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Abstract

In location estimation, we are given n samples
from a known distribution f shifted by an un-
known translation A\, and want to estimate A\ as
precisely as possible. Asymptotically, the max-
imum likelihood estimate achieves the Cramér-
Rao bound of error N (0, n—lz), where 7 is the
Fisher information of f. However, the n required
for convergence depends on f, and may be ar-
bitrarily large. We build on the theory using
smoothed estimators to bound the error for finite
n in terms of Z,., the Fisher information of the
r-smoothed distribution. As n — oo, r — 0 at
an explicit rate and this converges to the Cramér-
Rao bound. We (1) improve the prior work for
1-dimensional f to converge for constant failure
probability in addition to high probability, and (2)
extend the theory to high-dimensional distribu-
tions. In the process, we prove a new bound on
the norm of a high-dimensional random variable
whose 1-dimensional projections are subgamma,
which may be of independent interest.

1. Introduction

Location estimation—a variant of mean estimation—is a
fundamental problem in parametric statistics. Suppose there
is a translation-invariant model f*(x) = f(x — \) for some
known distribution f over R?. The statistician receives
n i.i.d. samples from f* for some arbitrarily chosen true
parameter ) € R?, and the goal is to estimate A with high
accuracy, succeeding with high probability over the samples.

In contrast to general mean estimation, which aims to es-
timate the mean under minimal assumptions on the distri-
bution, here we know the exact shape of the distribution
up to translation. Such additional information allows us to
estimate \ to higher accuracy.

The classic “textbook™ theory for location estimation, and
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indeed for parametric estimation in general, recommends us-
ing the Maximum Likelihood Estimate (MLE). The MLE en-
joys asymptotic normality: if we fix a distribution f and take
the number of samples n to infinity, the distribution of the
MLE converges to the multivariate Gaussian N (A, %I -,
where Z is the Fisher information matrix, defined by

I=E |[(Viegf(x)(Viog f(x))’

As a basic property, if we denote the covariance matrix
of f by X, then we always have Z~! < ¥, implying that
the asymptotic performance of the MLE is always at least
as good as the sample mean, whose performance is con-
trolled by the covariance Y. Furthermore, the Crdmer-Rao
bound states that no unbiased location estimator can have
covariance smaller than %I —1. and so the MLE has the best
asymptotic performance of any unbiased estimator.

Even though the textbook theory is satisfying in that the
Fisher information essentially captures the information-
theoretic limits of location estimation, its predictions may
be misleading in practice. Specifically, this is due to the
asymptotic nature of the MLE performance guarantee: we
need to take the number of samples n to infinity in order to
achieve subgaussian estimation error. The asymptotic result
may have arbitrarily bad dependence on n in terms of the
model f. While bounds exist in terms of regularity proper-
ties of f (Miao, 2010; Spokoiny, 2011; Pinelis, 2017), these
bounds are infinite for simple examples like the Laplace
distribution. The research goal, therefore, is to establish a
finite-sample theory of location estimation, which bounds
the estimation error explicitly as a function of n, applies to
every f, and ideally attains even optimal constants in the
estimation error.

Recent work by Gupta et al. (2022) addressed this ques-
tion in the special case of 1 dimension. They showed that,
while the MLE can have bad finite-sample performance,
it is possible to improve the behavior by a simple adap-
tation: add Gaussian noise of some appropriately chosen
radius 7, where r decreases with the number of samples,
to both the samples and model before performing MLE.
Accordingly, the theoretical guarantees for the smoothed
MLE replaces the Fisher information of f with the Fisher
information of the smoothed distribution f,., also called the
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Figure 1. Gaussian+Sawtooth Distribution
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Figure 2. Constant probability error lower bound for Gaus-
sian+Sawtooth

smoothed Fisher information Z,.. Smoothed MLE achieves
finite-sample subgaussian error bounds analogous to a Gaus-
sian with variance (1 + o(1))Z~*, where the o(1) term can
be explicitly calculated and is independent of f.

Characterization by smoothed Fisher information.
Our results will follow the approach of Gupta et al. (2022)
and show finite sample bounds in terms of the smoothed
Fisher information. Here, focusing on the 1-dimensional
case, we briefly discuss why Fisher information is inade-
quate and why smoothed Fisher information is a suitable
substitute.

Consider the “Gaussian+Sawtooth” distribution shown in
Figure 1, which is a sawtooth of tooth width w and slope
+A added to the central section of the standard Gaussian
density. As w — 0, the density converges to the standard
Gaussian, yet the Fisher information grows to ©(A?) as
A — o0. The asymptotic theory thus predicts an error of
O(1/(A+/n)) with constant probability.

However, Gupta et al. (2022) showed that for n < 1/ w?,
the constant probability error for every algorithm is in fact
at least Q(1/+/n), as if the distribution were just a standard
Gaussian. Intuitively, we need to align the model to within
a single sawtooth width of w in order to leverage the saw-
tooth structure for high accuracy estimation. For a standard
Gaussian, (1/w?) samples are needed for error less than
w. Figure 2 shows a plot of the constant probability error
lower bound for the Gaussian+Sawtooth model, with the
error scaled by +/n for normalization.

Since the sample threshold depends on w, this example

shows that there is no algorithm that converges to the
asymptotic error in a distribution-independent way. Con-
cretely, no algorithm can be within a 1 4+ o(1) factor of
the A(0,1/(nZ)) error for a distribution-independent o(1)
term. We therefore need an alternative quantity to replace 7
for finite-sample error bounds, which can capture the phase
transition in Figure 2.

Smoothed Fisher information exhibits this phase transition
behavior. Smoothing by radius 7 > w blurs out the saw-
tooth structure—Z,. is small and close to the standard Gaus-
sian Fisher information of 1. On the other hand, smoothing
by radius r < w preserves the sawtooth and keeps Z,
close to Z = ©(A?). Both Gupta et al. (2022) and we
leverage this behavior to show finite sample bounds analo-
gous to (1 + o(1))N(0,1/(nZ.)), with a o(1) term that is
distribution-independent.

We need to choose the smoothing parameter carefully, as
the smoothed Fisher information can depend delicately on
r. Intuitively, we expect r — 0 as n — 00; however, this is
not true of Gupta et al.’s results. Their choice of smoothing
vanishes only in the high-probability regime, i.e. when both
n — oo and § — 0 for failure probability §. Thus, for small
constant 4, their results can be very sub-optimal. One of our
new results removes the spurious dependence of r on 4.

Our results. In this paper, we improve and extend the
result of Gupta et al. (2022) in two ways. First, we show that
a variant of the algorithm has a simpler and better analysis
in one dimension. This better analysis supports smaller
smoothing radius r, and hence higher Fisher information
Z:

Theorem 1.1 (1-d Smoothed MLE). Given a model f, let
the r-smoothed Fisher information of a distribution f be T,
and let IQR be the interquartile range of f. Fix the failure
probability be § < 0.5, and assume that n > c - log %for
some sufficiently large constant c.

Choose r* = Q((%)l/g)IQR. Then, with probability at
least 1 — 9, the output A of Algorithm 2 satisfies

. loe 2\ 10\ (2100 2
A=) < 1+0<0g5) 2085
n NnL

The main difference between this result and (Gupta et al.,
2022) is the dependence on §: the previous result needed
0 — 0 for r to decay to 0 and for the leading constant
to decay to 1. In ours, both decay polynomially in n for
constant 6.

Consider how this result behaves on the Gaussian+Sawtooth
example above (Figure 1), for constant §. For small n,

we will choose 7* = Soly(m) = W and get error within 1 4

1 : 1.
Doy () of the regular Gaussian tail; for large n, r* < w and
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the error is within 1 + of the asymptotically optimal

N(0,1/(nZ,)). Thus we get the same qualitative transition
behavior as Figure 2, albeit at a different transition point
(# rather than #). The prior work (Gupta et al., 2022)
additionally required vanishing &, roughly § < 2~ Pel¥(n),
to observe this behavior.

Second, our simpler approach lets us generalize the result
to high dimensions. We show an analogous result to the
one-dimensional result. I/I\l an ideal world, since the (un-
smoothed) MLE satisfies (A—\) — N(0, £Z~1) asymptot-
ically, we would aim for the Gaussian tail error (Boucheron
et al. (2013), Example 5.7)

~ Tr(Z-1 log 1
R alo < o BED L foyz 85
n n

with probability 1 — §. We show that this almost holds. Let
der(A) = Fﬁ‘rxgﬁ) denote the effective dimension of a positive
semidefinite matrix A. If we smooth by a spherical Gaussian
R = r21, for some r? < ||3]|, then for a sufficiently large n
as a function of ||| /7%, log 1, degr(), and det(Z5"), our
error is close to (1) replacing Z with the smoothed Fisher
information Zg.

Theorem 1.2 (High-dimensional MLE, Informal; see The-
orem B.16). Let f have covariance matrix %.. For any
r?2 < |||, let R = 1214 and I be the R-smoothed Fisher
information of the distribution. For any constant) <n < 1,

~ Tr(Z;? Tt log 4
||)\_)\||2§(1+n)\/r(nﬁi)+5\/w

with probability 1 — 6, for

o 00 ( (B0 (o iy + 2451

When de(Z5') > log 3, the bound is (1 4+ 7 +

0(1))4/Tr(Zz"). This is very close to the Cramer-Rao

bound for the expected error of /Tr(Z—!) for unbiased
estimators (Bickel & Doksum (2015), Theorem 3.4.3).

The formal version of this theorem,ATheorem B.16, also
gives bounds for general distances ||\ — A||ps induced by
symmetric PSD matrices M ; the exact bound, and the n
required for convergence, depend on M.

One key piece of our proof, which may be of independent
interest, is a concentration bound for the norm of a high-
dimensional vector z with subgamma marginals in every
direction. If a vector is Gaussian in every direction, it is a
high-dimensional Gaussian and satisfies the tail bound (1)
(replacing Z~! by the covariance matrix X). It was shown
in (Hsu et al., 2012) that the same bound applies even if the

marginals are merely subgaussian with parameter .. We
extend this to get a bound for subgamma marginals:

Theorem 1.3 (Norm concentration for subgamma random
vectors; see Theorem 5.1). Let x be a mean-zero random
vector in R? that is (3, C)-subgamma, i.e., it satisfies that
for any vector v € R?,

E[ez\(x,v)] < eAQ’UTE’U/Q

1
Jor |Al < ey

/ 2 2
lzll < vTe(E) + 44/[[Z]| log 5 +16][C| log =

2 2 1
-+ min <4|C||F log —, 8& log 6)

o /Tr(X)

The first, trace term is the expected norm and the next
two terms are (up to constants) the tight bound from 1-
dimensional subgamma concentration. When z is an aver-
age of n samples, both ¥ and C' drop by a factor n; thus,
the terms involving C' decay at a rate of 1/n, versus the
terms involving only ¥, which decay at a rate of 1/4/n. As
n — oo, the terms involving C' disappear compared with
the Gaussian terms involving 3.

