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Abstract

The growing prevalence of tensor data, or multiway arrays, in science and engin-
eering applications motivates the need for tensor decompositions that are robust
against outliers. In this paper, we present a robust Tucker decomposition estim-
ator based on the Lo criterion, called the Tucker-LoFE. Our numerical experiments
demonstrate that Tucker-LoE has empirically stronger recovery performance in
more challenging high-rank scenarios compared with existing alternatives. The ap-
propriate Tucker-rank can be selected in a data-driven manner with cross-validation
or hold-out validation. The practical effectiveness of Tucker-LoE is validated on
real data applications in fMRI tensor denoising, PARAFAC analysis of fluorescence

data, and feature extraction for classification of corrupted images.

Keywords: inverse problem, Ly criterion, nonconvexity, robustness, Tucker

decomposition

1 Introduction

There has been growing interest in tensors, or multi-way arrays, since many real-world
datasets have a multi-dimensional structure that is not well exploited by two-dimensional
matrix-based data analysis. Some of the most important tensor-based data analysis tools
are low-rank tensor decompositions, which primarily take two forms: the CANDECOM-
P/PARAFAC (CP) decomposition (Carroll and Chang, [1970; Harshman et al., [1970)
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and the Tucker decomposition (Tucker, 1966). In the last decade, several new tensor
decomposition paradigms based on alternative notions of tensor rank have been pro-
posed, including low-tubal-rank factorization (Kilmer and Martin, 2011), tensor-train
decomposition (Oseledets| 2011) and tensor ring decomposition (Zhao et al [2016). Each
decomposition has suitable applications as well as limitations.

A major challenge of low-rank tensor decomposition is that the observed tensor may
be grossly corrupted with outliers or sparse noise. This paper addresses the robust tensor
decomposition problem when the underlying tensor has low Tucker-rank. When an N-
way data tensor X € RI1x/2xxIn ig fylly observed, we assume that X is generated from

the following model
X = L+8+E,

where £ denotes an underlying low Tucker-rank tensor, 8 denotes a sparse tensor of
outlying entries, and € denotes a tensor of dense noise.

We also consider the case when X is only partially observed over a subset €2 of its
indices. Let [I] denote the set of consecutive integers {1,...,I}. Then the set Q C

[I1] x -+ x [In] is an index set of observed entries, and we assume that

Tijigin = livigein + Sivigein T Civigeins

for (iy,i9, -+ ,iy) € Q.

Our goal is to recover the latent factors of the underlying low-rank tensor £. Ideally,
a robust method should remain effective in the absence of 8 or €. If the goal is estimating
the low-rank tensor £ instead of its latent factors, we refer to robust tensor decomposition
as robust tensor recovery. We focus on the Tucker decomposition in this paper. Since
the CP decomposition is a special case of the Tucker decomposition when the CP-rank
does not exceed any of the tensor dimensions, the proposed method may also be applied
to denoise or reconstruct low CP-rank tensors.

Many CP and Tucker decomposition methods have been proposed in the literature.
We discuss these in [Section 3] Our robust formulation adapts the LyE method (Scott)
2001, [2009) to the Tucker decomposition. The LoE is a minimum distance estimator that
minimizes the integrated squared error (ISE) for parametric estimation. The integrated

squared error is also referred to as the Ly criterion (Hjort], [1994; (Terrell, |1990) in nonpara-



metric density estimation, hence the name LoE. Consequently, we call our formulation
of Tucker decomposition the Tucker-LoE. Minimum distance estimators are well known
to possess robustness properties (Donoho and Liuj, [1988). Moreover, minimization of the
Lo criterion has been employed in developing a wide range of robust statistical models
including structured sparse models (Lozano et al. [2016; |(Chi and Chi, 2022} Liu et al.,
2023)), quantile regression (Lane, 2012)), mixture models (Lee, 2010)), classification (Chi
and Scott, 2014), forecast aggregation (Ramos| [2014)), and survival analysis (Yang and
Scott, 2013)). It also has successes in engineering applications including signal processing
tasks such as wavelet-based image denoising (Scott, |2006) and image registration (Ma
et al., 2013, 2015; Yang et al., [2017)). The LyE is attractive among minimum distance es-
timators since it strikes a good balance between robustness, efficiency, and computational
tractability (Scott], 2001}, 2009).

The rest of this article is organized as follows. In [Section 2| we introduce tensor
notation and terminology. In [Section 3| we briefly review several prominent CP and
Tucker decomposition formulations, both non-robust and robust, in the existing literature.

In [Section 4] we present our formulation of robust Tucker decomposition and its solution

algorithm. In |[Section 5| and [Section 6 we demonstrate the practical effectiveness of our

approach and its advantage over existing methods in terms of recovery capability with

numerical experiments and real data applications.

2 Background on Tensors and their Decompositions

We review basic operations on matrices and tensors using the terminology and notation in
Kolda and Bader| (2009). A tensor X € RI1*/2XXIx g an element of the tensor product
of N real vector spaces. The number of dimensions, or ways, IV is called the order of
tensor X. Each dimension is also called a mode. A fiber of X is a column vector subset of
X, defined by fixing all but one of the indices. For a matrix, an order-2 tensor, a mode-1
fiber is a matrix column, and a mode-2 fiber is a matrix row. A slice of X is a matrix

subset of X, defined by fixing all but two of the indices.

2.1 Basic Tensor Operations

It is often convenient to reshape a tensor into a matrix or a vector. The former is

referred to as matricization, while the latter is referred to as vectorization. The mode-n



matricization of a tensor X € R <~ denoted Xm) € RInxI=n with I_,, = Hé;vﬂ kot Lo
arranges the mode-n fibers as the columns of the matrix X, in the following lexicographic

order. The tensor element z;, is mapped to the matrix element of X, with index

AN

(in, j) where j = 14370 (ix — 1)Ji and

1 ifk=1lorifk=2andn=1,

k—1 )
K1 k£ I, otherwise.

Jp =

The vectorization of X, denoted as vec(X), is the vector obtained by stacking the columns
of its mode-1 matricization X1y on top of each other.

