric scalar and gravi-

tational perturbations.

The proposed external measurement of BH hair with

Aretakis charges for EK is perhaps surprising, because the

conformal symmetry of ERN does not extend to EK [1].

However, it was pointed out in Ref. [2] that axially

symmetric scalar fields propagating on EK spacetimes

do have such a conformal symmetry, a result closely related

to the symmetry of the radial equation for such perturba-

tions [1]. Therefore, one may expect that, at least in the

axially symmetric case, although possibly not in general,

one could still measure at finite distances Aretakis charges

on Hþ and, thereby, violate the no-hair theorems in this

sense.

In Ref. [9], we considered the case of the lowest radiative

mode of a scalar field propagating on a fixed EK spacetime,

specifically the axisymmetric monopole mode. That is, we

excited in Ref. [9] the monopole mode and then mea-

sured the Ori-Sela prefactor e½ψ � [10,11] and the Aretakis

constant for a set of initial data preparations differing only

by their distance from the EK EH. We showed in Ref. [9]

that there was a linear relationship between the two, such

that measurement of the Ori-Sela prefactor at a finite

distance could allow us to infer the Aretakis constant.

We interpreted this measurement of the Aretakis constant

from measurements made at a finite distance as a violation

of the no-hair theorem.

The Kerr spacetime and, specifically, EK exhibit an

intricate mode-coupling mechanism [12]. We therefore

pose the question of whether the behavior shown in

Ref. [9] for the lowest radiative mode persists also for

modes that are excited by mode-coupling excitations. We

study here the Aretakis charges and their measurements at

finite distances for an initial l0 multipole mode of an axially

symmetric massless scalar field that excites an l multipole

mode,
l
0ψl. The latter gives rise to an Aretakis charge of

degree k,
l0
Hk;l, of an EK, and we study its relationship to

the generalized Ori-Sela prefactor,
l
0ek;l½ψ �. To the best of

the knowledge of the present authors, this is the first time

that horizon charges are calculated for modes that are

created by mode coupling. By showing a linear relationship
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of the two, we propose following Ref. [9] that one could, at

least in principle, measure BH hair beyond those discussed

in Ref. [6] also for multipole modes beyond the least

radiative mode. The BH hair we propose is a consequence

of linear perturbation theory and results from a (linear

approximation) of dynamical processes. It remains an open

question whether similar hairs can be found in the fully

nonlinear theory.

II. NUMERICAL APPROACH

We solve the scalar wave equation for perturbations in

EK black hole backgrounds, focusing on axisymmetric

modes (m ¼ 0). We modify the equation to work in

compactified hyperboloidal coordinates ðτ; ρ; θ;ϕÞ that

allow for time evolution on hypersurfaces which bring

Iþ to a finite radial coordinate ρðIþÞ ¼ S < ∞ [13]. The

relationship between these new coordinates ðτ; ρÞ and the

spherical Boyer-Lindquist coordinates ðt; rÞ is

Ω ¼ 1 −
ρ

S
;

r ¼
ρ

ΩðρÞ
;

v ≔ tþ r� − r ¼ τ þ
ρ

ΩðρÞ
− ρ − 4M logΩðρÞ; ð1Þ

where S denotes the location of Iþ in hyperboloidal

coordinates, r� is the usual “tortoise” coordinate, and v
is the modified advanced time. Note that the angular

variables are the same in both coordinate systems.

Our numerical implementation scheme entails rewriting

the second-order partial differential equation in terms of

two coupled first-order differential equations. We solve this

system using a high-order weighted essentially nonoscilla-

tory finite-difference scheme with explicit Shu-Osher time

stepping. Details may be found in our previous work [14].

We choose S ¼ 19.0 and the location of Hþ such that

ρðHþÞ ¼ 0.95. The initial data are a truncated Gaussian

centered at ρ ¼ ð1.0; 1.1; 1.2; 1.3; 1.4; 1.5Þ with a width of

0.22 and nonzero for ρ ∈ ½0.95; 8�. This choice ensures

compactly supported initial data but with nonzero support

on the Hþ surface.

