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Abstract—Optimal sensor and actuator selection is a central
challenge in high-dimensional estimation and control. Nearly all
subsequent control decisions are affected by these sensor and
actuator locations. In this article, we exploit balanced model reduc-
tion and greedy optimization to efficiently determine sensor and
actuator selections that optimize observability and controllability.
In particular, we determine locations that optimize scalar measures
of observability and controllability using greedy matrix QR pivot-
ing on the dominant modes of the direct and adjoint balancing
transformations. Pivoting runtime scales linearly with the state
dimension, making this method tractable for high-dimensional sys-
tems. The results are demonstrated on the linearized Ginzburg—
Landau system, for which our algorithm approximates known opti-
mal placements computed using costly gradient descent methods.

Index Terms—Actuator selection, balanced truncation, control-
lability, observability, optimal control, sensor selection.

|. INTRODUCTION

Optimizing the selection of sensors and actuators is one of the fore-
most challenges in feedback control [1]. For high-dimensional systems,
it is impractical to monitor or actuate every state; hence, a few sensors
and actuators must be carefully positioned for effective estimation
and control. Determining optimal selections with respect to a desired
objective is an NP-hard selection problem and, in general, can only be
solved by enumerating all possible configurations. This combinatorial
growth in complexity is intractable; therefore, the placement of sensors
and actuators is typically chosen according to heuristics and intuition.
In this article, we propose a greedy algorithm for sensor and actuator
selection based on jointly maximizing observability and controllability
in linear time-invariant systems. Our approach (see Fig. 1) exploits
low-rank transformations that balance the observability and controlla-
bility gramians to bypass the combinatorial search, enabling favorable
scaling for high-dimensional systems.

To understand the challenges of sensor and actuator placement for
estimation and control, we will first consider optimal sensor placement,
which has mostly been used to reconstruct static signals. The primary
challenge of sensor selection is that given n possible locations and a
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Fig. 1. Schematic of balanced sensor and actuator selection for opti-
mal control of a high-dimensional system.

budget of r sensors, there are (:) combinatorially many configurations
to evaluate in a brute-force search. Fortunately, there are heuristics
that employ greedy selection of sensors based on maximizing mutual
information [2] and information theoretic criteria [3]. Another popular
approach relaxes sensor selection to a weighted convex combination
of possible sensors [4]-[6], typically solved using semidefinite pro-
gramming. Both heuristic approaches optimize submodular objective
functions [7], which bound the distance between heuristic and optimal
placement. Some objectives, such as those based on the quality of a
Kalman filter, are not submodular [8]. Alternatively, sparsity-promoting
optimization can be used to determine sensors and actuators [9]-[11],
although nondifferentiability of sparsity promoting terms motivates
other optimization techniques [12].

Even such heuristics cannot accommodate the large dimension of
many physical models, such as in fluid dynamics. Fortunately, high-
dimensional systems often evolve according to relatively few intrinsic
degrees of freedom. Thus, it is possible to leverage dimensionality
reduction to strategically select sensors. Such sensor placement ap-
proaches [13], [14] build upon discrete empirical interpolation meth-
ods (DEIM) [15], which select the optimal measurement locations to
interpolate low-rank proper orthogonal decomposition (POD) modes.

For systems with actuation, itis necessary to simultaneously consider
the placement of sensors and actuators since the most observable and
most controllable subspaces are often different. Sensors and actuators
for optimal feedback control are often placed along the most observable
and controllable directions, respectively [7], [16]-[19], using objec-
tive functions based on the associated observability or controllability
gramians. Standard metrics for evaluating a certain sensor/actuator
configuration include the H5 norm [16], [20], a measure of the av-
erage impulse response, and the H,, norm to measure the worst-case
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performance. A chief drawback is the need to reoptimize the controller
with each new configuration of sensors and actuators given by either the
gradient minimization computation or brute-force searches. Moreover,
these methods do not exploit the state of the art in model reduction to
optimize sensor and actuator placement.

