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Abstract. Continual learning (CL) requires a model to continually learn
new tasks with incremental available information while retaining previ-
ous knowledge. Despite the numerous previous approaches to CL, most
of them still suffer forgetting, expensive memory cost, or lack sufficient
theoretical understanding. While different CL training regimes have been
extensively studied empirically, insufficient attention has been paid to the
underlying theory. In this paper, we establish a probabilistic framework
to analyze information flow through layers in networks for sequential
tasks and its impact on learning performance. Our objective is to op-
timize the information preservation between layers while learning new
tasks. This manages task-specific knowledge passing throughout the lay-
ers while maintaining model performance on previous tasks. Our analysis
provides novel insights into information adaptation within the layers dur-
ing incremental task learning. We provide empirical evidence and practi-
cally highlight the performance improvement across multiple tasks. Code
is available at https://github.com/Sekeh-Lab/InformationFlow-CL.
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1 Introduction

Humans are continual learning systems that have been very successful at adapt-
ing to new situations while not forgetting about their past experiences. Simi-
lar to the human brain, continual learning (CL) tackles the setting of learning
new tasks sequentially without forgetting information learned from the previ-
ous tasks [3,15,20]. A wide variety of CL methods mainly either minimize a loss
function which is a combination of forgetting and generalization loss to reduce
catastrophic forgetting [11,13,18,30,31] or improve quick generalization [7,27].
While these approaches have demonstrated state-of-the-art performance and
achieve some degree of continual learning in deep neural networks, there has
been limited prior work extensively and analytically investigating the impact
that different training regimes can have on learning a sequence of tasks. Al-
though major advances have been made in the field, one recurring problem that
still remains not completely solved is that of catastrophic forgetting (CF). An
approach to address this goal is to gradually extend acquired knowledge learned
within layers in the network and use it for future learning. While the CF issue
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has been extensively studied empirically, little attention has been paid from a
theoretical angle [10,18,21]. To the best of our knowledge, there are no works
which explain what occurs when certain portions of a network are more impor-
tant than others for passing information of a given task downstream to the end
of the network. In this paper, we explore the CL performance and CF problem
from a probabilistic perspective. We seek to understand the connection of the
passing of information downstream through layers in the network and learning
performance at a more in-depth and fundamental theoretical level. We integrate
these studies into two central questions:

(1) Given a sequence of joint random variables and tasks, how much does infor-
mation flow between layers affect learning performance and alleviate CF?

(2) Given a sequence of tasks, how much does the sparsity level of layers on
task-specific training influence the forgetting?

The answers to these questions are theoretically and practically important for
continual learning research because: (1) despite the tangible improvements in
task learning, the core problem of deep network efficiency on performance assists
selective knowledge sharing through downstream information within layers; (2)
a systematic understanding of learning tasks provides schemes to accommodate
more tasks to learn; and (3) monitoring information flow in the network for each
task alleviates forgetting.

Toward our analysis, we measure the information flow between layers given a task
by using dependency measures between filters in consecutive layers conditioned
on tasks. Given a sequence of joint random variables and tasks, we compute the
forgetting by the correlation between task and trained model’s loss on the tasks
in the sequence. To summarize, our contributions in this paper are,

— Introducing the new concept of task-sensitivity, which targets task-specific
knowledge passing through layers in the network.

— Providing a theoretical and in-depth analysis of information flow through
layers in networks for task sequences and its impact on learning performance.

— Optimizing the information preservation between layers while learning new
tasks by freezing task-specific important filters.

— Developing a new bound on expected forgetting using optimal freezing mask.

— Providing experimental evidence and practical observations of layer connec-
tivities in the network and their impact on accuracy.

Organization: The paper is organized as follows. In Section 2 we briefly review
the continual learning problem formulation and fundamental definitions of the
performance. In addition, a set of new concepts including task sensitivity and
task usefulness of layers in the network is introduced. In Section 3 we establish
a series of foundational and theoretical findings that focus on performance and
forgetting analysis in terms of the sensitivity property of layers. A new bound on
expected forgetting based on the optimal freezing mask is given in this section.
Finally, in Section 5 we provide experimental evidence of our analysis using the
CIFAR-10/100 and Permuted MNIST datasets. The main proofs of the theorems
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in the paper are given in the supplementary materials, although in Section 3.4
we provide the key components and techniques that we use for the proofs.

