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Abstract—We introduce two generalizations to the paradigm
of using Random Khatri-Rao Product (RKRP) codes for dis-
tributed matrix multiplication. We first introduce a class of
codes called Sparse Random Khatri-Rao Product (SRKRP)
codes which have sparse generator matrices. SRKRP codes
result in lower encoding, computation and communication costs
than RKRP codes when the input matrices are sparse, while
they exhibit similar numerical stability to other state of the
art schemes. We empirically study the relationship between the
probability of the generator matrix (restricted to the set of
non-stragglers) of a randomly chosen SRKRP code being rank
deficient and various parameters of the coding scheme including
the degree of sparsity of the generator matrix and the number
of non-stragglers. Secondly, we show that if the master node can
perform a very small number of matrix product computations
in addition to the computations performed by the workers, the
failure probability can be substantially improved.

I. INTRODUCTION

Many machine learning applications require multiplication
of two large matrices with real-valued entries. Such large-
scale matrix multiplications cannot be simply performed
on a single machine, and a natural solution is to paral-
lelize the computation using the master-worker paradigm
on distributed computing platforms. In classical distributed
matrix multiplication schemes, the master splits each of the
two input matrices into smaller blocks (submatrices), and
requests each worker to compute and return the product
of a pair of blocks—each belonging to one of the two
input matrices. Upon receiving the computation results of
all workers, the master recovers the product of the two input
matrices. However, such systems are prone to stragglers (i.e.,
those workers that do not return their results as quickly
as the rest of the workers) because the master must wait
for all workers—including the stragglers—to finish their
computations and return their results [1].
A promising approach to mitigate the effect of stragglers

is to incorporate redundancy in the computations of the
workers—using coding techniques—so that the master can
recover the required product from the results of a subset
of workers, instead of waiting for the results of all work-
ers [2]. Inspired by the work of Lee et al. [1], several
coding-based distributed matrix multiplication schemes have
been recently proposed [3]–[15]. (Several variations of the
coded distributed matrix multiplication problem—not closely
related to our work—have also been studied in the literature,
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see, e.g., [16]–[41].) These schemes provide different trade-
offs between several performance metrics including (i) recov-
ery threshold, i.e., the minimum number of non-straggling
workers required for successful recovery, (ii) communication
cost, i.e., the average amount of information that needs to
be transferred from the master to a worker, (iii) computa-
tion load, i.e., the average number of arithmetic operations
performed by a worker, (iv) computational complexity of
encoding and decoding processes, and (v) numerical stability
in the presence of round-off and truncation errors.
Most of the existing codes for distributed matrix multi-

plication provide deterministic guarantees on the recovery
threshold, i.e., the master can successfully decode from the
results of any subset of workers of size no less than a certain
threshold. Examples of such coding schemes are Polynomial
codes [3] and MatDot codes [5]. While these codes have
excellent performance in terms of recovery threshold, they
are highly numerically unstable when the operations are
performed over the field of real numbers. Motivated by this,
in recent years, several numerically-stable coding schemes
with deterministic guarantees were proposed in [7]–[10].
A comprehensive comparison of codes with deterministic
guarantees, which we collectively refer to as deterministic
codes, can be found in [14].
Aside from deterministic codes are the coding schemes

that provide probabilistic guarantees on the recovery thresh-
old, i.e., the master can successfully decode from the results
of a randomly chosen subset of workers of size no less than
a certain threshold, with high probability. Examples of such
codes include Sparse codes [13], Factored Luby-Transform
(FLT) codes and Factored Raptor (FRT) codes [14], and
Random Khatri-Rao Product (RKRP) codes [15]. All of
these codes are highly numerically stable. Sparse codes and
FLT/FRT codes achieve optimal recovery threshold asymp-
totically (with probability approaching 1) as the number
of workers grows unbounded, whereas RKRP codes have
optimal recovery threshold with probability 1. RKRP codes
have a dense generator matrix, whereas Sparse codes and
FLT/FRT codes have sparse generator matrices. As a result,
the encoding/decoding complexity and the computation load
of these codes can be substantially lower than those of RKRP
codes, particularly when the input matrices are sparse [14].
The main difference between Sparse codes and FLT/FRT
codes is that the communication cost of Sparse codes is sub-
stantially higher than that of FLT/FRT codes (or even RKRP
codes), whereas the communication cost of FLT/FRT codes
can be much lower than that of RKRP codes, particularly
when the input matrices are sparse [14].
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In this work, we introduce a new coding scheme, referred
to as Sparse Random Khatri-Rao Product (SRKRP) codes,
which is a generalization of RKRP codes. An SRKRP code
can have a very sparse generator matrix—similar to FLT/FRT
codes. As a result, when the input matrices are sparse,
the encoding complexity, the communication cost, and the
computation cost of SRKRP codes can be much lower than
those of the original RKRP codes. The decoding complexity
of SRKRP codes is, however, comparable to that of the
original RKRP codes, and higher than that of FLT/FRT
codes. The numerical stability of SRKRP codes is also
comparable to that of RKRP codes and FLT/FRT codes.
When compared to FLT/FRT codes, SRKRP codes—with