Contribution: This article develops a scalable sensor and actuator se-
lection algorithm based on balanced truncation [21], in which modes are
hierarchically ordered by their observability and controllability. We use
empirical interpolation of the low-rank balanced representation to find
maximally observable and controllable states. The resulting locations
correspond to near-optimal point sensor and actuator configurations.
The quality of our optimized configurations are evaluated using the H»
norm of the resulting system, which is an average measure of its output
energy. Given a specific Hs cost function and controller weight ma-
trices, the closed-loop Hs norm, which measures input—output energy,
is a more appropriate measure of control performance than open-loop
metrics. Our approach, when used to optimize the open loop H> norm,
is neutral to specific choices of controller weight matrices and, instead,
maximizes the input—output energy of the reduced-order model. We
also show that it is possible to apply our framework to closed-loop
systems, demonstrating near optimal sensor and actuator selection in
comparison with more expensive iterative closed-loop H5 optimization.
The runtime scales linearly with the number of state variables after a
one-time offline computation of the balancing transformation, which
is less expensive than iterative alternatives. The resulting sensor and
actuator configurations reproduce known optimal locations at a fraction
of the cost associated with gradient descent.

Il. PROBLEM SETUP

Consider the following linear time-invariant system with a given

state-space realization:
x = Ax+ Bu x € R", ue R

y € R?

(1a)

y = Cx, (1b)

with large state dimension, i.e., 7 > 1. It is assumed that the system
is stable, and B and C are linear actuation and measurement operators
under which the system is observable and controllable. Our objective
is to choose a minimal subset of these sensors and actuators to obtain
a system that is most jointly controllable and observable. For example,
the case B = C = I corresponds to pointwise sensing and actuation of
each state. We consider the more general subset selection problem for
arbitrary actuation and measurement operators B and C. This subset
selection corresponds to multiplying inputs and outputs by the selection
matrices
T
]

eﬁr] .

Sc=[en e (2a)

SB == |:e[31 €3, (2b)

Here, e; are the canonical basis vectors for R? or R? with a unit entry

at the selected index j and zeros elsewhere, where v = {71, ...,7-} C
{1,...,p} denotes the index set of sensor locations with 7 members.
Similarly, actuator selection indices are given by 8 = {31,..., 5, }.

The new measurement and actuation operators are C = S-C and
B = BSg, respectively. The new outputs y = Cx consist of 7 mea-
surements of x.

Problem statement: What are the best r-subsets of a given set of p
sensors and q actuators, where r < n?

To answer this question, we first quantify the degree of observability
and controllability for a given set of sensors and actuators, i.e., for a
given choice of C and B. Optimizing over these directly involves a

Gramians: observability Balanced Gramians

and controllability W
IIxll=1___ _
- /\ -
’
Balancing
transformation

We. W,
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Sensor placement Actuator placement

¢ v, b B )

R R | R

Fig. 2. (Top) lllustration of the balancing transformation for gramians.
The reachable set &. with unit control input is shown in blue. The
corresponding observable set is shown in red. Under the balancing
transformation ¥, the gramians, shown in purple, are equal. (Bottom)
Sensor and actuator selection based on balancing transformation.

combinatorial search, and, thus, a heuristic approach is necessary for
high-dimensional systems.

A. Observability and Controllability

The degrees of observability and controllability for the state-space
system (1) are quantified by the observability gramian W, and con-
trollability gramian W,

W, = / eATC Certdt, W, = / eA'BB At (3)
0 0

which may be visualized as controllable and observable ellipsoids
(Fig. 2). These depend on the actuation and measurement operators,
which consist of all states reachable from a bounded initial state

Eo={W. x| x> < 1} *
and all states that may be observed
Eo = {W,/*x | [|x]> < 1}. ®)

Because the gramians depend on B and C, they are often used to
evaluate the observability/controllability of a given sensor and actuator
placement. One important evaluation metric is the Hs norm of a system.
It measures the average output gain over all frequencies of the input or
the output energy. For the state-space system (1) with transfer function
G(s) = C(sI — A)"'B, itis given by

IG5 = tr(G(jw) G(jw))dw. ©)

472 /,
By the Plancherel theorem, it is also defined in the time domain by
the impulse response y;;(t) = C;e*B,—the output in component i
given an impulse in input j

