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Abstract—Transient angle stability of inverters equipped with
the robust droop controller is investigated in this work. At first, the
conditions on the control references to guarantee the existence of
a feasible post-disturbance operating point are derived. Then, the
post-disturbance equilibrium points are found and their stability
properties are characterized. Furthermore, the attraction regions of
the stable equilibrium points are accurately depicted by calculating
the stable and unstable manifolds of the surrounding unstable equi-
librium points, which presents an explanation to system transient
stability. Finally, the transient control considerations are provided
to help the inverter ride-through the disturbance and maintain its
stability characteristics. With these, it is shown that the transient
angle stability is not a serious problem for droop controlled inverters
with proper control settings.

Index Terms—transient angle stability, droop controlled inverter,
equilibrium point, (un)stable manifold

I. INTRODUCTION

The utilization of renewable energy generations to support
electric loads is gradually shifting the paradigm of power systems
[1], [2]. Since most of these renewable energy generations are
connected into the grids through inverters, it can be predicted
that an increasing number of inverters will be added into the
power system and greatly affect its operating characteristics
[3]. Therefore, the operation properties of inverters should be
carefully studied [4].

Specifically, the control technique and stability analysis of
inverters are usually discussed, which are also interrelated them-
selves. As a power electronic device, the dynamic characteristics
of the inverter are mainly influenced by its controller, which
further plays a very important role in determining the stability
of the system. Among different control techniques, the droop
controller has been well recognized by researchers because of
its ability to work in a decentralized way [5], [6], to actively
support the system [7], [8] and to autonomously synchronize
with the grid [9], [10]. Over recent years, lots of attention has
been paid to the improvements and applications of the droop
controller, whereas the stability problem has also been discussed.

The stability issues in the power system can be classified as
small-disturbance stability and large-disturbance stability [11].
Compared to the former category, the large-disturbance stability
is much less studied for inverters, probably because they are
usually immediately tripped off once a large disturbance is
detected, such as when a fault occurs. However, with more
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inverters equipped with the fault ride-through capability [12],
[13], attention should also be paid to this kind of stability. It
should be noticed that according to the definition in [11], the
term transient stability is used to specify the rotor angle stability
of the synchronous generator, which is contrasted to the voltage
stability. Similarly, the power angle stability is investigated for
the droop controlled voltage source inverters in this work, and
the term transient stability is inherited to indicate the system
stability after a large disturbance.

Conventionally, transient stability is usually studied using
the time-domain simulation method or the direct method, in-
cluding the Lyapunov-based methods [14], the extended equal
area criterion [15] and so forth. Following these routes, some
researchers investigated the transient stability of the inverters
with droop control. For example, time-domain simulations were
carried out in [16], which concluded that the transient stability
problem of droop controlled inverters does not need to be worried
about, but further explanations were not provided. By contrast,
theoretical analyses were conducted in some other works. An
energy function was constructed in [17] by making the droop
controlled inverter model similar to the classic second-order
synchronous generator model. Lyapunov functions were given
in [18] using the Takagi-Sugeno multi-modeling method, where
the estimated attraction regions were compared regarding the
inverter models with different orders. And the idea from equal
area criterion was applied in [19] to analyze the synchronous
instability mechanism of droop controlled inverters when the
current was saturated under transient events. However, it is still
an open question to accurately and completely characterize the
transient stability of the droop controlled inverter.

In addition to following the routes used in the conventional
power system studies, researchers also tried to solve the problem
from other perspectives. The works in [20]-[23] gave several
conditions regarding the transient stability and synchronization
of the droop controlled inverter by introducing the concepts
and techniques in control and system theories, including the
generalized Kuramoto model, the port-Hamiltonian system, and
the Kalman-Yakubovich-Popov condition. These works provided
mathematically rigorous analyses, but the difficulty was also
increased to understand the physical significance behind this
problem from the complicated mathematical derivations.

Compared to the existing works, this paper aims to pro-
vide some insights about the transient stability of the inverters
equipped with droop mechanism. Essentially speaking, transient
stability investigates whether the system is able to return to a
proper operating point after a large disturbance is cleared and
the system restores its normal topology and control, which refers
to the post-disturbance system [24]. Therefore, the most intrinsic
approach for this problem is to find the accurate stability region
of the post-disturbance system and analyze the stability consider-



ing the system trajectory. This idea motivates the studies in this
paper. In this work, the robust droop controller (RDC) [4], [25]
is taken as an example to operate the inverter, and its transient
stability characteristics are studied in a single machine infinite
bus (SMIB) scenario by first obtaining the stable equilibrium
points (SEPs) and unstable equilibrium points (UEPs) of the
system, and then depicting the attraction regions of the SEPs.
The contributions of this work include:

« Firstly, a feasible operation region is derived for the control
references of the droop controlled inverter, which serves as
the prerequisite for the system transient stability.

o Then, a good transient angle stability characteristic of the
droop controlled inverter is revealed, which means a SEP
can always be found by the post-disturbance system and a
stable final state can always be obtained.

o Finally, the transient control considerations are provided
regarding the current limiting and the reverse active power
prevention, which further help the droop controlled inverter
maintain its stability characteristics.