generator matrices of the same size and the same degree
of sparsity—have a substantially lower failure probability,
even when the number of workers is in the order of tens
or hundreds. While a theoretical analysis of the failure
probability of SRKRP codes remains unknown in general,
our simulations show that these codes can have a very
low failure probability, even when the generator matrix of
the code is much sparser than that of the original RKRP
codes. In addition, our simulations show that a few extra
computations (as little as one) performed locally at the
master—in parallel to those computations performed by the
workers—can substantially reduce the failure probability of
SRKRP codes. To the best of our knowledge, this work
is the first in the literature on coded distributed matrix
multiplication to study the role of such extra computations.

II. PROBLEM SETUP

We use bold-face capital (lowercase) letters for matrices
(vectors). We denote the entry (a, b) of matrix M by (M)a,b.
For any integers 1 < i < j, we denote {i, i+ 1, . . . , j} by
[i : j], and for any integer i � 1, denote {1, . . . , i} by [i].
Consider a distributed master-worker framework in which

the master node has two input matrices A 2 Rr⇥s and
B 2 Rr⇥t, and wishes to compute the matrix C := ATB
using the help of N worker nodes. To do so, suppose that
the master node splits the input matrix A column-wise into m
submatrices A1, . . . ,Am 2 Rr⇥ s

m , and splits the input matrix
B column-wise into n submatrices B1, . . . ,Bn 2 Rr⇥ t

n ,
where m, n are two arbitrary integers such that mn  N.
Note that the matrix C = ATB = [AT

i B j]i2[m], j2[n]. Thus,
in order to compute C, the master node uses the help of
the worker nodes to compute the K := mn smaller matrix
multiplications {AT

i B j}i2[m], j2[n].
Suppose that the computations performed by a randomly

chosen subset of S worker nodes—whose identities are
initially unknown at the master node—are subject to erasure.
Such worker nodes are referred to as stragglers in the
literature on distributed computing. Due to the existence of
stragglers, the master node cannot simply request the worker
nodes to compute the smaller matrix multiplications AT

i B j.
Instead, the master node first encodes the m submatrices
A1, . . . ,Am and the n submatrices B1, . . . ,Bn into N coded
submatrices eA1, . . . , eAN 2 Rr⇥ s

m and N coded submatrices
eB1, . . . , eBN 2 Rr⇥ t

n , respectively. Then, for each l 2 [N],
the master node sends eAl and eBl to the worker node l, and

requests the worker node l to compute eAT
l
eBl and send the

result back to the master node. For each l 2 [N], let

eAl :=
m

Â
i=1

pl,iAi , and eBl :=
n

Â
j=1

ql, jB j, (1)

where pl := [pl,1, . . . , pl,m] and ql := [ql,1, . . . , ql,n] are
two row-vectors with real entries representing the coding
coefficients pertaining to eAl and eBl , respectively.

In addition to the help from the worker nodes, in this
work we assume that the master node can also perform
some computations locally. To be more specific, we consider
the case in which the master node can perform R extra
computations eAT

N+1
eBN+1, . . . , eAT

N+R
eBN+R in parallel. For

each l 2 [N + 1 : N + R], the coded submatrices eAl and
eBl are constructed similarly as in (1), and the coding vectors
pl and ql corresponding to eAl and eBl are defined as before.
Note that the extra computations performed by the master
node are not subject to erasures. That said, these computa-
tions are designed in advance—without the knowledge of the
configuration of stragglers, and are performed in parallel to
those computations performed by the worker nodes.
The goal is to design an encoding scheme, i.e., a (po-

tentially randomized) algorithm for generating the coding
vectors pl’s and ql’s such that the master node can suc-
cessfully recover {AT

i B j}i2[m], j2[n] by decoding the results
of the N� S computations performed by the non-straggling
worker nodes and the results of the R extra computations
performed by the master node.
For each l 2 [N + R], let eCl := eAT

l
eBl . The results

received by the master node and those computed locally at
the master node can be written in matrix form as follows:

2

66666666664

eCl1
...

eClN�S

eCN+1
...

eCN+R

3

77777777775

=

2

6666666664

pl1 ⌦ ql1
...

plN�S ⌦ qlN�S

pN+1 ⌦ qN+1
...

pN+R ⌦ qN+R

3

7777777775

2

666666666664

AT
1 B1
...

AT
1 Bn
...

AT
mB1
...

AT
mBn

3

777777777775

, (2)

where l1, l2, . . . , lN�S 2 [N] represent the indices of the
N � S non-straggling worker nodes, and p ⌦ q represents
the Kronecker product of the row-vectors p and q, i.e.,

p⌦q = [p1q1, p1q2, . . . , p1qn, . . . , pmq1, pmq2, . . . , pmqn],

where p = [p1, . . . , pm] and q = [q1, . . . , qn]. One can
easily observe that the decoding is successful if and only if
the coefficient matrix in the system of linear equations (2)
is full-rank. When the rank is full, the master node solves
the system of linear equations in (2) and obtains an estimate
of Ci, j := AT

i B j, denoted by bCi, j, for each i 2 [m] and
each j 2 [n]. (Since the operations are performed over R,
the computations are prone to numerical errors, and hence,
Ci, j and bCi, j may not necessarily be equal.) An estimate of
C = ATB is then obtained by bC := [bCi, j]i2[m], j2[n].
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III. PROPOSED CODING SCHEME

We build upon RKRP codes of [15], and propose a
generalization of these codes, referred to as Sparse RKRP
(SRKRP) codes, which can have a sparse generator matrix.

A. Encoding
Let U(x) := Âm

k=1 Ukxk and V(x) := Ân
k=1 Vkxk be

the polynomial representation of two weight distributions,
i.e., 0  Uk  1 for all k 2 [m], 0  Vk  1 for
all k 2 [n], and Âm

k=1 Uk = Ân
k=1 Vk = 1. Similarly, let

U⇤(x) := Âm
k=1 U

⇤

k x
k and V⇤(x) := Ân

k=1 V
⇤

k x
k be the

polynomial representation of two weight distributions.
Let X be an arbitrary random variable such that the CDF

of X is absolutely continuous with respect to the Lebesgue
measure, e.g., the uniform random variable X ⇠ U (0, 1).

In an SRKRP code, the coding vectors pl =
[pl,1, . . . , pl,m] and ql = [ql,1, . . . , ql,n] for each l 2 [N]
are constructed as follows:
1) Randomly choose a weight ul and a weight vl by sam-

pling from the weight distribution U(x) and the weight
distribution V(x), respectively, where the probability
of ul = k is Uk for each k 2 [m], and the probability
of vl = k is Vk for each k 2 [n].

2) Randomly choose a subset of [m] of size ul , say, Sl ,
and randomly choose a subset of [n] of size v, say, Tl .

3) Let {pl,i : i 2 Sl} and {ql, j : j 2 Tl} be independently
generated realizations of random variable X. Also, let
pl,i = 0 for all i 62 Sl , and let ql, j = 0 for all j 62 Tl .

The coding vectors pl and ql for each l 2 [N+ 1 : N+R]
are also constructed similarly as above except that in this case
the weight distributions U(x) and V(x) are replaced by the
weight distributions U⇤(x) and V⇤(x), respectively.

Let l1, . . . , lN�S 2 [N] be the indices of the N � S
non-straggling worker nodes. Let P and Q be two matrices
defined as P = [pTl1 , . . . , p

T
lN�S

, pTN+1, . . . , p
T
N+R]

T and
Q = [qTl1 , . . . , q

T
lN�S

, qTN+1, . . . , q
T
N+R]

T. Note that the
size of P is (N � S + R) ⇥ m, and the size of Q is
(N� S+R)⇥ n. Each of the first N� S rows of P contains
uavg = Âm

k=1 Ukk nonzero entries on average, and each of
the last R rows of P contains u⇤avg = Âm

k=1 U
⇤

k k nonzero
entries on average. Similarly, each of the first N � S rows
of Q contains vavg = Ân

k=1 Vkk nonzero entries on average,
and each of the last R rows of Q contains v⇤avg = Ân

k=1 V
⇤

k k
nonzero entries on average. Let G := P�Q be the row-wise
Khatri-Rao product of the matrices P and Q, i.e.,