Finally, to complete these long-duration, high-accuracy,

and high-precision computations in a reasonable time

frame, we make extensive use of general-purpose graphics

processing units based parallel computing. For additional

details on implementation of such intensive computations

on a parallel GPU architecture, we refer the reader to our

earlier work on the subject [14].

III. FALLOFF RATES AT I + , H+ , AND r= const

We found before the falloff rates for scalar perturbations

(s ¼ 0) along r ¼ const, along Iþ, and along Hþ for the

case of no initial data supported on Hþ, and we add in

Table I the corresponding decay rates when the initial data

are supported onHþ. We have extensive numerical support

for the asymptotic decay rates that appear in Table I. The

results in Table I allow us to predict the triplets l0;l; k,
where k is the order of the Aretakis charge (which is related

to the order of the transverse derivative operator alongHþ),

that would produce Aretakis constants.

TABLE I. The power-law indices n for late-time decay for ψ : Along r ¼ const, ψðtÞ ∼ tn; along Iþ, ψðuÞ ∼ un;

and along Hþ, ψðvÞ ∼ vn.

Horizon data No horizon data

r ¼ const
−n ¼

�

l
0 þ lþ 2; l

0 ¼ 0; 1

l
0 þ l; otherwise

−n ¼

�

l
0 þ lþ 3; l

0 ¼ 0; 1

l
0 þ lþ 1; otherwise

Iþ

−n ¼

�

l
0; l ≤ l

0 − 2

lþ 2; l ≥ l
0 −n ¼

�

l
0; l ≤ l

0 − 2

lþ 2; l ≥ l
0

Hþ

−n ¼

�

l0 − 1; l ≤ l0 − 2

lþ 1; l ≥ l0
−n ¼

�

l0; l ≤ l0 − 2

lþ 2; l ≥ l0
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FIG. 1. The power-law indices n along Hþ for the field ψ ∼ vn

(solid line) and the transverse derivatives ∂uψ (dashed line), ∂2uψ

(dash-dotted line), and ∂
2
uψ (dotted line), for l0 ¼ 2 and l ¼ 0

[upper panel (a)], l ¼ 2 [center panel (b)], and l ¼ 4 [lower

panel (c)]. The initial data have support on Hþ.
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The results in Table I were obtained from results such as

Figs. 1 and 2. Along the Iþ horizon, data do not change the

decay rate, and the latter is the same as without horizon

data. This conclusion is consistent with Table 2 in Ref. [15].

The reason that with or without horizon data the decay rates

along Iþ are the same is that the initial data break the

Couch-Torrence symmetry [1].

We can use the results from Table I to find the power-law

indices for transverse derivatives along Hþ. Specifically,

without horizon data the pth transverse derivative along

Hþ, ∂
p
uψðvÞ ∼ vn at late advanced times v ≫ M, where

−nno horizon data ¼

�

l
0 − p; l ≤ l

0 − 2

lþ 2 − p; l ≥ l
0

ð2Þ

and with horizon data

−nhorizon data ¼

�

l
0 − 1 − p; l ≤ l

0 − 2

lþ 1 − p; l ≥ l
0:

ð3Þ

We can use the results in Eqs. (2) and (3) to predict at what

value of k we expect an Aretakis constant
l
0Hk;l½ψ � given

l
0;l. Specifically, setting n ¼ 0, we can solve Eq. (2) for

the derivative order p. Then the required k is just p − 1.

Therefore, with no horizon data we expect

kno horizon data ¼

�

l
0 − 1; l ≤ l

0 − 2

lþ 1; l ≥ l
0

ð4Þ

and with horizon data

khorizon data ¼

�

l
0 − 2; l ≤ l

0 − 2

l; l ≥ l
0:

ð5Þ

Specific examples for the power-law indices for different

l
0;l values and finding the k corresponding to Aretakis

charges are listed in Appendix A.

We find empirically that for r > M, outside the EH, the

radial profile for the dominant l mode can be modeled by

l0
ψl ∼ l0

elr
aðr −MÞbtnΘlðθÞ; ð6Þ

where

a ¼ 1; b ¼ −1; l
0is even;

a ¼ 1; b ¼ −2; l
0is odd; ð7Þ

and where
l
0el is the generalized Ori-Sela prefactor.