2 Problem Formulation

In supervised continual learning, we are given a sequence of joint random vari-
ables (X;,T}), with realization space X; x T; where (x¢,y:) is an instance of the
X x T; space. We use ||.|| to denote the Euclidean norm for vectors and |||z to
denote the Frobenius norm for matrices. In this section, we begin by presenting
a brief list of notations and then provide the key definitions.

Notations: We assume that a given DNN has a total of L layers where,

— F(): A function mapping the input space X to a set of classes T, i.e. F(L)
X—T.

— f®: The I-th layer of F(X) with M; as number of filters in layer [.

— fi(l): i-th filter in layer [.

— F0J) .= fWo.  of®: A subnetwork which is a group of consecutive layers.

— FO) .= FLi) = @) o o fM): First part of the network up to layer j.

— o®: The activation function in layer [.

- ft(l): Sensitive layer for task t.

- ﬁt(L) = Ft(L)/ft(l): The network with L layers when I-th sensitive layer f()
is frozen while training on task ¢.

— m(T}): The prior probability of class label T} € T.

— M, yu: Thresholds for sensitivity and usefulness of I-th layer £ for task t.

In this section, we revisit the standard definition of training performance and
forgetting and define the new concepts task-sensitive layer and task-useful layer.

Definition 1. (Task-Sensitive Layer) The I-th layer, fU, is called a t-task-
sensitive layer if the average information flow between filters in consecutive lay-
ersl and I+ 1 is high i.e.

M; M1

1
A0S = =3 Y o (0 ) 2 )
i=1 j=1

where p is a connectivity measure given task Ty such as conditional Pearson
correlation or conditional Mutual Information [4,5]. In this work we focus on
only Pearson correlation as the connectivity measure between layers | and [ + 1.

Without loss of generality, in this work we assume that filters fi(l)7 i=1,..., M,
are normalized such that

Ex, o, [fX)T] =0 and V[[OX)IT] =1, 1=1,...,L,



4 J.Andle and S. Yasaei Sekeh

Therefore the Pearson correlation between the i-th filter in layer [ and the j-th
filter in layer [ + 1 becomes

p(fi(l)af](l+1)|Tt) = Ex,,1,)~D, [fi(l)(xt)f;Hl)(XtHTt . (2)

Note that in this paper we consider the absolute value of p in the range [0, 1].

Definition 2. (Task-Useful Layer) Suppose input X; and task T; have joint
distribution Dy. For a given distribution Dy, the l-layer 1 is called t-task-useful
if there exist two mapping functions Gy : Ly — Ty and K; : Xy — L; such that

Ex, 1)~p, [Tt - Gro fO(K_1 0 Xy)] > ya. (3)

Note that here fO is a map function fO : L;_1 — L.

Within this formulation, two parameters determine the contributions of the I-
th layer of network F') on task T}: 7, the contribution of passing forward the
information flow to the next consecutive layer, and -4, the contribution of the
[-th layer in learning task T;. Training a neural network Ft(L) € F is performed
by minimizing a loss function (empirical risk) that decreases with the correlation
between the weighted combination of the networks and the label:

Ecx, 1)~ Le(F (X0), T) } = —Ex, yop A Te - (b + P (X))
S
(4)

We remove offset b without loss of generality. Define

llw) == Y wr, - FP (X, (5)
FeF

therefore the loss function in (4) becomes Ex, 7,y~p, {7t - £+(w)}. Let w; be the
set of parameters when the network is trained on task T; that minimizes (4):

wi = argming, Bx, ny~p, {Ts - (€(wr))} (6)
where ¢, is defined in (5). The total risk of all seen tasks t < 7 is given by

> Ex, 1y~ {Te - lelwr)} X

t=1

The set of parameters when the network F() is trained after seeing all tasks is
the solution of minimizing the risk in (7) and is denoted by w?.