The rest of this paper is organized as follows. The studied
system model is introduced in Section II. The feasible operation
region for the control references is derived in Section III to
guarantee the existence of feasible SEPs. The characterization
of the system equilibrium points is analyzed in Section IV. The
accurate attraction regions of the SEPs are depicted and verified
in Section V to understand the system transient stability prop-
erties. The transient control considerations regarding the current
limiting and reverse active power prevention are discussed in
Section VI. And the conclusions are made in Section VII.

II. SYSTEM MODEL

Although the droop control is usually adopted where multiple
inverters are parallel connected, it is clearer to reveal the internal
mechanism of transient angle stability in a classical SMIB
scenario, and thus, the SMIB system is considered in this work.

Table I
VALUES OF SYSTEM PARAMETERS.

[ Symbol ] Explanation [ Value |
Vy grid voltage RMS value (line-line) 100V
Wy grid voltage angular speed 1007 rad /s
Ry grid side resistance 0.1Q
Lg grid side inductance 0.5mH
R; line resistance 0.1
L line inductance 0.5mH
Rs LC filter resistance 0.1Q
Lg LC filter inductance 2mH
Cs LC filter capacitance 20 uF
Ry fault ground resistance 0.01 Q2

Both the steady-state and dynamic models of the discussed
system will be derived in this section. For a better presentation,
one set of system and control parameters are given in Tables I and
IT as an example, and some of the illustrations in the following
sections are carried out with these parameters.

In this work, the system parameters are selected to operate
the inverter in a relatively weak system, where the transient
angle stability problem is expected to be a more serious threat.
On the other hand, the droop coefficients are set that when the
system frequency deviates 0.5 Hz (1% of the rated frequency),
the inverter will provide 1000 W active power regulation (20%

Table II
CONTROL PARAMETERS OF THE INVERTER.

[ Symbol ] Explanation [ Value |
Shase inverter base capacity 5000 VA
vline,mms T yoltage base (line-line RMS) 100 V
Pset active power reference 4000 W
Qset reactive power reference 3000 Var
w* angular speed reference 1007 rad /s
o inverter voltage reference 100V
m active power droop coefficient 0.0017 (W -s) 1
n reactive power droop coefficient 0.25 V/Var-s
K. inverter voltage droop coefficient 5051

of the capacity), and when the voltage deviates 5V (5% of the
rated voltage), the inverter will provide 1000 Var reactive power
regulation (20% of the capacity). It should be noticed that these
specific parameters shown in Tables I and II are adopted only to
present the analysis more clearly. However, the conclusions of
this work have been validated under a wide range of parameters
through extensive simulations.

Furthermore, from the perspective of engineering practice, the
inverter control parameters can be designed by first selecting the
droop coefficients m, n and K. according to the requirements
on the inverter to support system frequency and voltage, which
should also be reasonable regarding the capacity of the inverter.
Then the control references Pi.;, Qset, and E,. can be further de-
termined considering the dispatch instructions and the conditions
proposed in Section III of this work.

A. Description of the SMIB System

The studied SMIB system is shown in Fig. 1. The infinite bus
is modeled as an ideal voltage source V,;Z0. And the inverter is
modeled as a controllable voltage source E/§, where ¢ is the
power angle with respect to the infinite bus. Since the transient
stability is investigated after a large disturbance, a three-phase
ground fault is applied at bus 2 which has a ground resistance
Ry. In this work, it is assumed that the fault is cleared by itself
with no line tripped and therefore, the post-disturbance system
topology is the same as the pre-disturbance one.
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Figure 1. The discussed SMIB system.

This complete system can be further reduced to a compact 2-
bus system using the well-known Kron reduction [26], and the
reduced system includes only the grid bus and inverter bus. The
steady-state model of the reduced system is represented as (1).
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where V;Z0 and E/§ are respectively the grid voltage and
inverter voltage. I,Zp, and I.Zp. are respectively the grid
current and inverter current. Y .4 is the complex admittance
matrix of the reduced system, where its real parts and imaginary



parts are respectively Gy; and B;; (i, j = 1 or 2). It should
be noticed that since the transient stability is usually discussed
regarding the post-disturbance system, Y ,..q and its elements G;;
and B;; are referred to the post-disturbance system parameters
by default in this work.

B. Inverter Dynamic Model

In this study, the inverter is modeled as an ac voltage source,
whose dynamic characteristics are determined by its controller.
Although different droop control implementations have been
proposed in the literature, their key features are almost the same,
which are the droop mechanisms between active power P and
power angle & (or angular speed w), and between reactive power
@ and inverter voltage FE. Here, the RDC is adopted since
it contains exactly these droop features [4], [25]. The block
diagram of the RDC is shown in Fig. 2.
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Figure 2. Block diagram of the adopted RDC.

