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The Stanford Drone Dataset Is More Complex Than
We Think: An Analysis of Key Characteristics

Josh Andle ™, Nicholas Soucy

Abstract—Several datasets exist which contain annotated in-
formation of individuals® trajectories. Such datasets are vital for
many real-world applications, incloding trajectory prediction and
autonomons navigation. One prominent dataset currently in nse
is the Stanford Drome Dataset (SDD) (Robicquet ef al., 2016).
Despite its prominence, discussion surrounding the characteristics
of this dataset is insufficient. We demonstrate how this insufficiency
reduces the information available to users and can impact per-
formance. Our contributions include the outlining of kev char-
acteristics in the SDI), employment of an information-theoretic
measure and custom metric to clearly visualize those character-
istics, the implementation of the PECNet (Mangalam ef al., 2020)
and Y-Net (Mangalam ef al., 2021) trajectory prediction models
to demonstrate the outlined characteristics” impact on predictive
performance, and lastly we provide a comparison between the SDID
and Intersection Drone (inl}) Dataset. Our analysis of the SDIY's key
characteristics is important becanse without adequate information
about available datasets a user's ahility to select the most suitable
dataset for their methods, to reproduce one another’s results, and 1o
interpret their own results are hindered. The observations we make
through this analysis provide a readily accessible and interpretable
source of information for those planning to use the SDD. Our
intention is to increase the performance and reproducibility of
methods applied to this dataset going forward, while also clearly
detailing less ohvious features of the dataset for new users.

Index Terms—Antonomous vehicles, data analysis, information

theoretic measures, pedestrian tracking, stanford drone dataset,
irajectory.

I. INTRODUCTION

EVERAL datasets are available which provide annotated
S trajectory data of individuals navigating one or more
scenes [1], [4]-[7]. Such dataseis can be used as tools for an
array of problems in Computer Vision and Intelligent Vehicles,
including object detection [8], object tracking [9], and trajectory
prediction [3], [10], [11]. A popular dataset that has been widely
used for comparing recent benchmark methods is the Stanford
Dirone Dataset (SDD) [1]. The frequent use of the SDD stems
in part from its size, the fact that it contains both vehicles and
pedestrians in crowded scenes, and its previous use by bench-
mark methods. While many papers use the SDD to evaluate their
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performance, often the clear justifications for selecting it over
alternative datasets is lacking.

The scarcity of information detailing the SDD may make it
harder for users to properly determine if it’s the best fit for their
research. This scarcity is largely due to the fact that the dataset’s
accompanying publication and documents do not provide users
with a sufficiently comprehensive description of the dataset, nor
do the papers which utilize it.

One characteristic which is not addressed is how the videos
within the SDD relate to one another in terms of time and
location of recording. Another feature which plays a major role
in determining the suitability of the SDD for a given model is
the actual distribution and behavior of classes within the dataset
compared to other, similar dataset options. Understanding dif-
ferences in distribution and behavior is important when making
an informed choice regarding which dataset is most suited to
a particular application. Lastly, we discuss properties of the
annotation data, including the impact of annotations labeled
“lost™ and splil trajectories that effect tracking and prediction
models of agents both directly and indirectly. For methods like
trajectory prediction which rely on the annotated coordinates
data, properly understanding these characteristics is necessary
to ensure that the results are correct and easily reproducible.

We demonstrate each of these characteristics, and showcase
how they may impact the accuracy of trajectory prediction
applications. In order to compare them (o a similar dataset we
include the Intersection Drone (in[}) dataset within the scope
of our investigation. An example of the complexity that these
characteristics add to the SDD can be seen in Fig. 1. The charac-
teristics of importance demonstrated in this example are the way
in which scenes are oriented relative to one another, as well as
the behavior of “lost” annotations. Together, knowledge of these
characteristics allows the user to determine the erroneous nature
of the annotations in the provided example. This illustrates how
understanding the characteristics of the dataset discussed here
can provide a more comprehensive understanding of the SDD,
and with it an improved ability to interpret observations made
about the dataset.