Then with probability 1 — 6,

To better understand the last term, consider x to be the
average of n samples X; drawn from the spherical case
(X = 02I,C = cI). We also focus on the high-dimensional
regime where d > (2/1?) log(1/4) for some small 77, where
the target error bound of (1) becomes (1 + 1)+/tr(X)/n,
that is, within a (1 + ) factor of the expected ¢5 norm error.
In the subgamma setting, the bound of Theorem 1.3 implies

an error of (1 + O(n))y/Tr(X)/n whenever n > (c/o)?d,

where the threshold for n is due to comparing the last “min”

term in the bound with the /||| log 2 term.

Under the stronger assumption that the random vectors have
distance at most ¢ from their expectation, one can compare
our tail bound with Talagrand’s/Bousquet’s suprema con-
centration inequality (Boucheron et al. (2013), Theorem
12.5). Focusing again on the high-dimensional, spherical
regime where d > (2/1?)log(1/d) and ¥ = 021,C = cl,
Bousquet’s inequality implies an almost-identical ¢5 error
of (1 +O(n))\/Tr(X)/n whenever n > (c/c)?d, albeit
with smaller hidden constant. Given that the n threshold for
our bound is due to our last “min” term, it is likely that such
a term is qualitatively necessary, and that our last term is
not too large at least in the relevant regimes we consider in
this paper.

1.1. Notation

We denote the known distribution by f. In 1 dimension, f,
is the r-smoothed distribution f * A/(0,72), with smoothed
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Fisher information Z,.. In high dimensions, fr is the R-
smoothed distribution f + A/(0, R) with smoothed Fisher in-
formation Zr—note the quadratic difference between r and
R, analogous to the usual conventions for the (co)variance
of 1-dimensional vs high-dimensional Gaussians.

The true parameter is denoted by A. Both our 1-dimensional
and high-dimensional algorithms first gets an initial estimate
A1, before refining it into the final estimate .

Unless otherwise specified, for a given vector z, ||z|| de-
notes the ¢3 norm, and similarly || A]| is the operator norm
of a square matrix A. Given a square positive semidef-
inite matrix A, we define its effective dimension to be
degr(A) = tr(A)/||Al|. The effective dimension of a matrix
A is d when it is spherical, but decays if one or more of its
eigenvalues deviate from the maximum eigenvalue.

2. Related work

For an in-depth textbook treatment of the asymptotic theory
of location estimation and parametric estimation in general,
see (van der Vaart, 2000). There have also been finite-
sample analysis of the MLE ((Spokoiny, 2011) in high di-
mensions, (Pinelis, 2017; Miao, 2010) in 1 dimension), but
they require strong regularity conditions in addition to los-
ing (at least) multiplicative constants in the estimation error
bounds. Most related to this paper is the prior work of
Gupta et al. (2022), which introduced smoothed MLE in
the context of location estimation in 1 dimension, as well as
formally analyzed its finite sample performance in terms of
the smoothed Fisher information for large n and small §.

There has been a flurry of work in recent years on the closely
related problem of mean estimation, under the minimal as-
sumption of finite (co)variance. The bounds then depend
on this variance, rather than the Fisher information. In 1
dimension, the seminal paper of Catoni (2012) initiated the
search for a subgaussian mean estimator with estimation
error tight to within a 1 + o(1) factor; improvements by
Devroye et al. (2016) and Lee and Valiant (2022a) have
given a 1-dimensional mean estimator that works for all dis-
tributions with finite (but unknown) variance, with accuracy
that is optimal to within a 1 + o(1) factor. Crucially, the
o(1) term is independent of the underlying distribution.

It remains an open problem to find a subgaussian mean esti-
mator with tight constants under bounded covariance in high
dimensions. A line of work (Lugosi & Mendelson, 2017;
Hopkins, 2018; Cherapanamjeri et al., 2019) has shown how
to achieve the subgaussian rate, ignoring constants, in poly-
nomial time. More recently, Lee and Valiant (2022b) has
achieved linear time and a sharp constant, but requires the
effective dimension of the distribution to be much larger
than log? %.

Our other contribution is our novel norm concentration
bound for subgamma random vectors. The norm concen-
tration for Gaussian vectors has long been understood, see
for example the textbook (Boucheron et al. (2013), Exam-
ple 5.7). Hsu et al. (2012) generalized this bound to the
case of direction-by-direction subgaussian vectors. Norm
concentration can also be viewed as the supremum of an
empirical process. Bousquet’s version (2002; 2003) of Ta-
lagrand’s suprema concentration inequality implies a norm
concentration bound for random vectors bounded within
an ¢, ball of their expectation. Our bound generalizes this
case of Bousquet’s inequality from bounded vectors to all
subgamma vectors. As discussed after Theorem 1.3, the
results are quite similar for spherical 3 and C.

3. 1-dimensional location estimation

We discuss our 1-dimensional location estimation algorithm
and its analysis at a high level in this section. See Ap-
pendix A for the complete analysis.

Algorithm 1 below is a local algorithm in the sense that it
assumes we have an initial estimate \; that is within some
distance € of A, with the goal of refining the estimate to high
accuracy.

Algorithm 1 Local smoothed MLE for one dimension

Input Parameters:

e Description of f, smoothing parameter r, samples
ii.d.

T1yeeey Ty f* and initial estimate A; of

1. Let s(\) be the score function of f,., the r-smoothed
version of f.

2. For each sample z;, compute a perturbed sample z, =
x; + N(0,7?) where all the Gaussian noise are drawn
independently across all the samples.

3. Compute the empirical score at Aj, namely §(\;) =
% D i s(xf — ).

4. Return A = Ay — (8(\1)/Z,.).

Let Z, be the Fisher information of f,., the r-smoothed
version of f. Basic facts about the score s(x) are:

0= E [s(2)
I= E [-/@]=_E [s)?

First, Algorithm 1 adds IV (0, 7?) perturbation independently
to each z; to get z, which are drawn as (y; + A\, y2 +



High-dimensional Location Estimation via Norm Concentration for Subgamma Vectors 5

A, ooy Yn + A) fory; ~ f.. It then computes

%Zs(:cg—)\l :%is

i=1 i=1

() =

which is, in expectation,

E [s(z—¢€)] =

Q:Nfr

E [s(z) — es'(z)] = €Z,.

x~ fr

Thus we expect A = A — 5(A1)/Z, ~ A.

There are two sources of error in this calculation: (I) the
Taylor approximation to s(z — ¢), and (II) the difference
between the empirical and true expectations of s(z — €).
When e = 0, the Taylor error is 0 and the empirical estimator
has variance

Var(s(z)) I,

n n

Thus, when \; = A, X would be an unbiased estimator
of \ with variance I : exactly the Cramér-Rao bound.
Moreover, one can show that s(x) is subgamma with vari-
ance proxy Z,. and tail parameter 1/r, giving tails on 2=
matching the II -variance Gaussian (up to some point de-
pending on 7“) All we need to show, then, is that shifting
by e introduces little excess error in (I) and (II); intuitively,
this happens for |¢| < r because f, has been smoothed by

radius 7.

In fact, (Gupta et al., 2022) already bounded both errors:
for (I), their Lemma C.2 shows that
2
E [s(z~e)] ~Te+O0(VT,5) ©)
z~ fr r
for all |¢| < r/2, and for (II), their Corollary 3.3 and Lemma
C.3 together imply that a subgamma concentration of

15(A1) —
/ 2 2
(1 =+ 0(1)) % 4 10& (3)
n nr

Therefore, for sufficiently large r, the total error in (A1)

2
is dominated by the leading 4/ Z"l% term, giving a result
within 1 + o(1) of optimal.

E [s(z—-oll S

T~

when r > |e.

Getting an initial estimate. We estimate \ by the empiri-
cal a-quantile of a small x fraction of the samples, for some
«a; one can show that this has error at most O(IQR - 105n% )
with 1 — 0 probability, where IQR denotes the interquartile
range. This strategy is essentially identical to (Gupta et al.,
2022), except we use fresh samples for the two stages while
they reuse samples.

Algorithm 2 Global smoothed MLE for one dimension

Input Parameters:

e Failure probability d, description of f, n i.i.d. samples
drawn from f* for some unknown A

1. Let g be v/2(log 2 /n)?/5.

2. Compute an « € [q,1 — g] to minimize the width of
interval defined by the o & ¢ quantiles of f.

3. Take the sample a-quantile of the first (log % /n)'/1°

fraction of the n samples.

4. Let r* = Q((%5)1/%)IQR.

5. Run Algorithm 1 on the rest of the samples, using
initial estimate A\; = x,, and r*-smoothing, and return
the final estimate \.

Combining the above strategies and balancing the parame-
ters gives Algorithm 2 as our final algorithm. We prove in
Appendix A that the algorithm satisfies our 1-dimensional
result, Theorem 1.1.

Comparison to prior work. All the properties of the
score function we need for this 1-dimensional result were
shown in (Gupta et al., 2022), but that paper uses a different
algorithm for which they could only prove a worse result.
The (Gupta et al., 2022) algorithm looks for a root of s,
while we essentially perform one step of Newton’s method
to approximate the root. General root finding requires uni-
form convergence of 5, which (Gupta et al., 2022) could not
prove without additional loss factors. By using one step, and
(a small number of) fresh samples for the initial estimate,
our algorithm only needs pointwise convergence.

4. High-dimensional location estimation

The high-dimensional case is conceptually analogous to the
1-d case. The complete analysis can be found in Appendix B.
The main differences are: 1) The initial estimate comes from
a heavy-tailed subgaussian estimator, and 2) We bound the
difference between our estimate and the true mean using
our concentration inequality for the norm of a subgamma
vector (Theorem 5.1).

Let \ be the true location, and X our final estimateA. We first
state our main theorem, which gives a bound on ||A — || s,
induced by symmetric PSD matrices M.