We will use two kinds of products involving tensors and matrices throughout this
paper. The elementwise Hadamard product of two tensors X and Y of identical size
I} x -+ x Iy is denoted by X xY and is the tensor whose (iy,...,iy)-th element is given
DY Tiyiy...inYiria..in- Lhe n-mode product of a tensor X € R *2%*IN with a matrix A €
R7*!" is denoted by X x,, A, which is a tensor of size I} X Iy X - - - X [, 1 X J X L, X+ - X Iy

with elements

In
(:x: Xn A)i1---in,1jin+1---LN = E Livig-in Ajin,

in=1

for j € [J]. Note that the mode-n matricization of the n-mode product X x,, A can be

expressed as

The Frobenius norm and ¢-norm of a tensor X € R >IN are defined as

I Is In I I Iy
Xl = DD D a2, 0 and X[ o= D) D [y
i1=112=1 in=1 i1=11i2=1 in=1

Finally, we use X** to denote the tensor obtained by raising each entry of X to the
power of 2. We use aX + b to denote the tensor obtained by multiplying every entry of
X by a and then adding b to every element of the resulting scaled tensor. We denote

the sum of all tensor entries as sum(X) and the elementwise exponential of a tensor as

exp(X).



2.2 Tensor decompositions and ranks

The Tucker decomposition of X € R XIN with rank R = (r1,72,...,7y) aims to
find a core tensor G € R™*"2X*™~ and factor matrices A™ € R*™ for n € [N] such

that
X ~ Gx; AW x3 A®@ xy o xy AN = [[g;A(l)’.__’A(N)]]7

where the equality uses the more compact notation [[S;A(l), AW )]] introduced in
Koldal (2006). Sometimes the columns of A™ are required to be orthogonal so that
the columns of A™ can be interpreted as the principal components of the n-th mode,
but we do not require this in this work. The tensor X is said to have Tucker-rank
R = (ry,r9,...,ry) if rank(X,)) = 7, for n € [N].

The CP decomposition for X with rank R = r aims to find a!” € R’ for n € [N],i €

[r], and a weight vector v € RY such that

~ S a®0a® 0. 0a®

X ;%al a, a, ’,
where o denotes the outer product. Just as the outer product of two vectors yields a
rank-1 matrix, the outer product of N vectors yields an N-way rank-1 tensor. Thus,
the CP model aims to approximate a tensor with a linear combination of rank-1 tensors.
Following [Kolda and Bader| (2009), we write the linear combination of rank-1 tensors
S aloa?o. - on :
RI»*" are the CP factor matrices. The tensor X is said to have CP-rank r if r is
the smallest integer possible for the approximation to hold with equality. When r <
min{ly, I, -+, In}, the CP decomposition can be viewed as a special case of Tucker de-

composition. This is because if G has dimension (r,r,...,r) and is “superdiagonal,” i.e.,

its only nonzero entries are g;; ; for i € [r|, then
Gx; AW x, A® Xg o0 XN AN — [g: A(l),A(Z), o ,A(N)]],

where g € R" is a vector containing the superdiagonal of nonzero entries of G. A tensor
with CP-rank r has Tucker-rank (r,r,...,r), but the converse does not hold in general.

For notational simplicity, we will often “absorb” the weight vector into one of the

,EN) more compactly as [v; A ... AM], where AM™ = |3(™ ag”) .



factor matrices when writing the CP model, e.g.,
[[7; AW A ,A(N)ﬂ - [[A(”, AD ,A<N>]] ,

where A" = AWdiag(~) and diag(y) is the diagonal matrix with i-th diagonal entry ~;.

3 Related Work

Tensor decompositions based on least squares Non-robust CP and Tucker de-
compositions are formulated as the solutions to nonlinear least squares problems that
minimize the Frobenius norm of the residual tensor. Formally, the CP decomposition
solves the following optimization problem

2

minimize HDC — HA(U, A ... ,A(N)]] H (1)

A AM) F

Historically, the alternating least squares (ALS) algorithm (Carroll and Chang, 1970;
Harshman et al.;|1970) has been the “work-horse” of solving the above CP decomposition
problem, which updates one of the factor matrices while holding the others fixed. |Acar
et al.| (2011a)), however, showed that a direct optimization approach can obtain more
accurate estimates of the low-rank tensor, especially when the specified rank is greater
than the true rank. By direct optimization, we mean that the gradients with respect to
the factor matrices are computed and all the factor matrices are updated “all-at-once”
or simultaneously with a local optimization method like nonlinear conjugate gradient
method (NCG) or Limited-memory Broyden-Fletcher-Goldfarb—Shanno algorithm (L-
BFGS). We refer to this direct optimization approach as CP-OPT.

Similarly, the Tucker decomposition, or the best rank-(rq,7s,...,ry) approximation

of X, is formulated as

2

minimize HI)C— HS;A(I),...,A(N)HH . (2)
G,AM AN F

The first method to compute the Tucker decomposition introduced in [Tucker| (1966) was

later shown by De Lathauwer et al.| (2000a) to be a generalization of the matrix singular

value decomposition (SVD), known today as Higher-order Singular Value Decomposition

(HOSVD). However, it does not produce the best fit in terms of relative error. An



alternating least squares algorithm named Higher-order Orthogonal Iteration (HOOI)
(Kroonenberg and De Leeuw, 1980; |Kapteyn et all [1986; De Lathauwer et al., 2000b)
has stronger empirical performance and is the most widely adopted method to compute
the Tucker decomposition. In fact, it has also been shown that HOSVD achieves a sub-
optimal rate of estimation error, while HOOI is information-theoretic optimal (Zhang
and Xiay 2018).

The above least squares formulations reflect a Gaussian assumption. This assump-
tion is a natural starting point to develop a robust tensor decomposition formulation.
Consequently, our Tucker-LoE method is derived under it. Nonetheless, it is important
to note that there have been recent works extending tensor decomposition under non-
Gaussian modeling assumptions. For example, [Hong et al.| (2020)) studied generalized
CP decomposition with various statistically motivated loss functions. |Han et al.| (2022)
studied generalized low Tucker-rank tensor estimation, which establishes an upper bound

for statistical error and a linear computational convergence rate.

Robust Principal Component Analysis (RPCA) Perhaps the most classic robust
matrix recovery method is Principal Component Pursuit (Candes et al., 2011), which
decomposes a corrupted matrix X € R™*™ as the sum of a low-rank matrix L and a
matrix of sparse outliers S. This is achieved by solving the following convex optimization

problem.

mir%grélize 1L« + Al|S|lx subject to L+ S =X, (3)

)

where |||, denotes the nuclear norm and X is a nonnegative tuning parameter. |Candes
et al.| (2011)) proved that achieves exact recovery of the low-rank component L under
low-rank and incoherence assumptions. Since the matricizations of a low Tucker-rank

tensor are low-rank matrices, RPCA is often used as a baseline for robust tensor recovery.