The dynamic model of this controller is expressed as

{6— ( set — Pe)+(w*_w9)
:n(Qset Q€)+K3 (ET_E)

where Pjer, Qset, w™ and E,. are the references of the controller,
and m, n, and K, are the droop coefficients, as shown in Table
II. Besides, since it is usually considered that both w* and wy
have the nominal value in the SMIB system, the term (w* — wy)
is omitted in the following sections. P, and @), are the output
active and reactive power of the inverter, as shown at bus 4 in
Fig. 1. Considering the reduced network shown in (1), the output
power of the inverter can be calculated as

)

P. = E?Ga+ EV,Xosin (5 + ¢) 3
Qe = —E?Bay— EV,X5;cos (5 + ) 4)
where Xo; = \/G3, + B3, singp = 21, and cosp = 221,

III. EXISTENCE OF THE FEASIBLE EQUILIBRIUM POINTS

Since transient stability investigates whether the system is able
to return to a proper SEP after the disturbance, the existence of
a feasible SEP should be the prerequisite of transient stability. In
this section, the conditions will be derived to guarantee the SEP
of the system falls within a feasible region to avoid instability,
overvoltage, or overcurrent.

It can be easily found from the system dynamics (2) that at
the equilibrium points, the following conditions should be met

{O—m(Pset_Pe) (5)
O:n(Qset7Q6)+Ke(E7”7E)

which lead to the requirements P, = Pse; and Q. = Qser +
Ke(E, — F) under the assumption that the droop coefficients
m and n are nonzero. Hence, the sub-equations in (5) can be
further derived as

{ E‘/ngl sin (5 + QO)

= Pior — E*Go

E%le CcoS (5 + (,D) = _Qset — % (Er — E) — E2322
(6)
where the system steady-state model (3)-(4) is taken into con-
sideration. By squaring and adding the two sub-equations in (6)
together, a quartic equation of the inverter voltage E can be
obtained as an equivalent condition at the system equilibrium

point, shown as

g(E):aE4+ﬁE3+7E2+eE+n:O @)

where o = G3, + B3, B = 2B22K v = e + 2322}3 Ke _

2P,.,Gas + 2Qs€f322 V2X3, €= f% - M and
2QsetE7

k= P, €t+Q3(,t+ ’;LQ < <. With the above preparation,
the following requirements are adopted to regulate the operation
of the inverter:

(1) The limits on the operation status are

Pset > 0
Qset + KZET >0

which regulate the power direction of the droop controlled

inverter. Note P,.; > 0 is natural for an inverter, and Qgc; +

K. E =<2z > () is always satisfied with the proper droop coefficients.
(2) The limits on the inverter capacity are

®)

|Pset| < Smam
|Qset| < Smax (9)
P24+ Q2 <52

max

where S, is the maximal operation power of the inverter.
(3) The limits for the proper inverter voltage solution are

{ g (Emam) >0 (10)

where E,,;, and E,,,, are respectively the minimal and max-
imal inverter voltages. These requirements guarantee the exis-
tence of a feasible inverter voltage solution within the range
(Emins Pmaz), which can be further explained as follows.

It can be seen that solving the equilibrium points of the system
(5) is equivalent to solving the quartic function (7) of E, which
should have 4 solutions. Without loss of generality, these 4
solutions are denoted as FEy ~ E4, where Re (E1) > Re (Fs) >
Re (E3) > Re (Ey).

According to the characteristics of the coefficients, it can be
found that « = G3, + B3, > 0, B = —2B2K 5 (normally
Goo > 0 and Boy < 0) and k = Pset —‘eret + K
QQQZA > 0 (with normal droop coefficients). Therefore the
following conclusions can be obtained:

On one hand, since

E1+E2+E3+E4:*§<O

By By E3-Ey=—>0
«

it can be concluded that at least two solutions of (7) have negative
real parts, where it is assumed that Re (F1) > Re(Es) > 0
and 0 > Re(E5) > Re(FE,). Since the negative value is not
meaningful as the voltage, only F; and E» are further discussed.



On the other hand, since o > 0 and s > 0, it can be concluded
that g (c0) — oo and g (0) > 0. Therefore, two scenarios exist
as shown in Fig. 3. Obviously, it is hoped that g (E) has two
crossing points with the positive F-axis so that both £, and F»
are real. Under this case, it will be shown in the following section
that £ is the stable solution, so it is further expected that F; is
between the pre-defined maximal and minimal values.

“g(E)

E, and E, are both real

Figure 3. Illustration of the function (7) on the positive E-axis.

It is shown in Fig. 3 that as long as ¢ (E.in) < 0 and
9 (Epmaz) > 0, g(E) is guaranteed to have two crossing points
with the positive E-axis, and the inverter voltage E; is within
the proper range. Therefore, the conditions (10) are adopted.