Theorem 4.1 (High-dimensional MLE, Informal; see The-
orem B.16). Let f have covariance matrix . For any
r2 < ||2||, let R = 1214 and I be the R-smoothed Fisher
information of the distribution. Let M be any symmetric
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PSD matrix, and let T' = Ml/QIglMl/Q. For any constant
0<n<l],

~ Tr(T T| log 4
15— Mar < (1 D g 1T oS

with probability 1 — 6, for

>0, ((HEH> (108 + () + Z”ﬁ))

As a Corollary, we obtain Theorem 1.2 which bounds
[IA = All2, as well as the following, which bounds the Ma-

halanobis distance ||A — ||z,

Corollary 4.2. Let f have covariance matrix 3. For any
= 121, and Iy, be the R-smoothed Fisher
information of the distribution. For any constant() <n < 1,

~ d log 4
1A= Alz, < (1 +77)\/>+ 5\ —*
n n

with probability 1 — §, for

50y (12L)" (e s 220

We now sketch our analysis. Algorithm 3 below takes an
initial estimate \; of the mean, and refines it to a precise
estimate A, analogously to Algorithm 1 for the 1-d case.

Algorithm 3 High-dimensional Local MLE

Input Parameters:

* Description of distribution f on R?, smoothing R, sam-

'de

plesz1,...,z, f7, and initial estimate \;

1. Let Zr be the Fisher information matrix of fg, the
R-smoothed version of f. Let sg be the score function

of fR.

2. For each sample z;, compute a perturbed sample x} =
x; + N(0, R) where all the Gaussian noise are drawn
independently across all the samples.

3. Let e =
Al — €.

LS Tn'sr(a) — M) and return A =

Let f be a distribution on R<, and let Z be the Fisher
information matrix of fz, the R-smoothed version of f.
Then, for score sg, if J;,, is the Jacobian of sp,

E [SR(x)sR(a:)T}: E [—Jsz(x)]

I =
R z~fr z~fr

Analogously to the 1-d case, Algorithm 3 takes an initial
estimate \; = A\ + € with ¢/ R~1e < 1/4. The algorithm
first adds N (0, R) independently to each sample z;, to get
a}, which are drawn as y; + A for y; ~ fr. Then, it computes

ZI_ SR J} —/\1 ZI SR )

which is in expectation

E [Zzp'sr(z—¢)] ~

z~fr

Ef [Z5'Jsp(z)e] =€

So, again, we expect A=A —é~ A up to error from (I) the
Taylor approximation to sg(z — €), and (I) the difference
between the empirical and true expectations of sg(z — €).

For (I), Lemma B.3 shows that

le= E [Zr'sa@@ =] I’ SIZz ("R "e)

~fRr

forcTR e < 1/4. For (II), Corollary B.12 shows that for
any unit direction v, vTZ;'sg(2 — €) is subgamma:

v T sp(x —€) € T(ZR' (1 +0(1)),Zz ' R™Y?)

when eTR™1e < 1/4 and

\/(ETR71€) log (| Iz [[IR-1]]) < 1, so that together
with our norm concentration inequality for subgamma
vectors (Theorem 5.1), Lemma B.13 shows

le— E [IR sp(z—e€)]| <

z~fR
1
a —|—0(1))<\/ ¢ Sz LLE:
811;131/2|2Flog§>

I;'R7Y?|log 2
N i L
" n3/2, [ Tr(Zx")

+

For R = r2I,, when r is large, the total error is dominated
by the first two terms in the above bound, which correspond
to subgaussian concentration with covariance I}gl

Getting an initial estimate. For our initial estimate Ay,
we make use of a heavy-tailed estimator (Hopkins, 2018;
Cherapanamjeri et al., 2019), which guarantee subgaussian
error dependent on the covariance X of f, up to constants.

As in the 1-d case, combining our initial estimate with Al-
gorithm 3 gives our final theorem, Theorem B.16. Below,
Algorithm 4 shows how to compute our initial estimate and
combine it with the local MLE Algorithm 3 to obtain our
final estimate.
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Algorithm 4 High-dimensional Global MLE

Input Parameters:

* Failure probability §, description of distribution f, n
samples from f*, Smoothing R, Approximation pa-
rameter 7

1. Let 3 be the covariance matrix of f. Compute an
initial estimate \; using the first n/C fraction of of
the n samples for large constant C, using an estimator
from Theorem B.15.

2. Run Algorithm 3 using the remaining 1 — n/C fraction
of samples using R-smoothing and our initial estimate
A1, returning the final estimate .

5. Norm concentration for subgamma vectors

Theorem 5.1 (Norm concentration for subgamma vectors).
Let x be a mean-zero random vector in R¢ that is (%, C)-
subgamma, i.e., for allv € RY, vTx € T (vT S, |Cv||). In
other words, it satisfies that for any vector v € R,

E[e*M®v)] < AT Su/2
for
—imin(i J @)
P[] > VI(E) + 1] < 2 TR

Thus, with probability 1 — 9,

/ 2 2
Izl < vTr(E) + 44/ [|Z]| log 5 + 16]|C]|log =

+min <4|C||F }L )

The proof idea, similar to (Hsu et al., 2012) for the sub-
gaussian case, is as follows. Define v ~ N(0,I). We
relate P[||z| > ¢] to the MGF E,[¢**11”], which equals
E, ,[e*®?]. If we interchange the order of expectation, as
long as ||Cv|| < 1/|A|, this is at most E, [e***" =], Since v
is Gaussian, we can compute the last MGF precisely.

To handle the subgamma setting, we need a way to control
E, ,[e*®?] over those v with ||Cv|| > 1/|A|. We do so by
showing that (I) WLOG ||| is never strictly larger than the
bound we want to show, and (II) then the contribution to the
expectation from such cases is small.

Proof. Define v = Tt(z)’ so we want to bound P[||z|| >
(1 4+ v)4/Tr(X2)]. We start by showing that WLOG ||x||

never exceeds this threshold.

Introducing a bounded norm assumption. We first
show that, without loss of generality, we can assume
lz]| < (1 + v)y/Tr(X) always. Let s € {£1} be dis-
tributed uniformly independent of x, and define

yzs-x-min(l,

to clip 2’s norm and symmetrize. For any v and z,

E[e9)] = cosh </\<x, v) - min (1’ MTY(E)))

< cosh(A(z,v))

Now, since z is (3, C')-subgamma,

1

E[cosh(Mx,v))] = 3 (E[eMm,v)] + E[e)\<a:,—v)]>
1 )\Z’UTE'U/Q
2 (e

)\szEv/2

IN

4 ev(—mTz(—v)/Q)
=e

and so ,

E[e)\(y,v)] < e)\szZv/2.

y
Thus y is also (X, C)-subgamma. The target quantity in
our theorem is the same for y as for z: P[|jz| > (1 +
NVI(E)] = Plllyll = (1 4 7)/Tr(X)]. Since [|ly|| <
(1+7)y/Tr(X) always, by considering y instead of z, we
can WLOG assume that ||z|| < (1 + v)4/Tr(X) in our
theorem proof.

Relating probability to ;. ,[e*(*")]. Define

a:=P o] = (1+9)VTe(Z)]

so that by Markov’s inequality applied to N llzll*/2,

E[eX’Il1*/2]
OS2

for any A. Now, let v ~ N(0, I). For any z,

E[Me)] = Nllal?/2
v
SO
«a S E [e)\<:6,v>]e—)\2(l+'y)2 Tr(E)/Z. (4)

Upper bounding E,, , [¢*(**)].  We will bound the RHS
above by making the inner expectation over x. Since x is
(3, C')-subgamma, for every v,

E[e>\<w v>] X”’ Tsv/2

x

1
VAl € ——,
1C
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Therefore

E [eA(z,v

z,v

1= E [ oyi<iia + O ous1/a]

IN
<=

2 T, )
[P up<aying] + B[O cys 0]
z,v

IN
<=

[ez\%sz/Q] +IE[I?[BM%M1HCWH>1/\>\|H (5)
We start with the first term. Let the eigenvalues of ¥ be
a% > O‘% > > 03. Then, UTZU/Q is a generalized chi-
squared distribution, distributed as > i uf for independent
Gaussian variables u; ~ N(0,02/2). It is easy to check
that u? for u ~ N(0,1) is (4,4)-subgamma, i.e.,

—A
E[M-Ew D] = S <2y < i

V1=2X\"

Therefore > u? is (3, 0}, 2maxo?) =
subgamma. Since [|X|% S ||E||Tr( )s
(2] Te(S), 2] -subgamma.

(IZ11%, 21Z1)-
vTv is also

Tr(%)/2),

Including the mean term as well (E[v? X0 /2] =
we have

E[e,\%Tzv/z] < e’\2 Tr(%)/2 | e,\4 Te(D)IZN/2 )2 < 1
v 2|
(6)

We now bound the second term in (5) for each x. Since

< [Cllr + lICI

probability 1 — § (see Equation 1). Therefore, for all |\| <
1

,/QIOg% with

2ClF?

A/IAl=lICl g)?

B e
2(cl <e 8>\§HCII2

Pl|Col| > 1/[A] < e

and so by Cauchy-Schwarz, and our bound on ||z]|,

B[ op1/a] < /BN P{Col > 1/]A]

1
< \/e%z\lz\l"‘e 8xZ|[C2

2 2 1
_ GA (1+y) Tr(z)_IGAQHC«HQ.

1 )’

1
4(1+7)/Te(@) )" HICTE

Therefore, as long as A2 < min(
Ig[eA”wHUl1\\cq;||>1/|,\\] <L

Combining with (6) (which is a bound always larger than 1)
and (5),

E [e/\(;c,v)] < 26,\2 Tr(%)/2 | ex* Tr(D)||2)/2
T,v

1 1 1
21207 41 + ) /Tx(@)|C) 4ICIE

VA2 < min(

)

and with (4),
o < 2e3N TRV IT[-27=97)

1 1 1
2IZ)” 4(1 +4) /T (@) C” 4lICI1%

VA2 < min(

)

2
Final bound. By also restricting A? to be at most 2”2“ ,

we get:
o < 2= PN TH(D)(2v+2)

27+A/2
2|1

VAZ < min( ,
2|12

1 1
4(1+4)/Tr(@)C| 4lIC]%

Set A2 to the maximum of this range to get

1 1 29442 1 1 2
a <2 * min( 5y sy a1+ /T lICl Aol )2y +7) Tr(2)

The be

min(

first two can merged:

29+92  (2v+v%)? )
2 2

cases
,Y2
> . Thus:

2 2
1 s 2 T(R) VTS (2v+42) Tr(E)
16 (s e iz, )

a < 2e

gives the first result, and setting ¢

O

Plugging in v = \/ﬁ

such that the exponent is log % gives the second.