IG5 :/ tr(Ce**BB* e ' C")dt = tr(CW.C*)  (7a)
0

= / tr(B* e tC*Cer'B)dt = tr(B"W,B)  (7b)
0
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which explicitly relate each gramian to both B and C. An alternative
to the average output energy metrics are the volumetric measures given
by the log determinants

logdet CW_.C*, logdet B°'W B (8)
which are the logarithms of the geometric mean of the axes of the
ellipsoid skewed by B or C; the trace, in comparison, is the arithmetic
mean. This metric is introduced by Summers et al. [7] to place actuators
using a greedy optimization scheme for the submodular objective

function

B, = argmax logdet CW_.C". 9
B

For H, optimal control, it is desirable to minimize the average gain
through the transfer function G that maps disturbances @ to outputs
2(s) = G(s)w(s), i.e., minimizing ||G||5. Several strategies seek to
build the controller and choose actuators simultaneously, using expen-
sive gradient optimization schemes. The drawback of such closed-loop
metrics is having to recompute the gramians—an O (n?®) operation—for
every iteration that selects the next best actuator. This cubic scaling may
be intractable for high-dimensional systems with large n.

There are cases where optimizing sensors and actuators using the
closed-loop H2 norm is more relevant for control [16], [20]. By contrast,
our approach reverses the strategy by instead starting from a maximally
actuated and sensed optimal controller and then seeks a subset of these
sensors/actuators to maximize the volumetric control measures

Sc. = argmax logdet ScCW,C’*SZ, (10a)
Sc

Sp, = argmax logdet SEB*W ,BS 5. (10b)
Sp

Now, the gramians no longer depend on the optimization variable
and need to be computed only once, and both objectives are still
fundamentally linked to the Hs norm of the system. Critically, we
will extract the dominant controllable and observable subspaces from
a balanced coordinate transformation of the gramians.

I1l. BALANCED MODEL REDUCTION

Many systems of interest are exceedingly high dimensional, making
them difficult to characterize and limiting controller robustness due
to significant computational time delays. However, even if the ambient
dimension is large, there may still be a few dominant coherent structures
that characterize the system. Thus, significant effort has gone into
obtaining efficient reduced-order models that capture the most relevant
mechanisms for use in real-time feedback control [1].

The goal of balanced model reduction is to find a transformation T
Al|B }

from state-space (leaving inputs and outputs unchanged), { cTo

TAT ! | TB
CcT ! 0
are hierarchically ordered by their joint observability and controlla-
bility. This permits an r-dimensional representation made possible by

truncating the n — 7 least observable and controllable states.

The seminal work of Moore in 1981 [21] showed that it is possible to
compute this change of coordinates ¥ under which the controllability
and observability gramians are equal and diagonal, and it is given by
the balanced system

to } , such that the transformed coordinates a = Tx

a=®P"A¥a+ ®'Bu
y = CW¥a.

acR" ueR?

yeRP. (1)

The desired transformation and its inverse are given by the direct modes
W and the adjoint modes ®*, respectively. The balanced state a is then
truncated, keeping only the first » < n most jointly controllable and
observable states in a,. so that x ~ W,.a,.. This results in the balanced
AV, | B
Cw, 0
pend on the particular choice of coordinate system, they will transform
under a change of coordinates. The controllability and observability
gramians for the balanced truncated system are

truncation model [21] G,. = } . Since gramians de-

W, =®W.d, W,=T"W,T. (12)

The coordinate transformation W that makes the controllability and
observability gramians equal and diagonal

W,=W,=X (13)

is given by the matrix of eigenvectors of the product of the gramians
‘W _.W, in the original coordinates

W.W, =W W, ¥ =32 — WW,¥ =032 (14

The H, norm between the truncated system and original system is
bounded by twice the sum of the neglected diagonal entries of 3 or
Hankel singular values, o), = 3y

IG =Gl <2 > o

k=r+1

15s)