In order to visualize and validate the outlined key character-
istics, we implement the pre-existing PECNet [2] and Y-Net [3]
trajectory prediction models, as well as a custom Adaptive Inter-
action Measure (ATM), ATM utilizes the information-theoretic
measure of mutual information (MI) [12], which has been used
in previous works involving tracking and trajectory prediction
problems [13], [14]. We utilize ATM to visualize various dataset
characteristics, and apply PECNet and Y-Net to the SDD to
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ial Trajectory 68 in Coupa Video 1

Fig. 1.
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(a) Three trajectories are shown from the SDDs Coupa videos 1 (beft) and O (right). Annotations show agent 68 exiting the nght side of video 1 and

returning shortly after. The intermediate frames ane labeled as “lost” indicating that the agent is out of the video™s bounds. (b) Knowing that videos 0 and 1 are
shot simultaneously and overlap in location, it becomes clear that agent 68 is actually a combination of agent 32 and 34's trajectories. Since agent 34 enters video
1 at the same location as agent 32 leaves, they are mistakenly annotated as the same individual in video | with their trajectories connectad by “lost™ annotations.

demonstrate some of those characteristics’ impact on perfor-
mance when ignored or accounted for. We chose to use these
models due to the functional clarity, accurate performance, and
readily available code.

This paper’s aim is to highlight information about the SDD
which is not readily apparent or discussed in previous work,
as well as to demonstrate the importance of that information.
Since there are several applications which the SDD can be
used for, an analysis of exactly how those characteristics im-
pact each possible application is outside of the scope of this
paper. Instead we aim to utilize only as many experiments and
methods as are necessary to provide compelling evidence of
these characteristics’ importance. Additionally, the custom AIM
measure is intended as a metric to visualize and evaluate these
characteristics. Analyzing and rigorously investigating the ATM
measure is out of our scope in this research. ln summary, our
contributions in this paper are as follows:

1) We describe the “lost"-labeled annotations and split
trajectories within the SDD and their importance.
We demonstrate how properly handling these occur-
rences during preprocessing impacts the resulting model
performance.

2) We provide aholistic view of how the videos within a given
scene fit together. This includes cases where videos are
recorded simultaneously, overlap in location, or both. We
propose situations in which understanding how the videos
relate to one another would impact the results obtained
with the dataset.

3) We demonstrate differences in class distribution and be-
havior between the SDD and inD dataset which should be
taken into consideration when deciding when (o use one
or the other.

To the best of our knowledge, there is no research which
provides sufficient information on how the authors processed
the SDD data and how the characteristics we discuss in this
work might have impacted their results and model evaluation.

II. RELATED WORKS

Two datasets which have previously been used as benchmarks
are ETH Zurich’s BIW1 Walking Pedestrian Dataset [4] and
UCY"s Crowds by Example [5]. These datasets are often used
together as the ETH/UCY dataset. However, the small number of
videos and lack of non-pedestrian individuals limit their utility,
and differences in annotation formats between the two datasets
could make using them together more troublesome for complex
maodels.

These datasets have since been largely replaced in favor of the
Stanford Drone Dataset (SDD) [1]. The SDD addresses several
of the shortcomings of ETH/UCY, providing 60 videos split
across 8 scenes and 6 classes of individuals, all with a single
consistent annotation method. More recently the Intersection
Drone (inD) dataset [6] has aimed to improve upon the SDD,
providing 33 videos split across 4 intersections and 4 classes of
individuals.

One prominent application for which the SDD has been used is
trajectory prediction. Prominent examples of benchmark meth-
ods which use the SDD include Social-GAN [15], SoPhie [16],
DESIRE [10], and CAR-Net [17]. PECNet [2] and Y-Net [3]
are two other models which use the SDD and report improved
performance accuracy over previous baselines.

