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Abstract

In location estimation, we are given n samples

from a known distribution f shifted by an un-

known translation λ, and want to estimate λ as

precisely as possible. Asymptotically, the max-

imum likelihood estimate achieves the Cramér-

Rao bound of error N(0, 1
nI ), where I is the

Fisher information of f . However, the n required

for convergence depends on f , and may be ar-

bitrarily large. We build on the theory using

smoothed estimators to bound the error for finite

n in terms of Ir, the Fisher information of the

r-smoothed distribution. As n → ∞, r → 0 at

an explicit rate and this converges to the Cramér-

Rao bound. We (1) improve the prior work for

1-dimensional f to converge for constant failure

probability in addition to high probability, and (2)

extend the theory to high-dimensional distribu-

tions. In the process, we prove a new bound on

the norm of a high-dimensional random variable

whose 1-dimensional projections are subgamma,

which may be of independent interest.

1. Introduction

Location estimation—a variant of mean estimation—is a

fundamental problem in parametric statistics. Suppose there

is a translation-invariant model fλ(x) = f(x−λ) for some

known distribution f over R
d. The statistician receives

n i.i.d. samples from fλ for some arbitrarily chosen true

parameter λ ∈ R
d, and the goal is to estimate λ with high

accuracy, succeeding with high probability over the samples.

In contrast to general mean estimation, which aims to es-

timate the mean under minimal assumptions on the distri-

bution, here we know the exact shape of the distribution

up to translation. Such additional information allows us to

estimate λ to higher accuracy.

The classic “textbook” theory for location estimation, and
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indeed for parametric estimation in general, recommends us-

ing the Maximum Likelihood Estimate (MLE). The MLE en-

joys asymptotic normality: if we fix a distribution f and take

the number of samples n to infinity, the distribution of the

MLE converges to the multivariate Gaussian N (λ, 1
nI−1),

where I is the Fisher information matrix, defined by

I = E
x∼f

[
(∇ log f(x)) (∇ log f(x))

>
]

As a basic property, if we denote the covariance matrix

of f by Σ, then we always have I−1 � Σ, implying that

the asymptotic performance of the MLE is always at least

as good as the sample mean, whose performance is con-

trolled by the covariance Σ. Furthermore, the Crámer-Rao

bound states that no unbiased location estimator can have

covariance smaller than 1
nI−1, and so the MLE has the best

asymptotic performance of any unbiased estimator.

Even though the textbook theory is satisfying in that the

Fisher information essentially captures the information-

theoretic limits of location estimation, its predictions may

be misleading in practice. Specifically, this is due to the

asymptotic nature of the MLE performance guarantee: we

need to take the number of samples n to infinity in order to

achieve subgaussian estimation error. The asymptotic result

may have arbitrarily bad dependence on n in terms of the

model f . While bounds exist in terms of regularity proper-

ties of f (Miao, 2010; Spokoiny, 2011; Pinelis, 2017), these

bounds are infinite for simple examples like the Laplace

distribution. The research goal, therefore, is to establish a

finite-sample theory of location estimation, which bounds

the estimation error explicitly as a function of n, applies to

every f , and ideally attains even optimal constants in the

estimation error.

Recent work by Gupta et al. (2022) addressed this ques-

tion in the special case of 1 dimension. They showed that,

while the MLE can have bad finite-sample performance,

it is possible to improve the behavior by a simple adap-

tation: add Gaussian noise of some appropriately chosen

radius r, where r decreases with the number of samples,

to both the samples and model before performing MLE.

Accordingly, the theoretical guarantees for the smoothed

MLE replaces the Fisher information of f with the Fisher

information of the smoothed distribution fr, also called the
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Figure 1. Gaussian+Sawtooth Distribution

Figure 2. Constant probability error lower bound for Gaus-

sian+Sawtooth

smoothed Fisher information Ir. Smoothed MLE achieves

finite-sample subgaussian error bounds analogous to a Gaus-

sian with variance (1 + o(1))I−1r , where the o(1) term can

be explicitly calculated and is independent of f .

Characterization by smoothed Fisher information.

Our results will follow the approach of Gupta et al. (2022)

and show finite sample bounds in terms of the smoothed

Fisher information. Here, focusing on the 1-dimensional

case, we briefly discuss why Fisher information is inade-

quate and why smoothed Fisher information is a suitable

substitute.

Consider the “Gaussian+Sawtooth” distribution shown in

Figure 1, which is a sawtooth of tooth width w and slope

±∆ added to the central section of the standard Gaussian

density. As w → 0, the density converges to the standard

Gaussian, yet the Fisher information grows to Θ(∆2) as

∆ → ∞. The asymptotic theory thus predicts an error of

O(1/(∆
√
n)) with constant probability.

However, Gupta et al. (2022) showed that for n � 1/w2,

the constant probability error for every algorithm is in fact

at least Ω(1/
√
n), as if the distribution were just a standard

Gaussian. Intuitively, we need to align the model to within

a single sawtooth width of w in order to leverage the saw-

tooth structure for high accuracy estimation. For a standard

Gaussian, Ω(1/w2) samples are needed for error less than

w. Figure 2 shows a plot of the constant probability error

lower bound for the Gaussian+Sawtooth model, with the

error scaled by
√
n for normalization.

Since the sample threshold depends on w, this example

shows that there is no algorithm that converges to the

asymptotic error in a distribution-independent way. Con-

cretely, no algorithm can be within a 1 + o(1) factor of

the N (0, 1/(nI)) error for a distribution-independent o(1)
term. We therefore need an alternative quantity to replace I
for finite-sample error bounds, which can capture the phase

transition in Figure 2.

Smoothed Fisher information exhibits this phase transition

behavior. Smoothing by radius r � w blurs out the saw-

tooth structure—Ir is small and close to the standard Gaus-

sian Fisher information of 1. On the other hand, smoothing

by radius r � w preserves the sawtooth and keeps Ir
close to I = Θ(∆2). Both Gupta et al. (2022) and we

leverage this behavior to show finite sample bounds analo-

gous to (1 + o(1))N (0, 1/(nIr)), with a o(1) term that is

distribution-independent.

We need to choose the smoothing parameter carefully, as

the smoothed Fisher information can depend delicately on

r. Intuitively, we expect r → 0 as n→∞; however, this is

not true of Gupta et al.’s results. Their choice of smoothing

vanishes only in the high-probability regime, i.e. when both

n→∞ and δ → 0 for failure probability δ. Thus, for small

constant δ, their results can be very sub-optimal. One of our

new results removes the spurious dependence of r on δ.

Our results. In this paper, we improve and extend the

result of Gupta et al. (2022) in two ways. First, we show that

a variant of the algorithm has a simpler and better analysis

in one dimension. This better analysis supports smaller

smoothing radius r, and hence higher Fisher information

Ir:

Theorem 1.1 (1-d Smoothed MLE). Given a model f , let

the r-smoothed Fisher information of a distribution f be Ir,

and let IQR be the interquartile range of f . Fix the failure

probability be δ ≤ 0.5, and assume that n ≥ c · log 2
δ for

some sufficiently large constant c.

Choose r∗ = Ω((
log 2

δ

n )1/8)IQR. Then, with probability at

least 1− δ, the output λ̂ of Algorithm 2 satisfies

|λ̂− λ| ≤


1 +O

(
log 2

δ

n

) 1
10



√

2 log 2
δ

nIr∗

The main difference between this result and (Gupta et al.,

2022) is the dependence on δ: the previous result needed

δ → 0 for r to decay to 0 and for the leading constant

to decay to 1. In ours, both decay polynomially in n for

constant δ.

Consider how this result behaves on the Gaussian+Sawtooth

example above (Figure 1), for constant δ. For small n,

we will choose r∗ = 1
poly(n) > w and get error within 1 +

1
poly(n) of the regular Gaussian tail; for large n, r∗ � w and
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the error is within 1+ 1
poly(n) of the asymptotically optimal

N (0, 1/(nIr)). Thus we get the same qualitative transition

behavior as Figure 2, albeit at a different transition point

( 1
w8 rather than 1

w2 ). The prior work (Gupta et al., 2022)

additionally required vanishing δ, roughly δ < 2− poly(n),

to observe this behavior.

Second, our simpler approach lets us generalize the result

to high dimensions. We show an analogous result to the

one-dimensional result. In an ideal world, since the (un-

smoothed) MLE satisfies (λ̂−λ)→ N (0, 1
nI−1) asymptot-

ically, we would aim for the Gaussian tail error (Boucheron

et al. (2013), Example 5.7)

‖λ̂− λ‖2 ≤
√

Tr(I−1)
n

+

√

2‖I−1‖ log
1
δ

n
(1)

with probability 1− δ. We show that this almost holds. Let

deff(A) = Tr(A)
‖A‖ denote the effective dimension of a positive

semidefinite matrix A. If we smooth by a spherical Gaussian

R = r2Id for some r2 ≤ ‖Σ‖, then for a sufficiently large n
as a function of ‖Σ‖/r2, log 1

δ , deff(Σ), and deff(I−1R ), our

error is close to (1) replacing I with the smoothed Fisher

information IR.

Theorem 1.2 (High-dimensional MLE, Informal; see The-

orem B.16). Let f have covariance matrix Σ. For any

r2 ≤ ‖Σ‖, let R = r2Id and IR be the R-smoothed Fisher

information of the distribution. For any constant 0 < η < 1,

‖λ̂− λ‖2 ≤ (1 + η)

√
Tr(I−1R )

n
+ 5

√
‖I−1R ‖ log 4

δ

n

with probability 1− δ, for

n > Oη

((‖Σ‖
r2

)2(
log

2

δ
+ deff(I−1R ) +

deff(Σ)
2

deff(I−1R )

))

When deff(I−1R ) � log 1
δ , the bound is (1 + η +

o(1))
√

Tr(I−1R ). This is very close to the Cramer-Rao

bound for the expected error of
√
Tr(I−1) for unbiased

estimators (Bickel & Doksum (2015), Theorem 3.4.3).

The formal version of this theorem, Theorem B.16, also

gives bounds for general distances ‖λ̂ − λ‖M induced by

symmetric PSD matrices M ; the exact bound, and the n
required for convergence, depend on M .

One key piece of our proof, which may be of independent

interest, is a concentration bound for the norm of a high-

dimensional vector x with subgamma marginals in every

direction. If a vector is Gaussian in every direction, it is a

high-dimensional Gaussian and satisfies the tail bound (1)

(replacing I−1 by the covariance matrix Σ). It was shown

in (Hsu et al., 2012) that the same bound applies even if the

marginals are merely subgaussian with parameter Σ. We

extend this to get a bound for subgamma marginals:

Theorem 1.3 (Norm concentration for subgamma random

vectors; see Theorem 5.1). Let x be a mean-zero random

vector in R
d that is (Σ, C)-subgamma, i.e., it satisfies that

for any vector v ∈ R
d,

E[eλ〈x,v〉] ≤ eλ
2vTΣv/2

for |λ| ≤ 1
‖Cv‖ . Then with probability 1− δ,

‖x‖ ≤
√

Tr(Σ) + 4

√
‖Σ‖ log 2

δ
+ 16‖C‖ log 2

δ

+min

(
4‖C‖F

√
log

2

δ
, 8
‖C‖2F√
Tr(Σ)

log
1

δ

)

The first, trace term is the expected norm and the next

two terms are (up to constants) the tight bound from 1-

dimensional subgamma concentration. When x is an aver-

age of n samples, both Σ and C drop by a factor n; thus,

the terms involving C decay at a rate of 1/n, versus the

terms involving only Σ, which decay at a rate of 1/
√
n. As

n → ∞, the terms involving C disappear compared with

the Gaussian terms involving Σ.

To better understand the last term, consider x to be the

average of n samples Xi drawn from the spherical case

(Σ = σ2I, C = cI). We also focus on the high-dimensional

regime where d ≥ (2/η2) log(1/δ) for some small η, where

the target error bound of (1) becomes (1 + η)
√
tr(Σ)/n,

that is, within a (1+ η) factor of the expected `2 norm error.

In the subgamma setting, the bound of Theorem 1.3 implies

an error of (1 +O(η))
√

Tr(Σ)/n whenever n & (c/σ)2d,

where the threshold for n is due to comparing the last “min”

term in the bound with the

√
‖Σ‖ log 2

δ term.

Under the stronger assumption that the random vectors have

distance at most c from their expectation, one can compare

our tail bound with Talagrand’s/Bousquet’s suprema con-

centration inequality (Boucheron et al. (2013), Theorem

12.5). Focusing again on the high-dimensional, spherical

regime where d ≥ (2/η2) log(1/δ) and Σ = σ2I, C = cI ,

Bousquet’s inequality implies an almost-identical `2 error

of (1 + O(η))
√

Tr(Σ)/n whenever n & (c/σ)2d, albeit

with smaller hidden constant. Given that the n threshold for

our bound is due to our last “min” term, it is likely that such

a term is qualitatively necessary, and that our last term is

not too large at least in the relevant regimes we consider in

this paper.

1.1. Notation

We denote the known distribution by f . In 1 dimension, fr
is the r-smoothed distribution f ∗ N (0, r2), with smoothed
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Fisher information Ir. In high dimensions, fR is the R-

smoothed distribution f ∗N (0, R) with smoothed Fisher in-

formation IR—note the quadratic difference between r and

R, analogous to the usual conventions for the (co)variance

of 1-dimensional vs high-dimensional Gaussians.