In practice, computing the gramians W . and W, and the eigendecom-
position of the product W W, in (14) may be prohibitively expensive
for high-dimensional systems. Instead, the balancing transformation
may be approximated with data from impulse responses of the direct
and adjoint systems, utilizing the singular value decomposition for
efficient extraction of the relevant subspaces. The method of empirical
gramians is quite efficient and is widely used [21]-[24]. Moore’s
approach computes the entire n. x n balancing transformation, which is
intractable for exceedingly high-dimensional systems. In 2002, Willcox
and Peraire [23] generalized the method to high-dimensional systems,
introducing a variant based on the rank-r decompositions of W, and
‘W, obtained from snapshots of direct and adjoint simulations. It is then
possible to compute the eigendecomposition of W . W, using efficient
eigenvalue solvers. This approach requires as many adjoint impulse-
response simulations as the number of output equations, which may be
prohibitively large for full-state measurements. In 2005, Rowley [24]
addressed this issue by introducing output projection, which limits the
number of adjoint simulations to the number of relevant POD modes
in the data. It is particularly advantageous to use these data-driven
methods or low-rank alternating direction methods [25] to approximate
the gramians when there are fewer than full measurements and actuation
of the state.

IV. SENSOR AND ACTUATOR OPTIMIZATION VIA QR PIVOTING

‘We now describe an efficient matrix pivoting algorithm to optimize
the log determinant over the choices of sensors and actuators. The
representation of the gramians in balanced truncation coordinates plays
a crucial role.

A. Matrix Volume Objective

Recall the goal of optimizing a set of 7 sensors and actuators out of a
fixed set of p and ¢ candidates. The budget r determines the balancing
rank truncation, which necessarily must be less than both p and q.
Our sensor—actuator selection can be regarded as an interpolation of
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this rank-r representation, or choosing locations or interpolation points
that are heavily weighted in the dominant  balanced modes.

Summers et al. [7] show that it suffices to only consider controllable
or observable subspaces for selecting sensors and actuators using the
log determinant objective. Thus, we can substitute rank-r balanced
approximation of the gramians W, and W, into the log determinant
objective and simplify

Sc. ~ argmax logdet S¢C¥, X, ¥ CTST
Sc

= argmax((det ScC¥,.)? - det )
Sc

= argmax | det ScC¥,.|.
Sc

(16)

This result follows from the monotonicity of logarithms and the product
property of determinants and then omitting the term that is independent
of the sensors, det 35,.. Likewise, in the actuator case, the objective
logdet BTW, B simplifies

Sp, ~ argmax | det 2*BSp|. 17)
Sp

Consider for now the case of sensor placement. The absolute determi-
nant is a measure of matrix volume, and S¢ is a row selection matrix.
The transformed objectives may be viewed as a submatrix volume
maximization problem, which seeks the optimal r-row selection of
CW,. with the largest possible determinant. Finding this optimum is an
NP-hard, intractable combinatorial search over all possible r-row sub-
matrices of CW¥,.. However, it can be optimized greedily and efficiently
using one-time matrix QR factorizations requiring O (pr?) and O(gr?)
operations, as described next.

B. QR Pivoting Algorithm

The QR factorization with column pivoting is a greedy submatrix
volume optimization scheme that we will use to construct C and B,
given ¥,. and ®,.. The pivoted QR factors any input matrix V.€ R"*P
into a unitary matrix Q € R™", upper-triangular matrix R € R™*?,
and column permutation matrix P € RP*? so that the permuted matrix
VP is better conditioned than V

VP = QR. (18)

However, we seek a well-conditioned row permutation of C¥,.. Con-
sider the input V. = (C®,.)* to the QR factorization and the leading
r X r square submatrices of the permuted input on both sides of (18)

VP.,I:T = QR.,I:'F- (19)

Each iteration of pivoting works by applying orthogonal projections to
successive columns of V to introduce subdiagonal zeros in R.. For our
purposes, P plays the crucial role: At each step, P stores the column
“pivot” index of the column selected at each iteration to guarantee the
following diagonally dominant structure in R:

k
|Riil> > Y IRl 1<i<k<p.

j=i

(20)

Observe that the quantity of interest, the absolute determinant of the
row-selected submatrix det [VP_;.,.| corresponding to the subset se-
lection of measurements, now satisfies
-
|det VP 1, = |det Q||det R 1| = [] [Rixl. 2D
k=1

Because the determinant is the product of these diagonal entries, it
can be seen that diagonal dominance property of pivoting implicitly

optimizes the desired submatrix determinant. Thus, S¢ is constructed
from the first  columns of P