A notable resource which has helped mitigate inconsistent
use of the SDD is TrajNet [18], [19]. This benchmark provides
a more uniform method of preprocessing and performing trajec-
tory prediction on various datasets, including SDD. Although
TrajNet provides a uniform method of processing the SDD it
doesn’t provide a detailed analysis of the dataset which would
allow users to properly understand it. Additionally, users of the
dataset who wish to preprocess the data differently may not be
able to rely on TrajNet. For these reasons, we provide a direct
analysis of the dataset’s characteristics. We focus on providing
an intuitive visualization of a set of characteristics which users
should be aware of when using the SDD and demonstrating their
importance.
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TABLET
DATASET SPLIT USED FOR THE IND DATASET
Dataset Videos
Train 0-4, 7-13, 18-25, 30
Validation 5, 14-15, 26-27, 31
Test 6, 16-17, 28-29, 32

. METHODS OF ANALYSIS

In this section we introduce the methods used in our analysis
of the SDD and inD dataset. One method we introduce is
our information-theoretic metric to provide an interpretation
of pairwise interactions between individuals, which we apply
to visualize the characteristics of each dataset. Throughout the
paper we use the notations below:

* X! Trajectory coordinates for agent [.

s X[ . : Trajectory coordinates for agent I in time range
[t1.12].

X! Trajectory coordinates for agent [ at time point t.

#: decay hyperparameter.

T Last time point of the interaction.

T': A fixed number of time points after the beginning of
the interaction.

. & % 8

A. Datasers

Stanford Drone Dataset (SDD); The SDD is a dataset pro-
viding birds-eye view drone recordings of 8 different scenes
and 60 videos across a campus selling, with 6 annotated classes
of individuals [1]. These classes are pedestrians, skateboarders,
bicyclists, carts, cars, and buses. The annotated data contains
bounding-box coordinates in pixel values at 30 frames per
second, as well as labels indicating it a given coordinate was
occluded, “lost™ out of the video’s bounds, or automatically
interpolated.

Intersection Drone (inD}) Dataser: The inD dataset also pro-
vides birds-eye view drone recordings of 4 intersections across
33 recordings [6]. Only the annotations are provided along with
single-frame reference images, while the raw video footage isn’t
provided. The annotations contain 5 classes: pedestrians, bicy-
clists, cars, trucks, and buses, however the labels for trucks and
buses are grouped as “truck_buses™ within the annotations. The
annotations provide numerous additional parameters, including
bounding box coordinates in meters at 25 frames per second,
the necessary values to convert from meters to pixels, the speed
limit, time and geographical location, as well as the individuals
heading, velocity, and acceleration.

In order to make direct comparisons to the SDD we have
converted all inD annotations o pixels using the provided
conversion values prior to analysis. For the SDD we use the
training/testing split outlined in [18]. Table T outlines our split
for the inD dataset, while later on in Section IV Table IV reports
the class distribution for each dataset. For both datasets we
preprocess the data to 2.5 fps and use the first & time-points of
each trajectory for observation and the subsequent 12 time points
for prediction, corresponding to 3.2 seconds and 4.8 seconds
respectively.

1865

B. AIM Definition

In our Adaptive Interaction Measure { ATM) we incorporate a
physics-based weight function, p, as a scalar value to weightl mu-
tual information {M1) based interactions [20]—{22]. By summing
this scaled information over the duration of a given trajectory
pair, we get the cumulative measure, AIM, which describes the
overall expected impact that one trajectory has on the other's
navigation. The larger values of ATM suggest more significant
interactions between agents. Our method is well-suited for this
visualization task due in part to its transparent and infuitive
incorporation of physical parameters in calculating p and sub-
sequently ATM.

Suppose X7 and X7 are the 2-dimensional trajectory coordi-
nates for agents I and J for each time point in their interaction.
The interaction between agents [ and J is defined to contain all
frames in which both individuals are in the scene together. The
AlIM for an interaction between two agents I and J over the
framest = T,'T" + 1,..., T, denoted by AIM (X! ; X/ 1) is
defined as follows

T
> TR X ) MIKT 5 X7,),
t=T"

(1)

We calculate MI and p at each time point between 7" and T
and sum their product over all time points in the interaction. We
provide the definitions of MI and g in 2 and 6 respectively. At
each step in the summation a constant decay term, 4, is applied
to the terms of each previous product. The AIM measure (1)
shows the result of expanding this function out, in which the
decay term has a stacking effect on time points the further they
are into the past of the trajectory.