Higher-order RPCA |Goldfarb and Qin| (2014) proposed Higher-order Robust Prin-
cipal Component Analysis (HoORPCA) as a generalization of RPCA to tensors. HORPCA

comes in several different variations. We discuss the three best-performing variants in



this section. The first variant is the singleton model (HoRPCA-S), formulated as
N
o ‘ - —X. 4
minimize El Loyl + AlIS subject to £L+8=X (4)

HoRPCA-S minimizes the sum of nuclear norms of all the matricizations of £ to encourage
each mode to be low-rank. The descriptor “singleton” is in contrast with the mixture

model (HORPCA-W), formulated as

N N

miréii{gize ;HLZ@H* + XS] subject to ; Li+8=X. (5)
HoRPCA-W represents the underlying tensor as the sum of N tensors that are only low-
rank in one mode. Tomioka et al. (2011) first introduced the mixture model which can be
considered a relaxation of the singleton model. [Yang et al.| (2015) later proposed robust
tensor recovery also using the mixture model along with more robust loss functions.
The mixture model can automatically detect the rank-deficient modes and yields better
recovery results when the underlying tensor is only low-rank in certain modes. However,
in our experience, the limitation of the mixture model is that it does not approximate
the low-rank tensor well when the minimum rank in the Tucker rank tuple is relatively
large. The variant with the strongest recovery performance presented in Goldfarb and

Qin| (2014)) is the constrained nonconvex model (HoRPCA-C), formulated as

minggaize I8||1 subject to £L4+8 =X, rank(Ly)) <1y, i € [N]. (6)
The key difference between the formulation in @ and those in and is that @
enforces a hard constraint on the Tucker-rank (rq,79,...,ry) whereas the other formu-
lations trade off the rank of the latent tensor £ with the ¢;-norm of the outlier tensor 8
via the penalty parameter .
Goldfarb and Qin| (2014]) iteratively solves , and @ using the alternating dir-
ection method of multipliers (ADMM) algorithm (Boyd et al., [2011)). In particular, since
@ is nonconvex, the standard convergence guarantees of ADMM for convex programs

do not apply. However, @ demonstrates strong empirical convergence in practice.

Bayesian Robust Tensor Factorization Zhao et al|(2015) approached the robust

CP decomposition problem in a generative manner with Bayesian Robust Tensor Factor-



ization. (BRTF). Normal-gamma priors are used to induce column sparsity of the factor
matrices and elementwise sparsity of the outliers. We direct readers to Zhao et al. (2015)
for the detailed hierarchical model setup. What makes BRTF attractive is that it can

automatically infer the appropriate CP-rank.

Riemannian Gradient Descent Recently, Cai et al. (2022) introduced a general
framework under a low-rank plus sparse tensor model. The algorithm is based on Rieman-
nian gradient descent and a novel gradient pruning procedure, which is able to estimate
both the low-rank tensor and the outlying sparse tensor. The appropriate Tucker-rank
and sparsity level of outliers can be tuned with a BIC-type criterion. Performance bounds
for both the low-rank and the sparse tensors are established under suitable conditions.
The proposed algorithm is also applicable to Bernoulli and Poisson distributed data. We
refer to the algorithm described in |Cai et al.| (2022) as RGrad in this article.

Partial observations Real-world tensor data is often not fully observed. In the tensor
completion literature, a binary weight tensor W whose entries are 0/1 to indicate missing
or observed is often used as a mask to model missing entries. For example, CP and Tucker

decomposition in the presence of missing data can be formulated as

g [+ (2 a0 Ao g
and
g [0 (5 52 a0 ) g

Similar to and [(2)] and can also be solved with direct optimization, e.g.,
CP-WOPT (Acar et al. 2011b) and Tucker-WOPT (Filipovi¢ and Juki¢, 2015). For

RPCA and HoRPCA, an easy way to deal with missing data is to enforce the equality
constraints only on observed entries. Similarly for BRTF, we can choose to incorporate
only the observed tensor entries into the hierarchical model.

It is worth mentioning that there is significant interest in tensor completion in recent
research. In the last few years there are many advances on the theoretical front for low
CP/Tucker-rank tensor completion. For example, (Cai et al| (2019) studied the recon-

struction of a low-rank symmetric tensor and proposed a two-stage nonconvex algorithm



which achieves optimal /., statistical accuracy. Building upon Cai et al. (2019)), |Cai et al.
(2023)) studied the nonconvex tensor completion problem from an uncertainty quantifica-
tion perspective. [Xia and Yuan| (2019)) studied the sample size requirement for the exact
recovery of a low-rank tensor from a subset of its entries, using a spectral initialization
method and gradient descent. Zhang| (2019) proposed a novel tensor measurement scheme
for low-rank tensor completion. Xia et al. (2021)) proposed a procedure for low-rank tensor
completion from noisy entries based on spectral initialization and power iteration that is
computationally efficient and achieves the optimal rates of convergence. Recently, Tong
et al.|(2022) developed a scaled gradient descent approach to low-rank tensor completion
and regression which converges at a linear rate independent of the condition number of

the true tensor.

Remark Among the previously reviewed methods, RPCA, HORPCA-S and HoRPCA-
W induce a low-rank structure using nuclear norm penalties while CP-OPT, HOOI,
HoRPCA-C and RGrad require the rank to be explicitly specified. We categorize methods
that employ nuclear norm penalties as “penalized formulations” and methods requiring
specification of rank as “rank-constrained formulations.” Our approach, Tucker-LsoE, is an
instance of the latter. In we demonstrate that rank-constrained formulations
are generally more robust and handle dense noise better than penalized formulations,
provided that the ranks are appropriately specified. We also illustrate in that
HoRPCA-C and Tucker-LyE can tolerate some level of rank overestimation if the noise
is sparse.

We acknowledge several other robust CP /Tucker decomposition methods that we have
not detailed in this section due to the limitation of space. Anandkumar et al.| (2016]), for
example, proposed an iterative thresholding algorithm for robust tensor decompositions
which is designed to recover CP models with orthogonal factors. Gu et al.| (2014) studies
the statistical performance of a convex formulation of robust tensor decomposition. Wu
et al.| (2017) uses the Cauchy distribution to handle long-tail noise in CP and Tucker

decomposition.

4 Methodology

In this section, we introduce our proposed Tucker-LoE method. We briefly review the

L,E method in and then develop Tucker-LoE in [Section 4.2] The algorithm
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and implementation details for Tucker-LoE can be found in [Section 4.3|

4.1 The L,E Method

We first review the parametric estimation framework using the Ly criterion proposed by
Scott (2001, 2009). Let ¢(x) be the unknown true density we aim to estimate and ¢(z | 6)
be the density of a member of the family of parametric models specified by the parameter

0 € ©. We seek the parameter # that minimizes the ISE between ¢(z) and ¢(z | 6)

[ [t 16) - o) a 9

Of course, recovering 6 in this way is impossible in practice since ¢ is unknown. Fortu-
nately, although we cannot minimize the L, distance between ¢(z) and ¢(z | 6) directly,

we can minimize an unbiased estimate of the distance. To do this, we first expand @ as
/&(m | 0)? dx — 2/&(:6 | 0) ¢(z) dx + /¢(9c)2 dx.