The true parameter is denoted by λ. Both our 1-dimensional

and high-dimensional algorithms first gets an initial estimate

λ1, before refining it into the final estimate λ̂.

Unless otherwise specified, for a given vector x, ‖x‖ de-

notes the `2 norm, and similarly ‖A‖ is the operator norm

of a square matrix A. Given a square positive semidef-

inite matrix A, we define its effective dimension to be

deff(A) = tr(A)/‖A‖. The effective dimension of a matrix

A is d when it is spherical, but decays if one or more of its

eigenvalues deviate from the maximum eigenvalue.

2. Related work

For an in-depth textbook treatment of the asymptotic theory

of location estimation and parametric estimation in general,

see (van der Vaart, 2000). There have also been finite-

sample analysis of the MLE ((Spokoiny, 2011) in high di-

mensions, (Pinelis, 2017; Miao, 2010) in 1 dimension), but

they require strong regularity conditions in addition to los-

ing (at least) multiplicative constants in the estimation error

bounds. Most related to this paper is the prior work of

Gupta et al. (2022), which introduced smoothed MLE in

the context of location estimation in 1 dimension, as well as

formally analyzed its finite sample performance in terms of

the smoothed Fisher information for large n and small δ.

There has been a flurry of work in recent years on the closely

related problem of mean estimation, under the minimal as-

sumption of finite (co)variance. The bounds then depend

on this variance, rather than the Fisher information. In 1

dimension, the seminal paper of Catoni (2012) initiated the

search for a subgaussian mean estimator with estimation

error tight to within a 1 + o(1) factor; improvements by

Devroye et al. (2016) and Lee and Valiant (2022a) have

given a 1-dimensional mean estimator that works for all dis-

tributions with finite (but unknown) variance, with accuracy

that is optimal to within a 1 + o(1) factor. Crucially, the

o(1) term is independent of the underlying distribution.

It remains an open problem to find a subgaussian mean esti-

mator with tight constants under bounded covariance in high

dimensions. A line of work (Lugosi & Mendelson, 2017;

Hopkins, 2018; Cherapanamjeri et al., 2019) has shown how

to achieve the subgaussian rate, ignoring constants, in poly-

nomial time. More recently, Lee and Valiant (2022b) has

achieved linear time and a sharp constant, but requires the

effective dimension of the distribution to be much larger

than log2 1
δ .

Our other contribution is our novel norm concentration

bound for subgamma random vectors. The norm concen-

tration for Gaussian vectors has long been understood, see

for example the textbook (Boucheron et al. (2013), Exam-

ple 5.7). Hsu et al. (2012) generalized this bound to the

case of direction-by-direction subgaussian vectors. Norm

concentration can also be viewed as the supremum of an

empirical process. Bousquet’s version (2002; 2003) of Ta-

lagrand’s suprema concentration inequality implies a norm

concentration bound for random vectors bounded within

an `2 ball of their expectation. Our bound generalizes this

case of Bousquet’s inequality from bounded vectors to all

subgamma vectors. As discussed after Theorem 1.3, the

results are quite similar for spherical Σ and C.

3. 1-dimensional location estimation

We discuss our 1-dimensional location estimation algorithm

and its analysis at a high level in this section. See Ap-

pendix A for the complete analysis.

Algorithm 1 below is a local algorithm in the sense that it

assumes we have an initial estimate λ1 that is within some

distance ε of λ, with the goal of refining the estimate to high

accuracy.

Algorithm 1 Local smoothed MLE for one dimension

Input Parameters:

• Description of f , smoothing parameter r, samples

x1, . . . , xn
i.i.d.∼ fλ and initial estimate λ1 of λ

1. Let s(λ̂) be the score function of fr, the r-smoothed

version of f .

2. For each sample xi, compute a perturbed sample x′i =
xi +N (0, r2) where all the Gaussian noise are drawn

independently across all the samples.

3. Compute the empirical score at λ1, namely ŝ(λ1) =
1
n

∑n
i=1 s(x

′
i − λ1).

4. Return λ̂ = λ1 − (ŝ(λ1)/Ir).

Let Ir be the Fisher information of fr, the r-smoothed

version of f . Basic facts about the score s(x) are:

0 = E
x∼fr

[s(x)]

Ir = E
x∼fr

[−s′(x)] = E
x∼fr

[s(x)2].

First, Algorithm 1 adds N(0, r2) perturbation independently

to each xi to get x′i, which are drawn as (y1 + λ, y2 +
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λ, . . . , yn + λ) for yi ∼ fr. It then computes

ŝ(λ1) :=
1

n

n∑

i=1

s(x′i − λ1) =
1

n

n∑

i=1

s(yi − ε)

which is, in expectation,

E
x∼fr

[s(x− ε)] ≈ E
x∼fr

[s(x)− εs′(x)] = εIr.

Thus we expect λ̂ = λ1 − ŝ(λ1)/Ir ≈ λ.

There are two sources of error in this calculation: (I) the

Taylor approximation to s(x − ε), and (II) the difference

between the empirical and true expectations of s(x − ε).
When ε = 0, the Taylor error is 0 and the empirical estimator

has variance
Var(s(x))

n
=
Ir
n
.

Thus, when λ1 = λ, λ̂ would be an unbiased estimator

of λ with variance 1
nIr : exactly the Cramér-Rao bound.

Moreover, one can show that s(x) is subgamma with vari-

ance proxy Ir and tail parameter 1/r, giving tails on λ̂− λ
matching the 1

nIr -variance Gaussian (up to some point de-

pending on r). All we need to show, then, is that shifting

by ε introduces little excess error in (I) and (II); intuitively,

this happens for |ε| � r because fr has been smoothed by

radius r.

In fact, (Gupta et al., 2022) already bounded both errors:

for (I), their Lemma C.2 shows that

E
x∼fr

[s(x− ε)] = Irε±O(
√
Ir

ε2

r2
) (2)

for all |ε| ≤ r/2, and for (II), their Corollary 3.3 and Lemma

C.3 together imply that a subgamma concentration of

|ŝ(λ1)− E
x∼fr

[s(x− ε)]| .

(1 + o(1))

√
Ir log 2

δ

n
+

log 2
δ

nr
(3)

when r � |ε|.
Therefore, for sufficiently large r, the total error in ŝ(λ1)

is dominated by the leading

√
Ir log 2

δ

n term, giving a result

within 1 + o(1) of optimal.

Getting an initial estimate. We estimate λ by the empiri-

cal α-quantile of a small κ fraction of the samples, for some

α; one can show that this has error at most O(IQR ·
√

log 1
δ

κn )
with 1− δ probability, where IQR denotes the interquartile

range. This strategy is essentially identical to (Gupta et al.,

2022), except we use fresh samples for the two stages while

they reuse samples.

Algorithm 2 Global smoothed MLE for one dimension

Input Parameters:

• Failure probability δ, description of f , n i.i.d. samples

drawn from fλ for some unknown λ

1. Let q be
√
2(log 2

δ /n)
2/5.

2. Compute an α ∈ [q, 1 − q] to minimize the width of

interval defined by the α± q quantiles of f .

3. Take the sample α-quantile of the first (log 1
δ /n)

1/10

fraction of the n samples.

4. Let r∗ = Ω((
log 1

δ

n )1/8)IQR.

5. Run Algorithm 1 on the rest of the samples, using

initial estimate λ1 = xα and r∗-smoothing, and return

the final estimate λ̂.

Combining the above strategies and balancing the parame-

ters gives Algorithm 2 as our final algorithm. We prove in

Appendix A that the algorithm satisfies our 1-dimensional

result, Theorem 1.1.

Comparison to prior work. All the properties of the

score function we need for this 1-dimensional result were

shown in (Gupta et al., 2022), but that paper uses a different

algorithm for which they could only prove a worse result.

The (Gupta et al., 2022) algorithm looks for a root of ŝ,

while we essentially perform one step of Newton’s method

to approximate the root. General root finding requires uni-

form convergence of ŝ, which (Gupta et al., 2022) could not

prove without additional loss factors. By using one step, and

(a small number of) fresh samples for the initial estimate,

our algorithm only needs pointwise convergence.

4. High-dimensional location estimation

The high-dimensional case is conceptually analogous to the

1-d case. The complete analysis can be found in Appendix B.

The main differences are: 1) The initial estimate comes from

a heavy-tailed subgaussian estimator, and 2) We bound the

difference between our estimate and the true mean using

our concentration inequality for the norm of a subgamma

vector (Theorem 5.1).

Let λ be the true location, and λ̂ our final estimate. We first

state our main theorem, which gives a bound on ‖λ̂− λ‖M ,

induced by symmetric PSD matrices M .

Theorem 4.1 (High-dimensional MLE, Informal; see The-

orem B.16). Let f have covariance matrix Σ. For any

r2 ≤ ‖Σ‖, let R = r2Id and IR be the R-smoothed Fisher

information of the distribution. Let M be any symmetric
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PSD matrix, and let T = M1/2I−1R M1/2. For any constant

0 < η < 1,

‖λ̂− λ‖M ≤ (1 + η)

√
Tr(T )

n
+ 5

√
‖T‖ log 4

δ

n

with probability 1− δ, for

n > Oη

((‖Σ‖
r2

)2(
log

2

δ
+ deff(T ) +

deff(Σ)
2

deff(T )

))

As a Corollary, we obtain Theorem 1.2 which bounds

‖λ̂− λ‖2, as well as the following, which bounds the Ma-

halanobis distance ‖λ̂− λ‖IR .

Corollary 4.2. Let f have covariance matrix Σ. For any

r2 ≤ ‖Σ‖, let R = r2Id and IR be the R-smoothed Fisher

information of the distribution. For any constant 0 < η < 1,

‖λ̂− λ‖IR ≤ (1 + η)

√
d

n
+ 5

√
log 4

δ

n

with probability 1− δ, for

n > Oη

((‖Σ‖
r2

)2(
log

2

δ
+ d+

deff(Σ)
2

d

))

We now sketch our analysis. Algorithm 3 below takes an

initial estimate λ1 of the mean, and refines it to a precise

estimate λ̂, analogously to Algorithm 1 for the 1-d case.

Algorithm 3 High-dimensional Local MLE

Input Parameters:

• Description of distribution f on R
d, smoothing R, sam-

ples x1, . . . , xn
i.i.d.∼ fλ, and initial estimate λ1

1. Let IR be the Fisher information matrix of fR, the

R-smoothed version of f . Let sR be the score function

of fR.

2. For each sample xi, compute a perturbed sample x′i =
xi +N (0, R) where all the Gaussian noise are drawn

independently across all the samples.

3. Let ε̂ = 1
n

∑n
i=1 I−1R sR(x

′
i − λ1) and return λ̂ =

λ1 − ε̂.

Let f be a distribution on R
d, and let IR be the Fisher

information matrix of fR, the R-smoothed version of f .

Then, for score sR, if JsR is the Jacobian of sR,

IR = E
x∼fR

[
sR(x)sR(x)

T
]
= E

x∼fR
[−JsR(x)]

Analogously to the 1-d case, Algorithm 3 takes an initial

estimate λ1 = λ + ε with εTR−1ε ≤ 1/4. The algorithm

first adds N(0, R) independently to each sample xi, to get

x′i which are drawn as yi+λ for yi ∼ fR. Then, it computes

ε̂ =
1

n

n∑

i=1

I−1R sR(x
′
i − λ1) =

1

n

n∑

i=1

I−1R sR(yi − ε)

which is in expectation

E
x∼fR

[
I−1R sR(x− ε)

]
≈ E

x∼fR

[
−I−1R JsR(x)ε

]
= ε

So, again, we expect λ̂ = λ1− ε̂ ≈ λ up to error from (I) the

Taylor approximation to sR(x− ε), and (II) the difference

between the empirical and true expectations of sR(x− ε).

For (I), Lemma B.3 shows that

‖ε− E
x∼fR

[
I−1R sR(x− ε)

]
‖2 . ‖I−1R ‖(εTR−1ε)

for εTR−1ε ≤ 1/4. For (II), Corollary B.12 shows that for

any unit direction v, vTI−1R sR(x− ε) is subgamma:

vTI−1R sR(x− ε) ∈ Γ(I−1R (1 + o(1)), I−1R R−1/2)

when εTR−1ε ≤ 1/4 and√
(εTR−1ε) log

(
‖I−1R ‖‖R−1‖

)
� 1, so that together

with our norm concentration inequality for subgamma

vectors (Theorem 5.1), Lemma B.13 shows

‖ε̂− E
x∼fR

[
I−1R sR(x− ε)

]
‖ ≤

(1 + o(1))

(√
Tr(I−1R )

n
+ 4

√
‖I−1R ‖ log 2

δ

n

+ 16
‖I−1R R−1/2‖ log 2

δ

n
+ 8
‖I−1R R−1/2‖2F log 2

δ

n3/2

√
Tr(I−1R )

)

For R = r2Id, when r is large, the total error is dominated

by the first two terms in the above bound, which correspond

to subgaussian concentration with covariance I−1R .

Getting an initial estimate. For our initial estimate λ1,

we make use of a heavy-tailed estimator (Hopkins, 2018;

Cherapanamjeri et al., 2019), which guarantee subgaussian

error dependent on the covariance Σ of f , up to constants.