By combining (8)-(10), the conditions on the control refer-
ences Pset, Qset, and FE,. can be obtained, which guarantee
the existence of a SEP within the feasible operating region.
One illustration is given in Fig. 4 for the system with the
constraint limits set as F,,q,, = 1.2p.u., F;, = 0.8p.u., and
Smaz = 1.0 p.u.. During system operation, the control references
should always be selected within this region to guarantee the
existence of a feasible post-disturbance operating point.

Upper Boundary: E < Eyqy

Rear Boundary:

2.0 o Left Boundary: Qur < 5
set mazx
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E> Emin
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Figure 4. Illustrative feasible operation region for the control references, with
the parameters shown in Tables I and II.

IV. CHARACTERIZATION OF THE EQUILIBRIUM POINTS

With the conditions proposed in Section III, the existence
of the proper equilibrium points is guaranteed. In this section,
these equilibrium points will be analyzed both qualitatively and
quantitatively, as a preparation for the transient stability study.
It should be clarified that either the qualitative method or the
quantitative method can be applied individually to analyze the
equilibrium points of the studied system, but together they

can provide more comprehensive perspectives to understand the
problem. The qualitative analysis gives a clear visual illustration,
whereas the quantitative analysis gives accurate mathematical
expressions. It will be shown that the results of both methods
match each other.

A. Qualitative Analysis by Nullclines

As can be seen from Section II, the system dynamic model is
nonlinear due to the power flow expressions. Usually, it is almost
impossible to directly and explicitly find the solutions of such a
nonlinear system. However, the idea of nullclines can be adopted
to help analyze the system characteristics.

For the system dynamics shown in (2), the §-nullcline and
FE-nullcline are respectively defined as the set of points in the
phase plane where §=0and F =0 [27]. By combining (2)-(4)
and solving the corresponding equations, the J-nullcline of the
system can be found as

—V,Xo1sin (6 + @)
E=—F 11
%G + (1
\/[VQXQI sin (5 + (p)]z + 4G22Pset
2G22 ’
and the E-nullcline of the system can be found as
—V,Xo1 cos (8 + ) + Ke
E=—" no— 12
2B, (12)
\/[V9X21 cos (5 + (,0) B Ifme]Q - 4B22 (Qset + %)
2322 :

Note that both (11) and (12) represent the positive solutions
of corresponding nullclines under the studied situation. Although
both § = 0 and E = 0 result in quadratic equations of F, which
have two solutions mathematically, only the positive solutions
are meaningful because E denotes the inverter voltage which
can only be positive. Under the normal parameters, there are
Gao > 0 and Bgs < 0, and thus, (11) and (12) are positive.

Based on the above calculations, the system nullclines can be
illustrated in Fig. 5. Geometrically, the §-nullcline is composed
of the points where the system vectors are either straight up or
down, and the E-nullcline is composed of the points where the
system vectors are either straight left or right. Furthermore, in
any single area divided by the nullclines, all the system vectors
must point in only one of the four general directions: left-up, left-
down, right-up, and right-down. These vector field directions of
the system are also illustrated in Fig. 5.

It can be seen, qualitatively, from Fig. 5 that the system
equilibrium points are the points where the d-nullcline and the F-
nullcline cross, which means both § =0and E = 0 are satisfied.
Furthermore, the equilibrium points marked with stars in Fig. 5
should be the SEPs since in any of the areas around them, the
system trajectories all flow toward them. On the other hand, the
equilibrium points marked with circles in Fig. 5 should be the
UEPs since in any area around them, the system trajectories all
pass them by.

B. Solutions and Properties of the Equilibrium Points

As mentioned, the equilibrium points can also be mathemat-
ically obtained by solving the equations (5). There are two
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Figure 5. System nullclines, vector field directions, and equilibrium points.

categories of equilibrium points: [Fy, §;] with higher voltage
values (stars in Fig. 5) and [E9, d2] with lower voltage values
(circles in Fig. 5). They can be solved as

B 1 [B 2y
Ei=—TF4 -y —-—"4+A
404+2 402 3a+
B 4By 8e
1 ﬁ_ﬁ_A T3 o
2 | 202 3o A ’872_277
402 3o
K, B
_Qset - (E’I‘ - El) - Ez 322
0; = arccos nEngXgl — ¢+ 2km,

(13)
where i = 1, 2 and k € Z. F; takes the plus sign on its second
row and FEs takes the minus sign. Furthermore, there is

SN, {8y +/IRT T A7
= + 3
30 /Ay + /—4AT + A 3V2a

with A; = ~2 — 38e 4+ 12ak, and Ay = 273 — 98ve + 27ae® +
278%k—T2ayk. It is clear that the equilibrium points are periodic
along the 0-axis with a 27 period.

