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Abstract—Transient angle stability of inverters equipped with
the robust droop controller is investigated in this work. At first, the
conditions on the control references to guarantee the existence of
a feasible post-disturbance operating point are derived. Then, the
post-disturbance equilibrium points are found and their stability
properties are characterized. Furthermore, the attraction regions of
the stable equilibrium points are accurately depicted by calculating
the stable and unstable manifolds of the surrounding unstable equi-
librium points, which presents an explanation to system transient
stability. Finally, the transient control considerations are provided
to help the inverter ride-through the disturbance and maintain its
stability characteristics. With these, it is shown that the transient
angle stability is not a serious problem for droop controlled inverters
with proper control settings.

Index Terms—transient angle stability, droop controlled inverter,
equilibrium point, (un)stable manifold

I. INTRODUCTION

The utilization of renewable energy generations to support

electric loads is gradually shifting the paradigm of power systems

[1], [2]. Since most of these renewable energy generations are

connected into the grids through inverters, it can be predicted

that an increasing number of inverters will be added into the

power system and greatly affect its operating characteristics

[3]. Therefore, the operation properties of inverters should be

carefully studied [4].

Specifically, the control technique and stability analysis of

inverters are usually discussed, which are also interrelated them-

selves. As a power electronic device, the dynamic characteristics

of the inverter are mainly influenced by its controller, which

further plays a very important role in determining the stability

of the system. Among different control techniques, the droop

controller has been well recognized by researchers because of

its ability to work in a decentralized way [5], [6], to actively

support the system [7], [8] and to autonomously synchronize

with the grid [9], [10]. Over recent years, lots of attention has

been paid to the improvements and applications of the droop

controller, whereas the stability problem has also been discussed.

The stability issues in the power system can be classified as

small-disturbance stability and large-disturbance stability [11].

Compared to the former category, the large-disturbance stability

is much less studied for inverters, probably because they are

usually immediately tripped off once a large disturbance is

detected, such as when a fault occurs. However, with more
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inverters equipped with the fault ride-through capability [12],

[13], attention should also be paid to this kind of stability. It

should be noticed that according to the definition in [11], the

term transient stability is used to specify the rotor angle stability

of the synchronous generator, which is contrasted to the voltage

stability. Similarly, the power angle stability is investigated for

the droop controlled voltage source inverters in this work, and

the term transient stability is inherited to indicate the system

stability after a large disturbance.

Conventionally, transient stability is usually studied using

the time-domain simulation method or the direct method, in-

cluding the Lyapunov-based methods [14], the extended equal

area criterion [15] and so forth. Following these routes, some

researchers investigated the transient stability of the inverters

with droop control. For example, time-domain simulations were

carried out in [16], which concluded that the transient stability

problem of droop controlled inverters does not need to be worried

about, but further explanations were not provided. By contrast,

theoretical analyses were conducted in some other works. An

energy function was constructed in [17] by making the droop

controlled inverter model similar to the classic second-order

synchronous generator model. Lyapunov functions were given

in [18] using the Takagi-Sugeno multi-modeling method, where

the estimated attraction regions were compared regarding the

inverter models with different orders. And the idea from equal

area criterion was applied in [19] to analyze the synchronous

instability mechanism of droop controlled inverters when the

current was saturated under transient events. However, it is still

an open question to accurately and completely characterize the

transient stability of the droop controlled inverter.

In addition to following the routes used in the conventional

power system studies, researchers also tried to solve the problem

from other perspectives. The works in [20]–[23] gave several

conditions regarding the transient stability and synchronization

of the droop controlled inverter by introducing the concepts

and techniques in control and system theories, including the

generalized Kuramoto model, the port-Hamiltonian system, and

the Kalman-Yakubovich-Popov condition. These works provided

mathematically rigorous analyses, but the difficulty was also

increased to understand the physical significance behind this

problem from the complicated mathematical derivations.

Compared to the existing works, this paper aims to pro-

vide some insights about the transient stability of the inverters

equipped with droop mechanism. Essentially speaking, transient

stability investigates whether the system is able to return to a

proper operating point after a large disturbance is cleared and

the system restores its normal topology and control, which refers

to the post-disturbance system [24]. Therefore, the most intrinsic

approach for this problem is to find the accurate stability region

of the post-disturbance system and analyze the stability consider-
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ing the system trajectory. This idea motivates the studies in this

paper. In this work, the robust droop controller (RDC) [4], [25]

is taken as an example to operate the inverter, and its transient

stability characteristics are studied in a single machine infinite

bus (SMIB) scenario by first obtaining the stable equilibrium

points (SEPs) and unstable equilibrium points (UEPs) of the

system, and then depicting the attraction regions of the SEPs.

The contributions of this work include:

• Firstly, a feasible operation region is derived for the control

references of the droop controlled inverter, which serves as

the prerequisite for the system transient stability.

• Then, a good transient angle stability characteristic of the

droop controlled inverter is revealed, which means a SEP

can always be found by the post-disturbance system and a

stable final state can always be obtained.

• Finally, the transient control considerations are provided

regarding the current limiting and the reverse active power

prevention, which further help the droop controlled inverter

maintain its stability characteristics.