IV. LINEAR RELATIONSHIP OF e AND H

We label the Aretakis constant
l0
Hk;l, where k is related

to the order of the differential operator, l0 is the multipole

order of the perturbation field, and l is the multipole order

of the field of interest. Specifically,

l0
Hk;l½ψ � ¼ ∂

kþ1
r ½r∂rðrl0ψlÞ�: ð8Þ

In practice, we approximate the Aretakis constant
l
0Hk;l½ψ �

with
l
0hk;l½ψ �, where

l0
hk;l½ψ � ∼M2

∂
kþ1
r l0

ψl ð9Þ

as is shown in Fig. 3.

Table II shows the values of l0 and l for which we

studied the relationship of the Aretakis charge
l
0Hk;l and
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FIG. 2. The power-law indices n along Iþ for the field ψ ∼ un

(solid line) for l0 ¼ 4. Upper panel (a), l ¼ 0; center panel (b),

l ¼ 2; and lower panel (c), l ¼ 4. The initial data have support

on Hþ.
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FIG. 3. The approximation of the Aretakis charge
l
0Hk;l by

l
0hk;l. Top panel (a):

2
H2;2 (solid line) and

2
h2;2 (dashed line).

Bottom panel (b):
2
H2;2 − 2

h2;2 (solid line) and the reference

curve 160M=v (dashed line).
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the Ori-Sela prefactor
l0
el. We find linear relationships

l0
Hk;l ¼ β

l0
el0 þ α (see Figs. 4–6). See Appendix B for

details. In two of the cases studied, we find deviations from

linearity, specifically, for l0 ¼ 0, l ¼ 2 and for l0 ¼ 2,

l ¼ 2. These deviations from linearity occur when the

initial data are far from the EH, but for near initial data the

linear behavior is still observed.

In three of the cases studied (see Appendix B), we

find that at the 95% confidence level one cannot reject

the claim that the intercept α ¼ 0. We propose that

more robust investigation may find this result to be a

general rule.

Fully explaining these deviations from linearity is as yet

an open question. We propose that more powerful numeri-

cal simulations would find linearity also for distant initial

data: When plotting different l projections as functions of ρ

for different sets of initial data (distinguished by the

location of the peak), we find that up excitations behave

differently for different initial datasets (and also for l0 ¼ l

when l is not the lowest radiative mode), but the behavior

is the same for l ¼ l
0 (when l is the lowest radiative

mode). This conclusion suggests that higher excitations

may take longer to settle for far out initial datasets. This

idea is strengthened by noticing that all deviations from

linearity occur with jl0Hk;lj being undervalued, never

overvalued. We cautiously propose that the dominant mode

has saturated, but subdominant modes have not saturated

yet, and, therefore, their contributions to
l
0Hk;l are not full.

To test this idea, we compare the contribution of

subdominant modes to
2
H2;2 (nonlinear deviations) and

to 2H00 (no deviations from linearity). In the former case

we take the subdominant mode l0 ¼ 2, l ¼ 4 (up excita-

tion), and in the latter case we take the subdominant mode

l
0 ¼ 2, l ¼ 2 (up excitation). We find the results in Fig. 7.
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FIG. 4. Top panel (a):
0
H0;0 versus 0e0. We find M−1

0
H0;0 ¼

ð0.07075� 0.00045Þ0e0 − ð0.0034� 0.0045Þ. Bottom panel

(b):
0
H2;2 versus 0e2. We findM

0
H2;2 ¼ ð−0.647� 0.058Þ0e2 þ

ð3.29� 0.50Þ (from the linear part of the figure).