Definition 3. (Performance Difference) Suppose input X; and task T; have
joint distribution Dy. Let ﬁt(L) = Ft(L)/ft(l) € F be the network with L layers
when l-layer O is frozen while training on task t. The performance difference
between training Ft(L) and ﬁt(L) is defined as

A" B =B, e, {L(FP (X0, 1) = LAEP (X0, T . (8)
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Let wi and W} be the convergent parameters after training Ft(L) and ﬁt(L) has
been finished for task Ty, respectively. Define the training deviation for T as:

O (wf |wr) == blwi) — 4(@7). (9)
The optimal performance difference in Definition 3 is the average of 6; in (9):

L) (L K|~k * ~ %
d(F FD) = Ex, 1y~p, [Tr - 00wi|50)] = Eex, oy, [Te- (Ge(wf) — (&)

3 Continual Learning Performance Study

Our goal is to decide which filters trained for intermediate task T} to prune/freeze
when training the network on task T;yi, given the sensitivity scores of layers
introduced in (1), so that the predictive power of the network is maximally
retained and not only does forgetting not degrade performance but we also gain
a performance improvement. In this section, we first take an in-depth look at the
layers and show the relationship between task sensitive and task useful layers.
Second we provide an analysis in which we show that sensitive layers affect
performance if they get frozen while training the network on the new task.

3.1 Performance Analysis

The motivation of our objective in this section is that the difference between the

loss functions produced by the original network F(X) and the frozen network ﬁt(L)
should be maximized with respect to sensitive and important filters. We begin
by showing that sensitive layers are useful in improving network performance.

Theorem 1. For a given sequence of joint random variables (Xy, Ty) ~ Dy and
network F) | if the I-th layer, fO is t-task-sensitive then it is t-task-useful.

Theorem 2. Suppose input x; and label y; are samples from (X, Ty) with joint
distribution Dy. For a given distribution Dy, if the layer [ is a t-task-useful layer,

Ex, 1)~p, [Tt - Gro fO (K11 0 X4)] > u, (10)

where Gy : Ly — Ty and K; : X; — L; are map functions. Then removing layer 1
decreases the performance i.e.

AR B = B, e, { LD (X0, 1) = LD (X0, T | > K ().
(11)

Here ﬁt(L) = Ft(L)/ft(l) € F is the network with L layers when layer 1 is frozen
while training on task t. The function K (vy) is increasing in .

An immediate result from the combination of Theorems 1 and 2 is stated below:
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Theorem 3. Suppose input x; and label y; are samples from joint random vari-
ables (X4, Ty) with distribution Dy. For a given distribution Dy, if the layer is a
t-task-sensitive layer i.e. Ay(fO, fETD) > ny, then the performance difference

between d(Ft(L),ﬁt(L)) is bounded as

AF B i= B, oy, { L (X0, 1) = LY (X0, T | = g(m),
(12)
where g is an increasing function of ny. Here ﬁt(L) = Ft(L)/j?fl_)1 € F is the
network with L layers when layer | is frozen while training on task t.

One important takeaway from this theorem is that as sensitivity between layers
Ny increases the performance gap between the original and frozen network’s loss
functions increases. An important property of filter importance is that it is a
probabilistic measure and can be computed empirically along the network. The
total loss (empirical risk) on the training set for task T} is approximated by

ﬁ > yili(we; X, ye), where ¢y is a differentiable loss function (5) associated
) (xt,y¢)
with data point (x¢,y;) for task T; or we use cross entropy loss.
p Y Py

3.2 Forgetting Analysis

When sequentially learning new tasks, due to restrictions on access to examples
of previously seen tasks, managing the forgetting becomes a prominent challenge.
In this section we focus on measuring the forgetting in CL with two tasks. It is
potentially possible to extend these findings to more tasks.

Let w; and wf,; be the convergent parameters after training has been finished
for the tasks Ty and Ti41 sequentially. Forgetting of the ¢ task is defined as

Or = ly(wiia) — le(wy) (13)

In this work, we propose the expected forgetting measure based on correlation
between task T3 and forgetting (13) given distribution Dy:

Definition 4. (Expected Forgetting) Let w; and w;,, be the convergent or op-
timum parameters after training has been finished for the t and t + 1 task se-
quentially. The expected forgetting denoted by EO; is defined as

EO; :=Ex, 1,)~p, [T - ’ (le(wisr) — be(wy)) H : (14)

Theorem 4. Suppose input x; and label y; are samples from joint distribution
Dy. For a given distribution Dy, if the layer | is a t-task-useful layer,

Ex, ), [Tt - Gro fO(Ki—1 0Xy)] > yu, (15)

then expected forgetting EO, defined in (14) is bounded by €(vy), a decreasing
function of vy i.e.

EO, := Ex,,1,)~D, {Lt(ﬁt(ﬂ(xt),n) — Lt(Ft(L)(Xt)7Tt)} <e(va),  (16)
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where Ft(+1 = F(L%/ft_li_)1 € F is the network with L layers when layer 1 is frozen
while training on task t + 1.