6. Conclusion and Future Work

In this paper we gave an algorithm for location estimation
in high dimensions, getting non asymptotic error bounds
1

approaching those of A/(0, =2-), where Zp, is the Fisher
information matrix of our d1str1but10n when smoothed using
N(0, R) for small R that decays with n. In the process
of proving this result, we obtained a new concentration in-
equality for the norm of high-dimensional random variables
whose 1-dimensional projections are subgamma, which may
be of independent interest. Even in 1 dimension, our results
give improvement for constant failure probability. For func-
tion classes such as a mixture of Laplacians, no previous
work gives a rate for the asymptotic convergence to the
Cramér-Rao bound as n — oo for fixed 4.

This paper is one step in the finite-sample theory of pa-
rameter estimation. Our quantitative bounds could be im-
proved: our bound on the rate of convergence to Cramér-Rao
is1+ pOly Doy (1) but one could hope for faster convergence

a1+ \/ﬁ in general, and 1 + % for some specific function
classes). More generally, one can consider estimation of
parameters other than location; the Cramér-Rao bound still
relates the asymptotic behavior to the Fisher information,
but a rate of convergence remains elusive. We believe that
understanding high-dimensional location estimation is a
good step toward understanding the estimation of multiple
parameters.

)
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A. Complete analysis of 1-dimensional location estimation
A.1. 1-dimensional local estimation

The following algorithm (Algorithm 1) is the local part of the 1-dimensional estimation: it assumes that there is an initial
estimate that is close to the true parameter \.

Algorithm 1 Local smoothed MLE for one dimension

Input Parameters:

_ . j.i.d. o .
* Description of f, smoothing parameter , samples 1, ..., 2, "~ f* and initial estimate \; of

1. Let s(\) be the score function of f,., the r-smoothed version of f.

2. For each sample z;, compute a perturbed sample x} = x; + N(0,7%) where all the Gaussian noise are drawn
independently across all the samples.

3. Compute the empirical score at Ay, namely §(A1) = = 37" | s(z] — Ap).

4. Return A = Ay — (8(\1)/Z,.).

The local algorithm is what uses the simplified view of smoothed MLE and distinguishes our approach from the previous
approach of Gupta et al. (2022).

We will show the following guarantee for Algorithm 1. It says that, if the initial estimate \; has distance at most €p,,x from
true parameter A, and suppose we choose a sufficiently large smoothing parameter r, then the output of Algorithm 1 will be
close to the true parameter \.

2
Lemma A.1. In Algorithm 1, suppose |1 — A| < €max fOr sOme €max > 1/ 210%% Suppose also that the smoothing

parameter is v > 2€max, and there exists a parameter vy > 1 such that 1) VT, > Yemax 2) 7’2\ /log %/n > ~ve2. and 3)

max

(log %) /n < 1/~2. (For interpretation, ~y is supposed to be large and “w(1)” when the lemma is used.)

Then, with probability at least 1 — § over n samples from f*, the output of Algorithm 1 satisfies

2
5o < (1+o(1)> 2log 5
5y nZ,

The proof of Lemma A.1 relies on the following facts from (Gupta et al., 2022) about the concentration of the empirical
score of the smoothed distribution, when evaluated at an initial parameter estimate that are close to the true parameter.

The first fact is the subgamma concentration of the score.
A

ro

candidate parameter \ to LS sy — \), where s, is the score function of fi.

Fact A.2. Suppose we take n i.i.d. samples y1,...,Yn and consider the empirical score function § mapping a

Then, for any |e| < r/2,

i.i.d T fr

n nr
v~ R

: ('g(“@— B [s<w—e>]|zwmax@x[sg(“dhﬂnog3+15log§>s5

The next two facts bound the expectation and second moment of the score.

Fact A.3. For any |e| < /2, the expected score E ¢, [sr(x + €)] satisfies

E [s(o+o)e |-Lex0(vVES)]

T~ Jr
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Fact Ad. Forany |e| <r/2, ifr/e = Q(y/loge/(r?L,)), the second moment of the score satisfies

E [si(z+¢)] <I. <1 +0 (76« log T;L-))

oy
Furthermore, we always have I, < 1/r2, and therefore /log 1/(r2T,.) above is well-defined.

We can now prove Lemma A.1 using these facts. The proof strategy is straightforward: we use Facts A.2 and A.4 to show
that $(y) concentrates close to its expectation with high probability, and we use Fact A.3 to show that the expectation of
$(y), which is E[s(z — ¢€)] for y = X\ + ¢, is very close to Z,.c. The triangle inequality then implies that y — (5(y)/Z,.) must
be close to A with high probability.

Proof of Lemma A.1. Let Ay = X\ + €. By the lemma assumptions, |¢| < €pyax.

First, we show that, under the lemma assumption that r2I, > Yémax> Fact A.4 implies that the second moment of the
score at A — €, namely E,. 1 [s2(x + €)], is upper bounded by (1 + O(1/7))Z,.

To check that the precondition of Fact A.4 holds, note that 72v/Z,. > ~yemax > e is equivalent to r /¢ > «/+/r?Z,., which
implies that

satisfying the precondition of Fact A .4.

Then, the fact implies that

E [s2(z +¢€)] <Z,

x~ fr

Next, we combine the concentration bound of Fact A.2 with the second moment bound for E, [s2(z + €)] we just derived to
show that §(\ — €) is close to its expectation with high probability.

21og 2 15log 2
< Ogm.(1+o(1))+ blog
n y nr

2log 2 15 /2log2\* [2log?2
%85 Z + < %8s ) %85 T, (see below)
n 2/ n n

2 2
1 2log £ 2
L—I—O() g‘SIT sincelogg/ngl/ny
n

IN

IN
7 N\ N
—
+
Q
7~ N\ 7N
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1 2log 2
- <1+O<>> %7,
Yy n
2log%i

where the second inequality is due to the assumption that r2Z, > Ye€max = Y b=

Further using Fact A.3, this implies that ¢ = y — A is well-approximated by §(y)/Z,, as follows.

e~ (/)] = 7 1Tee = 3(y)
— 7 i)~ E O-al+ E s~ 0]~ e
<7 - E 0ol + 5 | E O o]~ Te
1 2log 2 €2
“(ro)VE o)

by the previous bound and Fact A.3

By the lemma assumption, we have €2 /r? < €2, /r* < (1/7),/log 2 /n, and so we have bounded |e — (5(y)/Z,)| by

2
< (1o (L)) et
v nZ,

le = (5(y)/Z)

To conclude, we have

A=Al=ly = GW)/Z) = A=A +e=(3)/T,) = A < (1 L0 (i)) 2;0%

as desired. O

A.2. 1-dimensional global estimation

We can now state the 1-dimensional global estimation algorithm (Algorithm 2), which first gets a preliminary estimate of the
true parameter from a o(1) fraction of the data, before invoking the local Algorithm 1 on the rest of the data.

Algorithm 2 Global smoothed MLE for one dimension

Input Parameters:

« Failure probability &, description of f, n i.i.d. samples drawn from f* for some unknown \
1. Let g be v2(log 2 /n)%/>.
2. Compute an « € [g, 1 — ¢ to minimize the width of interval defined by the « & ¢ quantiles of f.
3. Take the sample a-quantile of the first (log 2 /n)'/1° fraction of the n samples.
4. Letr* = Q((2£8)1/%)IQR.

5. Run Algorithm 1 on the rest of the samples, using initial estimate \; = x, and r*-smoothing, and return the final
estimate \.

Both the global part of the algorithm and its analysis are essentially identical to what Gupta et al. (2022), up to minor
changes in certain parameters. We note again that the algorithmic improvement lies in the local part of the algorithm, in
Algorithm 1.
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Theorem 1.1 (1-d Smoothed MLE). Given a model f, let the r-smoothed Fisher information of a distribution f be L., and
let IQR be the interquartile range of f. Fix the failure probability be 6 < 0.5, and assume that n > c - log %for some
sufficiently large constant c.

Choose r* = Q((%)l/S)IQR Then, with probability at least 1 — 8, the output \ of Algorithm 2 satisfies

1
. log 2\ ) [2log2
B < HO(Oga) |2log 5
n nL,«

The analysis of Algorithm 2 requires one more technical fact from (Gupta et al., 2022), which is a lower bound on smoothed
Fisher information.

Fact A.5. Let T, be the Fisher information for f,, the r-smoothed version of distribution f. Let IQR be the interquartile
range of f. Then, T, > 1/(IQR + r)2. Here, the hidden constant is a universal one independent of the distribution f and
independent of r.

Proof of Theorem 1.1. Step 2 uses (log % /n)1/19n samples to compute the sample a-quantile. By standard Chernoff
bounds, with probability at least 1 — d(log % /n)?, the error of the sample quantile (in terms of its quantile in the true
distribution) is at most

2
2log 3(log Z/n)?
(log 2/n)/ 0 n

2(log 2) (1) /10

(log 2 /n)"/ 10

:ﬂ(log§>

n

<

2/5

Therefore, if the above event happens, Step 2 will yield a sample a-quantile z,, such that x, — A is within the o —
V2(log 2/n)?/® and a + v/2(log 2 /n)*/® quantiles of f. Furthermore, by the minimality condition in the definition of c,
the distance between these two quantiles is at most O((log 2/ n)?/5)IQR.

We will apply Lemma A.1 using failure probability §(1 — (log % /n)?). We will check that, (A) conditioned on Step 2
succeeding in the above sense, the preconditions of Lemma A.1 will hold for A\; = z,,, the chosen r* and an appropriate
choice of v, and also that (B) the estimation error guaranteed by Lemma A.1 implies the desired error bound. If the above

deterministic checks are true, then by a union bound, Algorithm 2 will satisfy the desired intermediate bound guarantees
except with probability 6.

For the following calculations, note that log m <1l.1llog % since n > log % and 6 < 0.5.
3 n

(A): We condition on Step 2 succeeding, and check the preconditions of Lemma A.1.

We now check the precondition that r* > 2¢€px, fOr €ax = max(\/Q log WW/(TLL* ), O(log 2 /n)*/*IQR).
First, 7* = Q((%)l/g)IQR > O((log 2/n)?/®)IQR, where the >> uses the assumption on the size of n. We can
also show that O(log % /n)*°IQR > /2log 2/(nZ,-). Recall by Fact A.5 that Z, > Q(1/(IQR + r)?) for any r >
0. Therefore, \/2 108 5—oe 77/ (nLre) < O(y/log 3/(nZ,+)) < O((log /n)'/*IQR) < O((log 3 /n)*/*)IQR,

where the < is due to the theorem assumption on the size of n.