As in the 1-d case, combining our initial estimate with Al-

gorithm 3 gives our final theorem, Theorem B.16. Below,

Algorithm 4 shows how to compute our initial estimate and

combine it with the local MLE Algorithm 3 to obtain our

final estimate.
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Algorithm 4 High-dimensional Global MLE

Input Parameters:

• Failure probability δ, description of distribution f , n
samples from fλ, Smoothing R, Approximation pa-

rameter η

1. Let Σ be the covariance matrix of f . Compute an

initial estimate λ1 using the first η/C fraction of of

the n samples for large constant C, using an estimator

from Theorem B.15.

2. Run Algorithm 3 using the remaining 1−η/C fraction

of samples using R-smoothing and our initial estimate

λ1, returning the final estimate λ̂.

5. Norm concentration for subgamma vectors

Theorem 5.1 (Norm concentration for subgamma vectors).

Let x be a mean-zero random vector in R
d that is (Σ, C)-

subgamma, i.e., for all v ∈ R
d, vTx ∈ Γ(vTΣv, ‖Cv‖). In

other words, it satisfies that for any vector v ∈ R
d,

E[eλ〈x,v〉] ≤ eλ
2vTΣv/2

for |λ| ≤ 1
‖Cv‖ . Let γ > 0. Then,

P

[
‖x‖ ≥

√
Tr(Σ) + t

]
≤ 2e

− 1
16 min( t2

‖Σ‖
, t
‖C‖

,
2t
√

Tr(Σ)+t2

‖C‖2
F

)
.

Thus, with probability 1− δ,

‖x‖ ≤
√
Tr(Σ) + 4

√
‖Σ‖ log 2

δ
+ 16‖C‖ log 2

δ

+min

(
4‖C‖F

√
log

2

δ
, 8
‖C‖2F√
Tr(Σ)

log
2

δ

)

The proof idea, similar to (Hsu et al., 2012) for the sub-

gaussian case, is as follows. Define v ∼ N(0, I). We

relate P[‖x‖ > t] to the MGF Ex[e
λ2‖x‖2 ], which equals

Ex,v[e
λ〈x,v〉]. If we interchange the order of expectation, as

long as ‖Cv‖ ≤ 1/|λ|, this is at most Ev[e
λ2vTΣv]. Since v

is Gaussian, we can compute the last MGF precisely.

To handle the subgamma setting, we need a way to control

Ex,v[e
λ〈x,v〉] over those v with ‖Cv‖ > 1/|λ|. We do so by

showing that (I) WLOG ‖x‖ is never strictly larger than the

bound we want to show, and (II) then the contribution to the

expectation from such cases is small.

Proof. Define γ = t√
Tr(Σ)

, so we want to bound P[‖x‖ ≥
(1 + γ)

√
Tr(Σ)]. We start by showing that WLOG ‖x‖

never exceeds this threshold.

Introducing a bounded norm assumption. We first

show that, without loss of generality, we can assume

‖x‖ ≤ (1 + γ)
√
Tr(Σ) always. Let s ∈ {±1} be dis-

tributed uniformly independent of x, and define

y = s · x ·min

(
1,

(1 + γ)
√

Tr(Σ)

‖x‖

)
.

to clip x’s norm and symmetrize. For any v and x,

E
s
[eλ〈y,v〉] = cosh

(
λ〈x, v〉 ·min

(
1,

(1 + γ)
√
Tr(Σ)

‖x‖

))

≤ cosh(λ〈x, v〉)

Now, since x is (Σ, C)-subgamma,

E
x
[cosh(λ〈x, v〉)] = 1

2

(
E
x
[eλ〈x,v〉] + E

x
[eλ〈x,−v〉]

)

≤ 1

2

(
eλ

2vTΣv/2 + eλ
2(−v)TΣ(−v)/2

)

= eλ
2vTΣv/2

and so

E
y
[eλ〈y,v〉] ≤ eλ

2vTΣv/2.

Thus y is also (Σ, C)-subgamma. The target quantity in

our theorem is the same for y as for x: P[‖x‖ ≥ (1 +
γ)
√
Tr(Σ)] = P[‖y‖ ≥ (1 + γ)

√
Tr(Σ)]. Since ‖y‖ ≤

(1 + γ)
√
Tr(Σ) always, by considering y instead of x, we

can WLOG assume that ‖x‖ ≤ (1 + γ)
√
Tr(Σ) in our

theorem proof.

Relating probability to Ex,v[e
λ〈x,v〉]. Define

α := P

[
‖x‖ ≥ (1 + γ)

√
Tr(Σ)

]

so that by Markov’s inequality applied to eλ
2‖x‖2/2,

α ≤ E[eλ
2‖x‖2/2]

eλ2(1+γ)2 Tr(Σ)/2

for any λ. Now, let v ∼ N(0, Id). For any x,

E
v
[ελ〈x,v〉] = eλ

2‖x‖2/2

so

α ≤ E
x,v

[eλ〈x,v〉]e−λ
2(1+γ)2 Tr(Σ)/2. (4)

Upper bounding Ex,v[e
λ〈x,v〉]. We will bound the RHS

above by making the inner expectation over x. Since x is

(Σ, C)-subgamma, for every v,

E
x
[eλ〈x,v〉] ≤ eλ

2vTΣv/2 ∀|λ| ≤ 1

‖Cv‖ ,
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Therefore

E
x,v

[eλ〈x,v〉] = E
x,v

[eλ〈x,v〉1‖Cv‖≤1/|λ| + eλ〈x,v〉1‖Cv‖>1/|λ|]

≤ E
v
[eλ

2vTΣv/21‖Cv‖≤1/|λ|] + E
x,v

[eλ〈x,v〉1‖Cv‖>1/|λ|]

≤ E
v
[eλ

2vTΣv/2] + E
x
[E
v
[eλ〈x,v〉1‖Cv‖>1/|λ|]] (5)

We start with the first term. Let the eigenvalues of Σ be

σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
d. Then, vTΣv/2 is a generalized chi-

squared distribution, distributed as
∑

i u
2
i for independent

Gaussian variables ui ∼ N(0, σ2
i /2). It is easy to check

that u2 for u ∼ N(0, 1) is (4, 4)-subgamma, i.e.,

E[eλ(u
2−E[u2])] =

e−λ√
1− 2λ

≤ e2λ
2 ∀|λ| ≤ 1

4
.

Therefore
∑

u2
i is (

∑
i σ

4
i , 2maxσ2

i ) = (‖Σ‖2F , 2‖Σ‖)-
subgamma. Since ‖Σ‖2F ≤ ‖Σ‖Tr(Σ), vTΣv is also

(‖Σ‖Tr(Σ), 2‖Σ‖)-subgamma.

Including the mean term as well (E[vTΣv/2] = Tr(Σ)/2),

we have

E
v
[eλ

2vTΣv/2] ≤ eλ
2 Tr(Σ)/2 · eλ4 Tr(Σ)‖Σ‖/2 ∀λ2 ≤ 1

2‖Σ‖ .
(6)

We now bound the second term in (5) for each x. Since

v is i.i.d. gaussian, ‖Cv‖ ≤ ‖C‖F + ‖C‖
√
2 log 1

δ with

probability 1− δ (see Equation 1). Therefore, for all |λ| <
1

2‖C‖F ,

P[‖Cv‖ > 1/|λ|] ≤ e
− (1/|λ|−‖C‖F )2

2‖C‖2 ≤ e
− 1

8λ2‖C‖2

and so by Cauchy-Schwarz, and our bound on ‖x‖,

E
v
[eλ〈x,v〉1‖Cv‖>1/|λ|] ≤

√
E
v
[e2λ〈x,v〉]P[‖Cv‖ > 1/|λ|]

≤
√

e2λ2‖x‖2e
− 1

8λ2‖C‖2

= e
λ2(1+γ)2 Tr(Σ)− 1

16λ2‖C‖2 .

Therefore, as long as λ2 ≤ min( 1

4(1+γ)
√

Tr(Σ)‖C‖
, 1
4‖C‖2F

),

E
v
[eλ‖x‖v11‖Cv‖>1/|λ|] ≤ 1.

Combining with (6) (which is a bound always larger than 1)

and (5),

E
x,v

[eλ〈x,v〉] ≤ 2eλ
2 Tr(Σ)/2 · eλ4 Tr(Σ)‖Σ‖/2

∀λ2 ≤ min(
1

2‖Σ‖ ,
1

4(1 + γ)
√
Tr(Σ)‖C‖

,
1

4‖C‖2F
)

and with (4),

α ≤ 2e
1
2λ

2 Tr(Σ)(λ2‖Σ‖−2γ−γ2)

∀λ2 ≤ min(
1

2‖Σ‖ ,
1

4(1 + γ)
√
Tr(Σ)‖C‖

,
1

4‖C‖2F
)

Final bound. By also restricting λ2 to be at most 2γ+γ2

2‖Σ‖ ,

we get:

α ≤ 2e−
1
4λ

2 Tr(Σ)(2γ+γ2)

∀λ2 ≤ min(
1

2‖Σ‖ ,
2γ + γ2

2‖Σ‖ ,
1

4(1 + γ)
√

Tr(Σ)‖C‖
,

1

4‖C‖2F
)

Set λ2 to the maximum of this range to get

α ≤ 2e
− 1

4 min( 1
2‖Σ‖

, 2γ+γ2

2‖Σ‖
, 1

4(1+γ)
√

Tr(Σ)‖C‖
, 1

4‖C‖2
F

)(2γ+γ2) Tr(Σ)

The first two cases can be merged:

min( 2γ+γ2

2 , (2γ+γ2)2

2 ) ≥ γ2

2 . Thus:

α ≤ 2e
− 1

16 min(
γ2 Tr(Σ)

‖Σ‖
,
γ
√

Tr(Σ)

‖C‖
,
(2γ+γ2) Tr(Σ)

‖C‖2
F

)
.

Plugging in γ = t√
Tr(Σ)

gives the first result, and setting t

such that the exponent is log 2
δ gives the second.

6. Conclusion and Future Work

In this paper we gave an algorithm for location estimation

in high dimensions, getting non-asymptotic error bounds

approaching those of N (0,
I−1
R

n ), where IR is the Fisher

information matrix of our distribution when smoothed using

N (0, R) for small R that decays with n. In the process

of proving this result, we obtained a new concentration in-

equality for the norm of high-dimensional random variables

whose 1-dimensional projections are subgamma, which may

be of independent interest. Even in 1 dimension, our results

give improvement for constant failure probability. For func-

tion classes such as a mixture of Laplacians, no previous

work gives a rate for the asymptotic convergence to the

Cramér-Rao bound as n→∞ for fixed δ.

This paper is one step in the finite-sample theory of pa-

rameter estimation. Our quantitative bounds could be im-

proved: our bound on the rate of convergence to Cramér-Rao

is 1 + 1
poly(n) , but one could hope for faster convergence

(1 + 1√
n

in general, and 1 + 1
n for some specific function

classes). More generally, one can consider estimation of

parameters other than location; the Cramér-Rao bound still

relates the asymptotic behavior to the Fisher information,

but a rate of convergence remains elusive. We believe that

understanding high-dimensional location estimation is a

good step toward understanding the estimation of multiple

parameters.



High-dimensional Location Estimation via Norm Concentration for Subgamma Vectors 99

7. Acknowledgments

Shivam Gupta and Eric Price are supported by NSF awards

CCF-2008868, CCF-1751040 (CAREER), and the NSF

AI Institute for Foundations of Machine Learning (IFML).

Some of this work was done while Shivam Gupta was visit-

ing UC Berkeley. Jasper C.H. Lee is supported in part by the

generous funding of a Croucher Fellowship for Postdoctoral

Research and by NSF award DMS-2023239.

References

Bickel, P. J. and Doksum, K. A. Mathematical statistics:

basic ideas and selected topics, volume I. Chapman and

Hall/CRC, 2015.

Boucheron, S., Lugosi, G., and Massart, P. Concentra-

tion Inequalities - A Nonasymptotic Theory of Indepen-

dence. Oxford University Press, 2013. ISBN 978-0-

19-953525-5. doi: 10.1093/acprof:oso/9780199535255.

001.0001. URL https://doi.org/10.1093/

acprof:oso/9780199535255.001.0001.

Bousquet, O. A bennett concentration inequality and its

application to suprema of empirical processes. Comptes

Rendus Mathematique, 334(6):495–500, 2002.

Bousquet, O. Concentration inequalities for sub-additive

functions using the entropy method. In Giné, E., Houdré,
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A. Complete analysis of 1-dimensional location estimation

A.1. 1-dimensional local estimation

The following algorithm (Algorithm 1) is the local part of the 1-dimensional estimation: it assumes that there is an initial

estimate that is close to the true parameter λ.

Algorithm 1 Local smoothed MLE for one dimension

Input Parameters:

• Description of f , smoothing parameter r, samples x1, . . . , xn
i.i.d.∼ fλ and initial estimate λ1 of λ

1. Let s(λ̂) be the score function of fr, the r-smoothed version of f .

2. For each sample xi, compute a perturbed sample x′i = xi + N (0, r2) where all the Gaussian noise are drawn

independently across all the samples.