The rest of this paper is organized as follows. The studied

system model is introduced in Section II. The feasible operation

region for the control references is derived in Section III to

guarantee the existence of feasible SEPs. The characterization

of the system equilibrium points is analyzed in Section IV. The

accurate attraction regions of the SEPs are depicted and verified

in Section V to understand the system transient stability prop-

erties. The transient control considerations regarding the current

limiting and reverse active power prevention are discussed in

Section VI. And the conclusions are made in Section VII.

II. SYSTEM MODEL

Although the droop control is usually adopted where multiple

inverters are parallel connected, it is clearer to reveal the internal

mechanism of transient angle stability in a classical SMIB

scenario, and thus, the SMIB system is considered in this work.

Table I
VALUES OF SYSTEM PARAMETERS.

Symbol Explanation Value

Vg grid voltage RMS value (line-line) 100V
ωg grid voltage angular speed 100π rad/s
Rg grid side resistance 0.1Ω
Lg grid side inductance 0.5mH
Rl line resistance 0.1Ω
Ll line inductance 0.5mH
Rs LC filter resistance 0.1Ω
Ls LC filter inductance 2mH
Cs LC filter capacitance 20µF
Rf fault ground resistance 0.01Ω

Both the steady-state and dynamic models of the discussed

system will be derived in this section. For a better presentation,

one set of system and control parameters are given in Tables I and

II as an example, and some of the illustrations in the following

sections are carried out with these parameters.

In this work, the system parameters are selected to operate

the inverter in a relatively weak system, where the transient

angle stability problem is expected to be a more serious threat.

On the other hand, the droop coefficients are set that when the

system frequency deviates 0.5Hz (1% of the rated frequency),

the inverter will provide 1000W active power regulation (20%

Table II
CONTROL PARAMETERS OF THE INVERTER.

Symbol Explanation Value

Sbase inverter base capacity 5000VA

V line, rms
base

voltage base (line-line RMS) 100V
Pset active power reference 4000W
Qset reactive power reference 3000Var
ω∗ angular speed reference 100π rad/s
Er inverter voltage reference 100V

m active power droop coefficient 0.001π (W · s)−1

n reactive power droop coefficient 0.25V/Var·s

Ke inverter voltage droop coefficient 50 s−1

of the capacity), and when the voltage deviates 5V (5% of the

rated voltage), the inverter will provide 1000Var reactive power

regulation (20% of the capacity). It should be noticed that these

specific parameters shown in Tables I and II are adopted only to

present the analysis more clearly. However, the conclusions of

this work have been validated under a wide range of parameters

through extensive simulations.

Furthermore, from the perspective of engineering practice, the

inverter control parameters can be designed by first selecting the

droop coefficients m, n and Ke according to the requirements

on the inverter to support system frequency and voltage, which

should also be reasonable regarding the capacity of the inverter.

Then the control references Pset, Qset, and Er can be further de-

termined considering the dispatch instructions and the conditions

proposed in Section III of this work.

A. Description of the SMIB System

The studied SMIB system is shown in Fig. 1. The infinite bus

is modeled as an ideal voltage source Vg∠0. And the inverter is

modeled as a controllable voltage source E∠δ, where δ is the

power angle with respect to the infinite bus. Since the transient

stability is investigated after a large disturbance, a three-phase

ground fault is applied at bus 2 which has a ground resistance

Rf . In this work, it is assumed that the fault is cleared by itself

with no line tripped and therefore, the post-disturbance system

topology is the same as the pre-disturbance one.

Vg
E

Xc

Rl      Xl Rs      XsRg      Xg

Rf

Pe      Qe

Figure 1. The discussed SMIB system.

This complete system can be further reduced to a compact 2-

bus system using the well-known Kron reduction [26], and the

reduced system includes only the grid bus and inverter bus. The

steady-state model of the reduced system is represented as (1).
[

Ig∠ϕg

Ie∠ϕe

]

=

[
G11 + jB11 G12 + jB12

G21 + jB21 G22 + jB22

]

︸ ︷︷ ︸

Y red

[
Vg∠0
E∠δ

]

(1)

where Vg∠0 and E∠δ are respectively the grid voltage and

inverter voltage. Ig∠ϕg and Ie∠ϕe are respectively the grid

current and inverter current. Y red is the complex admittance

matrix of the reduced system, where its real parts and imaginary
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parts are respectively Gij and Bij (i, j = 1 or 2). It should

be noticed that since the transient stability is usually discussed

regarding the post-disturbance system, Y red and its elements Gij

and Bij are referred to the post-disturbance system parameters

by default in this work.

B. Inverter Dynamic Model

In this study, the inverter is modeled as an ac voltage source,

whose dynamic characteristics are determined by its controller.

Although different droop control implementations have been

proposed in the literature, their key features are almost the same,

which are the droop mechanisms between active power P and

power angle δ (or angular speed ω), and between reactive power

Q and inverter voltage E. Here, the RDC is adopted since

it contains exactly these droop features [4], [25]. The block

diagram of the RDC is shown in Fig. 2.

e

ie

Pset

Pe

Qset

Qe
n

m

Ke

Er

*

s

s

sin
eref

E

E

Figure 2. Block diagram of the adopted RDC.