When & = 1.0, no decay is applied to the past time points in
the calculation of AIM, making it possible for high values of
ATM to reflect interactions that are no longer relevant to present
navigation decisions. When é < 1, the value of AIM decreases
at each time point. This allows more recent interactions to
have a larger impact on the overall value of ATM, and in turn
how an individual is expected to allocate their attention among
neighboring individuals.

To calculate o at a given time point £, we consider the previous
N time points. As V increases, the relative impact of replacing
one frame at each new time point lessens, which has a smoothing
effect on the calculated value of p. When IV is too large this
smoothing removes changes of pwhich reflect abrupt, temporary
behaviors such as sudden stopping or breaking of a pedestrian or
car. We demonstrate the effects of changing § and V in Fig. 2.
In order to ensure that there is sufficient past information to
properly calculate MT and p we set aside the first 7" frames of
interaction as a buffer and begin the summation at £ = T

1) Mutual Information: Let Py be a probability measure
on the Euclidean space A" = ). Here, Py and P define the
marginal probability measures. The M1 reflects the information
that each of a pair of variables gives about the other, and is
defined as

| o dPyy = M
MI(X;Y)= E [g (dPxPY)] T o)
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Fig. 2. ia) We show the different values of ATM chtained for a single interaction when & = 1.0,0,98, and 0.95. When & = 1.0, ATM doesn't decay and the

summation is monotonically incressing. Introducing 2% decay with § = 0,98 results in a constant decay of the valoe of AIM. The overall value of AIM stll

increases when newly added time points outweigh the decrease caused by decay. Funther decreasing (o & = (.95 increases the rale of decay and observed AIM

values, but doesn’t substantially change behavior of AIM compared o § = 0.98, (b) When ¥ = 5, p varies erratically since é of the input values are changed

at esch new time point. For N = 30, only !%IT, of the inputs change at each time point, which reduces the rapid changes seen when ¥ = 5. When N = 100, the
5

smoothing fails o capture the brief change

where == is the Radon-Nikodym derivative. Tn this case,

the variables are the coordinates along the trajectories of two
individuals. High values of MI typically occur when agents are
stationary or have been moving in a constant manner. MI does not
noticeably change when the individuals are near or far apart, or
based on the directions the individuals are moving in. To account
for this we include our physics-based weighting measure p when
deriving AIM.

Examples of MI estimators include Kraskov Stogbauer Grass-
berger (KSG) [23], Kernel Density Estimation (KDE) [24],
Nearest Neighbor Ratio (NNR) [25], and Minimal Spanning
Tree (MST) [26]. The MI estimation process is computa-
tionally intensive, e.g. the complexity of the KDE is O{n®),
while the KSG takes ()(knlog(n)) (& is a parameter). Tn
this paper, we use a hash-based MI estimator called the
ensemble dependency graph estimator (EDGE) [27] due to its

at ocour in the pedestrians’ trajectories after frame 2400,

linear complexity and optimal mean squared error convergence
rate.

1) Weight Function p: We utilize the handerafted function
pin (1) to provide a contextual interpretation of ML We selected
potential parameters of this function with the goal of reflecting
the likelihood and severity of potential collisions between indi-
viduals. This is intended to approximate how attention is allo-
cated by a navigating individual (e.g. avoiding oncoming cars,
letting others pass on the sidewalk, and stopping at a crosswalk
when people are crossing). For the function’s parameters, we
use the velocity (V'), distance (1)), and the relative heading (H)
of the two individuals. V7 is the sum of both agents' velocities
averaged over N frames, I is the average distance between the
two agents, and # is asymmetric and is calculated as the average
angle between an individual’s current heading and the other
individual’s current position. These parameters are calculated
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For this example, we track ML, o, and AIM values for each frame in the trajectory pair. The car (agent 88) shows a higher initial g value than the pedestrian,

which is reflected by the fact that its AIM increases faster than the pedestrian’s. Once the car has passed by the pedestrian, both o values decrease and as a result
AlIM begins to decrease. This demonstrates that the expected atiention is temporary in the absence of further relevant interactions.