We now need to check the last 3 preconditions of Lemma A.1. Letn’ = (1 — (log % /n)'/1%)n be the number of samples

used in the call to Algorithm 1, in Step 4. By the theorem assumption, we have n’ = ©(n). Further, recall by Fact A.5 that

I, > Q(1/(IQR +7)?). Picking v = O(5= )1/10, we check that the following remaining conditions from Lemma A. 1
5

are satisfied when applied to the n’ = ©(n) points used in Step 4:
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L ()3T > (r)2/(IQR + %) > Q(CEL)VAIQR > Q(2EL)/0IQR > yepay.
* log 2 log 2
2. (r )2\/10g Wg%/n)g)/n’ > Q(%)l/‘lIQRz, /log %/n = Q(%)7/1OIQR2 =veZ ..

3. log Wi%/m/”/ < O(log 3/n') < O((log 2 /n)'/%) < 1/4°.

(B): We check that the guarantees of Lemma A.1 is sufficient to imply the desired bound. To do so, we need a slightly more

refined bound on log mi
B}

2

1
log W

log

5(1 = (log 3/n)?)

<<1+O<

<<1+0<1

2
log 2
logé/n >> 2
log 2 5 &5
2
0

g‘;))log
n

) 2
since n > log 5

When the preconditions of Lemma A.1, the success of Step 4 implies a final estimate A satisfying

>
\

>
A

IN

2log —— 2

1 g —(log 2 /n

(1+O<>>\/ 5(1/(1go/ )?)
v n' Ly

1 log 2 2log 2
(1+O )+O( g“)) ,g5
Y n N Lpx

log 2\ L0 log 2 2log 2

n n' Ly

B. High dimensional location estimation

This section provides a complete analysis of our main Theorem B.16 for estimating the location of a high-dimensional
distribution. We start by providing some important definitions in Appendix B.1. Then, in Appendix B.2, we prove some
key properties of the score of our smoothed distribution. In Appendix B.3 we show that our score function is subgamma
with appropriate variance and scale parameters. Then, Appendix B.4 shows an error bound for the deviation between the
empirical score estimate and true true score. Finally Appendix B.5 and B.6 provide analyses of our Local MLE and Global

MLE algorithms respectively.

B.1. Definitions

Let f be an arbitrary distribution on R and let Y ~ f. Let our smoothing parameter R € R%*? be the covariance matrix of
our noise Zr ~ wr = N (0, R) sampled independently of Y. We define the R-smoothed distribution fr to be such that
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X =Y + Zpr ~ fr. Thus, the pdf of fr is given by

fr(x) = E [f(z+2,)]

ZRNHJR

Let sg be the score function of fr. We have

VfR (CC)
sr(z) = Vlog fr(zx) =

) = )
Let Zx be the Fisher information matrix of fr. Then,

Ir= E [sg(x)sr(z)’]

z~fr
We define the M -norm of vector x to be
z]lar = VaT Mz

B.2. Properties of the smoothed score

In this section, we prove some properties of the score function sp of the R-smoothed distribution fr that we make use of
throughout the paper. First, in Lemma B.1, we provide a useful characterization of si. Then, using Lemma B.2 we prove
Lemma B.3, which tells us for good initial estimates of our location, say incurring error ¢ € R? for “small” ¢, “inverting
the score” by left multiplying sg(z + €) by —Ilgl provides a good estimate of the error € in expectation. After this, using
Lemma B.4, we prove Lemma B.5, which says that for small e, the shifted score sg(x + €) when appropriately transformed
has covariance similar to the corresponding transformation of the Fisher information matrix Zp.

We begin by providing a characterization of the score sy that we make use of throughout.

Lemma B.1. Let f be an arbitrary distribution on R%, and let fr be the R-smoothed version of f. That is, fr(z) =
Eyoy [(27r)_d/2 det(R)~/2 exp (=3(x = Y)TR™ (x —Y))]. Let sg be the score function of fr. Let (X,Y, Zg) be the
joint distribution such that Y ~ f, Zr ~ N(0, R) are independent, and X =Y + Zr ~ fr. We have for ¢ € RY,

fR($+€) - E |:66TR71ZR—%€TR716:|
fr(x) Zg|x

so that
sp(z) = E [R™'Zg]

ZR‘$

Proof. First, we show that for e € R
fR(iL' + 6) - E {wR(ZR + 6):|
Zr|z

fr(z) wr(Zgr)
Note that (2.2) i Ywn(2)
_ plz,x)  f(x—2)wgr(z
PA=T0 T at)
So,

But now, U)R(iC) = (27‘(‘)_d/2 det(R)—1/2e—%wTR71;E SO,

fR(x+6) - E [eeTRflznféeTRfle}
fr(x) Zglz



High-dimensional Location Estimation via Norm Concentration for Subgamma Vectors 16

which is the first claim. Now, let € = ye;. We take the derivative wrt -y, and evaluate at v = 0 to get

Ve, [r(2) -1
————= E |((R™"Zgr)
fr(z) Zg|x [( 7) ]
So,
Vfr(x) —1
sr(x) = = E |[R°Z
R( ) fR(x) ZR|;E[ R]
O
The next Lemma B.2 is a utility result that we make use of in Lemma B.3.
Lemma B.2. Let fg be the R-smoothed version of distribution f on R?. For e € R?, let
Ao o J8E T = Fle) = (Vn()e
fr(z)
Then, for any € such that |eT R~ ¢| < 1, we have
E [A(2)?] < (P R71e)?
z~fR
Proof. By Lemma B.1, we have
Ad(z) = fr@@+e) = fa(@) = (VIr@) e g [ r-zn-yTrte _q ZER*E}
fr(7) Zr|z
Let o : R? — R be such that
eTR™1z—LeTR™1e T p—1
ac(z)=e 2 —1—2"R e
We want to bound
EA(2)?] =E[ E [a.(Z,)])?
E[A (@] = ELE_[oc(Z)]"
< 2
< m’@R[(ae(ZR)) ] (7)
= E (Zr))?
o E o plledZr)?

For the remaining proof, let W = ¢/ R=1Zy. Since Zr ~ N(0, R), we have that W ~ N(0,eT R=t¢). When [W| < 1,
by a Taylor expansion, we have

2
_ 1 1

W3R e Ly — §eTR_le +0 ((W - 26TR_1€> )

so that
0 Zr)| S TR e+ W
This implies that . (Zr)? < (e R~1€)? + W*, meaning that
(Zp)? 1 g < E

[(a ( R)) | TR 1ZR‘S1:| ~ WNN(O,ETR_lﬁ)

SERT B (8)

E TR—l 2 W4 1 B
Zr~N(0,R) [((e ) +WH) [T R 1e<1)
/S (GTR716)2

On the other hand, when |W| > 1,
e (ZR)| < ™!
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E ae(Zp)? 1 rp- < E AWl
ZRNN(O,R)[ E( R) [eTR IZT‘ZI:I — WNN(O,GTR_le)[ IW‘Zl]
o 1 ] w?
= 2/ — TR T duw
1 V2melR1e
_ 2e2|eTR716\ /OO ;e*%dw
1 V2relTR—1e 9)
<2V/e P W>1-2['R™
- \[WNN(O,ETR*IG) [ - |€ 6”
_(—2(TrR™1e?
g e 2¢TR—1e
<e” STR=T < (eTR_lg)2
which combines with (7) and (8) to give the claim. O

The next Lemma B.3 tells us that for good initial estimates ¢ € R¢, “inverting the score” by left multiplying s by —Il,;l
provides a good estimate of ¢ in expectation.

Lemma B.3 (Score Inversion). Let fr be an R-smoothed distribution with Fisher information matrix T. Let sp : R — R?
be the score function of fr. Let M € R be a symmetric matrix such that M = 0. Then, for any ¢ € R¢ with
|eT R=te| < 1/4, we have

I E [~Zp'sr(x+e)] —eliy S IMVPT M2 (T R e)

~fRr

Proof. By definition of sg,

B . Vir(z+e) .
E [sn(@+0)] = /[_W]dm s

- [winte) (5 o

since
/ Vir(z)dz =0
Now, by the definition of Zp

Vfr(@)(Vfr(z)"
fr(z)

Tn= E [sp(@)sn(@)T] = /[ . do

I~JR

So,
Bt ol Taem [ Unle =9 = o) + (Ot
= E [A (@)sn()]

where A (z) 1= [8EF)=Ir@ (V@) e Now, left multiplying both sides by —MY/2Z5",

fr(z)

M1/2< E [—IRlsR(x+6)]—e> = E {A,e(x)(—MWI;sR(x))}

z~fR z~fRr

So, we have

| E [Tx'sr@+al = cld = | E [A- (@) (~M"T5" sn(x))]|*

z~fR ~fr
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Now, by Cauchy-Schwarz
| E [ Aec(a)(-M" I sn(@))] I = sup | E A (o)(~ MY Tg s() wl?
r~ weSd—1 T,

< sw B [A (@) E[(-MV2Tglsp(@) w)?]

wesd—1T~fr z~fr

= E (A @] B |(-M" I sn(@)(sr(@) Ty M) |
= E [A-(@))|M 225 2

Using Lemma B.2, we finally have

I E [~Ig'sr(e+e)] —eli S 1MV MY2|("R™1e)?

z~fR

Next, in Lemma B.4 we prove a utility result that we make use of in Lemma B.5.
Lemma B.4. Let fr be the R-smoothed version of f on R%. For e € R?, let

fr(z —€) — fr(2)
fr(z)

Then, for any € such that |¢T R~Ye| < 1/4, and for any o such that o2 (T R~1e) < 1 we have

Ce(z) =

E [G(@)] £ (7R (a?e 2D 4 em%)

z~fr

Proof. By Lemma B.1, we have

_ fR(‘T_€> —fR(-’L') _ —eTR™! R—%eT —le _
C(a) = 70 = B e R Zrge TR ]

For the remaining proof, let W = e/ R~ Zp. Since Zp ~ N(0, R), we have that W ~ N (0, el R=1¢). So, we have that

. - E [—W—%eTRfls_l}
(o) = B [e

Let o be a parameter such that a?(¢” R~'¢) < 1. Now, we have

Ce(r) <0 (a\/m) + MI/E‘I [%wmm (W - 1)}

So,

2
@)’ S (R + B [y querrele ™ — 1)

Now, to bound the second term, by Jensen’s inequality, we have

A

-w 2
I |:]1\W|>QVETR_16(6 B 1) :|

2
-W
V[I/E‘:r |:]1|W‘>O‘V€TR_1E(€ B 1):| T Wiz

So, we have

E [6(2)] S 0RO+ E |1y s vermr(e™” = 7]

We will now bound the second term above, [y |:]l|W\>oc m(e_w — 1)2} , in two separate cases, when



High-dimensional Location Estimation via Norm Concentration for Subgamma Vectors 19

LW <1
2. W >1

When |[W| < 1, by linear approximations to the exponential function, we have
(e —1)2 < W2

So,

W 2 2
‘I/[E/ ]1|W\>aVeTR*15ﬂ|W|S1(e B 1) i| S ]l\W|>a\/sTR*16 W

E
W~N(0,eTR—1e)
QQ(GTR_le)e_Q(az)

On the other hand, when [W| > 1

-w 2
I |:1\W|>max 1 a\/eTRfle)(e B 1) :|

</
/.