The dynamic model of this controller is expressed as
{

δ̇ = m (Pset − Pe) + (ω∗ − ωg)

Ė = n (Qset −Qe) +Ke (Er − E)
(2)

where Pset, Qset, ω
∗ and Er are the references of the controller,

and m, n, and Ke are the droop coefficients, as shown in Table

II. Besides, since it is usually considered that both ω∗ and ωg

have the nominal value in the SMIB system, the term (ω∗ − ωg)
is omitted in the following sections. Pe and Qe are the output

active and reactive power of the inverter, as shown at bus 4 in

Fig. 1. Considering the reduced network shown in (1), the output

power of the inverter can be calculated as

Pe = E2G22 + EVgX21 sin (δ + ϕ) (3)

Qe = −E2B22 − EVgX21 cos (δ + ϕ) (4)

where X21 =
√

G2
21 +B2

21, sinϕ = G21

X21

, and cosϕ = B21

X21

.

III. EXISTENCE OF THE FEASIBLE EQUILIBRIUM POINTS

Since transient stability investigates whether the system is able

to return to a proper SEP after the disturbance, the existence of

a feasible SEP should be the prerequisite of transient stability. In

this section, the conditions will be derived to guarantee the SEP

of the system falls within a feasible region to avoid instability,

overvoltage, or overcurrent.

It can be easily found from the system dynamics (2) that at

the equilibrium points, the following conditions should be met
{

0 = m (Pset − Pe)
0 = n (Qset −Qe) +Ke (Er − E)

(5)

which lead to the requirements Pe = Pset and Qe = Qset +
Ke

n
(Er − E) under the assumption that the droop coefficients

m and n are nonzero. Hence, the sub-equations in (5) can be

further derived as
{

EVgX21 sin (δ + ϕ) = Pset − E2G22

EVgX21 cos (δ + ϕ) = −Qset −
Ke

n
(Er − E)− E2B22

(6)

where the system steady-state model (3)-(4) is taken into con-

sideration. By squaring and adding the two sub-equations in (6)

together, a quartic equation of the inverter voltage E can be

obtained as an equivalent condition at the system equilibrium

point, shown as

g (E) = αE4 + βE3 + γE2 + εE + κ = 0 (7)

where α = G2
22 + B2

22, β = − 2B22Ke

n
, γ =

K2

e

n2 + 2B22ErKe

n
−

2PsetG22 + 2QsetB22 − V 2
g X

2
21, ε = − 2ErK

2

e

n2 − 2QsetKe

n
, and

κ = P 2
set+Q2

set+
E2

r
K2

e

n2 + 2QsetErKe

n
. With the above preparation,

the following requirements are adopted to regulate the operation

of the inverter:

(1) The limits on the operation status are
{

Pset > 0
Qset +

KeEr

n
> 0

(8)

which regulate the power direction of the droop controlled

inverter. Note Pset > 0 is natural for an inverter, and Qset +
KeEr

n
> 0 is always satisfied with the proper droop coefficients.

(2) The limits on the inverter capacity are






|Pset| < Smax

|Qset| < Smax

P 2
e +Q2

e < S2
max

(9)

where Smax is the maximal operation power of the inverter.

(3) The limits for the proper inverter voltage solution are
{

g (Emin) < 0
g (Emax) > 0

(10)

where Emin and Emax are respectively the minimal and max-

imal inverter voltages. These requirements guarantee the exis-

tence of a feasible inverter voltage solution within the range

(Emin, Emax), which can be further explained as follows.

It can be seen that solving the equilibrium points of the system

(5) is equivalent to solving the quartic function (7) of E, which

should have 4 solutions. Without loss of generality, these 4

solutions are denoted as E1 ∼ E4, where Re (E1) > Re (E2) >
Re (E3) > Re (E4).

According to the characteristics of the coefficients, it can be

found that α = G2
22 + B2

22 > 0, β = − 2B22Ke

n
> 0 (normally

G22 > 0 and B22 < 0) and κ = P 2
set + Q2

set +
E2

r
K2

e

n2 +
2QsetErKe

n
> 0 (with normal droop coefficients). Therefore, the

following conclusions can be obtained:

On one hand, since






E1 + E2 + E3 + E4 = −β

α
< 0

E1 · E2 · E3 · E4 =
κ

α
> 0

it can be concluded that at least two solutions of (7) have negative

real parts, where it is assumed that Re (E1) > Re (E2) > 0
and 0 > Re (E3) > Re (E4). Since the negative value is not

meaningful as the voltage, only E1 and E2 are further discussed.
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On the other hand, since α > 0 and κ > 0, it can be concluded

that g (∞) → ∞ and g (0) > 0. Therefore, two scenarios exist

as shown in Fig. 3. Obviously, it is hoped that g (E) has two

crossing points with the positive E-axis so that both E1 and E2

are real. Under this case, it will be shown in the following section

that E1 is the stable solution, so it is further expected that E1 is

between the pre-defined maximal and minimal values.

Figure 3. Illustration of the function (7) on the positive E-axis.

It is shown in Fig. 3 that as long as g (Emin) < 0 and

g (Emax) > 0, g (E) is guaranteed to have two crossing points

with the positive E-axis, and the inverter voltage E1 is within

the proper range. Therefore, the conditions (10) are adopted.