The second integral is the expectation Ex[¢(X | )], where X is a random variable drawn
from ¢. Therefore, the sample mean provides an unbiased estimate of this quantity. The
third integral does not involve the parameter of interest # and may be ignored in the
computation of a minimizer. The first integral has a closed-form expression for many
parametric models. In this work, we assume that ¢(z | ) is a normal density where
6 consists of a mean and precision (inverse standard deviation) parameter. Under this
assumption, the integral [@(z | 6)%dx can be written as an explicit function of the
precision parameter alone. As a concrete example, consider the univariate case and
assume that @ = (u, 7) and ¢(z | 6) is the density function of a normal random variable

X ~ N (u, 772). Then the LyE for the univariate mean and precision is
0,5 = argmin h(y,7), (10)
T

where

T T /2 < 72
h = 1)z L —p)?). 11
) = e n\/;;jlexp( - ) (1)
For a fixed 7, the p that minimizes |[(11)| approaches the MLE of u as 7 approaches

11
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Figure 1: The Ly criterion as a function of p with different values of 7. The green vertical
line indicates the maximum likelihood estimator of pu, in this case simply z.

zero. To see this, note that the Taylor expansion of —exp(—t) around 0 is —1 +t + o(?).

Therefore for sufficiently small 7,

T 2 73 -
i ~ Bt S
L v i DICE

We can visualize how the Ly criterion h(u, 7) varies with p for fixed values of 7 to illustrate
how the LyE achieves robustness. We consider two examples. In the first example, ¢(z) is
a three-to-one mixture of the constant 0 and Unif[0, 10]. The second example is identical
to the first but the observations are further corrupted with additive A/(0,1) noise. One
hundred observations 1, 2o, ..., x99 are generated for each example. In both examples,
the true value for p is 0 and the 25% uniformly distributed observations can be regarded
as outliers. Intuitively, the true value for 7 is +oo for the first example and 1 for the
second example. shows h(u,7) as a function of u for different values of 7 with
the first example in the left panel and the second example in the right panel.

The left panel of shows that the p that minimizes h(u, 7) is nearly identical
to the MLE of pu when 7 is very small. As 7 increases, the minimizing u becomes closer
to the true value 0. In other words, the Lo criterion is less influenced by the outliers
and consequently, the LoE for i is more robust. We also see that if 7 becomes too large,
however, many spurious local minima appear in the optimization landscape, which may

cause difficulties for gradient-based local optimization algorithms.
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The right panel of shows that the Ly criterion curve with 7 = 0.8 (highlighted
in red dashed line) attains the smallest minimum value. Moreover, the minimum of h(u, 7)
with 7 = 0.8 is the closest (0.25) to the true value 0. This suggests that is able to
automatically choose suitable 7 in the presence of normal noise, although it slightly
underestimates the precision parameter. Scott| (2009) also observed this underestimation

phenomenon.

4.2 Tucker-1L1,E

We set up the optimization problem for estimating the Tucker-LoE model in stages. We
start with a natural adaptation of [(10)| to accommodate tensor data which replaces the
location parameter p with a latent mean tensor £. A preliminary formulation of robust

tensor estimation based on the Ly criterion is to minimize the following objective function

N 2
I, 2 «
h(L,7) = %7’ — 4/ _Tsum (exp [—% (X —-XL) 2]) , (12)
where X € RIv*22>x*In g the observed noisy tensor.

When the data tensor X has missing entries and is observed only on the index set €2,
similar to CP-WOPT and Tucker-WOPT, we can sum over only the observed entries in

the objective to account for missing data and minimize the natural generalization of the

objective function in |(12)

ho (L,7) = %\/(EW)T—\/;SM (W*exp (—g(x—a)ﬁ)). (13)

Recall that the tensor W € RI1*/2X*In jg hinary and depends on €2 in the following
manner. The (iy,1s,...,iy)-th entry of W is 1 if 4, ;v € ©Q and is 0 otherwise. Note
that ho(L,7) and (L, 7) coincide when X is fully observed, i.e., Q = [I1] X -+ X [In].
Thus, we will work with the more general objective function hq moving forward.

To estimate a low Tucker-rank tensor, we parameterize £ as £ = [[9; A(I), cee A(N)ﬂ .
Notice that this parameterization is equivalent to imposing the constraints rank(L,)) <
rn,n € [N] on £ (see|[Zhang and Xia| (2018))). Thus we seck the solution to the following

optimization problem over the parameters G, AW, ..., A™) and 7.

minimze hg (HS; AL ,A(N)]] ,7'> subject to 7> 0.

13



We now turn our attention to details concerning the parameter 7. Notice that 7 must
be positive since it is a precision parameter and consequently introduces an additional
constraint over an open set. An easy way to ensure a positive precision while at the same
time eliminating the strict positivity constraint is to reparameterize 7 as 7 = exp(n) and
optimize over n € R. Moreover, recall in [Section 4.1 we discussed that although the
LoE is more robust when 7 is larger, the accompanying spurious local minima may make
computing solutions of harder. In other words, the precision parameter 7 trades-off
robustness and the “roughness” of the optimization landscape. We also see from the
left panel of that the minimum value of h(u, 7) always decreases as 7 increases.
This suggests that may not even have a finite infimum if we allow 7 to diverge to
infinity. Therefore, it is reasonable to impose an upper bound on 7, or equivalently on

7. Thus, we seek the solution to the following optimization problem over the parameters

G,AY, AW and 7.
minimize hq ([[9; AW ,A(N)ﬂ ,e”) subject to 7 < Dmax- (14)

Theorem 4.1 gives some justification for reparameterizing 7 as exp(n) and placing an

upper bound on 7 in |(14)}

Theorem 4.1. Problem|(14)| has a finite infimum and the infimum is negative.

We provide a proof of in the supplement. is relevant in our

problem setup since it has the following implications in our computation process. First,
we have seen in the left panel of that if the noise is sparse, the LyE problem may
be ill-posed with no finite infimum. assures us that if we place an upper
bound on 7, we can guarantee a finite infimum. Second, when 7 = 0, it is not hard to
see from that the objective value will be 0. If the infimum of is guaranteed to
be negative, then any point with 7 = 0 is suboptimal, thus we do not risk excluding a
potential minimizer through reparameterizing 7 as exp(n).