So2 (P.i)". 22)

Actuator selection proceeds in the same manner to construct a submatrix
of r columns of B*®,. with maximal determinant, using one additional
QR factorization

(®:B)P = QR. (23)
The solution Sp is precisely the leading r columns of P,Sp 2 f’q s
and we denote the resulting measurement and actuation operators by

C=ScC, B=BSp. (24)

The QR pivoting routine is a standard tool in scientific computing for
matrix decomposition and linear least-squares problems. We use a block
accelerated implementation of classical Businger—Golub pivoting [26]
in MATLAB. QR pivoting scales as O(pr?) with number of candidates
p and rank truncation r, making it particularly favorable in the large
p and low rank setting. The computational complexity and efficient
implementations have been well studied in the literature [13], [26].
Recently, QR pivoting was used for reduced-order interpolation in
DEIMs [13] to efficiently evaluate nonlinear model terms. Here, the
interpolation point selection operator is analogous to our selection
operator S used with point measurements (C = I). The algorithm
can be analyzed in terms of the error between the full state and the
interpolant approximation using the QR selected points

7 =Cx ~ CU,a, (25)

where U,. are the POD modes of the reduced model and a,. are modal
coefficients. Recovering the state using the POD interpolant is done
using standard least-squares approximation

% =U,(CU,) 'y = U,(CU,) 'Cx. (26)

This can be expressed as a projection P £ U, (CUT.)’1 C of the state
x onto the observable subspace. The approximation error using DEIM
is given by

x — U.(CU,) 'Cx]>. @7

Using a similarly defined projection onto balanced modes Po £
\IIT(C\IIT)*lé, we now use the projection error associated with bal-
anced modes and Hankel singular values of G to lower bound the desired
submatrix determinants.

V. ANALYSIS

The best approximation to the state in the span of the direct modes
is given by x, £ W, P x in the ideal measurement scenario y = x,
i.e., C = . The approximation error is bounded by twice the sum of
the neglected Hankel singular values resulting from balanced trunca-
tion (15)

|x = %ull2 < 2(0pp1 + -+ 0n) (28)

which holds for all inputs of unit energy [27]. The analysis of em-
pirical QR interpolation in the balanced modes begins with an estab-
lished result for measurements selected using QR, which states that
|(C®,)~![|2 at most grows as \/pO(2").

Lemma 1 ([13]): For any full-rank matrix M € R?*", the spectral
norm of (SM)~!, where S is given by the QR pivoting algorithm (22),
satisfies

Vp—rF+ 14T +6r —1
Umin(M) 3 '

[(SM) |2 < (29)
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We generalize this result to the setting of arbitrary linear measure-
ments and actuation by analyzing the residual between the state and its
interpolation in balanced coordinates. Note that the residual between
the state and its projection onto balanced modes v = x — X, satisfies

Pev = Pex — ¥, (C®,) 'C¥,®'x = Pox — x,.
The interpolation error from QR pivot selection satisfies
(Pov +x)[2 = I(T = Po)vll

< Peoll2llx = xll2

% = Pox|lz = [[(v +x,) —

<N 2 l(CT) " alICll2lx — x4 2.

The inequality |C|l2 < [|S¢|2/|Cllz = [|C||z is due to C # I. Sub-
stituting (28) and (29) above yields the following result.

Theorem 2: The approximation error from interpolating QR-
selected observations (22) in balanced truncated modes is controlled
by the discarded Hankel singular values and the norms of the given
measurements and direct modes

LIl o 'S o

k=r+1

[x = Pex|le < (30)

An analogous result is obtained for actuator selection by considering
the dual problem of estimating the adjoint state from actuation matrix
B—which is now the measurement operator of the adjoint system. The
resulting projection operator Pz £ & (B P,.) 1B* now projects on
the span of the adjoint modes ®,.. Making appropriate substitutions of
Pg in the above results yields the following.

Corollary 1: The approximation error from interpolating QR-
selected observations (24) of the adjoint state z in balanced truncated
modes is controlled by the discarded Hankel singular values and the
norms of B and ®,.

[[@:l2]Bll2 S
<" 2" .
= Umin("I’iB) \/50( ) Z Ok

k=r+1

|z — Ppz|- 31

We now relate the approximation error bounds using QR pivot
sensors and actuators to the log determinant objectives.