as follows:
1 T
et > (VIR X X)),
n=t—N
(3)
1 t
De=5 > /IXE- X717, )
n=t—M
and H, is defined as
t ]l 1‘1 1}
Z arcltan |
e X,a’l X,i N ch X]
(5)

where ||.| is Euclidean distance, the operation x is the cross
product, and < . ,. = is the dot product. Prior to calculating g,
Vi, Dy, and H,; are normalized denoted by Vi, Dy, and H,
respectively such that Vi, Dy € (0, 1) while He. € (—1,1).
The scale function which was used for p is

X xos Xi ) = (@ + Vo) - (Dee(1+ Hee))- (6)

The constant «x in (6) ensures that when V' = 0 then p can
still have a non-zero value based on Dy and Hy.; and when
V' increases, so does p. By using (D (1 + He)), when one
individual is moving toward the other’s position p increases.
This reflects an increased likelihood of collision as the individ-
uals move nearer o each other but also gives more attention
to individual J when they are in front of agent I, reflecting
that agent JJ would be readily visible to agent [ compared to
neighbors outside of their field of view (assuming individuals
look in the direction they’re moving).

In Fig. 4, we demonstrate the impact of removing different
parameters from the g function. To do this, we compare two sim-
ilar interactions between agents 80 (pedestrian), 71 (pedestrian),
and 72 (bicyclist) as well as a third interaction between agents 88
{car) and 218 (pedestrian). We show that removing the velocity,
distance, or heading parameters negatively impacts the intuitive
interpretability of values of p calculated for the interactions.

C. Experimental Models

For our experiments we use both the PECNet [2] and Y-Net
[3] models. PECNet is a trajectory prediction model which im-
plements a variational auto-encoder and social pooling to predict
trajectory endpoints. PECNet encodes the observed portions
of trajectories and their ground-truth endpoints. This encoded
information is used to predict end-points for each trajectory.
The K closest predictions to the goal are then used along with
the observed portion of the trajectory to estimate the future
coordinates of the trajectory. We use the author’s provided code.
Preprocessing was done directly with the SDD’s annotations,
using the PECNet model. Y-Net instead utilizes a set of sub-
networks similar to U-net [28] to handle both the uncertainty in
an agent’s goal, as well as the uncertainty in how they reach a
given goal. Encoding is performed for the past trajectory data and
scene segmentation information, prior to predicting the tumre
trajectory.

0. AIM Implementation

In this section we outline our hyperparameter settings for AIM
and demonstrate how it can be applied to interaction data and
interpreted.

AIM Function: In (1), we set hyperparameter 4 = 0.95, re-
sulting in a decay of 2% at each time point.

o Function: In our p function (6) we set o = 0.3. Weset N =
30 for 5DD and N = 25 for inD. These values were selected
based on the two dataset’s differing frame rates, such that p
covers the past one second of trajectory data for each dataset.
Each normalizing function for the parameters of p was tuned
with respect to the values of their parameter within the SDD.

We use MI, p, and ATM to visualize the characteristics of the
SDD and inD dataset. Through the rest of the paper we present
these measures as heatmaps overlaying the corresponding trajec-
tories. The color of a given individual's trajectory indicates their
value of the specified measure at that time point. The associated
color bar reflects the corresponding values of the given measure
among all individuals in a given recording. Accompanying these
heatmaps are graphs tracking the values of the measure over the
course of the trajectory for both interacting individuals. Fig. 3
demonstrates this format while giving an example of how ML
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TABLE IT
TOTAL NUMBER OF TRAJECTORIES AND FREQUENCY OF LOST ANMOTATIONS
M THE DD
Scone Number of Trajectories  Starfi%e)  Middke(%)  End(%)
Baosdcstone 1645 TR.1 74 65.2
Coupa 415 74.4 ih 9.2
DeathCircle 2830 £49.3 2.1 538
Crates 1240 B89 106 4.8
Hyang 1480 8.7 9.9 6.2
Latike 656 9.9 LY ) 840
Mexus 14586 68.1 16 6.8
Quad 549 25.4 13.6 16.9

o, and AIM vary over the course of a pair of trajectories. The
primary role of these measures within this paper is to provide
readily interpretable methods of visualizing the characteristics
of the SDD and inD datasets, rather than as tools for prediction,
tracking or detection.