Before discussing how to compute Tucker-LoE next, we emphasize a key feature of
our approach is that it simultaneously optimizes or estimates a precision parameter as
well as a latent low-rank tensor. As we saw earlier, this precision parameter controls
the cutoff for when an entry is large enough to be effectively trimmed from the model
fitting. As far as we are aware, Tucker-LoE is unique in its ability to jointly optimize

precision and latent low-rank tensor parameters. Other methods that employ a precision
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parameter treat it as a hyperparameter and consequently employ a separate estimation
or setting procedure for the precision parameter. For example, [Wu et al.|(2017) computes
an estimate of the precision parameter based on the residuals of the least squares estimate
of the low-rank tensor, but this limits the recovery capability of the model as the least

squares estimates are of poor quality in challenging high-rank scenarios.

4.3 Solution Algorithm and Implementation Details

The optimization problem in involves differentiable functions of all the model para-
meters with a simple box constraint on 7. The high dimensionality of the parameter
space renders second-order algorithms impractical. In contrast, the classic quasi-Newton
method L-BFGS-B (Liu and Nocedal, 1989; Byrd et al., [1995; |Zhu et al. |1997) is partic-
ularly well suited for solving [(14)] A detailed derivation of the gradient of the objective
in with respect to A™ . G, and 1 can be found in the supplement. Since the optimiz-
ation problem in is nonconvex, initialization is critical. We present two initialization

strategies in this article. The first is a simple strategy from |Filipovi¢ and Juki¢ (2015):

Algorithm 1 Mean Imputation + HOOI/HOSVD

Require: X, W € RIVEXXIn (p) py 00 rpy).
1: Impute missing entries with the mean of the observed entries of X.
2: Compute Gy and Aé”) via HOOI/HOSVD of X with rank (r1,79,...,7x).
3: return (Gp, AJ").

The second is a popular initialization procedure in the recent tensor completion literat-
ure, which we call spectral initialization with diagonal deletion, see for example (Cai et al.
(2019); Xia and Yuan| (2019); Xia et al. (2021); [Tong et al.| (2022)). In our experiments,
we find that this initialization procedure offers some improvement over when
the underlying tensor has low CP-rank and a large percentage of tensor entries is missing.
However, we note that in most cases, works similarly or better, especially
when the underlying Tucker-rank is relatively high. Therefore our default initialization
procedure is in our following experiments unless explicitly specified other-
wise. We discuss the details of the second initialization strategy in the supplement.

We find the initial value of n to have minimal impact on the solution, consequently
we initialize 7 using a small value log(0.01), where log is the natural log function. We
also observe that numerical issues can occur when the tensor entries are somewhat large

in magnitude due to the exponent function in the objective of |(14)| Scientific computing
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languages compute exp(—x) via a power series so that the numeric precision degrades
when x becomes larger in absolute value. Therefore as a pre-processing step, the ob-
served tensor entries are rescaled to have a mean absolute deviation (MAD) of 0.1. We
revert the estimated tensor to the original scale after the decomposition is complete. An-
other practical concern is the choice of Tucker-rank (rq,rs,...,7y) and the upper bound
Nmax- 10 particular, for the upper bound 7,.., we want to select a value such that we

have sufficient robustness but the loss landscape is still smooth enough for L-BFGS-B to

find a good solution. In [Section 5.3| and [Section 6.1, we demonstrate that Tucker-rank

(ri,72,...,7N5) can be selected in a data-driven manner using cross-validation or hold-
out validation if computation is intensive. For nyax, we find that ny., = log(50) works

well for a wide range of problems and we have used it for all of our experiments except

the feature extraction application in [Section 6.3| where 7.y is set at log(20) for optimal

performance. It can also be tuned along with the Tucker-rank using cross-validation or
hold-out validation if warranted or desired.

Algorithm 2 Tucker-LoE

Require: X, W € RII2xXIn () py 0 ry), and pax.
1: Calculate the MAD of the observed entrles of X, denoted as s
2: Rescale X as +—X.

10s

3: Compute initial estimates (Gy, A Al )) with |Algorithm 1| or spectral initialization with

diagonal deletion.

4: Set 1y = log(0.01).

5: Using as the objective and (G, Aén), 7o) as the initial value, update (G, AM
n) with L-BFGS-B until convergence of objective value or the maximum number of
iterations is reached The final iterate is denoted as (G., A; ), M)

6: return (10sG,, A ,7]*)

summarizes our procedure for computing Tucker-LoE. We implement
our algorithm in the MATLAB R2021a computing environment. We use the Tensor
Toolbox for MATLAB version 3.2.17 (Bader and Koldal 2006, 2008) for basic tensor
classes and operations. We also use the implementation of HOOI and HOSVD in the
Tensor Toolbox to compute the initial estimate of G and A™ in . We use the
implementation of L-BFGS-B by Becker] (2015)P] We direct readers to Byrd et al. (1995)
for the algorithmic details of L-BFGS-B. We note that since L-BFGS-B is a gradient-
based local optimization algorithm, is only able to find a locally optimal or
critical point of Additionally, since L-BFGS-B is a descent method (Byrd et al.

thttps:/ /www.tensortoolbox.org/
Zhttps://github.com /stephenbeckr/L-BFGS-B-C
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1995) and [Theorem 4.1] ensures that our objective in is bounded below, the sequence

of objective function evaluations over the iterate sequence is guaranteed to converge with

L-BFGS-B updates.

5 Numerical Experiments

We consider both the CP model and the Tucker model in our simulation studies. The
tensor dimension is set at (50, 50, 50). For the CP model, the entries of the factor matrices
are independently drawn from N(0,1). For the Tucker model, we adopt a similar data
generation protocol to |Cai et al.| (2022)). A tensor of size (50, 50, 50) with random normal
entries is first generated. Then the tensor is truncated to have Tucker-rank (r,r,r)
with HOSVD. We use relative error, defined as RE = ||[£ — £||p/||£||r, as the primary
goodness-of-fit metric. After generating the low-rank tensor £, we randomly select a
fraction 0 of the tensor entries to be corrupted with outliers drawn from Unif[—M, M].
We use a relatively large magnitude M = 10std(vec(£L)) in the following experiments.
Optionally, a layer of dense Gaussian noise € can also be added, whose scale is set such
that ||E||r/||L]|lr = 0.1. We use CP-OPT, HOOI, BRTF, HoRPCA-S, HoRPCA-C and
RGrad as the baseline methods in this section. We use the implementation of CP-OPT
and HOOI in the Tensor Toolbox. The software of HORPCA-S, HORPCA-C and BRTF
can be found on the authors’ websites. The software of RGrad can be found in the
supplementary materials of |Cai et al.| (2022)). We provide code and demo examples for

our proposed method at https://github.com/ghengncsu/TuckerL2E.