G =

2

666666664

pl1 ⌦ ql1
...

plN�S ⌦ qlN�S
pN+1 ⌦ qN+1

...
pN+R ⌦ qN+R

3

777777775

. (3)

It is easy to verify that each of the first N � S rows of
G contains wavg = uavgvavg nonzero entries on average,
and each of the last R rows of G contains w⇤

avg = u⇤avgv⇤avg
nonzero entries on average. Recall that in the original RKRP

codes [15], there are no weight distributions U⇤(x) and
V⇤(x) since R = 0, and the weight distributions U(x) = xm
and V(x) = xn. Note that in this case, uavg = m and
vavg = n. This implies that the coding vectors in the original
RKRP codes are dense. Taking U(x) and V(x) to be weight
distributions with uavg < m and vavg < n, SRKRP codes can
take advantage of sparser coding vectors when compared to
the original RKRP codes.

B. Decoding
Note that the matrix G defined as in (3) is the coefficient

matrix in the system of linear equations (2). Rewriting (2),
for each a 2 [ sm ] and each b 2 [ tn ], we have

2

6666666664

(eCl1)a,b
...

(eClN�S)a,b
(eCN+1)a,b

...
(eCN+R)a,b

3

7777777775

| {z }
y(a,b)

= G

2

666666666664

(C1,1)a,b
...

(C1,n)a,b
...

(Cm,1)a,b
...

(Cm,n)a,b

3

777777777775

| {z }
z(a,b)

, (4)

where eCl’s and Ci, j’s are as defined in Section II. Note that
y(a,b) and z(a,b) defined in (4) are two column-vectors with
real entries, each of length K; and all K coordinates of y(a,b)
are known by the master node, whereas the K coordinates
of z(a,b) are unknown at the master node. Given that the
matrix G is full-rank, the master node solves the system of
linear equations (4), and obtains an estimate bz(a,b) of z(a,b).
(In the absence of numerical errors, bz(a,b) = z(a,b).) Upon
computing bz(a,b) for all a 2 [ sm ] and all b 2 [ tn ], the master
node obtains an estimate bC = [bCi, j]i2[m], j2[n] of C, where
(bCi, j)a,b is the ((i� 1)n+ j)th coordinate of bz(a,b).

IV. PERFORMANCE ANALYSIS

To measure the performance of SRKRP codes, we consider
the following metrics: (i) failure probability, (ii) computation
load per worker, and (iii) communication cost per worker.
Discussions about the encoding/decoding complexity and the
numerical stability of SRKRP codes can be found in the long
version of this work, [42].
1) Failure probability: Since the encoding scheme of

SRKRP codes is randomized and the configuration of strag-
glers is assumed to be random, the decoding may or may
not be successful for a given realization of the coding
vectors and a given configuration of the stragglers. As a
result, we consider the failure probability—defined as the
probability that the decoding fails for a randomly generated
code realization and a randomly chosen configuration of
stragglers—as a metric to measure the performance.
Thinking of P and Q as two random matrices, it can be

seen that the structure of the matrix G = P�Q is random,
and hence, the rank of G is a random variable. Thus, the
failure probability is equal to the probability that a randomly
generated matrix G is not full-rank.
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No extra computation (R = 0): As was shown in [15],
for the case of R = 0, the matrix G is full-rank with
probability 1 when U(x) = xm and V(x) = xn. Also,
when U(x) = x and V(x) = x, it is easy to show that
if N � S = K, the matrix G is full-rank with probability
K!/KK, which converges to 0 as K grows unbounded. To the
best of our knowledge, the full-rank probability of the matrix
G is not known for any other U(x) and V(x), and hence,
a theoretical analysis of the failure probability of SRKRP
codes remains unknown in general. Notwithstanding, our
simulation results in Section V reveal several interesting
properties of these codes for the case of R = 0:

1) The failure probability depends mainly on the average
weights uavg and vavg, and does not change for dif-
ferent pairs of U(x) and V(x) which yield the same
average weights uavg and vavg, respectively.