A few notes on this bound: (i) based on our finding in (16), we analytically show
that under the assumption that the [-th layer is highly ¢-task-useful i.e. when
the hyperparameter -4 is increasing then average forgetting is decreasing if we
freeze the layer [ during training the network on new task T;y1. This is achieved
because €(y) is a decreasing function with respect to 74; (ii) by a combination
of Theorems 1 and 2 we achieve an immediate result that if layer [ is ¢-task-
sensitive then forgetting is bounded by a decreasing function of threshold 7y,
€(ny); (iil) We prove that the amount of forgetting that a network exhibits from
learning the tasks sequentially correlates with the connectivity properties of the
filters in consecutive layers. In particular, the larger these connections are, the
less forgetting happens. We empirically verify the relationship between expected
forgetting and average connectivity in Section 5.

3.3 A Bound on EO,; Using Optimal Freezing Mask

Let w; be the set of parameters when the network is trained on task T3, the
optimal sparsity for layer f) with optimal mask m*t?_l while training on task

T;+1 is achieved by

(i) = argmin Eox, zyn, {|Ti - (G(miy © @) = 6w))]}, (17)

Wt41,M

where m*gl is the binary mask matrix created after freezing filters in the [-th

layer after training on task T; (masks are applied to the past weights) and before
llm” 24 llo

o D] the optimal sparsity of frozen

training on task Tyy;. Denote P*%) =
filters in layer [ in the original network F(L),

Definition 5. (Task-Fully-Sensitive Layer) The I-th layer, f), is called a t-
task-fully-sensitive layer if the average information flow between filters in layers
1 and 1+ 1 is mazimum i.e. A(fO, fATY) = 1 (a.s.). Note that here p in (1)
is a connectivity measure which varies in [0, 1].

Theorem 5. Suppose input x; and label y; in space X; X Ty are samples from
random variables (X, Ty) with joint distribution Dy;. For a given distribution Dy,

Hm ¢+1”0

ooy 1 (a.s.), this means that

the entire layer 1 is frozen when training on task Tii11. Let wtj_ll) be the optimal

weight set for layer |, masked and trained on task Tyyq, wtfi = m*§21 © w*gl_gl,

Then the expected forgetting Eét defined in
EO; = Ex, 1y, {UT: - (G:(@51) — Le(wi)))}, s bounded by

if layer 1 is t-task-fully-sensitive and P*(l)

__ 1 2
EO, < iE(XtyTt)NDt {Tt - Apnaz <C+ )\Sam> } , C & C. are constants, (18)

is the mazimum eigenvalue of Hessian V£ (wy).

and \j***
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Based on the argumentation of this section, we believe the bound found in (18)
can provide a supportive study in how freezing rate affects forgetting explicitly.
In [18], it has been shown that lower AJ*** or equivalently wider loss function L,
leads to less forgetting however, our bound in (18) is not a monotonic function
of maximum eigenvalue of Hessian. Therefore we infer that when a layer has
highest connectivity, freezing the entire layer and blocking it for a specific task
does not necessarily control the forgetting. Our inference is not only tied to the
reduction of A7*** which describes the width of a local minima [12], but we also
need to rely on other hidden factors that is undiscovered for us up to this time.
Although we believe that to reduce forgetting, each task should push its learning
towards information preservation by protecting sensitive filters and can possibly
employ the same techniques used to widen the minima to improve generalization.

3.4 Key Components to Prove Theorems

The main proofs of Theorems 1-5 are provided in supplementary materials, how-
ever in this section, we describe a set of widely used key strategies and compo-
nents that are used to prove findings in Section 3.

Theorem 1 To prove that a task-sensitive layer is a task-useful layer, we use key
components: (I) Set 7;(s) = s.0;(s) where o, is activation function:

M, M
A D F ) o 3N wwE | Y 7 (A0X0)) 1T =y (19)
=1y €Ty j=1

(II) There exist a constant C; such that

M,
Ct Z Z ytﬂ—(yt)EXdyt [fi(l)(xt)‘Tt = yt}
=1y €Ty
M, M1
=3 7wk | > (10X0) 1T = we | - (20)
=1y, €Ty j=1

Theorem 2 Let w; and w; be the convergent or optimum parameters after train-

ing Ft(L) and ﬁt(L) has been finished for task t, respectively. Here we establish
three important components:
(I) Using Taylor approximation of ¢; around @;:

* ~ 1 * ~ ~ % * ~
br(wy) — le(wf) =~ 5(“1& - Wt)TVQZt(Wt Jwy —wp). (21)

(II) Let A™" be the minimum eigenvalue of V2¢,(&}), we show

1 * ~ % ~ % * ~ %
§E(Xt,Tr,)~Dt [Tt ’ ((Wt - wt)TVQ&(wt)(wt - Wt))]

1 Ymin * ~ %
> SEx, o, | T (Xl — 7)) - (22)
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(III) There exist a constant C" and a map function G; : £; — Ty such that

]E(Xt,Tt)NDt |:Tf Gl OO'(l) (( )Xt):|

< CY Ex, 1)~D, [Tt -Gjo ‘Uﬁl)(wt*Xt) — at(l)@fxt)” . (23)

Theorem 4 Let wf,; be the optimal weight after training (_d on task ¢ 4 1.
Here are the key components we need to use to prove the theorem: (I) we show

1 mazx || ~* ~ %
Ex, my~p {Ti - (6(@70) = 6(@)) } < 5Ex, 1o~ ATh- A1 — 35 1%Y
(24)
(IT) Let w; be the convergent or (near-) optimum parameters after training E(L)
and A\7**® be the maximum eigenvalue of V2£,(&}):

V(@) — V(@) = V@)@ - &) < N - o, (25)

(III) If the convergence criterion is satisfied in the e-neighborhood of &}, then

Ce C. = max{e, 21/e}.

)\max

H(:}:Jrl wrll < =

Theorem 5 Denote w:ilf =m E_Zl ® w*gl where m*gl_gl is the binary freezing

mask for layer [. For the optimal weight matrix w;,; with mask m*;;1, define

EO: = Ex, 1)~p, {ITh - (6:(&711) — le(w])) [} -
(I) Once we assume that only one connection is frozen in the training process,

we can use the following upper bound of the model [14]:

(1) ~* l)

~x * llow* 71 — Wpyq ||F
|£t(wt+1) - ét(wt+1)| < L NO) L H flow t+1||F7 (26)
”W t+1||F

(1)
(IT) Under the assumption P*{!) = % — 1, we show

EO; < Ex, 1,)~p, {T0 - | (be(wipr) — e(wi)) |} - (27)

4 Related Work

In recent years significant interest has been given to methods for the sequen-
tial training of a single neural network on multiple tasks. One of the primary
obstacles to achieving this is catastrophic forgetting (CF), the decrease in perfor-
mance observed on previously trained tasks after learning a new task. As such,
overcoming CF is a primary desiderata of CL methods. Several approaches have
been taken to address this problem, including various algorithms which mitigate
forgetting, as well as investigation into the properties of CF itself.
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Catastrophic Forgetting: The issue of catastrophic forgetting isn’t new [1,17],

however the popularity of deep learning methods has brought it renewed atten-
tion. Catastrophic forgetting occurs in neural networks due to the alterations of
weights during the training of new tasks. This changes the network’s parameters
from the optimized state achieved by training on the previous task. Recent works
have aimed to better understand the causes and behavior of forgetting [22,6], as
well as to learn how the specific tasks being trained influence it and to empiri-
cally study its effects [9,19]. Such theoretical research into CF provides solutions
to mitigate catastrophic forgetting beyond the design of the algorithm. Similarly,
our investigation into the relationship between information flow and CF provides
a useful tool for reducing forgetting independent of a specific algorithm.
Continual Learning: Several methods have been applied to the problem of CL.
These generally fall into four categories: Regularization [13,32], Pruning-Based
[16,28,26], Replay [25,29], and Dynamic Architecture approaches [23,31]. Reg-
ularization approaches attempt to reduce the amount of forgetting by imple-
menting a regularization term on previously optimized weights based on their
importance for performance. Replay methods instead store or generate samples
of past tasks in order to limit forgetting when training for a new task. Dynamic
architectures expand the network to accommodate new tasks. Lastly, Pruning-
based methods aim to freeze the most important partition of weights in the
network for a given task before pruning any unfrozen weights.
While pruning-based methods are able to remove forgetting by freezing and
masking weights, they are often implemented to make simple pruning decisions,
either using fixed pruning percents for the full network or relying on magnitude-
based pruning instead of approaches which utilize available structural informa-
tion of the network. Other recent works have demonstrated the importance of
structured pruning [2,8], suggesting that pruning-based CL methods would bene-
fit from taking advantage of measures of information such as connectivity. While
these methods commonly use fixed pruning percentages across the full network,
some works outside of the domain of CL investigate different strategies for select-
ing layer-wise pruning percents, and together they demonstrate the importance
of a less homogeneous approach to pruning [14,24].