The properties of the equilibrium points can be further math-
ematically verified by calculating the eigenvalues of the corre-
sponding Jacobian matrix. According to the system dynamics
(2), the expression of the Jacobian matrix is shown in (14), and
its eigenvalues A\; and Ay are given by

A

\ Jss + JpE — \/(J55 +Jeg)? —4(JssJeg — JspJEs)
1 P—

2
Jss + JpE + \/(J55 +Jeg)? — 4 (JssJeg — JspJEs)
2 P—
2
(15)

The corresponding eigenvectors of A; and Ay are respectively
expressed by 77 and 72 as
M —JEE

m = JEs )
1

X2 —JEE
Ny = JEs (16)
1

With the above derivations, the stability property of an equilib-
rium point can be determined by substituting its expression into
(14)-(15), and examining the corresponding eigenvalues: if both

Re (A1) and Re (\2) are negative, then the equilibrium point is
a SEP. Otherwise, the equilibrium point is a UEP [28]. These
quantitative discussions of the system equilibrium points match
with the observations from Fig. 5.

V. TRANSIENT STABILITY STUDY AND VERIFICATION

With the derived post-disturbance equilibrium points, the
system transient angle stability will be further investigated in
this section by exploring the stability boundaries and attraction
regions of the SEPs. In this work, the theorem 3.15 in [29]
is adopted, which describes the characteristics of the stability
boundaries of the SEPs:

1) One UEP is on the stability boundary of a SEP, if and
only if the unstable manifolds of this UEP contain the
trajectories flowing to the above SEP.

2) The stability boundary of a SEP is formed by the union
of the stable manifolds of all the UEPs, which are located
on the stability boundary of this SEP.

Based on this theorem, the stability boundary of one SEP can be
obtained by: 1) finding the surrounding UEPs which are on the
stability boundary of this SEP, and 2) finding the union of the
stable manifolds of these UEPs. These steps will be conducted
in this section to determine the attraction region of the studied
system, and the system transient stability characteristics will be
further discussed.

A. Characterization of the Attraction Region

1) UEPs on the Stability Boundary: As mentioned, the first
step to obtain the stability boundary of a SEP is to determine
the UEPs on the stability boundary. According to the previous
discussions, it has been found that there is only one pair of SEP
and UEP within one 27 period along the J-axis. Therefore, it
is reasonable to infer that this UEP should be on the stability
boundary of the corresponding SEP since there is no other option.
This inference can be easily verified through an illustration in
Fig. 6, since the plotted unstable manifolds of the UEPs indeed
contain the trajectories flowing to the SEPs.

Based on the above confirmation, the next step, which is also
the key in our analysis, is to find the stable manifolds of the
UEPs, which are obtained by the trajectories starting from the
UEPs, taking the directions of their stable eigenvectors, and
flowing backward in time. In this work, the stable manifolds
of these UEPs will be acquired respectively by the following
two methods:

1) The first method is the numerical integration, which is
conducted by Euler method in this work [26]. The stable
manifolds obtained by this method will be denoted as the
numerical ones, and they will be regarded as accurate
results because they are calculated step by step directly
from the system dynamic model.

2) The second method, which will be further explained as
follows, is the analytical approximation where an analyt-
ical expression will be derived to approximate the stable
manifolds of the UEPs. The results obtained by this method
will be denoted as the analytical ones in this work.

As is well known, the numerical integration method is generic
and can be applied to any systems with a clear dynamic model,
but cannot lead to analytical results. In this work, these two
methods will be respectively conducted and compared, and it
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Figure 6. The unstable manifolds and the stable eigenvectors of the UEPs.

will be demonstrated that the analytical approximation of the
stable manifolds is precise enough to represent the results of the
numerical integration.

2) Analytical Approximation of the Stable Manifolds: 1t is
known that the stable manifolds close to one UEP itself take the
direction of the stable eigenvectors, as shown in Fig. 6. However,
it is unknown how these stable manifolds flow farther in the
phase plane.

To answer the above question, the system nullclines obtained
in Section IV-A are introduced again, as shown in Fig. 7. It can
be seen that in all of the areas above the E-nullcline, the system
vector field points to the negative E direction. And in all of the
areas below the E-nullcline, the vector field points to the positive
FE direction. That is, if one starts from the discussed UEP, takes
its stable eigenvector direction, and integrates backward in time,
then the obtained stable manifold will extend along with the
vector field direction.
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O UEP Snullcline --------- E-nullcline
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Figure 7. The nullclines, stable eigenvector direction, and approximated stable
manifold of the UEP.

According to the above analysis, it can be concluded that the
stable manifolds of the UEP should have a nearly linear shape
in the phase plane, and therefore, it becomes more reasonable
to linearly approximate these stable manifolds compared to the
scenario where the stable manifolds would turn around as they
flow. In this work, the stable eigenspace of a UEP is adopted to
approximate its stable manifolds, which is the span of the stable
eigenvector, as shown in Fig. 7. Furthermore, since the position
of stable eigenspace is used to represent the stability boundary
of the SEP, only the slope of the stable eigenspace is needed to

form a linear function E = f, (J), and to express the position
of the stability boundary.