1+a ETR 1 ) 1 2 ( )2 o0 1 w2 ( )2
—————¢ 2Tr (e ¥ — 1)“dw +/ —————e¢ 2Tr (e ¥ — 1)*dw
vV 27T6TR_16 I+avVeTR-Te V2melT R—1e

w2

e 2T Te (e¥ — 1)%dw

A

(
1+avVeT R—1le V27T€TR 16

w?

T2 TR T 2%

A

/1+a\/eTR Te \/27T6TR 16

T 2Tr 1 dw

1 (w—2eTR=16)2
_ 2R / .
1+avel R—1¢ V2nel R—1e

hS e~ U= +e7) < (eTR_le)e_Q(az) since [’ R™1e| < 1/4
Thus, we have shown that

E [C(2)%] S 0*("R71e)e ) 4 (TR e)em D)

z~fr

The claim follows. O

The next Lemma B.5 shows that for small ¢, the covariance of the appropriately transformed version of the shifted score
sr(x + €) is similar to the corresponding transformation of the Fisher information matrix Zg.

Lemma B.5. Suppose fr is a R-smoothed distribution on R?* with Fisher information matrix Tg. Let M € R4*¢ be a
symmetric matrix such that M = 0. Then for any € € RY with |e" R~1e| < 1/4, we have, for every v € R% with ||v|| = 1,

vl ( E [Ml/QIglsR(x—l—e)sR(x—Fe)TIElMl/Q} — Ml/QI§1M1/2> v

z~fr

TR—1
SVelR-1e- (vTMl/QI};lMl/Qv)\/log ( sup wa)

weSd—1 u)TIRw
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Proof. We have, by definition of score,

E [sr(z+¢)sr(z+e)'] =

/[ 4 fr(z )va(ere)(va(ere)) dz

o~in 7ICETE
VfR( )(Vfr(x)"
/fR T — Fr(@)? dx
T )T
= Znt [(fate =0~ fate)) (LTI o,
_ I ACTA P

NT

~Tot B [@(m)W’*( }QZ{R( V]

where (. (z) = %&)f’?(z) Now, since sg(z) = <L R(S) the above is equivalent to

E [SR(JI +e€)sp(z+ e)T] —Ip= E}R [Ce(x)SR(x)SR(l’)T]

z~fR T~

Left and right multiplying both sides by M /27", this is

E [MWI;SR(QC + €)sgr(z + e)TIglMl/ﬂ — MY2T M2 = MYPT! [ge( )sr(x)sr(x)T] Izt MY?

z~fR ch

Then, for v € R? with ||v|| = 1

z~fr z~fr

o (B, [MYZ3 snte 4 snle + OTTZMY) < MPTANYE ) o= B [ee)67 MY T ()]

Then, using Cauchy-Schwarz,

W7 < E [MYVT s (e + e)sp(o + €T M2 - M1/2131M1/2> v
z~fR

(10)

< LB, Pl B[0TI sn(o) ]

To bound the second term inside the square root, recall that by Lemma B.1, we have

sgr(z) = ZEz[RAZR]

So, by Jensen’s inequality, we have

E [(v"M'Y2I; sp(x) = E (v TMVPTLY R [R1ZR])4]

z~fr z~fr | Zrlz

= E | E [vTMl/QI;RlZR]‘*]

z~fRr _ZR\:E

IN

E | E [(vTM1/2I§1R1ZR)4]]

z~fr | Zr|x
— %E {(UTMl/QII;lR—lzR)éL}

R

Now, since Zp ~ N(0, R), we have that v MY2Z 'R Zp ~ N(0,v" MY2Z' R7*Z;' M'/?v) is a 1-dimensional
Gaussian. Thus, using the standard fact about the 4™ moment of a 1-dimensional Gaussian, we have

E [(UTMl/QI};lSR(I))ZI} S % I:(UTMl/QzlglR—lzR)él} :3(’UTM1/21-1;1R_1I§1M1/2’U)2

z~fr
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For the first term under the square root in (10), by Lemma B.4, for any o € R such that a?(e? R=1¢) < 1, we have

E [CE(‘T)Q] 5 (GTRilﬁ)(OﬂeiQ(aQ) + e*Q(az))

z~fR

So, combining the above with (10), we have

o7 ( E [Ml/QIEISR(x—FG)SR(x—|—€)TIEIM1/2 _ Ml/QI§1M1/2> v

z~fr

5 (UTM1/2IE1R711-§1M1/2U)\/(GTRfle)(OZQefQ(aQ) + e*Q(az))
< (UTMl/QII?R_lIglMl/QU)V eTR—le(ae_Q(o‘Q))

. o MYV2I 'R MY/ 20
— R R
Setting o« = O (\/log T AT Aty yields

,UT< E [Ml/QIglsR(x—ke)sR(x+e)TI§1M1/2 —M1/22R1M1/2> v

z~fr

TAf1/27— 1 p—17-1ps1/2
Sm_(vTMl/QIRlMl/QU)\/IOgU MY2Tp R, M'Y/?y

T M2  MY/2y
Since
T MY R MY 20 wl R~ 1w
IMUPT M2 pegh wlZgw
the claim follows. O

B.3. SubGamma concentration of score

In this section, we establish that every one-dimensional projection of the score function sg after applying a symmetric PSD
linear transformation is subgamma with appropriate variance and scale parameters. We begin by showing a bound on the
Jacobian of the score, which we make use of in future lemmas.

Lemma B.6. Let s : R? — R? be the score function of fr, the R-smoothed version of distribution f. Let J,,, be the
Jacobian of sp. We have that
JSR = _R_l

Proof. Taking the gradient in Lemma B.1 wrt €, we have
va(x+€) - FE |:e€TR71ZR—%€TR715 (R_lzR—R_lﬁ):|
[r(z) Zrlx
So,

e'R7'Zr—1"R7e (-1 _ p-1
oty Va0 falato) _ Eaaie T (RZn— R10)]
fr(z+e€) fr(z) Ezpne [eeTRleR—%eTRfle}

Now, let ¢ = yuv fory € R, v > 0 so that ||v|| = 1. Now, e B 'Zr=3¢"R™"e gnd T R=1 Zp, — vT R~'¢ are monotonically
non-decreasing in vI R~ Zr. So, by Lemma C.1, they are positively correlated. That is,

oI R [eETRflzR_%eTRfl“ (R_lZR —R_le)} > E [eETRﬂZR_%GTRﬂE} . (UT ZEI [PleR —R_16]>
R|T
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So,

v'sp(z+e)>v" E [R7'Zr— R '

ZRg|x
Now, by definition of Jacobian

0
Jspv= [8781%(% + ’Vv)}

v=0
So, in (11), taking the derivative wrt v and setting v = 0, we get

UTJSR’U > TR

as required.

Y

O

The next lemma shows that every 1-dimensional projection of the score sg(z) is subgamma with appropriate variance
and scale parameters. As a corollary (Corollary B.8) we obtain that every 1-dimensional projection of the score when

transformed using a symmetric PSD matrix is also subgamma, with appropriately transformed variance and scale.

Lemma B.7. Let si : RY — RY be the score function of an R-smoothed distribution fr, with Fisher information matrix Tp.

For any fixed v € R¢ with ||v|| = 1, we have

H’l)TRl/2SR( )‘ }S (1.6)k_2]€k/2(UTRl/QIRRl/Q'U)

z~fr
Equivalently, for any v € R, vT RY/2s r(z) is a subgamma random variable.

v RY2sp(x) € T(wT RY?TrRY?v,1.6|v|)
Proof. For z,v € R%, by Lemma B.1, and Jensen’s inequality,

frla+7) = fr(e)er =0 R
Sety = RY/2y. Then,
. TS xT
fr (z+7 - sign(y"sr(2))) > fr(z)e *=l/ /e
Now, by Lemma B.6, we have,

v sr(r +7) =7 sr(2) + 9" Jsny

— AT sp(x) +oTRY2J, RV?v
>Tsgp(z) — 1
Similarly,
sr(x —v) <Alsp(x) +1
Combining these two, we have
W sr(@ -+ -sign(y sr(2))| = [y sr(x)| - 1
So, for any k > 2, and |77 sgr(z)| > a fora := 2+ 1.2Vk

fr(z -+~ -sign(y"sp(2)) " sr(z + 7 - sign(y"sr(2)))|"

. %fR(x)estR(wn T sp(x)] —1)"

(

= fr@)y" sr(a ( e SRW( _M)k>
()
1

> fr(@) " sk(x

> fr(@)ly" sr(@)]" -
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Thus,
Fr@ sp(@)* < 7 (fale 1 sl - + fal@ + )b sal@ + 1))

when k£ > 2 and |77 sp(z)| > o. Integrating this,

z~fr

E [sn@l) = [ fa@n s d
<2 [ fa@hTse@)* - 1fale - h snle =) = 3 fale+ ) sale +7)lds
<2 [ Ta(@h T s0(@) Lyt <ads

< 2/fR(x)|7T5R(x)|2O‘k_2]lhTsR(a;)\<(xdx
< 20" 2E[y sp(2)’] = 2072y Ty

Finally, for any k£ > 2,
20572 = 2(1.2VE +2)F"2 < kF/2 . 1.6F2
The claim follows. O

Corollary B.8. Let si : R — R? be the score function of an R-smoothed distribution fr with Fisher information matrix
Tr. Let M € R¥*? be a symmetric matrix such that M = 0. For any fixed v € R? with ||v|| = 1, we have

E [IUTM1/2IE1$R($)|]€] < (]HGHMl/ZIlglRfl/Qv”)k72kk/2(vTM1/QIglM1/2v)

z~fr
Equivalently, v M'/2T ' sp(z) is subgamma.
W MY sp(x)| € T(oT MY 2T MY 20, 1.6 MY2Z5  R™1/2v]))

Lemmas B.9 and B.10 proved next are helper lemmas that we make use of to prove the main result of this section,
Lemma B.11, which shows that every one dimensional projection of sp(z + €) for z ~ fg is subgamma.