TABLE II. The value of the order k of the Aretakis charge

l
0Hk;l for which a linear relationship to the Ori-Sela prefactor l0el
is found. In boldface, we show the cases for which deviations

from linearity are found.

l=l0 l
0 ¼ 0 l

0 ¼ 2 l
0 ¼ 4

l ¼ 0 0 0 2

l ¼ 2 2 2 2
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FIG. 5. Top panel (a):
2
H0;0 versus 2e0. We find M−1

2
H0;0 ¼

ð−0.07259� 0.00017Þ2e0 − ð2.34� 1.08Þ × 10−4. Bottom panel

(b):
2
H2;2 versus 2e2. We find M

2
H2;2 ¼ ð−218 � 31Þ2e2 þ

ð90 � 17Þ (from the linear part of the figure).
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FIG. 6. Top panel (a):
4
H2;0 versus 4e0. We find M

4
H2;0 ¼

ð−0.01195� 0.00034Þ4e0 − ð1.46� 1.60Þ× 10−4. Bottom panel

(b):
4
H2;2 versus 4e2. We find M

4
H2;2 ¼ ð−0.03297�

0.00064Þ4e2 − ð0.038� 0.085Þ.
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The deviations from power-law behavior for 2ψ
ð3Þ
4 at late

time suggest that we do not get an accurate determination of

2
H2;2 which could explain the deviations shown in

Fig. 5(b).

We comment that, before the deviation from linearity in

Fig. 5(b) starts, asymptotic behavior is observed. Perhaps

we need to evaluate the Aretakis constant in that domain,

before presumably numerical effects change the behavior.

If this is right, it is possible that one could still read the

Aretakis constant from measurements made at finite dis-

tances via the Ori-Sela prefactor.

V. CONCLUDING REMARKS

We show that Aretakis charges on Hþ for extreme Kerr

BH with axisymmetric scalar field perturbations are

associated with generalized Ori-Sela prefactors that are

measured at finite distances. For all cases studied, we find

a linear relationship of the two quantities when the initial

datasets are in the near field. This relationship suggests

that one could, at least in principle, measure the gener-

alized Ori-Sela prefactor at a finite distance and infer on

the associated Aretakis charge on Hþ. If robust, this

procedure would violate the no-hair theorems [6] in

this sense.

The cases that lead to deviation from linearity for initial

datasets that are farther away from the EH warrant further

investigation, possibly using stronger computational resources

than those currently available to us.Our proposal regarding the

role played by subdominant modes can be investigated with

the case l0 ¼ 0, l ¼ 4, which is a subdominant mode

for
0
H2;2.

It is currently not known whether the linearity found for

the relationship of the Aretakis charges and the generalized

Ori-Sela prefactors are specific for axisymmetric modes of

a linearized scalar field, or whether they extend also to

nonaxisymmetric modes.

The question of extending our work to gravitational

perturbations of extreme Kerr spacetimes is of much

interest and awaits further study, as is the question of

the fully nonlinear theory, where analogous results may be

of a transient nature.
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APPENDIX A

Specific examples for the value of n are given in

Tables III and IV.

TABLE III. The value of the power-law indices n for the field ψ

and its transverse derivatives ∂
m
u ψ ∼ vn for m ¼ 0, 1, 2, 3, 4

(m ¼ 0 corresponds to the field ψ itself)/ Here, l0 ¼ 0 or l0 ¼ 2,

and there are horizon data. The boldfaced values correspond to

Aretakis constants:
0
H0;0, 0

H2;2, 2
H0;0, and 2

H2;2.

l
0 ¼ 0 l ¼ 0 l ¼ 2 l ¼ 4

l
0 ¼ 2

ψ 1 3 5

∂uψ 0 2 4

∂
2
uψ −1 1 3

∂
3
uψ −2 0 2

∂
4
uψ −3 −1 1

TABLE IV. The value of the power-law indices n for the field ψ

and its transverse derivatives ∂
m
u ψ ∼ vn for m ¼ 0, 1, 2, 3, 4

(m ¼ 0 corresponds to the field ψ itself). Here, l0 ¼ 4, and there

are horizon data. The boldfaced values correspond to Aretakis

constants:
4
H2;0 and

4
H2;2.

l
0 ¼ 4 l ¼ 0 l ¼ 2 l ¼ 4

ψ 3 3 5

∂uψ 2 2 4

∂
2
uψ 1 1 3

∂
3
uψ 0 0 2

∂
4
uψ −1 −1 1
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FIG. 7. Comparison of the behavior of subdominant modes.