Based on the system eigenvalues (15), it can be seen that for
the UEP, there is Ay < 0 and Ay > 0 since there is a minus
sign in A\; and a plus sign in \o. Therefore, n; is the stable
eigenvector. Considering one specific UEP as | Eg, 32} , the slope
of 771 can be obtained according to (16) and the position of the
stable eigenspace is then expressed as

55 (5 _5,) + By (17)
E

Ezfs((S):m

where A1, Jgs and Jgg are the eigenvalue and Jacobian matrix
elements corresponding to this specific UEP. Therefore, (17)
offers an analytical form of the stable manifold, in contrary to
the result obtained through numerical integration.

3) Comparison and Validation: The illustration of stable
manifolds of the UEPs is depicted in Fig. 8, with the analytical
ones determined according to (17) and the numerical ones
obtained through the numerical integration directly. According to
Fig. 8, both results match very well. Furthermore, considering
the stability boundary of each SEP is the union of the stable
manifolds of the surrounding UEPs, it can be concluded that the
attraction region of each SEP is the belt area shown in Fig. 8.

2.5 T il T i T T
% SEP —)»— numerical stable manifold of UEP
2.0 f{ ©O UEP — ) — analytical stable manifold of UEP H
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= region N region ~y region ~y
g i * * * |
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037 7z 0 1z 27 37 4
J (rad)

Figure 8. Numerical stable manifolds of the UEPs marked by thick solid lines,
and analytical stable manifolds of the UEPs marked by dashed lines.

B. Transient Stability Characteristic

Since the attraction regions of the SEPs are closely next
to each other in Fig. 8, it can be speculated that the system
trajectory will always fall into the attraction region of one of
the SEPs. Considering the system is originally operated at one
SEP (usually it is thought as the one where 0 < 6 < g), then it
can be concluded that there are only two scenarios regarding the
post-disturbance system, which can be respectively described as:

o During the disturbance, the system trajectory stays within

the attraction region of the original operating point and
therefore, will return to this SEP after the disturbance.

« During the disturbance, the system trajectory flows beyond

the attraction region of the original operating point and
therefore, will be attracted by a neighboring SEP.
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Figure 9. Inverter transient responses (left column) and system phase portraits (right column) under different fault clearing times.

Both the above-mentioned scenarios end up with a stable op-
erating point, therefore, it can be considered that the droop
controlled inverter has a good transient stability characteristic
from the perspective of its final operation state. Furthermore,
the reverse active power phenomenon may occur in the post-
disturbance system, especially in the second case, which will be
further discussed in Section VI.

C. Simulation Verification

To verify the above-mentioned conclusions, simulations are
carried out with the studied system shown in Fig. 1. Considering
the system is operated under the normal condition when the fault
occurs, the inverter transient responses and system phase portraits
are shown in Fig. 9 with different fault clearing times.

1) Fault Clearing Time 0.51s: The inverter transient responses
(the output power, terminal voltage, and output current) and the
system phase portrait are shown in Fig. 9(a) when the fault
clearing time is 0.51s. In the phase portrait, the system trajectory
stays at the original SEP A during normal operation, moves to
state point B at the time of fault occurrence, and further to state
point C during the fault. The fault is cleared at point C. Since
the trajectory around point C stays within the attraction region
of the SEP A, the following trajectory is attracted by this SEP
and returns to it.

2) Fault Clearing Time 0.52s: When the fault clearing time
increases to 0.52s, the inverter transient responses and the system
phase portrait are respectively shown in Fig. 9(b). Similarly, the
fault is also cleared at state point C in the phase portrait. It
can be seen that since the trajectory around point C has already

gone out of the attraction region of the SEP A and flowed to the
neighboring operation region, the following trajectory is attracted
by the neighboring SEP at point E.

Under both cases, the system is able to eventually return to a
stable operating state after the disturbance. However, when the
clearing time is 0.52s, the reverse active power occurs during
the post-disturbance dynamics, as shown in Fig. 9(b), which
is consistent with the discussions above. Furthermore, another
observation can be made in Fig. 9 that after the fault clearing,
the post-disturbance trajectory tends to move along with the
unstable manifold of the corresponding UEP when it is attracted
by the SEP. This characteristic can also be qualitatively observed
from the system vector field shown in Fig. 5, and may be
used to analyze the operation of the post-disturbance system.
For example, since the post-disturbance trajectory tends to move
along with the unstable manifold in Fig. 9, there is a decrease for
inverter voltage E and an increase for inverter power P, and Q).
at the fault clearing moment, and therefore, the inverter current
1. further increases after the fault is cleared, as shown in Fig. 9.

VI. TRANSIENT CONTROL CONSIDERATION

The transient angle stability of droop controlled inverters has
been discussed in the previous sections. However, two remaining
concerns should be further addressed considering the practical
operation of inverters. Firstly, since the inverter is not able to
endure a large current like a conventional synchronous generator,
it has to be equipped with the current limiting scheme to ride-
through the disturbance and avoid overcurrent damaging. And
secondly, the above-mentioned reverse active power phenomenon



in Section V-B needs to be investigated regarding its cause and
prevention. Therefore, the additional transient control considera-
tions are discussed in this section to further maintain the transient
stability characteristics of droop controlled inverters.