Theorem 3: Given direct modes ¥,., QR pivot sensors C guarantee
the following lower bound for the log determinant:

mll’) (qu )

!
o8 (p—r+1)(4’"+6r—1

j —1—2 log o), < logdet CWCCT.
k=1

Proof: The absolute diagonal entries of a matrix’s R factor are its
nondecreasing singular values; so we can lower bound the absolute
determinant | det CW,.|

|detC‘I’T| = Ha'k = H |Rik| > [Rrr|”

k=1 k=1

(32)
where &}, are the singular values of CW¥,. We obtain, upon squaring
the inequality and multiplying by det 32,., the following:
R?" det %, < (det C¥,.)? det 3,
=det C¥, 3, ¥:CT = det CW,C7
and taking logarithms of both sides

rlog R?, + Z log o). < logdet CW.CT.
k=1

6000F Jogdet CW,C*
4000
2000

43

6000
4000
2000

40 45 50 55 60 65 70

Fig. 3. Histograms of the log determinant and Hs norm (trace) objec-
tives evaluated at all possible selections of 7 sensors out of 25 show that
QR pivot sensors (red) are near optimal.

Because || (C®,) !(|; = 1/|R,..|, the upper bound (29) in Lemma 2 is
the inverse lower bound for | R,...|, which can now be substituted above
to obtain the final result.

An analogous lower bound can be obtained for the objective using
QR pivot actuators by appropriately substituting B R and adjoint
modes ®,. in the above proof.

Corollary 2: Given adjoint modes ®,., B satisfies the following
lower bound for the log determinant:

907, (2:B) - STk
1 wi 1 < logdet B* W,B.
rlog (qfr+1)(4T+6r71)+kZ:1 og oy < logde
VI. RESULTS

We evaluate the selection algorithm in two settings. The first com-
pares QR pivot selections with all possible sensor subset selections in
a random state-space model of tractable size. Next, we consider an
application to closed-loop flow control using linear quadratic Gaussian
(LQG) control to stabilize Ginzburg—Landau dynamics. Given an LQG
controller with full sensing and actuation, we approximate Ho optimal
placements computed using gradient descent [16] with our QR scheme.

A. Discrete Random State Space

Our first example investigates sensor and actuator selection for
random state-space systems with randomized A, B, C. First, we com-
pare the results of QR sensor placement against a brute-force search
across all possible 7 = 7 sensor selections for a system with n = 25
states and p = ¢ = 25 randomized measurements. The log determinant
objective (10) is evaluated for all possible choices of seven sensors since
the system is small enough to explicitly compute the full gramian for
all (™) = 480700 choices of C. These results are binned in Fig. 3 and
compared with the value resulting from our method (red line). The
inputs to the QR scheme, the balancing modes, are computed only
once from the full system. The sensors resulting from our method are
observed to be near optimal for the log determinant, exceeding 99.99%
of all others, and also good substitutes for Hy optimal sensors. On
average, our method surpasses 99.8% of possible outcomes with a
standard deviation of 0.85% over a randomly generated ensemble of
500 model realizations. Therefore, QR sensors are closer to optimal
than the analysis suggests.

We now investigate performance on a larger random state-space
model with n = 100 states and, likewise, initialize the model with
randomized actuation and sensing such that p = ¢ = 100. Fig. 4 shows
the log determinant objective that is being optimized for various sensor
and actuator configurations. The log determinant of the gramian volume
is plotted for the truncated model with QR-optimized sensor and
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@ stabilizes the plant (33)
30 —Mean,random ° e
@ QR pivots ® |:)A(:| |:A2 _B,F-LC, L |:5(:|
20 ® = . (34)
® u -F 0 |y
10 @ —
5 i F Y B 4 Our algorithm generalizes optimal sensor and actuator selection for
= L = < this closed-loop formulation. To see why, observe that F', L are fixed,
-10 and, hence, the system is structured similarly to (1), albeit with in-
5 10 15 20 25 30 35 40 puts and outputs swapped. Nevertheless, the dominant observable and
controllable subspaces of the controller may still be computed and
Fig. 4. Sensor and actuator placement in a random state-space sys-  exploited to optimize sensor—actuator selections. Thus, we compute

tem. The log determinant objective is plotted for QR-optimized sensor—
actuator selections (red) and an ensemble of 200 random sensor—
actuator selections (blue violin plots). The truncation level r (also the
sensor/actuator budget) varies on the horizontal axis.