3. Compute the empirical score at λ1, namely ŝ(λ1) =
1
n

∑n
i=1 s(x

′
i − λ1).

4. Return λ̂ = λ1 − (ŝ(λ1)/Ir).

The local algorithm is what uses the simplified view of smoothed MLE and distinguishes our approach from the previous

approach of Gupta et al. (2022).

We will show the following guarantee for Algorithm 1. It says that, if the initial estimate λ1 has distance at most εmax from

true parameter λ, and suppose we choose a sufficiently large smoothing parameter r, then the output of Algorithm 1 will be

close to the true parameter λ.

Lemma A.1. In Algorithm 1, suppose |λ1 − λ| ≤ εmax for some εmax ≥
√

2 log 2
δ

n
1
Ir . Suppose also that the smoothing

parameter is r ≥ 2εmax, and there exists a parameter γ ≥ 1 such that 1) r2
√Ir ≥ γεmax, 2) r2

√
log 2

δ /n ≥ γε2max and 3)

(log 2
δ )/n ≤ 1/γ2. (For interpretation, γ is supposed to be large and “ω(1)” when the lemma is used.)

Then, with probability at least 1− δ over n samples from fλ, the output of Algorithm 1 satisfies

|λ̂− λ| ≤
(
1 +O

(
1

γ

))√
2 log 2

δ

nIr

The proof of Lemma A.1 relies on the following facts from (Gupta et al., 2022) about the concentration of the empirical

score of the smoothed distribution, when evaluated at an initial parameter estimate that are close to the true parameter.

The first fact is the subgamma concentration of the score.

Fact A.2. Suppose we take n i.i.d. samples y1, . . . , yn ← fλ
r , and consider the empirical score function ŝ mapping a

candidate parameter λ̂ to 1
n

∑
i sr(yi − λ̂), where sr is the score function of fr.

Then, for any |ε| ≤ r/2,

P

yi
i.i.d.∼ fλ

r

(
|ŝ(λ+ ε)− E

x←fr
[s(x− ε)]| ≥

√
2max(Ex[s2r(x− ε)], Ir) log 2

δ

n
+

15 log 2
δ

nr

)
≤ δ

The next two facts bound the expectation and second moment of the score.

Fact A.3. For any |ε| ≤ r/2, the expected score Ex∼fr [sr(x+ ε)] satisfies

E
x∼fr

[sr(x+ ε)] ∈
[
−Irε±O

(√
Ir

ε2

r2

)]
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Fact A.4. For any |ε| ≤ r/2, if r/ε = Ω(
√
log e/(r2Ir)), the second moment of the score satisfies

E
x∼fr

[
s2r(x+ ε)

]
≤ Ir

(
1 +O

(
ε

r

√
log

e

r2Ir

))

Furthermore, we always have Ir ≤ 1/r2, and therefore
√
log 1/(r2Ir) above is well-defined.

We can now prove Lemma A.1 using these facts. The proof strategy is straightforward: we use Facts A.2 and A.4 to show

that ŝ(y) concentrates close to its expectation with high probability, and we use Fact A.3 to show that the expectation of

ŝ(y), which is E[s(x− ε)] for y = λ+ ε, is very close to Irε. The triangle inequality then implies that y − (ŝ(y)/Ir) must

be close to λ with high probability.

Proof of Lemma A.1. Let λ1 = λ+ ε. By the lemma assumptions, |ε| ≤ εmax.

First, we show that, under the lemma assumption that r2
√Ir ≥ γεmax, Fact A.4 implies that the second moment of the

score at λ− ε, namely Ex∼fr [s
2
r(x+ ε)], is upper bounded by (1 +O(1/γ))Ir.

To check that the precondition of Fact A.4 holds, note that r2
√Ir ≥ γεmax ≥ γε is equivalent to r/ε ≥ γ/

√
r2Ir, which

implies that

r

ε
≥ γ√

r2Ir
=

γ√
e

√
e

r2Ir

≥ γ√
e

√
log

e

r2Ir
satisfying the precondition of Fact A.4.

Then, the fact implies that

E
x∼fr

[s2r(x+ ε)] ≤ Ir
(
1 +O

(
ε

r

√
log

e

r2Ir

))

≤ Ir
(
1 +O

(
εmax

r

√
log

e

r2Ir

))

≤ Ir
(
1 +O

(
εmax

r

√
e

r2Ir

))

≤ Ir
(
1 +O

(
εmax

r2
√Ir

))

≤ Ir
(
1 +O

(
1

γ

))

Next, we combine the concentration bound of Fact A.2 with the second moment bound for Ex[s
2
r(x+ ε)] we just derived to

show that ŝ(λ− ε) is close to its expectation with high probability.

∣∣∣∣ŝ(y)− E
x←fr

[s(λ− ε)]

∣∣∣∣ ≤

√
2 log 2

δ

n
Ir
(
1 +O

(
1

γ

))
+

15 log 2
δ

nr

≤
(
1 +O

(
1

γ

))√
2 log 2

δ

n
Ir +

15

2
√
γ

(
2 log 2

δ

n

) 1
4

√
2 log 2

δ

n
Ir (see below)

≤
(
1 +O

(
1

γ

))√
2 log 2

δ

n
Ir +O

(
1

γ

)√
2 log 2

δ

n
Ir since log

2

δ
/n ≤ 1/γ2
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=

(
1 +O

(
1

γ

))√
2 log 2

δ

n
Ir

where the second inequality is due to the assumption that r2
√Ir ≥ γεmax ≥ γ

√
2 log 1

δ

n
1
Ir .

Further using Fact A.3, this implies that ε = y − λ is well-approximated by ŝ(y)/Ir, as follows.

|ε− (ŝ(y)/Ir)| =
1

Ir
|Irε− ŝ(y)|

=
1

Ir

∣∣∣∣ŝ(y)− E
x←fr

[s(λ− ε)] + E
x←fr

[s(λ− ε)]− Irε
∣∣∣∣

≤ 1

Ir

∣∣∣∣ŝ(y)− E
x←fr

[s(λ− ε)]

∣∣∣∣+
1

Ir

∣∣∣∣ E
x←fr

[s(λ− ε)]− Irε
∣∣∣∣

=

(
1 +O

(
1

γ

))√
2 log 2

δ

nIr
+O

(
ε2

r2
√Ir

)

by the previous bound and Fact A.3

By the lemma assumption, we have ε2/r2 ≤ ε2max/r
2 ≤ (1/γ)

√
log 2

δ /n, and so we have bounded |ε− (ŝ(y)/Ir)| by

|ε− (ŝ(y)/Ir)| ≤
(
1 +O

(
1

γ

))√
2 log 2

δ

nIr

To conclude, we have

|λ̂− λ| = |y − (ŝ(y)/Ir)− λ| = |λ+ ε− (ŝ(y)/Ir)− λ| ≤
(
1 +O

(
1

γ

))√
2 log 2

δ

nIr
as desired.

A.2. 1-dimensional global estimation

We can now state the 1-dimensional global estimation algorithm (Algorithm 2), which first gets a preliminary estimate of the

true parameter from a o(1) fraction of the data, before invoking the local Algorithm 1 on the rest of the data.

Algorithm 2 Global smoothed MLE for one dimension

Input Parameters:

• Failure probability δ, description of f , n i.i.d. samples drawn from fλ for some unknown λ

1. Let q be
√
2(log 2

δ /n)
2/5.

2. Compute an α ∈ [q, 1− q] to minimize the width of interval defined by the α± q quantiles of f .

3. Take the sample α-quantile of the first (log 2
δ /n)

1/10 fraction of the n samples.

4. Let r∗ = Ω((
log 2

δ

n )1/8)IQR.

5. Run Algorithm 1 on the rest of the samples, using initial estimate λ1 = xα and r∗-smoothing, and return the final

estimate λ̂.

Both the global part of the algorithm and its analysis are essentially identical to what Gupta et al. (2022), up to minor

changes in certain parameters. We note again that the algorithmic improvement lies in the local part of the algorithm, in

Algorithm 1.
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Theorem 1.1 (1-d Smoothed MLE). Given a model f , let the r-smoothed Fisher information of a distribution f be Ir, and

let IQR be the interquartile range of f . Fix the failure probability be δ ≤ 0.5, and assume that n ≥ c · log 2
δ for some

sufficiently large constant c.

Choose r∗ = Ω((
log 2

δ

n )1/8)IQR. Then, with probability at least 1− δ, the output λ̂ of Algorithm 2 satisfies

|λ̂− λ| ≤


1 +O

(
log 2

δ

n

) 1
10



√

2 log 2
δ

nIr∗

The analysis of Algorithm 2 requires one more technical fact from (Gupta et al., 2022), which is a lower bound on smoothed

Fisher information.

Fact A.5. Let Ir be the Fisher information for fr, the r-smoothed version of distribution f . Let IQR be the interquartile

range of f . Then, Ir & 1/(IQR + r)2. Here, the hidden constant is a universal one independent of the distribution f and

independent of r.

Proof of Theorem 1.1. Step 2 uses (log 2
δ /n)

1/10 n samples to compute the sample α-quantile. By standard Chernoff

bounds, with probability at least 1 − δ(log 2
δ /n)

2, the error of the sample quantile (in terms of its quantile in the true

distribution) is at most

√√√√2 log 2
δ(log 2

δ /n)
2

(log 2
δ /n)

1/10 n

≤

√√√√2(log 2
δ )(

n
log 2

δ

)1/10

(log 2
δ /n)

1/10 n

=
√
2

(
log 2

δ

n

)2/5

Therefore, if the above event happens, Step 2 will yield a sample α-quantile xα such that xα − λ is within the α −√
2(log 2

δ /n)
2/5 and α+

√
2(log 2

δ /n)
2/5 quantiles of f . Furthermore, by the minimality condition in the definition of α,

the distance between these two quantiles is at most O((log 2
δ /n)

2/5)IQR.

We will apply Lemma A.1 using failure probability δ(1 − (log 2
δ /n)

2). We will check that, (A) conditioned on Step 2

succeeding in the above sense, the preconditions of Lemma A.1 will hold for λ1 = xα, the chosen r∗ and an appropriate

choice of γ, and also that (B) the estimation error guaranteed by Lemma A.1 implies the desired error bound. If the above

deterministic checks are true, then by a union bound, Algorithm 2 will satisfy the desired intermediate bound guarantees

except with probability δ.

For the following calculations, note that log 2
δ(1−(log 2

δ /n)
2)
≤ 1.1 log 2

δ since n� log 2
δ and δ ≤ 0.5.

(A): We condition on Step 2 succeeding, and check the preconditions of Lemma A.1.

We now check the precondition that r∗ ≥ 2εmax, for εmax = max(
√

2 log 2
δ(1−(log 2

δ /n)
2)
/(nIr∗), O(log 2

δ /n)
2/5IQR).

First, r∗ = Ω((
log 2

δ

n )1/8)IQR � O((log 2
δ /n)

2/5)IQR, where the � uses the assumption on the size of n. We can

also show that O(log 1
δ /n)

2/5IQR ≥
√
2 log 2

δ /(nIr∗). Recall by Fact A.5 that Ir ≥ Ω(1/(IQR + r)2) for any r >

0. Therefore,
√

2 log 2
δ(1−(log 2

δ /n)
2)
/(nIr∗) ≤ O(

√
log 2

δ /(nIr∗)) ≤ O((log 2
δ /n)

1/2IQR) � O((log 2
δ /n)

2/5)IQR,

where the� is due to the theorem assumption on the size of n.

We now need to check the last 3 preconditions of Lemma A.1. Let n′ = (1− (log 2
δ /n)

1/10)n be the number of samples

used in the call to Algorithm 1, in Step 4. By the theorem assumption, we have n′ = Θ(n). Further, recall by Fact A.5 that

Ir ≥ Ω(1/(IQR + r)2). Picking γ = O( n
log 2

δ

)1/10, we check that the following remaining conditions from Lemma A.1

are satisfied when applied to the n′ = Θ(n) points used in Step 4:
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1. (r∗)2
√Ir∗ ≥ (r∗)2/(IQR + r∗) ≥ Ω(

log 2
δ

n )1/4IQR ≥ Ω(
log 2

δ

n )3/10IQR ≥ γεmax.

2. (r∗)2
√
log 2

δ(1−(log 2
δ /n)

2)
/n′ ≥ Ω(

log 2
δ

n )1/4IQR2
√
log 1

δ /n = Ω(
log 2

δ

n )7/10IQR2 = γε2max

3. log 2
δ(1−(log 2

δ /n)
2)
/n′ ≤ O(log 2

δ /n
′) ≤ O((log 2

δ /n)
1/5) ≤ 1/γ2.