By combining (8)-(10), the conditions on the control refer-

ences Pset, Qset, and Er can be obtained, which guarantee

the existence of a SEP within the feasible operating region.

One illustration is given in Fig. 4 for the system with the

constraint limits set as Emax = 1.2 p.u., Emin = 0.8 p.u., and

Smax = 1.0 p.u.. During system operation, the control references

should always be selected within this region to guarantee the

existence of a feasible post-disturbance operating point.

Figure 4. Illustrative feasible operation region for the control references, with
the parameters shown in Tables I and II.

IV. CHARACTERIZATION OF THE EQUILIBRIUM POINTS

With the conditions proposed in Section III, the existence

of the proper equilibrium points is guaranteed. In this section,

these equilibrium points will be analyzed both qualitatively and

quantitatively, as a preparation for the transient stability study.

It should be clarified that either the qualitative method or the

quantitative method can be applied individually to analyze the

equilibrium points of the studied system, but together they

can provide more comprehensive perspectives to understand the

problem. The qualitative analysis gives a clear visual illustration,

whereas the quantitative analysis gives accurate mathematical

expressions. It will be shown that the results of both methods

match each other.

A. Qualitative Analysis by Nullclines

As can be seen from Section II, the system dynamic model is

nonlinear due to the power flow expressions. Usually, it is almost

impossible to directly and explicitly find the solutions of such a

nonlinear system. However, the idea of nullclines can be adopted

to help analyze the system characteristics.

For the system dynamics shown in (2), the δ-nullcline and

E-nullcline are respectively defined as the set of points in the

phase plane where δ̇ = 0 and Ė = 0 [27]. By combining (2)-(4)

and solving the corresponding equations, the δ-nullcline of the

system can be found as

E =
−VgX21 sin (δ + ϕ)

2G22

+ (11)

√

[VgX21 sin (δ + ϕ)]
2
+ 4G22Pset

2G22

,

and the E-nullcline of the system can be found as

E =
−VgX21 cos (δ + ϕ) + Ke

n

2B22

− (12)

√
[
VgX21 cos (δ + ϕ)− Ke

n

]2 − 4B22

(
Qset +

KeEr

n

)

2B22

.

Note that both (11) and (12) represent the positive solutions

of corresponding nullclines under the studied situation. Although

both δ̇ = 0 and Ė = 0 result in quadratic equations of E, which

have two solutions mathematically, only the positive solutions

are meaningful because E denotes the inverter voltage which

can only be positive. Under the normal parameters, there are

G22 > 0 and B22 < 0, and thus, (11) and (12) are positive.

Based on the above calculations, the system nullclines can be

illustrated in Fig. 5. Geometrically, the δ-nullcline is composed

of the points where the system vectors are either straight up or

down, and the E-nullcline is composed of the points where the

system vectors are either straight left or right. Furthermore, in

any single area divided by the nullclines, all the system vectors

must point in only one of the four general directions: left-up, left-

down, right-up, and right-down. These vector field directions of

the system are also illustrated in Fig. 5.

It can be seen, qualitatively, from Fig. 5 that the system

equilibrium points are the points where the δ-nullcline and the E-

nullcline cross, which means both δ̇ = 0 and Ė = 0 are satisfied.

Furthermore, the equilibrium points marked with stars in Fig. 5

should be the SEPs since in any of the areas around them, the

system trajectories all flow toward them. On the other hand, the

equilibrium points marked with circles in Fig. 5 should be the

UEPs since in any area around them, the system trajectories all

pass them by.

B. Solutions and Properties of the Equilibrium Points

As mentioned, the equilibrium points can also be mathemat-

ically obtained by solving the equations (5). There are two
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E
E

Figure 5. System nullclines, vector field directions, and equilibrium points.

categories of equilibrium points: [E1, δ1] with higher voltage

values (stars in Fig. 5) and [E2, δ2] with lower voltage values

(circles in Fig. 5). They can be solved as







Ei = − β

4α
+

1

2

√

β2

4α2
− 2γ

3α
+∆

±1

2

√
√
√
√
√
√
√

β2

2α2
− 4γ

3α
−∆+

−

β3

α3
+
4βγ

α2
−

8ε

α

4

√

√

√

√

β2

4α2
−

2γ

3α
+∆

δi = arccos
−Qset −

Ke

n
(Er − Ei)− E2

i B22

EiVgX21

− ϕ+ 2kπ,

(13)

where i = 1, 2 and k ∈ Z. E1 takes the plus sign on its second

row and E2 takes the minus sign. Furthermore, there is

∆ =
3
√
2∆1

3α 3

√

∆2 +
√

−4∆3
1 +∆2

2

+

3

√

∆2 +
√

−4∆3
1 +∆2

2

3 3
√
2α

with ∆1 = γ2 − 3βε+ 12ακ, and ∆2 = 2γ3 − 9βγε+ 27αε2 +
27β2κ−72αγκ. It is clear that the equilibrium points are periodic

along the δ-axis with a 2π period.