Lemma B.9. Let s : RY — R? be the score function of an R-smoothed distribution fr with Fisher information matrix
Tr. For any fixed v € R with ||v|| = 1, € R, k > 3, and e € R with0 < "’ R~ < 1/4, if v R 2sp(x +€) >
max(2vk + 2,9.5), then, for v = RY/?v,

max (fR(x — )|y sr(z — 6)|k, frx+ e+ sp(x+e+ 7)|k')

G| =

fr@)Y sr(z +€)|F <

Proof. Let a := fi?agf_)e). By Lemma B.1, we have

o= E [e—eTRleR—%eTRfle] (12)
ZR|33+€

Let v = R'/2vy. We will consider two cases

When log o < %’yTs r(z + €) — 2. First, by Lemma B.1 and Jensen’s inequality, we have

fr(z+e+7) > 7 sr(@te)—1/2
frlx+e€) —

Also, by Lemma B.6, we have
’yTsR(x +et+v)> ’yTsR(a: +e)—1

So,

k
1
T +e+ Top(x+e+~)|F > x4+ eV snp(x+e ke'YTSR(HE)i% (1—
fr( NN sr( NN = fr(z+ )y sr(z + € VT (sp(x + €)
k1
Tepate—1 2

TS xT €)—
> fr(z+ O sa(@ + ke “FEH
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Since 7T sg(z +¢€) > 2k + 2,

frl@+e+7)sr@+e+)F > frlz +¢)|sp(x + €)|Feir snlto

So, since
RN :1C) R S AT
fR(.’E + E) -
we have
fr(@+e+7)|sp(z+e+7)*

o] =

f@)lsr(z +€)|* = afr(z +e)lsr(@ + )" <

When log o > %’YTSR(.% + €) — 2. Evaluating (12) at = — € gives

fR(.T B 6) — E |:676TR_1ZR7%€TR_16:|
fR(l') ZR|:D
Taking the gradient wrt €, we have
Vfir(x—¢€)

o = RN (Zr+ e R bR
nle |

so evaluating at = + e,

Vfr() [ 51 —eTR'Zr—L1TRY
——— = Lk |R " (Zp+ € RT3¢ €
fR(iL‘ + 6) Zr|z+e L ( R 6)6 }

In particular,

xT [ T p—1 T p—1
7 V fr(z) TR (Zp 4 e)e B Znb<TR e}
frx+€)  Zglotel
Define y = e B 'Zr—¢"R™'c o that B |, — e3¢ Bl and
Y R|z+e Yy
T —1 T —1 1. T —1
ETRil(ZR 6)676 R ZRfée R e __ _655 R eylogy

is concave, so by Jensen’s inequality,

-1 -1 -1 1
eTiva(I) < ez BTle (e*%ETR 6oz) log (e*%ETR Eoz) = —aloga+ -ae’ R e
fr(z +¢€) 2

So,

T (z) = 7 V fr(x)

1
€ SR < —loga+ —e'R7te

fR(.’E) 2

Finally we consider the move to x — €. By Lemma B.6, we have
3
e'sp(z—¢) <sp(x)+ e Rte < —loga + §6TR_1€
By Lemma B.1,

fR(m - 6) _ E e—ZETRflzR—ZeTRfle} _ E 2 > E [y]Z _ a2e—eTR716
fR(x + 6) Zp|x+e

- Zp|x+e y Zp|x+e
Since loga > 39T sgp(z +€) — 2,
3 3 3 19
—elsp(z —€) > Z’yTsR(x +e)—2-— ieTRfle > Z’yTsR(x +e)— 3 > yTsg(x)

where the second inequality comes from the fact that %’}/TS r(z +€) —2 > 0, so that the function is decreasing in e/ R~ ¢,
and €’ R~'e < 1/4. Thus,

fr(z— W sp(a —e)F > ae™ B fr(a)|sp(z + €)|*

. . . T p—1
Since our assumptions give ae™ € R > 5 we get the result. O
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Lemma B.10. Let s : R — R be the score function of an R-smoothed distribution fr with Fisher information matrix
Ig.

For any fixed v € R4 with ||[v|| = 1, z € R% k > 3and e € R* with 1/4 < €’ R™'e < 0, if v RY?sg(x + €) > a for
o = 2+ 1.2k, then we have for v = R'/?v,

(frx =) sr(@+e=NI"+ frlz+7)|sr(z + e+ 7))

RNy

fr@)V sr(z +o)F <

As an immediate corollary, the statement is also true when 0 < e’ R™'e < 1/4 and v" R ?sp(x) < —c.

Proof. By Lemma B.1 and Jensen’s inequality,

fr(z+7) > fr(@)e? n®) ) /e

By Lemma B.6, we have that
Ysp(z+e+v) >y sp(z+e) —1

Since the right hand side is positive by assumption, we have
W sr(z+e+7) 2 sr(z+ )] — 1
Now, when eI’ R=1e < 0, we have by Lemma B.6, and since |[¢Z R~ 1¢| < 1 that
vsp(x) >y sp(z+e€) — 1

So,

fr@+ N sr@+e+N* > —=fal@)e’ @ (W sp@+ e —1)"

Y

S-Sl

fa@)e " H O (s + 0] 1)

1 .r _ 1 *
frl@)h sn(e+ ol (f e (1 ) )

> fr(x)|y sr(z +€)|" - <6—3/26a—144k/a>

> fr(@) sr(z+e)F -4

Y

O

We are now ready to prove that every 1-dimensional projection of sg(x + €) for z ~ fg is subgamma with appropriate
variance and scale. As a corollary (Corollary B.12), we obtain that every 1-dimensional projection of sg(x + €) when
transformed by applying a symmetric PSD matrix is also subgamma, with appropriately transformed variance and scale.

Lemma B.11. Let sy be the score function of an R-smoothed distribution fr with Fisher information matrix Ig. For
k > 3 and e € R? such that |¢T R~e| < 1/4, we have that for any v € R? with |jv| = 1,

E |[vIRY?sp(z+ e)ﬂ < (15)*2k*/2 max ( E [vTRY2sg(z + €)sr(z + €)T RY?v), UTRl/QIRR1/2v>

z~fr z~fRr

Equivalently, v" R'?sp(x + €) is a subgamma random variable.

vIRY2sp(x+€) el (max ( E [vTRY2sp(x + €)sr(z + )T RY?v], vTRl/gl'RRl/Zv) ,15>

z~fr
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Proof. Without loss of generality, we only show the €/ R~'e > 0 case. As before, let v = R'/?v. Using Lemma B.9 and
Lemma B.7, we have

/—oo oo fR(ZL' - 6)|’YTSR(x)|k]]"yTsR(x)>max(2\/E+2,9.5)dx

1
< [ gmexinte 200" sn(e =201 fule + ) snte +)|) da

2
2 B I sn@)l
2 _

5(15)’C *KF2 (Y Iry)

<
Then, we can start bounding the k" moment quantity in the lemma. Using Lemma B.10, we have

E [ sp(z+o)t] = / fr(e — O sr(e)|dz
[700700]61

z~fr

—2 [ fa(o— O su(@)]* - {ale — = hTse(@ - = {fale - e+ D) stz +)['ds

< /fR(x - E)WTSR(x)\k]HTsR(x)z_max(Q\/E+2,9.5)dx
Now, using the previous claim, we get

E [h7sa(o+ o))"

I~ TR

4 _
< 2/fR(=T - 5)|’YT5R($)|k]l\»YTSR(z)\gmax(Q\/E+2,9,5)dx + 3(1'6)k Qkk/z(’YTIRfY)
_ 4 _
< Z/fR(x — )|y sr(z)|*(max(2VE 4 2,9.5))F 2]1\"/TSR(I)\Smax(2\/E+2,9.5)d‘r + 5(1.6)’C 2kR/2 (N T Try)

4
< 2max(2Vk 4 2,95)*2 E [|7Tsp(z+€)?] + 5(1.6)k’2kk/2(7TIRfy)

z~fr

4
<2225 E (7 s(a+ O]+ £(L6) 2K (0 Th)
~Ir

< 3K2(25) P max( E [ sr(@ + 6?7  Zr)
~JR

< k*2(15)%2 max ( E [YIsr(z+ €)sp(x +€)TH], ’yTIRW)

z~fr

as required. O

Corollary B.12. Let sy be the score function of an R-smoothed distribution fr with Fisher information matrix L. Let
M € R4 be a symmetric matrix such that M 3= 0. For k > 3 and ¢ € R? such that |¢" R™'¢| < 1/4, we have that for
any v € R with ||[v]| = 1,

E || MY?*T sp(x + e)ﬂ

z~fr

Tp—1
< (15| M2 RV 20 ||)F =25k 2T <M1/2I,;1M1/2 <1 +0 <\/6TR16\/log sup wa))) v

weSd—1 U}TIR’LU

In other words,

wegd—1 wTIRw

TR-1
M1/2I§15R(x +e)el <M1/2I§1M1/2 (1 +0 <\/ eTR—le\/log sup ww)) ,Ml/QIlglR_l/2>
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Proof. By the Lemma,

E {|UTM1/21 Lsp(z + )|k
x~fRr

< (15”M1/QIE1R71/2U”)k72k_k/2
max< E [UTMl/nglsR(ere)sR(erE)TII?MI/QU} ,vTMl/zlElMl/?v)

z~fr

Then, using Lemma B.5, the claim follows. O

B.4. Estimation of inverted score

In this section, we use the subgamma bound on 1-dimensional projections of sz (x + €) for x ~ fr from Corollary B.12, as
well as our norm concentration bound for subgamma vectors from Theorem 5.1 to establish a bound on the deviation of our
inverted empirical score at x + € from its expectation.

Lemma B.13. Let f be an arbitrary distribution on R® and let fr be the R-smoothed version of f. Let Lr be the Fisher
information matrix of fr. Let ¢ € RY be such that €' R~'e < 1/4. Consider the parametric family of distributions
In(x) = fr(z — N). Suppose we have n i.i.d. samples x1,...,x, ~ fp. Let M € R¥ be a symmetric matrix with
M =0 Leté = 25" Tplsp(z; — A —e). Let

weSd—1 wTIRw

Tp-1
T:= Ml/QI§1M1/2 (1 +0 (\/ eTRle\/log sup wa>>

Then, with probability 1 — §, we have

|l — E [I sr(z —6)]|lm
BNt B [T B I S Nl
n3/2/Ti(T) o

Proof. By Corollary B.12, MY/2T;'sp(x) is (T, M*/?Z;' R=1/2)-subgamma. Then, applying our subgamma norm
concentration bound from Theorem 5.1 gives

€~ IEEfR [Zr'sr(z —€)] |u

1 n
- HM” <n S Tyt snlr — A~ e>) - M2 B [Tg'snw—e)] H
=1 )

1 n
= H (n ZMUQI}?SR(:Q —A- e)) - E [M1/2I§15R(x - e)] H
i=1

z~fr

Tr(T T| log 2 MY2TZ R=1/2| log 2 ML/2T-1R-1/2)2 9
< /T ( )+4 [Tl 0g5+16ll R I 0g5+8|| r I ”Flogi
n n n n3/2 TI“(T) )

B.5. Local MLE

In this section, we show how to estimate our location A at rate that depends on Zr when given samples from f), along with
an initial uncertainty region S that is guaranteed to contain \.
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Algorithm 3 High-dimensional Local MLE

Input Parameters:
.. . . ii.d. . .
¢ Description of distribution f on R4, smoothing R, samples x1,..., %, "R f A and initial estimate \;
1. Let Zy be the Fisher information matrix of fg, the R-smoothed version of f. Let sg be the score function of fx.