(B): We check that the guarantees of Lemma A.1 is sufficient to imply the desired bound. To do so, we need a slightly more

refined bound on log 2
δ(1−(log 2

δ /n)
2)

:

log
2

δ(1− (log 2
δ /n)

2)
=

(
1 +

log 1
1−(log 2

δ /n)
2

log 2
δ

)
log

2

δ

≤
(
1 +O

(
(log 2

δ /n)
2

log 2
δ

))
log

2

δ
since n� log

2

δ

≤
(
1 +O

(
log 2

δ

n

))
log

2

δ

When the preconditions of Lemma A.1, the success of Step 4 implies a final estimate λ̂ satisfying

|λ̂− λ| ≤
(
1 +O

(
1

γ

))√2 log 2
δ(1−(log 2

δ /n)
2)

n′Ir∗

≤
(
1 +O

(
1

γ

)
+O

(
log 2

δ

n

))√
2 log 2

δ

n′Ir∗

=


1 +O

(
log 2

δ

n

) 1
10

+O

(
log 2

δ

n

)

√

2 log 2
δ

n′Ir∗

=


1 +O

(
log 2

δ

n

) 1
10



√

2 log 2
δ

n′Ir∗

=


1 +O

(
log 2

δ

n

) 1
10



√

2 log 2
δ

nIr∗

since n′ =

(
1−

(
log

2

δ
/n

)1/10
)
n

B. High dimensional location estimation

This section provides a complete analysis of our main Theorem B.16 for estimating the location of a high-dimensional

distribution. We start by providing some important definitions in Appendix B.1. Then, in Appendix B.2, we prove some

key properties of the score of our smoothed distribution. In Appendix B.3 we show that our score function is subgamma

with appropriate variance and scale parameters. Then, Appendix B.4 shows an error bound for the deviation between the

empirical score estimate and true true score. Finally Appendix B.5 and B.6 provide analyses of our Local MLE and Global

MLE algorithms respectively.

B.1. Definitions

Let f be an arbitrary distribution on R
d and let Y ∼ f . Let our smoothing parameter R ∈ R

d×d be the covariance matrix of

our noise ZR ∼ wR = N (0, R) sampled independently of Y . We define the R-smoothed distribution fR to be such that
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X = Y + ZR ∼ fR. Thus, the pdf of fR is given by

fR(x) = E
ZR∼wR

[f(x+ Zr)]

Let sR be the score function of fR. We have

sR(x) = ∇ log fR(x) =
∇fR(x)
fR(x)

Let IR be the Fisher information matrix of fR. Then,

IR = E
x∼fR

[sR(x)sR(x)
T ]

We define the M -norm of vector x to be

‖x‖M =
√
xTMx

B.2. Properties of the smoothed score

In this section, we prove some properties of the score function sR of the R-smoothed distribution fR that we make use of

throughout the paper. First, in Lemma B.1, we provide a useful characterization of sR. Then, using Lemma B.2 we prove

Lemma B.3, which tells us for good initial estimates of our location, say incurring error ε ∈ R
d for “small” ε, “inverting

the score” by left multiplying sR(x+ ε) by −I−1R provides a good estimate of the error ε in expectation. After this, using

Lemma B.4, we prove Lemma B.5, which says that for small ε, the shifted score sR(x+ ε) when appropriately transformed

has covariance similar to the corresponding transformation of the Fisher information matrix IR.

We begin by providing a characterization of the score sR that we make use of throughout.

Lemma B.1. Let f be an arbitrary distribution on R
d, and let fR be the R-smoothed version of f . That is, fR(x) =

Ey∼f
[
(2π)−d/2 det(R)−1/2 exp

(
− 1

2 (x− Y )TR−1(x− Y )
)]

. Let sR be the score function of fR. Let (X,Y, ZR) be the

joint distribution such that Y ∼ f , ZR ∼ N (0, R) are independent, and X = Y + ZR ∼ fR. We have for ε ∈ R
d,

fR(x+ ε)

fR(x)
= E

ZR|x

[
eε

TR−1ZR− 1
2 ε

TR−1ε
]

so that

sR(x) = E
ZR|x

[
R−1ZR

]

Proof. First, we show that for ε ∈ R

fR(x+ ε)

fR(x)
= E

ZR|x

[
wR(ZR + ε)

wR(ZR)

]

Note that

p(z|x) = p(z, x)

p(x)
=

f(x− z)wR(z)

fR(x)

So,

fR(x+ ε) =

∫

[−∞,∞]d
wR(z)f(x+ ε− z)dz

=

∫
p(z|x)fR(x)

wR(z + ε)

wR(z)
dz

= fR(x) E
ZR|x

[
wR(ZR + ε)

wr(ZR)

]

But now, wR(x) = (2π)−d/2 det(R)−1/2e−
1
2x

TR−1x So,

fR(x+ ε)

fR(x)
= E

ZR|x

[
eε

TR−1ZR− 1
2 ε

TR−1ε
]
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which is the first claim. Now, let ε = γei. We take the derivative wrt γ, and evaluate at γ = 0 to get

∇eifR(x)

fR(x)
= E

ZR|x

[
(R−1ZR)i

]

So,

sR(x) =
∇fR(x)
fR(x)

= E
ZR|x

[
R−1ZR

]

The next Lemma B.2 is a utility result that we make use of in Lemma B.3.

Lemma B.2. Let fR be the R-smoothed version of distribution f on R
d. For ε ∈ R

d, let

∆ε(x) :=
fR(x+ ε)− fR(x)− (∇fR(x))T ε

fR(x)

Then, for any ε such that |εTR−1ε| ≤ 1
4 , we have

E
x∼fR

[∆ε(x)
2] . (εTR−1ε)2

Proof. By Lemma B.1, we have

∆ε(x) =
fR(x+ ε)− fR(x)− (∇fR(x))T ε

fR(x)
= E

ZR|x

[
eε

TR−1ZR− 1
2 ε

TR−1ε − 1− ZT
RR
−1ε
]

Let αε : R
d → R be such that

αε(z) = eε
TR−1z− 1

2 ε
TR−1ε − 1− zTR−1ε

We want to bound

E
x
[∆ε(x)

2] = E
x
[ E
ZR|X

[αε(Zr)]
2]

≤ E
x,ZR

[(αε(ZR))
2]

= E
ZR∼N (0,R)

[(αε(ZR))
2]

(7)

For the remaining proof, let W = εTR−1ZR. Since ZR ∼ N (0, R), we have that W ∼ N (0, εTR−1ε). When |W | ≤ 1,

by a Taylor expansion, we have

eW−
1
2 ε

TR−1ε = 1 +W − 1

2
εTR−1ε+O

((
W − 1

2
εTR−1ε

)2
)

so that

|αε(ZR)| . εTR−1ε+W 2

This implies that αε(ZR)
2 . (εTR−1ε)2 +W 4, meaning that

E
ZR∼N (0,R)

[
(αε(ZR))

2 · 1|εTR−1ZR|≤1
]
. E

W∼N (0,εTR−1ε)

[(
(εTR−1ε)2 +W 4

)
· 1|εTR−1ε|≤1

]

. (εTR−1ε)2 + E
W∼N (0,εTR−1ε)

[W 4]

. (εTR−1ε)2

(8)

On the other hand, when |W | ≥ 1,

|αε(ZR)| ≤ e|W |
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E
ZR∼N (0,R)

[
αε(ZR)

2 · 1|εTR−1Zr|≥1
]
≤ E

W∼N (0,εTR−1ε)
[e2|W |1|W |≥1]

= 2

∫ ∞

1

1√
2πεTR−1ε

e2|w|e−
w2

2εT R−1ε dw

= 2e2|ε
TR−1ε|

∫ ∞

1

1√
2πεTR−1ε

e−
(w−2|εT R−1ε|)2

2εT R−1ε dw

≤ 2
√
e P
W∼N (0,εTR−1ε)

[
W ≥ 1− 2|εTR−1ε|

]

. e−
(1−2|εT R−1ε|)2

2εT R−1ε

≤ e−
1

8εT R−1ε . (εTR−1ε)2

(9)

which combines with (7) and (8) to give the claim.

The next Lemma B.3 tells us that for good initial estimates ε ∈ R
d, “inverting the score” by left multiplying sR by −I−1R

provides a good estimate of ε in expectation.

Lemma B.3 (Score Inversion). Let fR be an R-smoothed distribution with Fisher information matrix IR. Let sR : Rd → R
d

be the score function of fR. Let M ∈ R
d×d be a symmetric matrix such that M < 0. Then, for any ε ∈ R

d with

|εTR−1ε| ≤ 1/4, we have

‖ E
x∼fR

[−I−1R sR(x+ ε)]− ε‖2M . ‖M1/2I−1R M1/2‖(εTR−1ε)2

Proof. By definition of sR,

E
x∼fR

[sR(x+ ε)] =

∫

[−∞,∞]d
fR(x)

∇fR(x+ ε)

fR(x+ ε)
dx

=

∫
∇fR(x)

(
fR(x− ε)− fR(x)

fR(x)

)
dx

since ∫
∇fR(x)dx = 0

Now, by the definition of IR

IR = E
x∼fR

[sR(x)sR(x)
T ] =

∫

[−∞,∞]d

∇fR(x)(∇fR(x))T
fR(x)

dx

So,

E
x∼fR

[sR(x+ ε)] + IRε =
∫

−[∞,∞]d

∇fR(x)
fR(x)

(
fR(x− ε)− fR(x) + (∇fR(x))T ε

)
dx

= E
x∼fR

[∆−ε(x)sR(x)]

where ∆ε(x) :=
fR(x+ε)−fR(x)−(∇fR(x))T ε

fR(x) . Now, left multiplying both sides by −M1/2I−1R ,

M1/2

(
E

x∼fR
[−I−1R sR(x+ ε)]− ε

)
= E

x∼fR

[
∆−ε(x)(−M1/2I−1R sR(x))

]

So, we have

‖ E
x∼fR

[−I−1R sR(x+ ε)]− ε‖2M = ‖ E
x∼fR

[∆−ε(x)
(
−M1/2I−1R sR(x)

)
]‖2
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Now, by Cauchy-Schwarz

‖ E
x∼fR

[
∆−ε(x)(−M1/2I−1R sR(x))

]
‖2 = sup

w∈Sd−1

E
x∼fR

[∆−ε(x)(−M1/2I−1R sR(x))
Tw]2

≤ sup
w∈Sd−1

E
x∼fR

[∆−ε(x)
2] E

x∼fR

[
(−M1/2I−1R sR(x))

Tw)2
]

= E
x∼fR

[
∆−ε(x)

2
]
‖ E
x∼fR

[
(−M1/2I−1R sR(x))(sR(x)

TI−1R M1/2)
]
‖

= E
x∼fR

[∆−ε(x)
2]‖M1/2I−1R M1/2‖

Using Lemma B.2, we finally have

‖ E
x∼fR

[−I−1R sR(x+ ε)]− ε‖2M . ‖M1/2I−1R M1/2‖(εTR−1ε)2

Next, in Lemma B.4 we prove a utility result that we make use of in Lemma B.5.

Lemma B.4. Let fR be the R-smoothed version of f on R
d. For ε ∈ R

d, let

ζε(x) =
fR(x− ε)− fR(x)

fR(x)

Then, for any ε such that |εTR−1ε| ≤ 1/4, and for any α such that α2(εTR−1ε) . 1 we have

E
x∼fR

[ζε(x)
2] . (εTR−1ε)(α2e−Ω(α2) + e−Ω(α2))

Proof. By Lemma B.1, we have

ζε(x) =
fR(x− ε)− fR(x)

fR(x)
= E

ZR|x

[
e−ε

TR−1ZR− 1
2 ε

TR−1ε − 1
]

For the remaining proof, let W = εTR−1ZR. Since ZR ∼ N (0, R), we have that W ∼ N (0, εTR−1ε). So, we have that

ζε(x) = E
W |x

[
e−W−

1
2 ε

TR−1ε − 1
]

Let α be a parameter such that α2(εTR−1ε) . 1. Now, we have

ζε(x) ≤ O
(
α
√
εTR−1ε

)
+ E

W |x

[
1|W |>α

√
εTR−1ε

(
e−W − 1

)]

So,

ζε(x)
2 . α2(εTR−1ε) + E

W |x

[
1|W |>α

√
εTR−1ε(e

−W − 1)
]2

Now, to bound the second term, by Jensen’s inequality, we have

E
W |x

[
1|W |>α

√
εTR−1ε(e

−W − 1)
]2
≤ E

W |x

[
1|W |>α

√
εTR−1ε(e

−W − 1)2
]

So, we have

E
x∼fR

[
ζε(x)

2
]
. α2(εTR−1ε) + E

W

[
1|W |>α

√
εTR−1ε(e

−W − 1)2
]

We will now bound the second term above, EW

[
1|W |>α

√
εTR−1ε(e

−W − 1)2
]
, in two separate cases, when
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1. |W | ≤ 1

2. |W | > 1

When |W | ≤ 1, by linear approximations to the exponential function, we have

(e−W − 1)2 . W 2

So,

E
W

[
1|W |>α

√
εTR−1ε1|W |≤1(e

−W − 1)2
]
. E

W∼N (0,εTR−1ε)

[
1|W |>α

√
εTR−1ε ·W 2

]

. α2(εTR−1ε)e−Ω(α2)

On the other hand, when |W | > 1

E
W

[
1|W |>max(1,α

√
εTR−1ε)(e

−W − 1)2
]

≤
∫ −(1+α

√
εTR−1ε)

−∞

1√
2πεTR−1ε

e−
w2

2εT R−1ε (e−w − 1)2dw +

∫ ∞

1+α
√
εTR−1ε

1√
2πεTR−1ε

e−
w2

2εT R−1ε (e−w − 1)2dw

.

∫ ∞

1+α
√
εTR−1ε

1√
2πεTR−1ε

e−
w2

2εT R−1ε (ew − 1)2dw

.