The properties of the equilibrium points can be further math-

ematically verified by calculating the eigenvalues of the corre-

sponding Jacobian matrix. According to the system dynamics

(2), the expression of the Jacobian matrix is shown in (14), and

its eigenvalues λ1 and λ2 are given by

λ1 =
Jδδ + JEE −

√

(Jδδ + JEE)
2 − 4 (JδδJEE − JδEJEδ)

2

λ2 =
Jδδ + JEE +

√

(Jδδ + JEE)
2 − 4 (JδδJEE − JδEJEδ)

2
(15)

The corresponding eigenvectors of λ1 and λ2 are respectively

expressed by η1 and η2 as

η1 =





λ1 − JEE

JEδ

1



 , η2 =





λ2 − JEE

JEδ

1



 (16)

With the above derivations, the stability property of an equilib-

rium point can be determined by substituting its expression into

(14)-(15), and examining the corresponding eigenvalues: if both

Re (λ1) and Re (λ2) are negative, then the equilibrium point is

a SEP. Otherwise, the equilibrium point is a UEP [28]. These

quantitative discussions of the system equilibrium points match

with the observations from Fig. 5.

V. TRANSIENT STABILITY STUDY AND VERIFICATION

With the derived post-disturbance equilibrium points, the

system transient angle stability will be further investigated in

this section by exploring the stability boundaries and attraction

regions of the SEPs. In this work, the theorem 3.15 in [29]

is adopted, which describes the characteristics of the stability

boundaries of the SEPs:

1) One UEP is on the stability boundary of a SEP, if and

only if the unstable manifolds of this UEP contain the

trajectories flowing to the above SEP.

2) The stability boundary of a SEP is formed by the union

of the stable manifolds of all the UEPs, which are located

on the stability boundary of this SEP.

Based on this theorem, the stability boundary of one SEP can be

obtained by: 1) finding the surrounding UEPs which are on the

stability boundary of this SEP, and 2) finding the union of the

stable manifolds of these UEPs. These steps will be conducted

in this section to determine the attraction region of the studied

system, and the system transient stability characteristics will be

further discussed.

A. Characterization of the Attraction Region

1) UEPs on the Stability Boundary: As mentioned, the first

step to obtain the stability boundary of a SEP is to determine

the UEPs on the stability boundary. According to the previous

discussions, it has been found that there is only one pair of SEP

and UEP within one 2π period along the δ-axis. Therefore, it

is reasonable to infer that this UEP should be on the stability

boundary of the corresponding SEP since there is no other option.

This inference can be easily verified through an illustration in

Fig. 6, since the plotted unstable manifolds of the UEPs indeed

contain the trajectories flowing to the SEPs.

Based on the above confirmation, the next step, which is also

the key in our analysis, is to find the stable manifolds of the

UEPs, which are obtained by the trajectories starting from the

UEPs, taking the directions of their stable eigenvectors, and

flowing backward in time. In this work, the stable manifolds

of these UEPs will be acquired respectively by the following

two methods:

1) The first method is the numerical integration, which is

conducted by Euler method in this work [26]. The stable

manifolds obtained by this method will be denoted as the

numerical ones, and they will be regarded as accurate

results because they are calculated step by step directly

from the system dynamic model.

2) The second method, which will be further explained as

follows, is the analytical approximation where an analyt-

ical expression will be derived to approximate the stable

manifolds of the UEPs. The results obtained by this method

will be denoted as the analytical ones in this work.

As is well known, the numerical integration method is generic

and can be applied to any systems with a clear dynamic model,

but cannot lead to analytical results. In this work, these two

methods will be respectively conducted and compared, and it
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J =

[
Jδδ JδE
JEδ JEE

]

=

[
−mEVgX21 cos (δ + ϕ) −2mEG22 −mVgX21 sin (δ + ϕ)
−nEVgX21 sin (δ + ϕ) 2nEB22 + nVgX21 cos (δ + ϕ)−Ke

]

(14)
E

Figure 6. The unstable manifolds and the stable eigenvectors of the UEPs.

will be demonstrated that the analytical approximation of the

stable manifolds is precise enough to represent the results of the

numerical integration.

2) Analytical Approximation of the Stable Manifolds: It is

known that the stable manifolds close to one UEP itself take the

direction of the stable eigenvectors, as shown in Fig. 6. However,

it is unknown how these stable manifolds flow farther in the

phase plane.

To answer the above question, the system nullclines obtained

in Section IV-A are introduced again, as shown in Fig. 7. It can

be seen that in all of the areas above the E-nullcline, the system

vector field points to the negative E direction. And in all of the

areas below the E-nullcline, the vector field points to the positive

E direction. That is, if one starts from the discussed UEP, takes

its stable eigenvector direction, and integrates backward in time,

then the obtained stable manifold will extend along with the

vector field direction.

E

E

Figure 7. The nullclines, stable eigenvector direction, and approximated stable
manifold of the UEP.

According to the above analysis, it can be concluded that the

stable manifolds of the UEP should have a nearly linear shape

in the phase plane, and therefore, it becomes more reasonable

to linearly approximate these stable manifolds compared to the

scenario where the stable manifolds would turn around as they

flow. In this work, the stable eigenspace of a UEP is adopted to

approximate its stable manifolds, which is the span of the stable

eigenvector, as shown in Fig. 7. Furthermore, since the position

of stable eigenspace is used to represent the stability boundary

of the SEP, only the slope of the stable eigenspace is needed to

form a linear function E = fs (δ), and to express the position

of the stability boundary.