2) For a fixed overall average weight wavg, the closer
are the average weights uavg and vavg to pwavg, the
smaller is the failure probability.

3) For wavg > logK, the failure probability is close to the
probability that the matrix G has an all-zero column,
and the latter probability is close to the probability that
a random matrix M of the same size as the matrix G
has an all-zero column, where the entries of the matrix
M are realizations of i.i.d. Bernoulli random variables
with success probability wavg/K.

Observations (1) and (2) suggest that without loss of
generality, we can consider the same weight distribution
for both U(x) and V(x), i.e., U(x) = V(x) =

V

(x)
for some weight distribution

V
(x), and we can restrict

our attention to weight distributions

V

(x) of simplest
form that yield the overall average weight wavg, i.e.,V

(x) = x
pwavg or

V

(x) = �xb
pwavgc + (1� �)xd

pwavge

for � = (d
pwavge �

pwavg)/(d
pwavge � b

pwavgc) when
wavg is a perfect square or not a perfect square, respectively.
Observation (3) suggests that the failure probability of

an SRKRP code with R = 0 can be closely approximated
by 1� (1� (1� wavg/K)N�S)K, noting that a column
of a random matrix of size (N � S)⇥ K—whose entries
are realizations of i.i.d. Bernoulli random variables with
success probability wavg/K—is all-zero with probability
(1� wavg/K)N�S.
Leveraging extra computations (R � 1): The above

observation implies that when R = 0 and wavg < K,
an SRKRP code fails with a nonzero probability. When
K grows unbounded and N � S� K remains constant, if
wavg > logK, the failure probability vanishes. However,
when K is finite and N � S� K is small, the failure prob-
ability may not be as small as required, even for arbitrarily
large wavg < K. To alleviate this drawback, we propose to
leverage R extra computations performed by the master node.

Extending the result of [15] to the cases with R � 1, it is
immediate that the matrix G is full-rank with probability 1
when U(x) = U⇤(x) = xm and V(x) = V⇤(x) = xn.
However, the probability of the matrix G being full-rank
remains unknown for any U(x) and V(x) with uavg < m
and vavg < n, even when U⇤(x) = xm and V⇤(x) = xn.
Intuitively, for any uavg and vavg and any R � 1, we

expect that the larger are the average weights u⇤avg and v⇤avg,
the larger is the probability that the matrix G is full-rank.
Our simulation results in Section V are consistent with this
intuition. Moreover, the results of our simulations show that
a few extra computations (i.e., R 2 {1, 2}) with sufficiently
large w⇤

avg can significantly reduce the failure probability,
even when wavg is as small as logK.
2) Computation load per worker: Another performance

metric that we consider is the average computational com-
plexity of the matrix multiplication performed by a worker
node. Let nnz(A) and nnz(B) denote the number of nonzero
entries in A and B, respectively. For the ease of exposition,
assume that the positions of the nonzero entries of A and B
are randomly chosen. Note that nnz(Ai) is O( nnz(A)

m ) for
all i 2 [m], and nnz(B j) is O( nnz(B)n ) for all j 2 [n]. For a
given l 2 [N], let ul and vl be the number of nonzero coor-
dinates in the coding vectors pl and ql , respectively. Then,
nnz(eAl) and nnz(eBl) are O(ul

nnz(A)
m ) and O(vl

nnz(B)
n ),

respectively. This further implies that the complexity of
computing eAT

l
eBl is O(min{ult

nnz(A)
mn , vls

nnz(B)
mn }). Thus,

the computation load per worker is given by

O

✓
min

⇢
uavgt

nnz(A)
mn

, vavgs
nnz(B)
mn

�◆
.

3) Communication cost per worker: The communication
cost per worker is defined as the average amount of data
that needs to be transferred from the master node to a
worker node. For a given l 2 [N], the master node sends
eAl and eBl to the worker node l. Thus, the communica-
tion cost per worker node l is nnz(eAl) + nnz(eBl). Since
nnz(eAl) and nnz(eBl) are O(ul

nnz(A)
m ) and O(vl

nnz(B)
n ),

respectively, the communication cost per worker node l is
O(ul

nnz(A)
m + vl

nnz(B)
n ). Thus, the communication cost per

worker is given by

O

✓
uavg

nnz(A)
m

+ vavg
nnz(B)

n

◆
.