∫ ∞

1+α
√
εTR−1ε

1√
2πεTR−1ε

e−
w2

2εT R−1ε e2wdw

= e2(ε
TR−1ε)

∫ ∞

1+α
√
εTR−1ε

1√
2πεTR−1ε

e−
(w−2εT R−1ε)2

2εT R−1ε dw

. e−Ω(
1

εT R−1ε
+α2) . (εTR−1ε)e−Ω(α2) since |εTR−1ε| ≤ 1/4

Thus, we have shown that

E
x∼fR

[
ζε(x)

2
]
. α2(εTR−1ε)e−Ω(α2) + (εTR−1ε)e−Ω(α2)

The claim follows.

The next Lemma B.5 shows that for small ε, the covariance of the appropriately transformed version of the shifted score

sR(x+ ε) is similar to the corresponding transformation of the Fisher information matrix IR.

Lemma B.5. Suppose fR is a R-smoothed distribution on R
d with Fisher information matrix IR. Let M ∈ R

d×d be a

symmetric matrix such that M < 0. Then for any ε ∈ R
d with |εTR−1ε| ≤ 1/4, we have, for every v ∈ R

d with ‖v‖ = 1,

∣∣∣∣v
T

(
E

x∼fR

[
M1/2I−1R sR(x+ ε)sR(x+ ε)TI−1R M1/2

]
−M1/2I−1R M1/2

)
v

∣∣∣∣

.
√
εTR−1ε · (vTM1/2I−1R M1/2v)

√
log

(
sup

w∈Sd−1

wTR−1w
wTIRw

)
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Proof. We have, by definition of score,

E
x∼fR

[sR(x+ ε)sR(x+ ε)T ] =

∫

[−∞,∞]d
fR(x)

∇fR(x+ ε)(∇fR(x+ ε))T

fR(x+ ε)2
dx

=

∫
fR(x− ε)

∇fR(x)(∇fR(x))T
fR(x)2

dx

= IR +

∫
(fR(x− ε)− fR(x))

(∇fR(x)(∇fR(x))T
fR(x)2

)
dx

= IR +

∫
ζε(x)

(∇fR(x)(∇fR(x))T
fR(x)

)
dx

= IR + E
x∼fR

[
ζε(x)

∇fR(x)(∇fR(x))T
fR(x)2

]

where ζε(x) =
fR(x−ε)−fR(x)

fR(x) . Now, since sR(x) =
∇fR(x)
fR(x) , the above is equivalent to

E
x∼fR

[
sR(x+ ε)sR(x+ ε)T

]
− IR = E

x∼fR

[
ζε(x)sR(x)sR(x)

T
]

Left and right multiplying both sides by M1/2I−1R , this is

E
x∼fR

[
M1/2I−1R sR(x+ ε)sR(x+ ε)TI−1R M1/2

]
−M1/2I−1R M1/2 = M1/2I−1R E

x∼fR

[
ζε(x)sR(x)sR(x)

T
]
I−1R M1/2

Then, for v ∈ R
d with ‖v‖ = 1

vT
(

E
x∼fR

[
M1/2I−1R sR(x+ ε)sR(x+ ε)TI−1R M1/2

]
−M1/2I−1R M1/2

)
v = E

x∼fR

[
ζε(x)(v

TM1/2I−1R sR(x))
2
]

Then, using Cauchy-Schwarz,

∣∣∣∣v
T

(
E

x∼fR

[
M1/2I−1R sR(x+ ε)sR(x+ ε)TI−1R M1/2

]
−M1/2I−1R M1/2

)
v

∣∣∣∣

≤
√

E
x∼fR

[ζε(x)2] E
x∼fR

[
(vTM1/2I−1R sR(x))4

] (10)

To bound the second term inside the square root, recall that by Lemma B.1, we have

sR(x) = E
ZR|x

[R−1ZR]

So, by Jensen’s inequality, we have

E
x∼fR

[(vTM1/2I−1R sR(x))
4] = E

x∼fR

[
(vTM1/2I−1R E

ZR|x
[R−1ZR])

4

]

= E
x∼fR

[
E

ZR|x
[vTM1/2I−1R R−1ZR]

4

]

≤ E
x∼fR

[
E

ZR|x
[(vTM1/2I−1R R−1ZR)

4]

]

= E
ZR

[
(vTM1/2I−1R R−1ZR)

4
]

Now, since ZR ∼ N (0, R), we have that v>M1/2I−1R R−1ZR ∼ N (0, v>M1/2I−1R R−1I−1R M1/2v) is a 1-dimensional

Gaussian. Thus, using the standard fact about the 4th moment of a 1-dimensional Gaussian, we have

E
x∼fR

[
(vTM1/2I−1R sR(x))

4
]
≤ E

ZR

[
(vTM1/2I−1R R−1ZR)

4
]
= 3(vTM1/2I−1R R−1I−1R M1/2v)2
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For the first term under the square root in (10), by Lemma B.4, for any α ∈ R such that α2(εTR−1ε) . 1, we have

E
x∼fR

[ζε(x)
2] . (εTR−1ε)(α2e−Ω(α2) + e−Ω(α2))

So, combining the above with (10), we have

∣∣∣∣v
T

(
E

x∼fR

[
M1/2I−1R sR(x+ ε)sR(x+ ε)TI−1R M1/2

]
−M1/2I−1R M1/2

)
v

∣∣∣∣

. (vTM1/2I−1R R−1I−1R M1/2v)
√

(εTR−1ε)(α2e−Ω(α2) + e−Ω(α2))

. (vTM1/2I−1R R−1I−1R M1/2v)
√
εTR−1ε(αe−Ω(α2))

Setting α = O

(√
log

vTM1/2I−1
R R−1I−1

R M1/2v

vTM1/2I−1
R M1/2v

)
yields

∣∣∣∣v
T

(
E

x∼fR

[
M1/2I−1R sR(x+ ε)sR(x+ ε)TI−1R M1/2

]
−M1/2I−1R M1/2

)
v

∣∣∣∣

.
√
εTR−1ε · (vTM1/2I−1R M1/2v)

√
log

vTM1/2I−1R R−1I−1R M1/2v

vTM1/2I−1R M1/2v

Since

vTM1/2I−1R R−1I−1R M1/2v

vTM1/2I−1R M1/2v
≤ sup

w∈Sd−1

wTR−1w
wTIRw

the claim follows.

B.3. SubGamma concentration of score

In this section, we establish that every one-dimensional projection of the score function sR after applying a symmetric PSD

linear transformation is subgamma with appropriate variance and scale parameters. We begin by showing a bound on the

Jacobian of the score, which we make use of in future lemmas.

Lemma B.6. Let sR : Rd → R
d be the score function of fR, the R-smoothed version of distribution f . Let JsR be the

Jacobian of sR. We have that

JsR < −R−1

Proof. Taking the gradient in Lemma B.1 wrt ε, we have

∇fR(x+ ε)

fR(x)
= E

ZR|x

[
eε

TR−1ZR− 1
2 ε

TR−1ε
(
R−1ZR −R−1ε

)]

So,

sR(x+ ε) =
∇fR(x+ ε)

fR(x+ ε)
· fR(x+ ε)

fR(x)
=

EZR|x
[
eε

TR−1ZR− 1
2 ε

TR−1ε
(
R−1ZR −R−1ε

)]

EZR|x
[
eε

TR−1ZR− 1
2 ε

TR−1ε
]

Now, let ε = γv for γ ∈ R, γ > 0 so that ‖v‖ = 1. Now, eε
TR−1ZR− 1

2 ε
TR−1ε and vTR−1ZR − vTR−1ε are monotonically

non-decreasing in vTR−1ZR. So, by Lemma C.1, they are positively correlated. That is,

vT E
ZR|x

[
eε

TR−1ZR− 1
2 ε

TR−1ε
(
R−1ZR −R−1ε

)]
≥ E

ZR|x

[
eε

TR−1ZR− 1
2 ε

TR−1ε
]
·
(
vT E

ZR|x

[
R−1ZR −R−1ε

])
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So,

vT sR(x+ ε) ≥ vT E
ZR|x

[
R−1ZR −R−1ε

]
(11)

Now, by definition of Jacobian

JsRv =

[
∂

∂γ
sR(x+ γv)

]

γ=0

So, in (11), taking the derivative wrt γ and setting γ = 0, we get

vT JsRv ≥ −vTR−1v

as required.

The next lemma shows that every 1-dimensional projection of the score sR(x) is subgamma with appropriate variance

and scale parameters. As a corollary (Corollary B.8) we obtain that every 1-dimensional projection of the score when

transformed using a symmetric PSD matrix is also subgamma, with appropriately transformed variance and scale.

Lemma B.7. Let sR : Rd → R
d be the score function of an R-smoothed distribution fR with Fisher information matrix IR.

For any fixed v ∈ R
d with ‖v‖ = 1, we have

E
x∼fR

[|vTR1/2sR(x)|k] ≤ (1.6)k−2kk/2(vTR1/2IRR1/2v)

Equivalently, for any v ∈ R
d, vTR1/2sR(x) is a subgamma random variable.

vTR1/2sR(x) ∈ Γ(vTR1/2IRR1/2v, 1.6‖v‖)

Proof. For x, γ ∈ R
d, by Lemma B.1, and Jensen’s inequality,

fR(x+ γ) ≥ fR(x)e
γT sR(x)− 1

2γ
TR−1γ

Set γ = R1/2v. Then,

fR
(
x+ γ · sign(γT sR(x))

)
≥ fR(x)e

|γT sR(x)|/
√
e

Now, by Lemma B.6, we have,

γT sR(x+ γ) = γT sR(x) + γT JsRγ

= γT sR(x) + vTR1/2JsRR
1/2v

≥ γT sR(x)− 1

Similarly,

γT sR(x− γ) ≤ γT sR(x) + 1

Combining these two, we have

|γT sR(x+ γ · sign(γT sR(x))| ≥ |γT sR(x)| − 1

So, for any k ≥ 2, and |γT sR(x)| > α for α := 2 + 1.2
√
k

fR(x+ γ · sign(γT sR(x))|γT sR(x+ γ · sign(γT sR(x)))|k

≥ 1√
e
fR(x)e

|γT sR(x)| (|γT sR(x)| − 1
)k

= fR(x)|γT sR(x)|k ·
(

1√
e
e|γ

T sR(x)|
(
1− 1

|γT sR(x)|

)k
)

≥ fR(x)|γT sR(x)|k ·
(

1√
e
eα−1.4

k
α

)

≥ fR(x)|γT sR(x)|k · 4
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Thus,

fR(x)|γT sR(x)|k ≤
1

4

(
fR(x− γ)|γT sR(x− γ)|k + fR(x+ γ)|γT sR(x+ γ)|k

)

when k ≥ 2 and |γT sR(x)| ≥ α. Integrating this,

E
x∼fR

[
|γT sR(x)|k

]
=

∫

[−∞,∞]d
fR(x)|γT sR(x)|kdx

≤ 2

∫
fR(x)|γT sR(x)|k −

1

4
fR(x− γ)|γT sR(x− γ)|k − 1

4
fR(x+ γ)|γT sR(x+ γ)|dx

≤ 2

∫
fR(x)|γT sR(x)|k1|γT sR(x)|<αdx

≤ 2

∫
fR(x)|γT sR(x)|2αk−2

1|γT sR(x)|<αdx

≤ 2αk−2
E[|γT sR(x)|2] = 2αk−2γTIRγ

Finally, for any k ≥ 2,

2αk−2 = 2(1.2
√
k + 2)k−2 ≤ kk/2 · 1.6k−2

The claim follows.

Corollary B.8. Let sR : Rd → R
d be the score function of an R-smoothed distribution fR with Fisher information matrix

IR. Let M ∈ R
d×d be a symmetric matrix such that M < 0. For any fixed v ∈ R

d with ‖v‖ = 1, we have

E
x∼fR

[|vTM1/2I−1R sR(x)|k] ≤ (1.6‖M1/2I−1R R−1/2v‖)k−2kk/2(vTM1/2I−1R M1/2v)

Equivalently, vTM1/2I−1R sR(x) is subgamma.

|vTM1/2I−1R sR(x)| ∈ Γ(vTM1/2I−1R M1/2v, 1.6‖M1/2I−1R R−1/2v‖)

Lemmas B.9 and B.10 proved next are helper lemmas that we make use of to prove the main result of this section,

Lemma B.11, which shows that every one dimensional projection of sR(x+ ε) for x ∼ fR is subgamma.