Based on the system eigenvalues (15), it can be seen that for

the UEP, there is λ1 < 0 and λ2 > 0 since there is a minus

sign in λ1 and a plus sign in λ2. Therefore, η1 is the stable

eigenvector. Considering one specific UEP as
[
E2, δ2

]
, the slope

of η1 can be obtained according to (16) and the position of the

stable eigenspace is then expressed as

E = fs (δ) =
JEδ

λ1 − JEE

(
δ − δ2

)
+ E2 (17)

where λ1, JEδ and JEE are the eigenvalue and Jacobian matrix

elements corresponding to this specific UEP. Therefore, (17)

offers an analytical form of the stable manifold, in contrary to

the result obtained through numerical integration.

3) Comparison and Validation: The illustration of stable

manifolds of the UEPs is depicted in Fig. 8, with the analytical

ones determined according to (17) and the numerical ones

obtained through the numerical integration directly. According to

Fig. 8, both results match very well. Furthermore, considering

the stability boundary of each SEP is the union of the stable

manifolds of the surrounding UEPs, it can be concluded that the

attraction region of each SEP is the belt area shown in Fig. 8.

E

Figure 8. Numerical stable manifolds of the UEPs marked by thick solid lines,
and analytical stable manifolds of the UEPs marked by dashed lines.

B. Transient Stability Characteristic

Since the attraction regions of the SEPs are closely next

to each other in Fig. 8, it can be speculated that the system

trajectory will always fall into the attraction region of one of

the SEPs. Considering the system is originally operated at one

SEP (usually it is thought as the one where 0 6 δ 6 π
2

), then it

can be concluded that there are only two scenarios regarding the

post-disturbance system, which can be respectively described as:

• During the disturbance, the system trajectory stays within

the attraction region of the original operating point and

therefore, will return to this SEP after the disturbance.

• During the disturbance, the system trajectory flows beyond

the attraction region of the original operating point and

therefore, will be attracted by a neighboring SEP.
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(a) fault clearing time 0.51s

(b) fault clearing time 0.52s

Figure 9. Inverter transient responses (left column) and system phase portraits (right column) under different fault clearing times.

Both the above-mentioned scenarios end up with a stable op-

erating point, therefore, it can be considered that the droop

controlled inverter has a good transient stability characteristic

from the perspective of its final operation state. Furthermore,

the reverse active power phenomenon may occur in the post-

disturbance system, especially in the second case, which will be

further discussed in Section VI.

C. Simulation Verification

To verify the above-mentioned conclusions, simulations are

carried out with the studied system shown in Fig. 1. Considering

the system is operated under the normal condition when the fault

occurs, the inverter transient responses and system phase portraits

are shown in Fig. 9 with different fault clearing times.

1) Fault Clearing Time 0.51s: The inverter transient responses

(the output power, terminal voltage, and output current) and the

system phase portrait are shown in Fig. 9(a) when the fault

clearing time is 0.51s. In the phase portrait, the system trajectory

stays at the original SEP A during normal operation, moves to

state point B at the time of fault occurrence, and further to state

point C during the fault. The fault is cleared at point C. Since

the trajectory around point C stays within the attraction region

of the SEP A, the following trajectory is attracted by this SEP

and returns to it.

2) Fault Clearing Time 0.52s: When the fault clearing time

increases to 0.52s, the inverter transient responses and the system

phase portrait are respectively shown in Fig. 9(b). Similarly, the

fault is also cleared at state point C in the phase portrait. It

can be seen that since the trajectory around point C has already

gone out of the attraction region of the SEP A and flowed to the

neighboring operation region, the following trajectory is attracted

by the neighboring SEP at point E.

Under both cases, the system is able to eventually return to a

stable operating state after the disturbance. However, when the

clearing time is 0.52s, the reverse active power occurs during

the post-disturbance dynamics, as shown in Fig. 9(b), which

is consistent with the discussions above. Furthermore, another

observation can be made in Fig. 9 that after the fault clearing,

the post-disturbance trajectory tends to move along with the

unstable manifold of the corresponding UEP when it is attracted

by the SEP. This characteristic can also be qualitatively observed

from the system vector field shown in Fig. 5, and may be

used to analyze the operation of the post-disturbance system.

For example, since the post-disturbance trajectory tends to move

along with the unstable manifold in Fig. 9, there is a decrease for

inverter voltage E and an increase for inverter power Pe and Qe

at the fault clearing moment, and therefore, the inverter current

ie further increases after the fault is cleared, as shown in Fig. 9.

VI. TRANSIENT CONTROL CONSIDERATION

The transient angle stability of droop controlled inverters has

been discussed in the previous sections. However, two remaining

concerns should be further addressed considering the practical

operation of inverters. Firstly, since the inverter is not able to

endure a large current like a conventional synchronous generator,

it has to be equipped with the current limiting scheme to ride-

through the disturbance and avoid overcurrent damaging. And

secondly, the above-mentioned reverse active power phenomenon
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in Section V-B needs to be investigated regarding its cause and

prevention. Therefore, the additional transient control considera-

tions are discussed in this section to further maintain the transient

stability characteristics of droop controlled inverters.