actuator configurations (red circles) and with random configurations
(blue violin plots). The truncation level r for the balanced truncation
is chosen to match the sensor and actuator budget on the x-axis. The
QR-optimized configurations dramatically outperform random config-
urations. As more modes are retained, the chosen sensors and actuators
better characterize the input—output dynamics, and their performance
gap over random placement increases over all random ensembles,
giving empirical validation of our approach.

Because the system is randomly generated and the dynamics do
not evolve according to broad, nonlocalized features in state-space,
many sensors and actuators are required to characterize the system. In
particular, this is reflected in the slow decay of Hankel singular values.
By contrast, the next example is generated by a physical fluid flow model
and has coherent structure that allows for a more physical interpretation
of sensor and actuator placements with enhanced sparsity.

B. Linearized Ginzburg—Landau With Stochastic Disturbances

Consider the closed-loop, fully sensed and actuated linearized
Ginzburg-Landau model for the evolution of fluid flow perturbations.
The system matrix A, is a Hermite pseudospectral discretization of
the linearized Ginzburg-Landau operator A = —v 5 + pu(€) + 5 5%
over n = 100 spatial gridpoints (§ € R™ in vector notation), and v =
2+0.4i,8=1—1, and p(&) = 0.37 — 0.005£2 are complex advec-
tion, diffusion, and wave amplification parameters. Sensors and actu-
ators are spatially localized Gaussians centered at each gridpoint. For
example, the kth actuator (kth column of B») is given by exp(—(& —
€F)?/\/20), witho = 0.4. Plant dynamics are perturbed by white noise
signals wy ~ N(0,1) and w,, ~ N(0, 4e-81)

x=Asx+Byu+wy (33a)

y = Cox+w, (33b)

which is unstable because the system matrix has eigenvalues in
the right half plane. We perform H, control using an LQG con-
troller that minimizes the ensemble-averaged cost function J(t) =
(fg [x(7)TQx(7) + u(r)TRu(r)]dr), where the average is taken
over the noise realizations. The matrices Q = 32diag(d) and R = I,
where d are pairwise distances between the gridpoints, weight the costs
of state regulation and actuation, respectively, specifying the relative
importance of the control objectives. We solve Riccati equations in the
standard way to optimize the LQG gain matrices F', L, which depend
on both Q, R, and the noise covariances and obtain the controller that

gramians and direct and adjoint modes of the controller by assigning
the state-space realization A £ A, — B,F —LC,,B2L,C £ —F
as in (1), noting our results also hold for complex-valued systems. In
this scenario, which is not always practical, we access a controller with
full sensing and actuation, extract subspaces relevant to control, and
proceed with sensor and actuator selection.

We compare our approach to the gradient descent scheme of Chen
and Rowley [16] who simultaneously optimize the LQG controller
and sensor—actuator placements. Their H5 norm optimization scheme
permits placement of sensors and actuators at locations that may not be
grid points. The major drawback is that each Newton iteration requires
solving 2r n x n Lyapunov equations until convergence, although re-
cent work reduces this to two equations per iteration [28]. Furthermore,
the procedure requires an ensemble of random initial conditions to
avoid converging to a local minimum. In [16], the optimal placement
is computed using conjugate gradient optimization for the same spatial
discretization n = 100, which becomes computationally expensive as
the grid resolution increases. In this case, gradient descent is more costly
than balancing the fully actuated and observed system, which comes
at a one-time cost of solving two Lyapunov equations for the gramians
and two Riccati equations for the LQG gain matrices (O(n?) each).
Therefore, our algorithm is efficient when the grid discretization is
sufficiently fine. Furthermore, our solution provides a good initial guess
for gradient descent, thus eliminating the need for optimization over
a large ensemble of randomized initializations. QR pivoting runtime
scales as O(nr?) and the deviation of the resulting placement from the
H, optimum (Fig. 5) decreases with increasing r.