Lemma B.9. Let sR : Rd → R
d be the score function of an R-smoothed distribution fR with Fisher information matrix

IR. For any fixed v ∈ R
d with ‖v‖ = 1, x ∈ R

d, k ≥ 3, and ε ∈ R
d with 0 ≤ εTR−1ε ≤ 1/4, if vTR1/2sR(x + ε) ≥

max(2
√
k + 2, 9.5), then, for γ = R1/2v,

fR(x)|γT sR(x+ ε)|k ≤ 1

5
max

(
fR(x− ε)|γT sR(x− ε)|k, fR(x+ ε+ γ)|γT sR(x+ ε+ γ)|k

)

Proof. Let α := fR(x)
fR(x+ε) . By Lemma B.1, we have

α = E
ZR|x+ε

[
e−ε

TR−1ZR− 1
2 ε

TR−1ε
]

(12)

Let γ = R1/2v. We will consider two cases

When logα < 3
4γ

T sR(x+ ε)− 2. First, by Lemma B.1 and Jensen’s inequality, we have

fR(x+ ε+ γ)

fR(x+ ε)
≥ eγ

T sR(x+ε)−1/2

Also, by Lemma B.6, we have

γT sR(x+ ε+ γ) ≥ γT sR(x+ ε)− 1

So,

fR(x+ ε+ γ)|γT sR(x+ ε+ γ)|k ≥ fR(x+ ε)|γT sR(x+ ε)|keγT sR(x+ε)− 1
2

(
1− 1

γT (sR(x+ ε)

)k

≥ fR(x+ ε)|γT sR(x+ ε)|keγ
T sR(x+ε)− k

γT sR(x+ε)−1
− 1

2
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Since γT sR(x+ ε) ≥ 2
√
k + 2,

fR(x+ ε+ γ)|sR(x+ ε+ γ)|k ≥ fR(x+ ε)|sR(x+ ε)|ke 3
4γ

T sR(x+ε)

So, since

α =
fR(x)

fR(x+ ε)
≤ e

3
4γ

T sR(x+ε)−2

we have

f(x)|sR(x+ ε)|k = αfR(x+ ε)|sR(x+ ε)|k ≤ 1

5
fR(x+ ε+ γ)|sR(x+ ε+ γ)|k

When logα > 3
4γ

T sR(x+ ε)− 2. Evaluating (12) at x− ε gives

fR(x− ε)

fR(x)
= E

ZR|x

[
e−ε

TR−1ZR− 1
2 ε

TR−1ε
]

Taking the gradient wrt ε, we have

∇fR(x− ε)

fR(x)
= E

ZR|x

[
R−1(ZR + ε)e−ε

TR−1ZR− 1
2 ε

TR−1ε
]

so evaluating at x+ ε,
∇fR(x)
fR(x+ ε)

= E
ZR|x+ε

[
R−1(ZR + ε)e−ε

TR−1ZR− 1
2 ε

TR−1ε
]

In particular,

εT
∇fR(x)
fR(x+ ε)

= E
ZR|x+ε

[
εTR−1(ZR + ε)e−ε

TR−1ZR− 1
2 ε

TR−1ε
]

Define y = e−ε
TR−1ZR−εTR−1ε so that EZR|x+ε[y] = αe−

1
2 ε

TR−1ε, and

εTR−1(ZR + ε)e−ε
TR−1ZR− 1

2 ε
TR−1ε = −e 1

2 ε
TR−1εy log y

is concave, so by Jensen’s inequality,

εT
∇fR(x)
fR(x+ ε)

≤ −e 1
2 ε

TR−1ε
(
e−

1
2 ε

TR−1εα
)
log
(
e−

1
2 ε

TR−1εα
)
= −α logα+

1

2
αεTR−1ε

So,

εT sR(x) = εT
∇fR(x)
fR(x)

≤ − logα+
1

2
εTR−1ε

Finally we consider the move to x− ε. By Lemma B.6, we have

εT sR(x− ε) ≤ sR(x) + εTR−1ε ≤ − logα+
3

2
εTR−1ε

By Lemma B.1,

fR(x− ε)

fR(x+ ε)
= E

ZR|x+ε

[
e−2ε

TR−1ZR−2εTR−1ε
]
= E

ZR|x+ε
[y2] ≥ E

ZR|x+ε
[y]2 = α2e−ε

TR−1ε

Since logα ≥ 3
4γ

T sR(x+ ε)− 2,

−εT sR(x− ε) ≥ 3

4
γT sR(x+ ε)− 2− 3

2
εTR−1ε ≥ 3

4
γT sR(x+ ε)− 19

8
≥ γT sR(x)

where the second inequality comes from the fact that 3
4γ

T sR(x+ ε)− 2 > 0, so that the function is decreasing in εTR−1ε,
and εTR−1ε ≤ 1/4. Thus,

fR(x− ε)|γT sR(x− ε)|k ≥ αe−ε
TR−1εfR(x)|sR(x+ ε)|k

Since our assumptions give αe−ε
TR−1ε ≥ 5, we get the result.
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Lemma B.10. Let sR : Rd → R
d be the score function of an R-smoothed distribution fR with Fisher information matrix

IR.

For any fixed v ∈ R
d with ‖v‖ = 1, x ∈ R

d, k ≥ 3 and ε ∈ R
d with 1/4 ≤ εTR−1ε ≤ 0, if vTR1/2sR(x + ε) ≥ α for

α = 2 + 1.2
√
k, then we have for γ = R1/2v,

fR(x)|γT sR(x+ ε)|k ≤ 1

4

(
fR(x− γ)|γT sR(x+ ε− γ)|k + fR(x+ γ)|sR(x+ ε+ γ)|k

)

As an immediate corollary, the statement is also true when 0 ≤ εTR−1ε ≤ 1/4 and vTR1/2sR(x) ≤ −α.

Proof. By Lemma B.1 and Jensen’s inequality,

fR(x+ γ) ≥ fR(x)e
γT sR(x)/

√
e

By Lemma B.6, we have that

γT sR(x+ ε+ γ) ≥ γT sR(x+ ε)− 1

Since the right hand side is positive by assumption, we have

|γT sR(x+ ε+ γ)| ≥ |γT sR(x+ ε)| − 1

Now, when εTR−1ε < 0, we have by Lemma B.6, and since |εTR−1ε| ≤ 1 that

γT sR(x) ≥ γT sR(x+ ε)− 1

So,

fR(x+ γ)|γT sR(x+ ε+ γ)|k ≥ 1√
e
fR(x)e

γT sR(x)
(
|γT sR(x+ ε)| − 1

)k

≥ 1√
e
fR(x)e

γT sR(x+ε)−1 (|γT sR(x+ ε)| − 1
)k

≥ fR(x)|γT sR(x+ ε)|k
(

1√
e
eγ

T sR(x+ε)−1
(
1− 1

|γT sR(x+ ε)|

)k
)

≥ fR(x)|γT sR(x+ ε)|k ·
(
e−3/2eα−1.4k/α

)

≥ fR(x)|γT sR(x+ ε)|k · 4

We are now ready to prove that every 1-dimensional projection of sR(x + ε) for x ∼ fR is subgamma with appropriate

variance and scale. As a corollary (Corollary B.12), we obtain that every 1-dimensional projection of sR(x + ε) when

transformed by applying a symmetric PSD matrix is also subgamma, with appropriately transformed variance and scale.

Lemma B.11. Let sR be the score function of an R-smoothed distribution fR with Fisher information matrix IR. For

k ≥ 3 and ε ∈ R
d such that |εTR−1ε| ≤ 1/4, we have that for any v ∈ R

d with ‖v‖ = 1,

E
x∼fR

[
|vTR1/2sR(x+ ε)|k

]
≤ (15)k−2kk/2 max

(
E

x∼fR
[vTR1/2sR(x+ ε)sR(x+ ε)TR1/2v], vTR1/2IRR1/2v

)

Equivalently, vTR1/2sR(x+ ε) is a subgamma random variable.

vTR1/2sR(x+ ε) ∈ Γ

(
max

(
E

x∼fR
[vTR1/2sR(x+ ε)sR(x+ ε)TR1/2v], vTR1/2IRR1/2v

)
, 15

)



High-dimensional Location Estimation via Norm Concentration for Subgamma Vectors 2626

Proof. Without loss of generality, we only show the εTR−1ε ≥ 0 case. As before, let γ = R1/2v. Using Lemma B.9 and

Lemma B.7, we have

∫

[−∞,∞]d
fR(x− ε)|γT sR(x)|k1γT sR(x)>max(2

√
k+2,9.5)dx

≤
∫

[−∞,∞]d

1

5
max

(
fR(x− 2ε)|γT sR(x− 2ε)|k, fR(x+ γ)|γT sR(x+ γ)|k

)
dx

=
2

5
E

x∼fR
[|γT sR(x)|k]

≤ 2

5
(1.6)k−2kk/2(γTIRγ)

Then, we can start bounding the kth moment quantity in the lemma. Using Lemma B.10, we have

E
x∼fR

[
|γT sR(x+ ε)|k

]
=

∫

[−∞,∞]d
fR(x− ε)|γT sR(x)|kdx

= 2

∫
fR(x− ε)|γT sR(x)|k −

1

4
fR(x− ε− γ)|γT sR(x− γ)|k − 1

4
fR(x− ε+ γ)|γT sR(x+ γ)|kdx

≤
∫

fR(x− ε)|γT sR(x)|k1γT sR(x)≥−max(2
√
k+2,9.5)dx

Now, using the previous claim, we get

E
x∼fR

[
|γT sR(x+ ε)|k

]

≤ 2

∫
fR(x− ε)|γT sR(x)|k1|γT sR(x)|≤max(2

√
k+2,9.5)dx+

4

5
(1.6)k−2kk/2(γTIRγ)

≤ 2

∫
fR(x− ε)|γT sR(x)|2(max(2

√
k + 2, 9.5))k−21|γT sR(x)|≤max(2

√
k+2,9.5)dx+

4

5
(1.6)k−2kk/2(γTIRγ)

≤ 2max(2
√
k + 2, 9.5)k−2 E

x∼fR
[|γT sR(x+ ε)|2] + 4

5
(1.6)k−2kk/2(γTIRγ)

≤ 2kk/2(2.5)k−2 E
x∼fR

[|γT sR(x+ ε)|2] + 4

5
(1.6)k−2kk/2(γTIRγ)

≤ 3kk/2(2.5)k−2 max( E
x∼fR

[|γT sR(x+ ε)|2], γTIRγ)

≤ kk/2(15)k−2 max

(
E

x∼fR
[γT sR(x+ ε)sR(x+ ε)T γ], γTIRγ

)

as required.

Corollary B.12. Let sR be the score function of an R-smoothed distribution fR with Fisher information matrix IR. Let

M ∈ R
d×d be a symmetric matrix such that M < 0. For k ≥ 3 and ε ∈ R

d such that |εTR−1ε| ≤ 1/4, we have that for

any v ∈ R
d with ‖v‖ = 1,

E
x∼fR

[
|vTM1/2I−1R sR(x+ ε)|k

]

≤ (15‖M1/2I−1R R−1/2v‖)k−2kk/2vT
(
M1/2I−1R M1/2

(
1 +O

(√
εTR−1ε

√
log sup

w∈Sd−1

wTR−1w
wTIRw

)))
v

In other words,

M1/2I−1R sR(x+ ε) ∈ Γ

(
M1/2I−1R M1/2

(
1 +O

(√
εTR−1ε

√
log sup

w∈Sd−1

wTR−1w
wTIRw

))
,M1/2I−1R R−1/2

)
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Proof. By the Lemma,

E
x∼fR

[
|vTM1/2I−1R sR(x+ ε)|k

]

≤ (15‖M1/2I−1R R−1/2v‖)k−2kk/2

max

(
E

x∼fR

[
vTM1/2I−1R sR(x+ ε)sR(x+ ε)TI−1R M1/2v

]
, vTM1/2I−1R M1/2v

)

Then, using Lemma B.5, the claim follows.

B.4. Estimation of inverted score

In this section, we use the subgamma bound on 1-dimensional projections of sR(x+ ε) for x ∼ fR from Corollary B.12, as

well as our norm concentration bound for subgamma vectors from Theorem 5.1 to establish a bound on the deviation of our

inverted empirical score at x+ ε from its expectation.

Lemma B.13. Let f be an arbitrary distribution on R
d and let fR be the R-smoothed version of f . Let IR be the Fisher

information matrix of fR. Let ε ∈ R
d be such that εTR−1ε ≤ 1/4. Consider the parametric family of distributions

fλ
R(x) = fR(x − λ). Suppose we have n i.i.d. samples x1, . . . , xn ∼ fλ

R. Let M ∈ R
d×d be a symmetric matrix with

M < 0. Let ε̂ = 1
n

∑n
i=1 I−1R sR(xi − λ− ε). Let

T := M1/2I−1R M1/2

(
1 +O

(√
εTR−1ε

√
log sup

w∈Sd−1

wTR−1w
wTIRw

))

Then, with probability 1− δ, we have

‖ε̂− E
x∼fR

[I−1R sR(x− ε)]‖M

≤
√

Tr(T )

n
+ 4

√
‖T‖ log 2

δ

n
+ 16

‖M1/2I−1R R−1/2‖ log 2
δ

n
+ 8
‖M1/2I−1R R−1/2‖2F

n3/2
√

Tr(T )
log

2

δ

Proof. By Corollary B.12, M1/2I−1R sR(x) is (T,M1/2I−1R R−1/2)-subgamma. Then, applying our subgamma norm

concentration bound from Theorem 5.1 gives

‖ε̂− E
x∼fR

[
I−1R sR(x− ε)

]
‖M

=

∥∥∥∥∥M
1/2

(
1

n

n∑

i=1

I−1R sR(xi − λ− ε)

)
−M1/2

E
x∼fR

[
I−1R sR(x− ε)

]
∥∥∥∥∥

=

∥∥∥∥∥

(
1

n

n∑

i=1

M1/2I−1R sR(xi − λ− ε)

)
− E

x∼fR

[
M1/2I−1R sR(x− ε)

]∥∥∥∥∥

≤
√

Tr(T )

n
+ 4

√
‖T‖ log 2

δ

n
+ 16

‖M1/2I−1R R−1/2‖ log 2
δ

n
+ 8
‖M1/2I−1R R−1/2‖2F

n3/2
√

Tr(T )
log

2

δ

B.5. Local MLE

In this section, we show how to estimate our location λ at rate that depends on IR when given samples from fλ, along with

an initial uncertainty region S that is guaranteed to contain λ.
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Algorithm 3 High-dimensional Local MLE

Input Parameters:

• Description of distribution f on R
d, smoothing R, samples x1, . . . , xn

i.i.d.∼ fλ, and initial estimate λ1

1. Let IR be the Fisher information matrix of fR, the R-smoothed version of f . Let sR be the score function of fR.

2. For each sample xi, compute a perturbed sample x′i = xi + N (0, R) where all the Gaussian noise are drawn

independently across all the samples.