2. For each sample z;, compute a perturbed sample 2, = z; + N(0, R) where all the Gaussian noise are drawn
independently across all the samples.

3. Leté =131 Tplsp(ax) — A1) andreturn A = Ay — &

Lemma B.14 (Local MLE). Suppose we have a known model f on R%, and that fr is the R-smoothed version of f, for
R = 121, for scalar r > 0. Suppose fr has Fisher information matrix Tr. Further, suppose that the unknown true

parameter is )\, and that we have access to an initial estimate Ay = \ + € with the guarantee that ¢/ R=e < 7 for 7 < 1/4.
1
——.
2 log? HIT% I
with probability 1 — & over n. samples from f*, the output of Algorithm 3 satisfies

1A= Al < (1 +0 (1)) \/Tr(MWI’;lMl/Q) +4 | M/2T5 M2 log §
- v n n

. _ 1, log 2
Suppose there exists a large parameter v > 1 such that 7 < Further, suppose > > 4v*||Z;" || % Then,

+0 (ry/larrezgans)

Proof. By the guarantee on A\; = \ + ¢, we have that €/ R~'e < 7. Let T be as defined in Lemma B.13. Now

w'R w25
sup T =2
wegi-1 WIIpw r

1

—1)
2 IZZ 1
72 log® — %%

so that since 7 <
T p—1
w! R~ w 1
ﬁlog( sup  ———— > <=
wsgi—1 Wi Tpw vy
So, we have

1
Te(T) < Te(MY2Z5' M1Y/?) (1 + )
gl

and
1
IT| < | MYPZ MY (14 =
r v

So, by Lemma B.13

le— E [Iz'sr(z —o)llu

z~fr

1/27=1pr1/2 M2T=1 0 1/2])| oo 2 1/27—-12
<(1+0(1)) WM ) | et spnez :

log —
Y n n r2n3/2\/Tr(M1/QI§1M1/2) d

4 161V Z5 og 3

rn



High-dimensional Location Estimation via Norm Concentration for Subgamma Vectors 29

. 1/2
Since r? > 442||Zp, [t 2 1< (L) —+A——. So,

) = 2 —1
moor log 5 IZ7"

1/2

IMPTE o sIM AT <log§>
" iz

n

| ML M2 log 2

n
2
since MM PTRD? [ IMPT ] - 7y
||M1/QIE1M1/2H ||M1/QIE1/2H = =R
Similarly, - == m So,
S| ML/2T=112 2 8 Tr(MZ* 2
|| = 12 logg < T ( R ) logg

r2n3/2\/Tr(M1/QI§1M1/2) 72n3/2 Tr(MI_l)

2Tr(MZz?
< 10g
Y Zx 1Hn1/Tr MIjy

.8 \/Tr(M1/2IR1M1/2)

using Lemma C.3

<3 -
So, we have
1 Tr(MV/2L;" M1/? M2 MY/2||log 2
e~ E [IRlsR(:v—e)]H §(1+0<)> \/r( R MY2)IMYPTE 2] log §
e~fr M Y n n

Now, using Lemma B.3

e— E [Ip'sp(z—¢)]|| =< \/||M1/2I§1M1/2||(6TR—16) < r\/||M1/2I§1M1/2||

z~fr

M
So, we have
le—eln <le= E [Ip'sp(z—o)]lm+lle— E [Ig'sr(z—e)]llm
z~fR z~fR
1/27-1pp1/2 MY2T=1 0172 loe 2
< (1+0(1)) \/Tr<M ) 10 A2 g
y n n
o (ryiarzgiar)

Now, since A= A —€éand A = A\ — ¢, X\ — )\ = ¢ — ¢. The claim follows. O
B.6. Global MLE

In this section, we state and prove our main theorem, which shows how to estimate the location \ on rate that depends on
Zg, given n samples from f*.

We begin by stating a result from the heavy-tailed estimation literature, which we will make use of to generate an initial
estimate \ 4+ €. We will then apply the result from the previous section to refine this estimate in order to recover our final
estimate.
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Theorem B.15 ((Hopkins, 2018; Cherapanamjeri et al., 2019)). There are universal constants Cy, C1, Co such that for
every n,d € Nand § > 27"/, there is an algorithm which runs in time O(nd) + (dlog(1/8))° such that for every
random variable X on RY, given i.i.d. copies X1, ..., X, of X, outputs a vector fis(X1, ..., X,,) such that

P lm_m o (\/TTT(LE) N \/”ZHlof(l/é)ﬂ s

where E[X] = pand E [(X — p)(X —p)T] =%

Algorithm 4 High-dimensional Global MLE

Input Parameters:

* Failure probability §, description of distribution f, n samples from f*, Smoothing R, Approximation parameter -y

1. Let X be the covariance matrix of f. Compute an initial estimate A; using the first 1/ fraction of of the n samples,
using an estimator from Theorem B.15.

2. Run Algorithm 3 using the remaining 1 — 1/ fraction of samples using R-smoothing and our initial estimate Ap,
returning the final estimate .

Theorem B.16 (Global MLE). Let f be a given model on RY, and suppose we are given n samples from f* for unknown \.
Let R = r%1, for 0 < r? < ||| so that Ig is the R-smoothed Fisher information matrix of f, and let 3 be the covariance
of f. Let M € R be any symmetric matrix with M = 0 and let dg := deﬁ-(M1/2I§1M1/2). Fix failure probability
1/8—« ) 2
0>0andlet2 < vy < (m) for some o« > 0. Let n > 074(HTAQH)2 (log% +dr + (%)) for large

enough constant C' > 0. Then, with probability 1 — 6, the output A of Algorithm 4 satisfies

1A= Al < (1+O(1>) \/TY<M1/2IR1M1/2) gy [ IMPTR A log §
B ¥ n n

Proof. By the guarantee from Theorem B.15, our initial estimate Ay = A + ¢ from Step 1 has the property that with
probability 1 — /2,

T(s) | 5log}

n/y n/y

We condition on the success of Step 1. Let n’ = n(1 — 1/7) > n/2 be the number of samples used in Step 2 to call the
Local MLE Algorithm 3. By our lower bound on 7,

X efi (2 4 Tr (2 Y log 4 n1/2
TZZ@%“”@H( >+dR+@>Z@72 M) +[Slogd ()
n

Vi \ Vg van! \Jdr +log ¢

lell* <

So, for large enough C, since v > 1, setting

yields that

Also T < 1/4since n’ > $(log 3 4+ dg). So, the condition on the confidence set S in Lemma B.14 is satisfied.
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By the constraint on n, we have

de(2)?

log %+ dg + ( =5=1 C .
r? > VO |Z| ( - ) >\ 571l

n ftl

We also have by Lemma C.2 that || Z;||/||Z]| < Ilﬁ;ﬁ%” < 2,50

5t 2¢/2
IZx" |l < log V2
\/5’737'

rz -

log

so the 7 constraint is that

2V2 <1
VO3 T

727' log2

the LHS is at most
0(70'9972'01) <1
since 7 < 1/ 'y5, with a constant that is arbitrarily small with C'. So the constraint on 7 of Lemma B.14 is satisfied.

Using the fact that n/ > % (log %),

r2n/ C ., Isiva [ da(®) 4
Tatios? = 2" Tzt logd \ vam V"85
T Tos? = 27 2 log ? \ Vil

C D) 4
> —72M og - by Lemma C.2
2 |2+ R|log 3 )

2

> 72 since R = r?I4 so that ||R|| = r* < ||X]|

So the conditions of Lemma B.14 are satisfied, and with probability 1 — §/2,

. 1 Tr(MY/275 M1/2 MY2T5 P M1/2| log 4
|A—A||Ms(1+0(7)) \/r( i )+4\/' r M| log 5

n n

+0 (ry/Iarvez; o)

1/27-1r1/2 MY2T= 0 M1/2)| loe
< (1+0(1)) \/Truw ) | 1ML A2 o

¥ n n

sincen’ =n(l—1/y)and 7 = %\/ thL;?g%. So, our total failure probability is J. The claim follows. O

Theorem B.17 (Global MLE, Informal). Let f have covariance matrix ¥. For any r* < ||X||, let R = r*1; and IR, be the

R-smoothed Fisher information of the distribution. For any constant 0 < € < 1,

~ Tr(Z5! I log 4
>\>\|2S(1+e)\/ r(nR )+5\/ E lOg‘;

2
with probability 1 — 9, forn > O, ((IEI) (log% + deﬁz(l'gl) + d‘fﬂ‘é?;))

Proof. First, if € > 1/4, we reset e = 1/4. Setting M = I so that dr = deff(l'gl), and setting v = % for sufficiently
large constant Cy in Theorem B.16 gives the claim. O
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C. Useful Results

The following is a continuous version of the rearrangement inequality (user940, 2015):

Lemma C.1. Let f, g : R — R be monotonically non-decreasing functions, and X be a random variable over R. Then
E[f(X)]Elg(X)] < E[f(X)g(X)]
Proof. LetY be an independent copy of X. By monotonicity,
(f(X) = F(Y))(9(X) —g(Y)) =0
always. Taking the expectation of both sides,
2E[f(X)g(X)] - 2E[f(X)g(¥)] > 0.

Since Y is independent of X, this gives the result. O

Lemma C.2. Let f be an arbitrary distribution on R?, and let ¥ be its covariance matrix. Let fr be the R-smoothed
version of f, with Fisher information matrix Lg. Then,

Ir= (Z+R)!

Proof. Follows from the fact that the covariance of fr is ¥ + R, and using Theorem 1.2 from (Hendeby, 2005). O

Lemma C.3. Let A, B be symmetric PSD matrices. Then
Tr(AB) < Tr(A)|B|

Proof. Let the eigenvectors of B be v1,...,vq. Then

d d
Tr(AB) =) vl A(Buv;) < [|B|| > v/ Av; = | B| Tx(A).

=1 i=1