5.1 Evaluating Robustness versus Rank

The inverse problem of robust Tucker decomposition becomes more challenging as the
underlying Tucker rank or outlier percentage increases. In this section, we contrast the
recovery performance of the baseline methods and Tucker-LoE by generating third-order
tensors with increasing CP or Tucker-rank (R = 5,10, ...,450r R = (5,5,5), (10, 10, 10), .
under outlier corruption and in the presence or absence of dense noise. Note that for a
tensor with an underlying CP-rank of r, we can still compute a Tucker decomposition
with Tucker-rank (r,7,7) to reconstruct the tensor. In this section we keep the outlier
sparisty at 25%. For HORPCA-S, we tune the penalty parameter with the ground truth.

For rank-constrained formulations, the specified CP or Tucker-ranks are set to the true
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Figure 2: Recovery results on fully observed tensors with increasing CP or Tucker-rank.
Outlier sparsity is set at 0.25. Data points are averaged over 50 random replicates.
Average relative errors larger than 1 are capped at 1 to suit the display.
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ranks. We provide additional details of parameter settings in the supplement.

shows that the convex penalized formulation HORPCA-S works well when
the tensor rank is low but loses accuracy as the rank increases. HORPCA-C, RGrad and
Tucker-LoE demonstrate competitive recovery performance in most cases, except when
the rank is too close to the data dimension, particularly at rank 35-45. Notably, Tucker-
LoE appears to be able to tolerate a higher Tucker-rank than HoORPCA-C and RGrad,
both in the CP model and the Tucker model. More specifically, Tucker-LsE is able to
provide a reasonably good reconstruction at rank 35 and 40 while HORPCA-C and RGrad

break down.

5.2 Phase Transition of Rank and Outlier Sparsity
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Figure 3: Phase transition diagrams in high-rank scenarios with varying percentages of
outliers. Heatmap shows the average relative error of 20 random replicates. Average
relative errors larger than 1 are capped at 1 to suit the display.

In the previous section, we saw that compared with HORPCA-C and RGrad, Tucker-
Ls;E appears to be able to tolerate a higher rank at the given outlier percentage. Although
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RGrad handles dense noise better than HORPCA-C, HoORPCA-C appears to be a slightly
stronger baseline when it comes to stability in high-rank scenarios. To further investigate
the phase transition behavior of HORPCA-C and Tucker-LoE, we generate tensors with
high rank (R = 25,27,...,45 or R = (25,25,25),(27,27,27),...,(45,45,45)) and vary
the percentage of outliers taking § = 0,0.05,...,0.5. Full observations are used and no
dense noise is added. The specified Tucker-ranks are set to be equal to the true CP or
Tucker-ranks.

shows that as the underlying tensor rank increases, the percentage of outliers
that can be tolerated decreases for both methods. However, at a given rank, Tucker-LoE
can often handle a greater level of corruption. At rank 25, both methods are able to
obtain an accurate reconstruction for any outlier percentage no greater than 0.5. From
rank 29 to 41, Tucker-LoE can generally handle 10-20% more outliers. At rank 43 or 45,
Tucker-LoE can handle 5% more outliers. Interestingly, the advantage of Tucker-LoE over
HoRPCA-C is notably more significant on data generated by the CP model, especially
at ranks 43 and 45. This is potentially because a CP-rank of 45 is a more constrained

low-rank structure than a general Tucker-rank of (45,45,45).

5.3 Rank Misspecification and Cross Validation

In the previous two sections, we set the specified ranks to be equal to the true ranks for the
rank-constrained formulations. In practice, however, such prior knowledge of tensor rank
may not always be available. In this section, we investigate how rank-constrained formu-
lations behave when the tensor rank is underestimated or overestimated. We also demon-
strate the application of cross-validation to choose the appropriate rank for HORPCA-C
and Tucker-LoE. We consider three scenarios: 1) the noiseless tensor has CP-rank 15;
2) the noiseless tensor has Tucker-rank (30,10,5); 3) the noiseless tensor has Tucker-
rank (35,35,35). After generating the true low-rank tensor, 25% percent of tensor entries
are corrupted with outliers. The specified CP-ranks are 5,10,...,45 and the specified
Tucker-ranks are (5,5,5), (10, 10, 10), ..., (45, 45, 45). Notice that although in the second
scenario, the noiseless tensor is not equally low-rank in every mode, we still set the spe-
cified Tucker-ranks to be equal in every mode simply to limit the number of Tucker-rank
tuples that we need to consider.

The cross-validation scheme can be described as follows: the tensor entries are ran-

domly split into 10 folds; robust tensor decomposition methods (HoRPCA-C and Tucker-
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Figure 4: First row: recovery results when the rank is underestimated or overestimated.
Second row: 10-fold cross-validation error for a generated tensor.

L,E) are applied to 9 out of 10 folds, treating the hold-out fold as missing data. This
process is repeated for each train/test split; we use the estimated values for the hold-out
fold to form a new tensor which we call the predicted tensor; cross-validation error is
computed as the MAD between entries of the predicted tensor and entries of the original
noisy tensor. The MAD is chosen over the more common mean squared error (MSE) to
make the cross-validation error less sensitive to large residuals, which likely coincide with
outlying entries.

Figure 4 shows that the non-robust methods (CP-OPT and HOOI) will greatly overfit
to the outliers if the tensor rank is overestimated. For the first scenario (R = 15), both
HoRPCA-C and Tucker-LyE exhibit a certain level of overfitting resistance. Remarkably,
Tucker-LyE remains unaffected by outliers even if the Tucker-rank is grossly overestimated
to be (45,45,45). In the second scenario (R = (30, 10, 5)), unlike Tucker-LyE, HORPCA-C
is not able to achieve perfect recovery if the Tucker-rank is specified to (30,30,30). The
first two scenarios demonstrate that Tucker-LoE is more robust to rank overestimation
than HoORPCA-C. The third scenario (R = (35,35,35)) is chosen to be challenging.
Contrary to our expectation, the relative error and cross-validation error for Tucker-LoE

will first increase before it decreases. It is reassuring that the cross-validation error still
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achieves its minimum at the true Tucker-rank. Another surprising observation is that
HoRPCA-C attains its minimum relative error at Tucker-rank (30, 30, 30) instead of the
true rank (35, 35,35). This is likely because while at Tucker-rank (30, 30, 30), HORPCA-C
is only capable of an approximate reconstruction, it is still better than the true Tucker-

rank (35,35, 35) where HORPCA-C becomes unstable.

5.4 Varying Degrees of Missingness
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Figure 5: Recovery results under varying degrees of missingness. Outlier sparsity is set at
25%. Data points are averaged over 20 random replicates. Average relative errors larger
than 1 are capped at 1 to suit the display.