Fig. 5 plots sensor and actuator configurations from the QR algorithm
and H gradient optimization, which are compared with the H5 optimal
placements in [16]. The resulting placements for the cases r» = 1 to
r = 5 sensors and actuators are plotted vertically, and the horizontal
axis is the spatial domain £ € [—12, 12] with a shaded wave amplifica-
tion region. For each value of r, we apply QR pivoting to the rank r trun-
cated balanced modes. QR pivoting collocates sensors and actuators,
indicating that the direct and adjoint modes (first five plotted as shaded
regions in Fig. 1) are identical up to a scaling factor. In practice, sensors
are often slightly downstream to account for time delays; so we enforce
via the pivoting procedure that sensors are not placed at previously
chosen actuators. The Hy norms of the resulting placement on the
y-axis indicate that the QR selections closely approximate the optimal
placements. The QR selection for five sensors and actuators results in
an Hs norm of 27.8, which agrees closely with the optimal H5 norm of
27.4 16, Fig. 4].

Fig. 6 compares controller gain responses between QR pivoting and
the Hs optimum via the LQG gain of a given signal from each sensor
to each actuator. The LQG gains agree closely with those produced by
the H, optimal method of Chen and Rowley [16, Fig. 5]. Balanced
truncation is applied to the closed-loop system since the open-loop
dynamics are unstable, and it is shown in [16] that the dominant
eigenmodes of the dynamics lead to vastly suboptimal placements. It
is also possible to enforce noncollocation of sensors and actuators as
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Fig. 5. Sensor (x) and actuator (o) placement for linearized Ginzburg—

Landau. Each row corresponds to the optimized placement for budgets
of 1-5 sensors and actuators. Placements based on QR pivoting of
balanced truncated modes (a) closely approximate the Hs norms of the
placements determined using gradient descent (c). The QR method can
be modified to place sensors and actuators to avoid collocation (b).

(a)Hyopt w = 107! w=10" w=10°

(b) QR

Fig. 6. LQG gain (dB) for a system with five sensors and actuators.
Each block shows the gain from a signal exp(iwt) in sensor k (column)
to actuator j (row), ordered upstream to downstream.

in [16]; this sensor—actuator configuration has been extensively studied
in convective flows [29].

VII. DISCUSSION AND QUTLOOK

We develop a scalable sensor and actuator selection method with
runtime that scales linearly with the number of candidate locations,
after a one-time computation of the balanced modes. Our approach
relies on balanced model reduction [21], [23], [24], which hierarchically
orders modes by their joint observability and controllability. We extend
DEIMs to interpolate the low-rank balancing modes of the system and
determine maximally observable and controllable locations (sensor and
actuators) in state space. The performance of this algorithm is demon-
strated on random state-space systems and optimal Hy control of the
linearized Ginzburg—Landau model. Our optimized placements vastly
exceed the performance of random placements and closely approximate
H, optimal placements computed by costly gradient minimization
schemes but achieved at a fraction of the runtime.

Sensors and actuators are critical for feedback control of large
high-dimensional complex systems. This article advocates sensor and
actuator selection using QR pivots of the direct and adjoint modes of a
system’s balancing transformation. The resulting placement is empiri-
cally shown to preserve the dynamics of the full system. The method has
deep connections to system observability, controllability, modal sam-
pling methods, and classical experimental design criteria. Furthermore,
QR pivoting is more computationally efficient than leading greedy and
convex optimization methods and, thus, critically enables searching
over a large number of candidate locations. This is particularly valuable
in spatiotemporal models where high-resolution grids generate a large
number of states, and balanced modes and QR pivoting can exploit
spatial structure.

This article opens a variety of future directions in pivoting sensor
and actuator optimization. Rapid advances in data collection yield
extremely large search spaces. For prohibitively large n or p, random-
ized linear algebra can significantly accelerate both pivoting [30] and
balancing computations. In addition, it remains to study the case when
only data but no model of the dynamics are given, and optimize place-
ments based on data-driven system identification models. These models
may be characterized by complex, nonlinear dynamics or sensing and
actuation constraints. These computational studies and extensions are
topics of future investigation.
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