A. Current Limiting Control

Regarding the current limiting control, it should be noticed

that a proper scheme should only protect the inverter during

the transient process, but not affect its normal operation. Some

current limiting methods have been proposed in the literature,

such as the use of limiters in the current control loop [30], [31],

the direct adjustment of the PWM reference signal [32], and

the adoption of virtual impedance [33], [34]. Among them, the

adoption of virtual impedance is a flexible technique suitable for

voltage source controllers.

Therefore, a virtual impedance based current limiting scheme

is implemented in this subsection, as shown in Fig. 10. Con-

sidering eref as the voltage reference generated by the original

droop controller in Fig. 2, then the actual reference signal for

the PWM generator vr is controlled as (18).

vr = eref −Rvir · ie (18)

where Rvir is the generated virtual resistance.

Figure 10. Generation of the virtual impedance for current limiting.

In this scheme, the RMS (or magnitude) value of the inverter

output current is measured as Ie, and compared with the thresh-

old Ith to generate the virtual resistance Rvir as

Rvir =
{

0 Ie < Ith

Rvir0 +Kp (Ie − Ith) +Ki

∫ t

0
(Ie − Ith) dt Ie > Ith

(19)

Under normal operation when Ie is smaller than Ith, the PI con-

troller is disabled and therefore, the virtual resistance Rvir = 0,

which does not affect the original controller as vr = eref . When

a fault occurs and the terminal voltage drops, a large current will

be produced and a virtual resistance will be quickly generated

according to (19). In this way, the inverter output voltage and

current will be limited to prevent it from damage.

Further consideration should be taken into account when

the current limiting scheme is implemented since the virtual

impedance also equivalently changes the system topology. Con-

sidering the post-disturbance state indicates the system has

returned to its normal structure and control, it should be no-

ticed that when the current limiting is implemented, the post-

disturbance system is the one where the fault has been cleared

and the current saturation has ended, i.e., Rvir becomes zero.

Therefore, the post-disturbance system is under the completely

normal operation, which in this work, can be described by the

pre-disturbance system model in Section II.

B. Reverse Active Power Phenomenon

As shown in Fig. 9(b) in Section V-C, the reverse active

power phenomenon may occur in the post-disturbance system,

especially when the trajectory is attracted by the neighboring

SEP. This phenomenon can be explained by the P (δ, E) surface

of the post-disturbance system shown in Fig. 11(a), which is

obtained according to the system active power equation (3). It

can be seen that as long as the post-disturbance system states

(δ, E) fall within the yellow-colored area marked by abcd, the

active power value will become negative, meaning a reversed

direction. This reverse active power area can be found by solving

P (δ, E) = E2G22 + EVgX21 sin (δ + ϕ) < 0. (20)

It should be noticed that since the system dynamics are periodic

along the δ axis with a 2π period, this reverse active power area

also appears periodically. In this work, the specific area marked

by abcd is focused. According to Fig. 11(a), the cause of the

reverse active power phenomenon can be explained in the system

phase plane shown in Fig. 11(b).

In Fig. 11(b), considering the scenario where the system is

originally operated at SEP1 before the disturbance, the trajectory

flows to the right side of the stability boundary during the

disturbance and is attracted by the neighboring SEP2 in the

post-disturbance system. If the fault is cleared so that the post-

disturbance trajectory starts from the red-and-yellow-colored area

denoted by efcd, for example starting from point C1, then

during the process that the trajectory flows from C1 to the post-

disturbance SEP2, it will go through the area abcd, leading to the

reserve active power. On the contrary, if the fault is cleared so

that the post-disturbance trajectory starts from the green-colored

area denoted by dcghi, for example starting from point C2, then

the trajectory will not enter the reverse active power area during

the post-disturbance dynamics, and no reserve active power will

occur under this circumstance. The same analysis can be applied

to each SEP with the 2π interval. For example, if the post-

disturbance trajectory starts from point C0, then it will flow back

to the original SEP1, where the reverse active power will not

occur. And if the post-disturbance trajectory starts from point

C3, then it will be attracted to the next SEP on the farther right,

and the reverse active power phenomenon will occur again.

In order to deal with this reverse active power phenomenon,

a hardware approach is to implement proper dc side storage to

the inverter, so that the bidirectional active power is allowed. On

the other hand, this phenomenon can also be prevented from the

perspective of control. For example, considering ideally that the

system state can be monitored during operation, if it is found

the system state has already moved beyond the attraction region

of the original SEP1 and will be attracted by a neighboring

SEP2, then the fault clearing time can be intentionally delayed

to a proper value so that the system trajectory can fully pass

the reverse active power area during the fault, and the post-

disturbance trajectory can start from the green-colored area.

Under this circumstance, the post-disturbance trajectory will

not enter the reverse active power area, and the corresponding

phenomenon can be avoided.
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(a) P (δ, E) surface of the post-disturbance system

(b) post-disturbance trajectory movements with different starting points

Figure 11. Characteristics of the post-disturbance system regarding the reverse
active power phenomenon.

C. Simulation Results

In this subsection, simulations are carried out regarding the

current limiting scheme and reverse active power phenomenon.