V. KEY CHARACTERISTICS
A. Annotations

The SDD contains a label for frames that are “lost™ out of
the bounds of the video. This description alone doesn't give
an adequate description of these annotations. When plotied, the
actual behavior of these points becomes more apparent. Lost
coordinates often occur either at the start or end of a trajectory,
and less often in the middle for those agents that leave and
reenter a scene. These annotations either remain stationary at
the point where the individual will enter or leave the scene, or
alternatively move linearly back into the scene. Fig. 5 uses Ml
and p to visualize some of the behavior and effects of these lost
coordinates,

We report the frequency of trajectories containing these an-
notations in Table 11. Additionally, we distinguish between how
frequently they occur at the start of the trajectory, the end, or
in the middle. This is important because simple approaches
of filtering may properly remove the annotations at the start
and end of the trajectory, but may have different effects on the
middle occurrences. Some possible effects may be to leave a
gap in the trajectory data with no coordinate data for those
trames, or to split the trajectory into multiple new trajectories
before and after the lost annotations occurred. For this reason
it is important for users of the dataset to describe how they
process the data they use. Omitting this information leads to
difficulties when reproducing other researchers” work without
explicit instructions on how they addressed such decisions. For
this work we filter out the lost annotations, and then if this splits
the trajectory we keep only the first portion.

This characteristic is of particular importance for researchers
using the SDD for trajectory prediction, as many benchmark
methods take ~ 3.2 seconds of each trajectory as their observed
portion of the trajectory and then attempt to predict the next ~
4.8 seconds [2], [10], [16]. If the lost coordinates are left included
at the start of the trajectories, then this could lead to a large bias
towards observing and predicting stationary trajectories.

[10]. [29] are the only works in which the lost coordinates
are briefly mentioned, however the authors do not describe
them. To demonstrate the importance of properly filtering these
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(a) The graphs reflect that nearly half of the trajectory’s frames are removed when filtering “lost™ annotations, As MT tends to increase during stationary

trajectories, the additional frames inflate its value. (b) Here the lost annotations wrongly suggest that the individual who has left the scene instead reenters and
begins comverging with the other individual. A predictive model may incorrectly predict that agent 83 will move to avoid a collision, when in fact there’s no one

else around them.

TABLE TIT
TESTING ACCURACY 0N THE NI DATASET UNDER DIFFERENT
TRAINING CONDITHNS

Model Dhatnest Al Cars
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Split Trajectory in Co

Fig. .  In this example four unigue track 1Ds from video 0 in the Coupa scens
of the SDD are shown. The provided video and annotations confirm that thess
four tracks belong (o a single individual.

coordinates, we show how removing them can improve a trained
trajectory prediction model’s ability to generalize to a new
dataset in Table I11. This table reports the testing accuracy on the
inD dataset using models trained either on the inD dataset, or
on the SDD dataset with or without the lost annotations fillered
out.

These results show that when training on the SDD and test-
ing on the inD» dataset, training on data which has the lost
annotations filtered out (SDD w/o lost) improves both of the
resulting performance measures (we use the standard trajectory
prediction measures of Average Displacement Error (ADE) and
Final Displacement Error (FDE) [2], [16], [19]) compared to
including them (SDD w/ lost). We show that this remains true
when training/testing on all classes, pedestrians, bicycles, or
cars, for both the PECNet and Y-Net models.