A. Current Limiting Control

Regarding the current limiting control, it should be noticed
that a proper scheme should only protect the inverter during
the transient process, but not affect its normal operation. Some
current limiting methods have been proposed in the literature,
such as the use of limiters in the current control loop [30], [31],
the direct adjustment of the PWM reference signal [32], and
the adoption of virtual impedance [33], [34]. Among them, the
adoption of virtual impedance is a flexible technique suitable for
voltage source controllers.

Therefore, a virtual impedance based current limiting scheme
is implemented in this subsection, as shown in Fig. 10. Con-
sidering e,y as the voltage reference generated by the original
droop controller in Fig. 2, then the actual reference signal for
the PWM generator v, is controlled as (18).

Vp = €ref — Ryir * Te (18)

where R,;. is the generated virtual resistance.

e —> RDC in | e / Ve
ieT Fig. 2 -%
(kaS)

Generation of the virtual resistance

Figure 10. Generation of the virtual impedance for current limiting.

In this scheme, the RMS (or magnitude) value of the inverter
output current is measured as I., and compared with the thresh-
old I;; to generate the virtual resistance R,;, as

Ruir =

0 I, < Iy,
Ruyiro + Kp (Ie — Lip) + K; [y (I — Iyp) dt - L. > Iy,
(19)

Under normal operation when I, is smaller than I, the PI con-
troller is disabled and therefore, the virtual resistance R,;,. = 0,
which does not affect the original controller as v, = e,.y. When
a fault occurs and the terminal voltage drops, a large current will
be produced and a virtual resistance will be quickly generated
according to (19). In this way, the inverter output voltage and
current will be limited to prevent it from damage.

Further consideration should be taken into account when
the current limiting scheme is implemented since the virtual
impedance also equivalently changes the system topology. Con-
sidering the post-disturbance state indicates the system has
returned to its normal structure and control, it should be no-
ticed that when the current limiting is implemented, the post-
disturbance system is the one where the fault has been cleared
and the current saturation has ended, i.e., R,; becomes zero.
Therefore, the post-disturbance system is under the completely

normal operation, which in this work, can be described by the
pre-disturbance system model in Section II.

B. Reverse Active Power Phenomenon

As shown in Fig. 9(b) in Section V-C, the reverse active
power phenomenon may occur in the post-disturbance system,
especially when the trajectory is attracted by the neighboring
SEP. This phenomenon can be explained by the P (4, E) surface
of the post-disturbance system shown in Fig. 11(a), which is
obtained according to the system active power equation (3). It
can be seen that as long as the post-disturbance system states
(0, E) fall within the yellow-colored area marked by abcd, the
active power value will become negative, meaning a reversed
direction. This reverse active power area can be found by solving

P (6, E) = E?Gay + EV,Xo1sin (6 +¢) <0.  (20)

It should be noticed that since the system dynamics are periodic
along the ¢ axis with a 27 period, this reverse active power area
also appears periodically. In this work, the specific area marked
by abcd is focused. According to Fig. 11(a), the cause of the
reverse active power phenomenon can be explained in the system
phase plane shown in Fig. 11(b).

In Fig. 11(b), considering the scenario where the system is
originally operated at SEP1 before the disturbance, the trajectory
flows to the right side of the stability boundary during the
disturbance and is attracted by the neighboring SEP2 in the
post-disturbance system. If the fault is cleared so that the post-
disturbance trajectory starts from the red-and-yellow-colored area
denoted by efcd, for example starting from point C;, then
during the process that the trajectory flows from C; to the post-
disturbance SEP2, it will go through the area abcd, leading to the
reserve active power. On the contrary, if the fault is cleared so
that the post-disturbance trajectory starts from the green-colored
area denoted by dcghi, for example starting from point Cs, then
the trajectory will not enter the reverse active power area during
the post-disturbance dynamics, and no reserve active power will
occur under this circumstance. The same analysis can be applied
to each SEP with the 27 interval. For example, if the post-
disturbance trajectory starts from point Cy, then it will flow back
to the original SEP1, where the reverse active power will not
occur. And if the post-disturbance trajectory starts from point
Cs, then it will be attracted to the next SEP on the farther right,
and the reverse active power phenomenon will occur again.

In order to deal with this reverse active power phenomenon,
a hardware approach is to implement proper dc side storage to
the inverter, so that the bidirectional active power is allowed. On
the other hand, this phenomenon can also be prevented from the
perspective of control. For example, considering ideally that the
system state can be monitored during operation, if it is found
the system state has already moved beyond the attraction region
of the original SEP1 and will be attracted by a neighboring
SEP2, then the fault clearing time can be intentionally delayed
to a proper value so that the system trajectory can fully pass
the reverse active power area during the fault, and the post-
disturbance trajectory can start from the green-colored area.
Under this circumstance, the post-disturbance trajectory will
not enter the reverse active power area, and the corresponding
phenomenon can be avoided.
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Figure 11. Characteristics of the post-disturbance system regarding the reverse
active power phenomenon.