The system parameters remain unchanged, and the threshold

for the current value is set as 1.50 p.u.. Similar to Fig. 9,

different cases are also tested when the three-phase fault is

cleared respectively after different times. The results are shown in

Fig. 12. It can be seen that with the current limiting scheme, the

inverter current is properly regulated within the tolerable range

after the fault occurs in all cases. And when the fault is cleared,

the system can all finally return to the normal operation state,

which means the analysis in the previous sections can still be

maintained. Furthermore, with different fault clearing times, the

system demonstrates different transient responses, which can be

elaborated as follows.

1) Fault Clearing Time 0.15s: The system responses when

the fault is cleared at 0.15s are shown in Fig. 12(a), which is

corresponding to the case of point C0 in Fig. 11(b).

In this case, the fault clearing point C stays within the

attraction region of SEP A. After the fault is cleared, the inverter

current keeps saturated for some time, and finally, the trajectory

returns to the original SEP at point A. During all this process, the

system trajectory remains in the green-colored area and therefore,

no reverse active power occurs under this circumstance. Note that

there is a visible delay for the current to desaturate.

2) Fault Clearing Time 0.51s: The system responses when

the fault is cleared at 0.51s are shown in Fig. 12(b), which is

corresponding to the case of point C1 in Fig. 11(b).

While the behavior is expected to be similar to that in Fig. 9(a),

the current limiting mechanism changes the system behavior and

causes the system dynamics to escape from the attraction region

of the original SEP during the fault. The system is attracted by

the next SEP at point D, leading to the reverse active power.

3) Fault Clearing Time 1.22s: The system responses when

the fault is cleared at 1.22s are shown in Fig. 12(c), which is

corresponding to the case of point C2 in Fig. 11(b).

Under this circumstance, the fault is cleared and the inverter

exits the current saturation at the same time, where the system

trajectory has already fully passed the P (δ, E) < 0 area

and entered the green-colored area. Then the post-disturbance

trajectory is attracted to the neighboring SEP at point D without

going through the reverse active power area, and therefore, the

reverse active power phenomenon is avoided.

4) Fault Clearing Time 1.64s: The system responses when

the fault is cleared at 1.64s are shown in Fig. 12(d), which is

corresponding to the case of point C3 in Fig. 11(b).

When the fault clearing time is 1.64s, the system trajectory

moves so far that it has escaped from the attraction region of the

SEP at point D, and entered the attraction region of the farther

SEP at point E. Similar to Fig. 12(b), the fault is cleared at point

C and the inverter exits current saturation after a short time, both

in the corresponding red-and-yellow-colored area in this period.

Therefore, the post-disturbance trajectory is attracted to point E,

and the reverse active power occurs again.

The above simulation results further validate the discussions

in this section. On one hand, the current limiting control protects

the inverter from overcurrent during the transient process. And

on the other hand, the reverse active power phenomenon can

be prevented by the proper selection of fault clearing time. With

these control considerations, the transient stability characteristics

can be better guaranteed for droop controlled inverters. At the

same time, it should be recognized that the current limiting

scheme can profoundly affect the system dynamics during the

fault and after it is cleared. With some fault clearing points, even

the fault is cleared in the green-colored area, but the current

limiting may cause the system dynamics to enter the red-and-

yellow-colored area and therefore, the actual post-disturbance

trajectory starts from the red-and-yellow-colored area and the

reverse active power still appears. This phenomenon is related

to the operation characteristics of the system after the fault is

cleared, and more investigation is needed to reveal the properties

and influence of the current limiting scheme and the post-

disturbance system, which will be discussed in the future works.

VII. CONCLUSION

In this work, the transient angle stability of the droop con-

trolled inverter after a large disturbance are discussed in detail.

In order to guarantee that there exists a proper post-disturbance

operating point, the feasible operation region for the control

references is obtained. Under the circumstance where there exist

feasible SEPs, the system equilibrium points are analyzed in

detail. Furthermore, the attraction regions of the SEPs are ac-

curately obtained by depicting the stable and unstable manifolds

of the surrounding UEPs, which shows that the droop controlled

inverter has a good transient stability characteristic since a stable

operating point can always be found by the post-disturbance

system. To further guarantee that the inverter can ride-through

the disturbance, a current limiting scheme is implemented and

the reverse active power phenomenon is discussed regarding its

cause and prevention. It is shown that these transient control

considerations can better guarantee the stability characteristics

of the droop controlled inverters.
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(a) fault clearing time 0.15s: corresponding to the case of point C0 in Fig. 11(b)

(b) fault clearing time 0.51s: corresponding to the case of point C1 in Fig. 11(b)

(c) fault clearing time 1.22s: corresponding to the case of point C2 in Fig. 11(b)

(d) fault clearing time 1.64s: corresponding to the case of point C3 in Fig. 11(b)

Figure 12. Inverter transient responses (left column) and system phase portraits (right column) under different fault clearing times, with the current limiting scheme.

This work intends to provide a complete explanation for the

transient angle stability of inverters with the droop mechanism.

The results show that these inverters are robust regarding the tran-

sient angle stability if proper control settings are implemented.
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Furthermore, the analysis method in this work can also be applied

to study the transient angle stability of other kinds of voltage

source inverters, such as a virtual synchronous machine with a

higher-order model.
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