5 Experimental Evidence

To evaluate the influence of considering knowledge of information flow when
training on sequential tasks, we perform multiple experiments demonstrating
improved performance when reducing pruning on the task-sensitive layers defined
in 1. The experimental results section is divided into two main parts aligning
with the overall goal of analyzing downstream information across layers. The first
part discusses the performance of CL in the context of protecting highly task-
sensitive layers during pruning when adding multiple tasks in a single neural
network as in [16]. The second part focuses on the connectivity across layers
given tasks and how connectivity varies across the layers and between tasks.



Effects of Information Flow on CL Performance 11

Impact of Layer Selection on Accuracy Impact of k Selection on Accuracy

@ top-n selected
—o— random-n selected
64.5 ~8~ bottom-n selected

Average Task Accuracy
f { 2
&
Average Task Accuracy
P
T

62.0 62.0
0 2 4 8 10 12 14 0 1 2 3

6 4 5
# Layers Selected Pruning Reduction k (%)

Fig.1: The average accuracy across tasks is reported for varying values of n
when k = 2%(left) and k when n = 4(right), where n is the number of layers
selected for reduced pruning and k is the hyper-parameter dictating how much
the pruning on selected layers is reduced by. We compare the performance when
the n layers are selected as the most (top-n), least (bottom-n), or randomly
chosen (random-n) connected layers.

Setting: We carry out training with a VGG16 model on a split CIFAR-10/100
dataset, where task 1 is CIFAR-10 and tasks 2-6 are each 20 consecutive classes
of CIFAR-100. We perform experiments on the Permuted MNIST dataset to
determine how the characteristics of information flow differ between datasets
(supporting experiments on MNIST are included in the supplementary materi-
als). Three trials were run per experiment. After training on a given task 7},
and prior to pruning, we calculate Ay(f O f (Z‘H)) between each adjacent pair of
convolutional or linear layers as in 1. Connectivity figures are plotted by layer
index, which includes all VGG16 layers (ReLu, pooling, conv2D, etc), however
only trainable layers are plotted. As a baseline we prune 80% of the lowest-
magnitude, unfrozen weights in each layer (freezing the remaining 20%).

5.1 How Do Task Sensitive Layers Affect Performance?

Top-Connectivity Layer Freezing: For this experiment we select the n layers with
the highest value of A; and prune k% fewer weights in those layers for Task T,
where both n and k are hyper-parameters. This reduction is determined indi-
vidually for each task, and only applies to the given task. By reducing pruning
on the most task-sensitive layer, information flow through the network is better
maintained, preserving performance on the current task. This is demonstrated
in Fig. 1, in which selecting the most connected layers for reduced pruning out-
performs selecting the least connected or random layers. Although n and k have
the same values in each case, by selecting the top-n layers we better maintain
the flow of information by avoiding pruning highly-connected weights. By taking
values of n > 1, we can account for cases where reducing the pruning on a single
layer doesn’t sufficiently maintain the flow of information above the baseline.
Fig. 1 also shows that the performance increase for pruning the top-n connected
layers varies depending on the reduction in pruning k.
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. Task 1 Task 2 Task 3
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Fig. 2: For each layer the average connectivity value with the subsequent layer
is reported. The connectivities are plotted for each task in CIFAR-10/100, for
various £ when n = 4 most connected layers are selected for reduced pruning.

Task 1 Task 2 Task 3
2
> 0.30
2
1
= M
<
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- Task 4 Task 5 Task 6 ——n=4
2
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<
]
V020
o
o
€015
[
>
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0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Layer Index Layer Index Layer Index

Fig.3: The average connectivities across layers with the subsequent layer is re-
ported. The scores are plotted for each task in CIFAR-10/100, when the n most-
connected layers are selected to have their pruning percent reduced by k = 2%.

Connectivity Analysis: To better characterize our measure of information flow
and determine which layers are most task-sensitive, we plot the values of A; for
each convolutional or linear layer, as in Figs. 2, 3, and 4. These figures show
how connectivity varies over several experimental setups as we change n and k
during the freezing of the top-n connected layers. We compare these trends to
those seen when performing the baseline (n, k = 0) on Permuted MNIST.