In this section we investigate the recovery performance of HORPCA-S, HoORPCA-C
and Tucker-LoE under varying degrees of missingness. RGrad is not considered in this
section since its current form does not allow missing entries. We generate (50,50, 50)
tensors with CP-rank 15, 30 or Tucker-rank (15,15,15), (30,30,30). After generating
the low-rank tensor, 25% of the entries are corrupted with outliers and dense noise of

relative scale 0.1 is added. Then p x 100% of the tensor entries are set to be missing.
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The missingness is assumed to be completely random and independent from the outlier
corruption. We vary the missing ratio p from 0.05 to 0.9 in this section. We present the
recovery results of both initialization methods.

In [Figure 5] “Tucker-LoE Diagonal Deletion” refers to the recovery results using spec-
tral initialization with diagonal deletion and “Tucker-LoE Mean Imputation” refers to
the recovery results using as the initialization. We can see that the diagonal
deletion procedure offers some improvement over when the underlying tensor
is of low CP-rank. Tucker-LoE appears to be less stable than HORPCA-C when the rank
is low and the missing percentage is very high (over 80%). This may be attributed to
the fact that HORPCA-C models missing data with an equality constraint so that the
unobserved entries are still penalized for having a large magnitude, while for Tucker-LoE
the unobserved entries are masked and unconstrained. When the rank is relatively high,
we can see that Tucker-LoE still enjoys an empirical advantage over HORPCA-C in terms

of recovery capability.

6 Real Data Applications

6.1 Tensor Denoising on 3D fMRI Data

We consider a 3D MRI dataset INCISIX from the OsiriX repository} which contains
166 slices through a human brain, each having dimension 512 x 512. The dataset was
first analyzed in |Gandy et al.|(2011) from a tensor completion perspective by randomly
setting voxels to be missing. We approach this dataset from a tensor denoising perspect-
ive. Following Goldfarb and Qinl (2014)), we extract the first 50 slices and downsample
each of them to have size 128 x 128. Therefore the noiseless tensor X has dimension
128 x 128 x 50. We then corrupt 25% of the tensor entries with outliers/noise drawn
from Unif|0, 2 std(vec(X))]. In addition to HORPCA-C and RGrad, we consider a classic
low-tubal-rank robust tensor recovery method called tensor robust principal component
analysis (Lu et al.| [2019) as another baseline. Scree plots of the different matrix un-
foldings revealed that the mode-3 singular values decay rapidly, which indicates that
the data tensor is approximately low-rank along mode-3. Therefore, we considered the
following three Tucker-rank tuples, (64,64,10), (96,96,15) and (128,128,20), as candidate
Tucker-rank tuples for HORPCA-C, RGrad and Tucker-LyE. For RGrad, the proposed

3https://www.osirix-viewer.com
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Original Noisy, RE=0.3938 tRPCA, RE=0.1563

Figure 6: Recovery results for slice 30 of INCISIX dataset. The annotated relative errors
are for the whole tensor instead of one slice.

BIC criterion selected the parameters R = (96,96,15), « = 0.27 and pug = 1. For
HoRPCA-C and Tucker-LyE, we use a hold-out validation approach to identify the best
Tucker-rank tuple. We randomly sample 10% of the entries as the validation set and use
the remaining 90% of entries to impute the missing 10% of entries. Then we can use the
MAD between the imputed values and the actual values to determine the appropriate
Tucker-rank. From [Table T| we see that the best performing Tucker-rank for HORPCA-C
is (96,96, 15), while for Tucker-LoE it is (128, 128,20). We then reapply HORPCA-C and
Tucker-LoE with the selected ranks to the fully observed tensor.

Tucker-rank (64,64,10) (96,96,15) (128,128,20)
HoRPCA-C hold-out MAD 223.16 216.85 276.60
Tucker-LyE hold-out MAD 236.51 211.12 206.60

Table 1: Hold-out MAD for HORPCA-C and Tucker-LoE at different Tucker-ranks.

We visualize the recovery results of tRPCA, HoORPCA-C, RGrad and Tucker-LoE
in [Figure 6| The advantage of Tucker-LoE over HORPCA-C and RGrad is that at rank
(128,128,20), HoORPCA-C and RGrad overfit to the sparse noise while Tucker-LoE remains
largely unaffected, in line with our observations in [Section 5. By remaining stable at a

larger rank, Tucker-LoE is able to capture more structural information, resulting in the
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smallest relative error and the best perceptual quality.

6.2 PARAFAC Analysis of Fluorescence Data

Parallel Factor analysis (PARAFAC) is a widely used tool in Chemometrics for decom-
posing fluorescence excitation-emission matrices (EEMs) into their underlying chemical
components (Murphy et al., [2013). The CP model is particularly suitable for the analysis
of EEMs since this type of data mostly conforms to a trilinear structure due to Beer’s
law, which states that absorbance is the product of molar concentration, molar absorp-
tion coefficient, and optical path length. Certain regions of the fluorescence landscape,
however, may be corrupted by Raman and Rayleigh scattering. Therefore, EEM data is
a natural candidate for the low CP-rank tensor plus sparse outliers model.

We consider a standard EEM dataset, the Dorrit data, originally introduced in Baun-
sgaard| (1999). We use a preprocessed versiorn]] (Riu and Bro| [2003) of the Dorrit data,
which consists of 27 mixed samples containing different concentrations of hydroquinone,
tryptophan, phenylalanine, and dopa. Each sample has 121 emission wavelengths (241-
481 nm) and 24 excitation wavelengths (200-315 nm). Following Riu and Bro| (2003))
and |Goldfarb and Qin| (2014)), we exclude samples 2, 3, 5, and 10 as well as data cor-
responding to excitation wavelengths from 200 nm to 225 nm since this portion of the
data is believed to be noisy for reasons other than scattering and amounts to slice-wise
corruption, which greatly affect the global properties of the data. Therefore the tensor
data to be analyzed have dimension 23 x 121 x 18. The truncated fluorescence landscape
of sample 1 is visualized in [Figure 71 We set the CP-rank to 4 and the Tucker-rank to
(4,4,4) since we have prior knowledge that there are 4 pure compounds in the samples.

displays the recovered emission/excitation loadings (mode-2 and mode-3 CP
factors) produced by CP-OPT, RGrad, HORPCA-C, and Tucker-LoE. The last three
methods are in fact applied to denoise the tensors. The CP factors are then extracted by
applying CP-OPT to the reconstructed tensors. We assign the CP factors to the 4 ana-
lytes based on proximity to the pure component emission/excitation profiles presented in
Baunsgaard (1999)). For this dataset, with rank fixed at (4,4, 4), BIC suggests o = 0.11
and pg = 5 for RGrad. This has an interesting implication that there are approxim-
ately 11% of entries that are affected by scattering. The emission/excitation loadings

produced by HoORPCA-C and Tucker-LoE appear more similar to the pure component

4http:/ /www.models.life.ku.dk /dorrit
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Figure 7: Truncated fluorescence landscape of sample 1 in the Dorrit data. Intensity
peaks caused by Raman and Rayleigh scattering can be observed on the top left and the
bottom right.
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profile than the ones produced by RGrad. Although the difference between HoRPCA-C
and Tucker-LoE is minuscule, the emission/excitation loadings of phenylalanine (purple
lines in produced by Tucker-LyE appear to be slightly more regular than those
produced by HoRPCA-C.