Top panel: 2ψ
ð1Þ
2 for close initial data (upper curve at late times)

and for far initial data (lower curve at late times). Bottom panel:

2ψ
ð3Þ
4 for close initial data (upper curve at late times) and for far

initial data (lower curve at late times).
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APPENDIX B

We calculate the slope and intercept of the least squares

regression lines
l
0Hk;l ¼ β

l
0el0 þ αþ ϵi with t-confidence

intervals for 95% confidence level. Here, ϵi are the

regression residuals of the n data points. We first find

the standard error for the slope:

sβ̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n
i¼1 ϵ

2
i

ðn − 2Þ
P

n
i¼1ðei − ēiÞ

2

s

;

where ei are short notation for the Ori-Sela prefactors

for the n data points. We then find the standard error for the

intercept, sα̂ ¼ sβ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

P

i e
2
i

q

. Then, the margins of error for

the slope and the intercept are, respectively, given by

δβ ¼ sβ̂t
�
n−2

and

δα ¼ sα̂t
�
n−2;

where t� is the critical value for n − 2 degrees of freedom.

In Table V, we show the slope and intercept coefficients

for the six cases we study.

[1] W. E. Couch and R. J. Torrence, Gen. Relativ. Gravit. 16,

789 (1984).

[2] P. Bizoń and H. Friedrich, Classical Quantum Gravity 30,

065001 (2013).

[3] J. Lucietti, K. Murata, H. S. Reall, and N. Tanahashi, J. High

Energy Phys. 03 (2013) 035.

[4] H. Godazgar, M. Godazgar, and C. N. Pope, Phys. Rev. D

96, 084055 (2017).

[5] S. Bhattacharjee, B. Chakrabarty, D. D. K. Chow, P. Paul,

and A. Virmani, Classical Quantum Gravity 35, 205002

(2018).

[6] J. D. Bekenstein, Phys. Rev. Lett. 28, 452 (1972); Phys. Rev.

D 5, 1239 (1972); 5, 2403 (1972).

[7] Y. Angelopoulos, S. Aretakis, and D. Gajic, Phys. Rev. Lett.

121, 131102 (2018).

[8] L. M. Burko, G. Khanna, and S. Sabharwal, Phys. Rev. Res.

1, 033106 (2019).

[9] L. M. Burko, G. Khanna, and S. Sabharwal, Phys. Rev. D

103, 021502 (2021).

[10] A. Ori, arXiv:1305.1564.

[11] O. Sela, Phys. Rev. D 93, 024054 (2016).

[12] L. M. Burko and G. Khanna, Phys. Rev. D 89, 044037

(2014).

[13] A. Zenginoğlu, Classical Quantum Gravity 25, 145002

(2008).

[14] S. E. Field, S. Gottlieb, Z. J. Grant, L. F. Isherwood, and

G. Khanna, Commun. Appl. Math. Comput. Sci. 5, 97

(2023).

[15] Y. Angelopoulos, S. Aretakis, and D. Gajic, Adv. Math. 375,

107363 (2020).

TABLE V. The 95% t-confidence intervals for the coefficient β
(slope) and α (intercept) for the regression expression

l
0Hk;l ¼

β
l
0el0 þ α. Here, d.o.f. is the number of t-statistics degrees

of freedom.

l0;l; k β α d.o.f.

0, 0, 0 −0.07075� 0.00045 −0.0034� 0.0045 4

0, 2, 2 −0.647� 0.058 3.29� 0.50 3

2, 0, 0 −0.07259� 0.00017 −0.00023� 0.00011 3

2, 2, 2 −218� 31 90� 17 2

4, 0, 2 −0.01195� 0.00034 0.00015� 0.00016 6

4, 2, 2 −0.03297� 0.00064 −0.038� 0.085 6

BURKO, KHANNA, and SABHARWAL PHYS. REV. D 107, 124023 (2023)

124023-6