6 Discussion

In-depth Analysis of Bounds: The bound established in Theorem 3 shows that
the performance gap between original and adapted networks with task-specific
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Average Connectivity of Layer

o 5 10 15 20 25 30 35
Layer Index

Fig. 4: The average connectivity for each layer is reported for training on Per-
muted MNIST. Training was done with the baseline setting when n, k = 0. Each
of the 10 tasks in the Permuted MNIST dataset are plotted.

frozen layers grows as the layers contribute more in passing the information to
the next layer given tasks. This gap has a direct relationship with the activa-
tions’ lipschitz property and the minimum eigenvalues of the Hessian at optimal
weights for the pruned network. From the forgetting bound in Theorem 4, we
infer that as a layer is more useful for a task then freezing it reduces the forget-
ting more. In addition from Theorem 5, we establish that the average forgetting
is a non-linear function of width of a local minima and when the entire filters of
a fully sensitive layer is frozen the forgetting tends to a tighter bound.

Information Flow: The connectivities plotted in Figs. 2, 3, and 4 display pat-
terns which remain generally consistent for a given dataset, but have noticeable
differences between each dataset. For Figs. 2 and 3 tasks 2-6, which correspond
to CIFAR-100, show larger connectivities across most of the network compared
to CIFAR-10, particularly in the early and middle layers. Meanwhile, for MNIST
we observe connectivities which are much different from those of CIFAR-10 and
CIFAR-100. These observations suggest that when applied to different datasets,
the task sensitivity of the layers in a network (VGG16 in this case) differ, indicat-
ing that the optimal freezing masks and pruning decisions differ as well. Further,
Fig. 4 prominently shows that as subsequent tasks are trained, the connectivity
of the early layers increases while the later layers’ connectivity values decrease.
This can also be seen to a lesser extent in Figs. 2 and 3, where the peak in the
last four layers decreases, while the first three layers take larger values for later
tasks. This indicates that not only is the data important for determining which
layers are task-sensitive, but the position of a given task in the training order is
as well. For the data shown here, we would suspect the optimal freezing mask
to more readily freeze the earlier, more highly connected layers, in the network.
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Top-n Layer Freezing: The selection of the most connected layers in Fig. 1
demonstrated an improvement over the baseline, least connected, or randomly
chosen layers, showing that the improved performance isn’t simply due to freez-
ing more weights. While the performance improves for top-n freezing, the stan-
dard deviation also noticeably increases and overlaps the bottom-n results. This
was observed for all top-n experiments, and may be linked to the observations in
Figs. 2 and 3 that the top-n connected layers are found at the beginning of the
network, as perhaps repeated freezing of early layers has a more destabilizing ef-
fect. While further work is needed to see if these results can be further improved
upon, these observations lend support to the idea that making pruning decisions
by utilizing knowledge of information flow in the network is an available tool to
retain performance in pruning-based continual learning applications.

7 Conclusion

We’ve theoretically established a relationship between information flow and
catastrophic forgetting and introduced new bounds on the expected forgetting.
We’ve shown empirically how the information flow (measured by the connectivity
between layers) varies between the layers of a network, as well as between tasks.
Looking ahead these results highlight future possible directions of research in
investigating differences in connectivity trends between various datasets, using a
probabilistic connectivity measure like mutual information, and investigation on
which portions of a network would be most important for passing information.

Finally, we have also empirically demonstrated that utilizing the knowledge
of information flow when implementing a pruning-based CL method can im-
prove overall performance. While these core experiments would benefit from fur-
ther supporting investigations, such as the effects of different networks or tuning
hyper-parameters beyond n and k, the reported results nonetheless show promis-
ing support for the utility of information flow. Here we limited our investigation
to using connectivity when determining the extent of pruning/freezing within
a layer, however it would be of significant interest to see possible applications
in determining which weights are pruned (as an alternative to magnitude-based
pruning), or even the use of information flow in CL methods which don’t utilize
pruning. These are left as a very interesting future work.

While this paper uses common CL datasets for validation of our theoretical
work and focuses on pruning-based methods, applying the methods to a number
of larger /more complex datasets will be the focus of more empirical future work,
and may help further assess our method’s capabilities as well as whether or not
the connectivity trends seen here also reflect other, more complex datasets. The
core theory and measure of information flow are independent of the scale of the
data, so the method is expected to still work with larger datasets.
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