V. SIMULATION RESULTS

In this section, we present the results of our simulations
for the failure probability of SRKRP codes. For each set
of parameters being considered, we have performed Monte-
Carlo simulations until 100 failures were observed (i.e., 100
rank-deficient matrices G were generated).
Fig. 1 presents the failure probability of SRKRP

codes with parameters m = n = 8 (K = 64)
and N � S = K, for different pairs of weight
distributions U(x) = ↵1x2 +�1x3 + (1�↵1 ��1)x4
and V(x) = ↵2x2 +�2x3 + (1�↵2 ��2)x4, for all
↵i ,�i 2 {0, 0.05, 0.1, . . . , 1} such that wavg = uavgvavg =
(4� 2↵1 ��1)(4� 2↵2 ��2) = 9. For fixed (uavg, vavg),
each point corresponds to the failure probability for a
different pair (U(x), V(x)) with the average weights uavg
and vavg, respectively. As can be seen, the failure probability
is (almost) the same for different pairs (U(x), V(x)) with
the same (uavg, vavg). In addition, it can be seen that
the minimum failure probability corresponds to those
distribution pairs with uavg = vavg = 3 (= pwavg).
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(3,3) (3.6,2.5) (3.75,2.4) (4,2.25)

4

6

8

10

12

14
10-3

Fig. 1. Failure probability (Pf ) for different weight distribution pairs
(U(x), V(x)) yielding the same overall average weight wavg = uavgvavg.

0.5 0.75 1 1.25 1.5 1.75 2
10-4

10-3

10-2

10-1

100

Fig. 2. Failure probability (Pf ), probability of an all-zero column (Pzc)
and its approximation (bPzc), for different values of K and wavg.

Fig. 2 depicts the failure probability of SRKRP codes,
the probability of existence of an all-zero column in the
generator matrix of such codes, and the probability of
existence of an all-zero column in a random binary matrix of
the same size and the same sparsity as the generator matrix,
for parameters m = n = 8, 16, 32 (K = 64, 256, 1024) and
N � S = K, and weight distributions U(x) and V(x) equal
to

V

(x) (as defined in Section IV) with wavg = ✓ logK for
✓ 2 {0.5, 0.75, 1, . . . , 2}. As can be seen, for fixed K, as ✓
increases, the failure probability decreases, and for ✓ > 1,
the decay is (almost) exponential in ✓. In addition, for larger
K, the failure probability decays faster as ✓ increases. It
can also be seen that the failure probability is very close
to (i) the probability of existence of an all-zero column in
the generator matrix, and (ii) the probability of existence of
an all-zero column in a random binary matrix with the same
size and the same sparsity as the generator matrix.
Fig. 3 depicts the failure probability and its approxi-

mation for parameters m = n = 8 (K = 64) and
N � S 2 {K,K+ 1, . . . ,K+ 16}, and weight distributionV

(x) with wavg = ✓ logK for ✓ 2 {0.5, 1, 1.5, 2}. As can
be seen, the failure probability and its approximation are
close to each other, not only for N � S = K, but also for
N � S > K. In addition, one can see that for fixed K, the
larger is wavg, the more accurate is the approximation.

Fig. 4 depicts the failure probability of SRKRP codes
with R = 0, 1, 2 dense extra computations performed by the

64 66 68 70 72 74 76 78 80
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100

Fig. 3. Failure probability (Pf ) and approximate probability of an all-zero
column (bPzc) for different values of N � S and wavg.
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Fig. 4. Failure probability (Pf ) for different values of R and wavg.
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Fig. 5. Failure probability (Pf ) for different values of R and w⇤
avg.

master node (i.e., w⇤
avg = mn), for parameters m = n = 8

(K = 64) and N � S = K, and weight distribution

V

(x)
with wavg = ✓ logK for ✓ 2 {0.5, 0.75, 1, . . . , 2}. As can
be seen, the failure probability decays exponentially with
wavg, and the decay rate increases linearly with R.
For parameters m = n = 8 (K = 64) and N � S = K,

and weight distribution

V

(x) with wavg = 9, Fig. 5 depicts
the failure probability of SRKRP codes with R = 0, 1, 2
extra computations with distributions U⇤(x) = V⇤(x)
equal to

V

⇤(x) (defined similarly as

V

(x)) for different
w⇤
avg 2 {16, 24, 32, . . . , 64}. As can be seen, for fixed R, the

failure probability decreases as w⇤
avg increases, and for larger

R, the failure probability decreases faster as w⇤
avg increases.
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