3. Let ε̂ = 1
n

∑n
i=1 I−1R sR(x

′
i − λ1) and return λ̂ = λ1 − ε̂.

Lemma B.14 (Local MLE). Suppose we have a known model f on R
d, and that fR is the R-smoothed version of f , for

R = r2Id for scalar r > 0. Suppose fR has Fisher information matrix IR. Further, suppose that the unknown true

parameter is λ, and that we have access to an initial estimate λ1 = λ+ ε with the guarantee that εTR−1ε ≤ τ for τ ≤ 1/4.

Suppose there exists a large parameter γ ≥ 1 such that τ ≤ 1

γ2 log2
‖I

−1
R

‖

r2

. Further, suppose r2 ≥ 4γ2‖I−1R ‖
log 2

δ

n Then,

with probability 1− δ over n samples from fλ, the output of Algorithm 3 satisfies

‖λ̂− λ‖M ≤
(
1 +O

(
1

γ

))

√

Tr(M1/2I−1R M1/2)

n
+ 4

√
‖M1/2I−1R M1/2‖ log 2

δ

n




+O

(
τ
√
‖M1/2I−1R M1/2‖

)

Proof. By the guarantee on λ1 = λ+ ε, we have that εTR−1ε ≤ τ . Let T be as defined in Lemma B.13. Now

sup
w∈Sd−1

wTR−1w
wTIRw

=
‖I−1R ‖
r2

so that since τ ≤ 1

γ2 log2
‖I

−1
R

‖

r2

,

√
τ log

(
sup

w∼Sd−1

wTR−1w
wTIRw

)
≤ 1

γ

So, we have

Tr(T ) ≤ Tr(M1/2I−1R M1/2)

(
1 +

1

γ

)

and

‖T‖ ≤ ‖M1/2I−1R M1/2‖
(
1 +

1

γ

)

So, by Lemma B.13

‖ε̂− E
x∼fR

[I−1R sR(x− ε)]‖M

≤
(
1 +O

(
1

γ

))

√

Tr(M1/2I−1R M1/2)

n
+ 4

√
‖M1/2I−1R M1/2‖ log 2

δ

n
+

8‖M1/2I−1R ‖2F
r2n3/2

√
Tr(M1/2I−1R M1/2)

log
2

δ




+ 16
‖M1/2I−1R ‖ log 2

δ

rn
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Since r2 ≥ 4γ2‖I−1R ‖
log 2

δ

n , 1
r ≤

(
n

log 2
δ

)1/2
1

2γ
√
‖I−1

R ‖
. So,

16
‖M1/2I−1R ‖ log 2

δ

rn
≤ 8‖M1/2I−1R ‖

γ
√
‖I−1R ‖

(
log 2

δ

n

)1/2

≤ 8

γ

√
‖M1/2I−1R M1/2‖ log 2

δ

n

since
(‖M1/2I−1R ‖)2
‖M1/2I−1R M1/2‖ =

(
‖M1/2I−1R ‖
‖M1/2I−1/2R ‖

)2

≤ ‖I−1R ‖

Similarly, 1
r2 ≤ n

4γ2‖I−1
R ‖ log 2

δ

. So,

8‖M1/2I−1R ‖2F
r2n3/2

√
Tr(M1/2I−1R M1/2)

log
2

δ
≤ 8Tr(MI−2R )

r2n3/2

√
Tr(MI−1R )

log
2

δ

≤ 2Tr(MI−2R )

γ‖I−1R ‖n
√
Tr(MI−1R )

√
log

2

δ

≤ 8

γ

√
Tr(M1/2I−1R M1/2)

n
using Lemma C.3

So, we have

∥∥∥∥ε̂− E
x∼fR

[
I−1R sR(x− ε)

]∥∥∥∥
M

≤
(
1 +O

(
1

γ

))

√

Tr(M1/2I−1R M1/2)

n
+

√
‖M1/2I−1R M1/2‖ log 2

δ

n




Now, using Lemma B.3

∥∥∥∥ε− E
x∼fR

[
I−1R sR(x− ε)

]∥∥∥∥
M

.

√
‖M1/2I−1R M1/2‖(εTR−1ε) ≤ τ

√
‖M1/2I−1R M1/2‖

So, we have

‖ε̂− ε‖M ≤ ‖ε̂− E
x∼fR

[
I−1R sR(x− ε)

]
‖M + ‖ε− E

x∼fR

[
I−1R sR(x− ε)

]
‖M

≤
(
1 +O

(
1

γ

))

√

Tr(M1/2I−1R M1/2)

n
+ 4

√
‖M1/2I−1R M1/2‖ log 2

δ

n




+O

(
τ
√
‖M1/2I−1R M1/2‖

)

Now, since λ̂ = λ1 − ε̂ and λ = λ1 − ε, λ̂− λ = ε̂− ε. The claim follows.

B.6. Global MLE

In this section, we state and prove our main theorem, which shows how to estimate the location λ on rate that depends on

IR, given n samples from fλ.

We begin by stating a result from the heavy-tailed estimation literature, which we will make use of to generate an initial

estimate λ+ ε. We will then apply the result from the previous section to refine this estimate in order to recover our final

estimate.
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Theorem B.15 ((Hopkins, 2018; Cherapanamjeri et al., 2019)). There are universal constants C0, C1, C2 such that for

every n, d ∈ N and δ > 2−n/C2 , there is an algorithm which runs in time O(nd) + (d log(1/δ))C0 such that for every

random variable X on R
d, given i.i.d. copies X1, . . . , Xn of X , outputs a vector µ̂δ(X1, . . . , Xn) such that

P

[
‖µ− µ̂δ‖ > C1

(√
Tr(Σ)

n
+

√
‖Σ‖ log(1/δ)

n

)]
≤ δ

where E[X] = µ and E
[
(X − µ)(X − µ)T

]
= Σ

Algorithm 4 High-dimensional Global MLE

Input Parameters:

• Failure probability δ, description of distribution f , n samples from fλ, Smoothing R, Approximation parameter γ

1. Let Σ be the covariance matrix of f . Compute an initial estimate λ1 using the first 1/γ fraction of of the n samples,

using an estimator from Theorem B.15.

2. Run Algorithm 3 using the remaining 1 − 1/γ fraction of samples using R-smoothing and our initial estimate λ1,

returning the final estimate λ̂.

Theorem B.16 (Global MLE). Let f be a given model on R
d, and suppose we are given n samples from fλ for unknown λ.

Let R = r2Id for 0 < r2 < ‖Σ‖ so that IR is the R-smoothed Fisher information matrix of f , and let Σ be the covariance

of f . Let M ∈ R
d×d be any symmetric matrix with M < 0 and let dR := deff(M

1/2I−1R M1/2). Fix failure probability

δ > 0 and let 2 ≤ γ ≤
(

n
dR+log 1

δ

)1/8−α
for some α > 0. Let n ≥ Cγ4(‖Σ‖r2 )2

(
log 4

δ + dR +
(

deff(Σ)2

dR

))
for large

enough constant C > 0. Then, with probability 1− δ, the output λ̂ of Algorithm 4 satisfies

‖λ̂− λ‖M ≤
(
1 +O

(
1

γ

))

√

Tr(M1/2I−1R M1/2)

n
+ 4

√
‖M1/2I−1R M1/2‖ log 4

δ

n




Proof. By the guarantee from Theorem B.15, our initial estimate λ1 = λ + ε from Step 1 has the property that with

probability 1− δ/2,

‖ε‖2 .
Tr(Σ)

n/γ
+
‖Σ‖ log 2

δ

n/γ

We condition on the success of Step 1. Let n′ = n(1− 1/γ) ≥ n/2 be the number of samples used in Step 2 to call the

Local MLE Algorithm 3. By our lower bound on n,

r2 ≥
√
Cγ2 ‖Σ‖√

n

(
deff(Σ)√

dR
+ dR +

√
log

4

δ

)
≥
√
Cγ2Tr(Σ) + ‖Σ‖ log 4

δ√
2n′

· (n′)1/2√
dR + log 4

δ

So, for large enough C, since γ > 1, setting

τ =
1

γ

√
dR + log 4

δ

n′

yields that

εTR−1ε =
‖ε‖2
r2
≤ τ

Also τ ≤ 1/4 since n′ ≥ C
2 (log

4
δ + dR). So, the condition on the confidence set S in Lemma B.14 is satisfied.
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By the constraint on n, we have

r2 ≥
√
Cγ2‖Σ‖

√√√√ log 4
δ + dR +

(
deff(Σ)2

dR

)

n
≥
√

C

2
γ3‖Σ‖τ

We also have by Lemma C.2 that ‖I−1R ‖/‖Σ‖ ≤
‖Σ+R‖
‖Σ‖ ≤ 2, so

log
‖I−1R ‖
r2

≤ log
2
√
2√

Cγ3τ

so the τ constraint is that

γ2τ log2
2
√
2√

Cγ3τ
≤ 1

the LHS is at most

O(τ0.99γ2.01) < 1

since τ < 1/γ5, with a constant that is arbitrarily small with C. So the constraint on τ of Lemma B.14 is satisfied.

Using the fact that n′ ≥ C
2

(
log 4

δ

)
,

r2n′

‖I−1R ‖ log 4
δ

≥ C

2
γ2 ‖Σ‖√n
‖I−1R ‖ log 4

δ

(
deff(Σ)√

dR
+

√
log

4

δ

)

≥ C

2
γ2 ‖Σ‖√n
‖Σ+R‖ log 4

δ

√
log

4

δ
by Lemma C.2

≥ γ2 since R = r2Id so that ‖R‖ = r2 < ‖Σ‖

So the conditions of Lemma B.14 are satisfied, and with probability 1− δ/2,

‖λ̂− λ‖M ≤
(
1 +O

(
1

γ

))

√

Tr(M1/2I−1R M1/2)

n′
+ 4

√
‖M1/2I−1R M1/2‖ log 4

δ

n′




+O

(
τ
√
‖M1/2I−1R M1/2‖

)

≤
(
1 +O

(
1

γ

))

√

Tr(M1/2I−1R M1/2)

n
+ 4

√
‖M1/2I−1R M1/2‖ log 4

δ

n




since n′ = n(1− 1/γ) and τ = 1
γ

√
dR+log 4

δ

n′ . So, our total failure probability is δ. The claim follows.

Theorem B.17 (Global MLE, Informal). Let f have covariance matrix Σ. For any r2 ≤ ‖Σ‖, let R = r2Id and IR be the

R-smoothed Fisher information of the distribution. For any constant 0 < ε < 1,

‖λ̂− λ‖2 ≤ (1 + ε)

√
Tr(I−1R )

n
+ 5

√
‖I−1R ‖ log 4

δ

n

with probability 1− δ, for n > Oε

((
‖Σ‖
r2

)2 (
log 2

δ + deff(I−1R ) +
deff(Σ)2

deff(I−1
R )

))
.

Proof. First, if ε > 1/4, we reset ε = 1/4. Setting M = Id so that dR = deff(I−1R ), and setting γ = C0

ε for sufficiently

large constant C0 in Theorem B.16 gives the claim.
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C. Useful Results

The following is a continuous version of the rearrangement inequality (user940, 2015):

Lemma C.1. Let f, g : R→ R be monotonically non-decreasing functions, and X be a random variable over R. Then

E[f(X)]E[g(X)] ≤ E[f(X)g(X)]

Proof. Let Y be an independent copy of X . By monotonicity,

(f(X)− f(Y ))(g(X)− g(Y )) ≥ 0

always. Taking the expectation of both sides,

2E[f(X)g(X)]− 2E[f(X)g(Y )] ≥ 0.

Since Y is independent of X , this gives the result.

Lemma C.2. Let f be an arbitrary distribution on R
d, and let Σ be its covariance matrix. Let fR be the R-smoothed

version of f , with Fisher information matrix IR. Then,

IR < (Σ +R)−1

Proof. Follows from the fact that the covariance of fR is Σ+R, and using Theorem 1.2 from (Hendeby, 2005).

Lemma C.3. Let A,B be symmetric PSD matrices. Then

Tr(AB) ≤ Tr(A)‖B‖

Proof. Let the eigenvectors of B be v1, . . . , vd. Then

Tr(AB) =

d∑

i=1

vTi A(Bvi) ≤ ‖B‖
d∑

i=1

vTi Avi = ‖B‖Tr(A).