6.3 Feature Extraction for Classification

Tucker decompositions are useful for extracting features from high-dimensional multi-way
datasets for classification. The extracted features can then be used as input to standard
classifiers such as k-nearest-neighbors (k-NN) or support vector machines (SVM). In this
section we adopt the feature extraction framework based on Tucker decomposition ori-
ginally presented in [Phan and Cichocki (2010). |Chachlakis et al. (2019) demonstrated
that if the dataset is corrupted with sparse noise, strategic dimensionality reduction by
a Tucker decomposition can reduce the impact of noise and leads to improved classific-
ation accuracy. Below we briefly describe the feature extraction framework. Suppose
that we have K tensor-valued training samples of size I; X Iy X --+ X Iy, which can
be classified into C' categories. We concatenate training samples across mode N + 1 to
obtain X; € RIxI2xxInxEKi which we call the “training tensor.” Then X; is Tucker
decomposed with rank (dy,ds, ..., dy, K1) to obtain the factor matrices U,, € RInxdn for

n € [N]. We compress the training samples as follows:
Zl = 'X1 X1 U-lr XQU-QF Xg - XNU-]I\-[ & Rledzx.“XdNXKl.

Then Z; is matricized in mode N + 1 to become a data matrix Z; of size K; X HnN:1 d,
with labeled rows. We similarly concatenate testing samples to obtain the “testing tensor”

X,y € Rérxd2xxdnxE2 ywhich we compress to obtain
T T T di Xda X xdn XK.
ZQ = :X:2><1U1 X2U2 X3"'XNUN € R%*% N 27

which is then matricized in mode N + 1 to become Zy € RE2XIIn=1dn A suitable classifier
is then trained on Z; and tested on Z,. We apply the above feature extraction framework,
with an added aspect of robustness, to image classification. We consider two classic image
classification datasets, namely MNIST (Deng, 2012) and COIL-20 (Nene et al., 1996),
which are also studied in [Phan and Cichocki (2010). MNIST consists of 28 x 28 images
of hand-written digits. COIL-20 consists of 128 x 128 images for 20 different objects with
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(a) Randomly sampled images from the (b) Randomly sampled images from the
MNIST dataset. COIL-20 dataset.

Figure 9: Visualizations of the MNIST dataset and the COIL-20 dataset.
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Figure 10: Average testing accuracy across 50 random realizations of training/testing
sets. Error bars denote 1 standard errors. Gray line shows the testing accuracy of
nearest-neighbor without applying Tucker decomposition for dimensionality reduction.
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each object having 72 images. depicts samples of images from both datasets.

As a preprocessing step, we remove the 4-pixel padding for MNIST since those regions
contain no information. Images from COIL-20 are downsampled to 32 x 32 to speed up
computation. To construct a training sample, we randomly sample 50 images for each
digit from MNIST and 20 images for each object from COIL-20. The training images are
then corrupted with salt-and-pepper noise added to a randomly selected sample of 25%
of the pixels. Thus for MNIST, X; has dimension 20 x 20 x 500 while for COIL-20, X;
has dimension 32 x 32 x 400. We set d; = dy = d so that the total number of features
is d?>. We randomly sample another 500 images for each digit and use the remaining 52
images for each object as the testing points. The classifier of choice is nearest-neighbor.
We repeat the described procedure on 50 different random realizations of training and
testing sets. The Tucker decomposition methods considered here are HOOI, HoORPCA-C
and Tucker-ILoE. In particular, HORPCA-C is only used to approximate the training
tensor. The factor matrices are obtained by applying HOOI to the output tensor of
HoRPCA-C.

highlights that by applying Tucker decomposition for feature extraction and
dimensionality reduction, all methods achieve a substantial gain in accuracy compared
with directly using the corrupted training images. As d increases, initially the accur-
acy of all Tucker decomposition methods will increase due to being able to create more
meaningful features. However, eventually the feature extraction framework will overfit to
the sparse noise and the accuracy starts decreasing. The testing accuracy on MNIST is
generally much lower than on COIL-20 despite having fewer categories and more training
images per category. This suggests that MNIST is a more challenging dataset to clas-
sify. Tucker-LoE again exhibits greater stability in high-rank scenarios, especially in the
case of COIL-20 with its accuracy steadily increasing throughout the range of d that we
investigated. When d is small, Tucker-LoE may not be advantageous. However, as the

number of features increases, the best attainable accuracy of Tucker-LoE outperforms

that of HOOI and HoRPCA-C.

7 Conclusion

This paper describes a new formulation of the robust Tucker decomposition problem

based on the Ly criterion, Tucker-LoE. We present two initialization strategies and a
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solution algorithm based on L-BFGS-B. Numerical experiments and real data applications
demonstrate that Tucker-LoE exhibits stronger recovery capability in challenging high-
rank scenarios compared with existing alternatives. This empirical property is useful since
real-world tensors are often nearly low-rank instead of perfectly low-rank. By remaining
stable at a higher rank, Tucker-LyE is able to provide a more expressive reconstruction
of the underlying low-rank tensor in the presence of sparse perturbations.

In this article we used an off-the-self local optimization algorithm L-BFGS-B as the
main computational tool. A projected-gradient type algorithm will likely have a smaller
memory footprint, which presents an interesting venue for future work. We also note that
the proposed robust tensor recovery paradigm can be adapted to other formats of low-
rank tensor recovery, for example the low-tubal-rank format and the tensor-train format,

with suitably designed computation algorithms.

Supplementary Materials

Supplement: A pdf file that contains derivation of gradient, an alternative initialization
strategy named spectral initialization with diagonal deletion, proof of [Theorem 4.1]

details of parameter choices, and a run time comparison with the baseline methods.

Software: Matlab code of the described method, along with scripts to reproduce some

of the figures in [Section 5| and [Section 6|
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