C. Simulation Results

In this subsection, simulations are carried out regarding the
current limiting scheme and reverse active power phenomenon.
The system parameters remain unchanged, and the threshold
for the current value is set as 1.50 p.u.. Similar to Fig. 9,
different cases are also tested when the three-phase fault is
cleared respectively after different times. The results are shown in
Fig. 12. It can be seen that with the current limiting scheme, the
inverter current is properly regulated within the tolerable range
after the fault occurs in all cases. And when the fault is cleared,
the system can all finally return to the normal operation state,
which means the analysis in the previous sections can still be
maintained. Furthermore, with different fault clearing times, the
system demonstrates different transient responses, which can be
elaborated as follows.

1) Fault Clearing Time 0.15s: The system responses when
the fault is cleared at 0.15s are shown in Fig. 12(a), which is
corresponding to the case of point Cy in Fig. 11(b).

In this case, the fault clearing point C stays within the
attraction region of SEP A. After the fault is cleared, the inverter
current keeps saturated for some time, and finally, the trajectory
returns to the original SEP at point A. During all this process, the
system trajectory remains in the green-colored area and therefore,
no reverse active power occurs under this circumstance. Note that
there is a visible delay for the current to desaturate.

2) Fault Clearing Time 0.51s: The system responses when
the fault is cleared at 0.51s are shown in Fig. 12(b), which is
corresponding to the case of point C; in Fig. 11(b).

While the behavior is expected to be similar to that in Fig. 9(a),
the current limiting mechanism changes the system behavior and
causes the system dynamics to escape from the attraction region
of the original SEP during the fault. The system is attracted by
the next SEP at point D, leading to the reverse active power.

3) Fault Clearing Time 1.22s: The system responses when
the fault is cleared at 1.22s are shown in Fig. 12(c), which is
corresponding to the case of point Cs in Fig. 11(b).

Under this circumstance, the fault is cleared and the inverter
exits the current saturation at the same time, where the system
trajectory has already fully passed the P (0, E) < 0 area
and entered the green-colored area. Then the post-disturbance
trajectory is attracted to the neighboring SEP at point D without
going through the reverse active power area, and therefore, the
reverse active power phenomenon is avoided.

4) Fault Clearing Time 1.64s: The system responses when
the fault is cleared at 1.64s are shown in Fig. 12(d), which is
corresponding to the case of point Cs in Fig. 11(b).

When the fault clearing time is 1.64s, the system trajectory
moves so far that it has escaped from the attraction region of the
SEP at point D, and entered the attraction region of the farther
SEP at point E. Similar to Fig. 12(b), the fault is cleared at point
C and the inverter exits current saturation after a short time, both
in the corresponding red-and-yellow-colored area in this period.
Therefore, the post-disturbance trajectory is attracted to point E,
and the reverse active power occurs again.

The above simulation results further validate the discussions
in this section. On one hand, the current limiting control protects
the inverter from overcurrent during the transient process. And
on the other hand, the reverse active power phenomenon can
be prevented by the proper selection of fault clearing time. With
these control considerations, the transient stability characteristics
can be better guaranteed for droop controlled inverters. At the
same time, it should be recognized that the current limiting
scheme can profoundly affect the system dynamics during the
fault and after it is cleared. With some fault clearing points, even
the fault is cleared in the green-colored area, but the current
limiting may cause the system dynamics to enter the red-and-
yellow-colored area and therefore, the actual post-disturbance
trajectory starts from the red-and-yellow-colored area and the
reverse active power still appears. This phenomenon is related
to the operation characteristics of the system after the fault is
cleared, and more investigation is needed to reveal the properties
and influence of the current limiting scheme and the post-
disturbance system, which will be discussed in the future works.

VII. CONCLUSION

In this work, the transient angle stability of the droop con-
trolled inverter after a large disturbance are discussed in detail.
In order to guarantee that there exists a proper post-disturbance
operating point, the feasible operation region for the control
references is obtained. Under the circumstance where there exist
feasible SEPs, the system equilibrium points are analyzed in
detail. Furthermore, the attraction regions of the SEPs are ac-
curately obtained by depicting the stable and unstable manifolds
of the surrounding UEPs, which shows that the droop controlled
inverter has a good transient stability characteristic since a stable
operating point can always be found by the post-disturbance
system. To further guarantee that the inverter can ride-through
the disturbance, a current limiting scheme is implemented and
the reverse active power phenomenon is discussed regarding its
cause and prevention. It is shown that these transient control
considerations can better guarantee the stability characteristics
of the droop controlled inverters.
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Figure 12. Inverter transient responses (left column) and system phase portraits (right column) under different fault clearing times, with the current limiting scheme.

This work intends to provide a complete explanation for the
transient angle stability of inverters with the droop mechanism.

The results show that these inverters are robust regarding the tran-
sient angle stability if proper control settings are implemented.
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Furthermore, the analysis method in this work can also be applied
to study the transient angle stability of other kinds of voltage
source inverters, such as a virtual synchronous machine with a
higher-order model.
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