In addition to lost annotations, another behavior of the tra-
jectory data in the SDD is that multiple trajectory TDs may
correspond to a single individual. We demonstrate a prominent
example of this behavior in Fig. 6. In these cases the individuals
tull trajectory is split into multiple partial trajectories, each of

TABLE IV
CLASS DISTRIBUTION TN THE SDD (TOP) AND THE UNIQUE INTERSECTICNS OF
THE D DATASET (BOTTOM)

Dataset Scenc Pedestrians  Bicychists  Cars  Buses  Skaters  Carts
Hackgore [£X] 320 [EE] 037 (&) nad
Compa BiLG a9 0,17 0 ni7 o7
TenthCircle EEN| 563 471 42 1351 31
S00 Giabes 4173 5la 108 TR 155 0
Hynng Ty 7 [1 5] Lt 1.29 n41
Littl= 415 SR 017 a7 a7 (1]
Mexus ad 4.1 2.5 1.25 ik, 0.4
Cruad RTS 125 il 0 il (1]
[iX] h.05 1Eh A G5 [i] [1]
D T-17 214 114 654 1.58 il (1]
18-24 3317 na IR R L1 3., il (1]
3032 34 305 ERY 4.61 il 1]

which is given a different 1D. Unlike with lost annotations,
there is no clear indicator of when this occurs, and confirming
it requires manual cross-checking of each partial trajectory’s
annotation.

B. Data Diversity and Scene Feature Adherence

Previous works have commented on the SDD’s class [7] and
scene [30] diversity. Vehicles make up a significant minority,
and many of them are parked. In comparison, the inD dataset
contains a larger percentage of moving cars but fewer pedestrians
and classes. This suggests that the SDD may be more suited for
applications that focus on pedestrians [3]. [31] while the inD
dataset is suited for models intended for use in environments
with both pedestrians and cars [32] This idea is further supported
by differences in scene diversity and navigational behavior,

We demonstrate the percent distribution of classes in each
dataset in Table IV. The values for the SDD are provided by the
datasets authors, while the values for inD) were determined by
checking the number of occurrences of each class in the metadata
files and summing across all videos in a given intersection. These
values show the prominence of foot traffic in the SDD, and of
vehicles in the inD dataset.

While the SDD has multiple scenes, all of these scenes are
located in a campus setting where the predominance of foot
traffic impacts navigation behavior. This behavior can be seen
in Fig. 7, which shows the frequency at which individuals in the
SDD walk or bike through the streets rather than sidewalks or
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The trajectories from a single video in each scene within the DD and inD dataset are plotted, The hehavior of foot traffic varies from scene to scene

within the SDD. The pedestrians and bicyelists in the SDD often enter or cross the road, and vehicles are infrequent. In the inD dataset there are numerous vehicles,
so hicyclists primarily remain on the shoulders of the road and pedestrians more consistently use crosswalks o cross.

shoulders of the road. This indicates that certain scene features
such as sidewalks and roads have a less predictable impact on
navigation than when vehicles are more prevalent (as in the inD
dataset). As such, the SDD may not be well suited to methods
which learn to rely on such features.

In contrast (o the SDD, the inD dataset has scenes located
at four intersections in public roads. As with the SDD, there
are some behaviors typical of intersections which are readily
apparent in this dataset. For instance, cars are much more prone
to stopping and turning than they would be in the absence of stop
lights or intersections. Similarly, compared to areas such as the
campus setting of SDD, cars are more prominent in the dataset,
and as a result foot traffic has to adhere more closely to certain
scene features than in SDD, as in Fig. 7. For this reason, it's
possible that the inD dataset is less suited for models which do
not account for scene features, as these features add a constraint
to navigational behavior.

An impact of the different behaviors and class distributions
in both datasets can be seen in Table 1TI. PECNet performed
similarly well for pedestrians in the inD} dataset whether it was
trained on the SDD or the inD dataset, however the performance
for cars is significantly worse when trained on the SDD, indi-
cating that the cars in the SDD are insufficient for predicting
car behavior in the inDD dataset. This is possibly because many
of the cars in the SDD are parked, or their driving is otherwise
different due to the presence of more pedestrians in the road and
lack of intersections with stoplights. We observe similar results
with ¥-Net where the gap in performance between pedestrians
when trained on the SDD or inD) dataset is much smaller than
for cars.

C. Scene Layout

For a given scene in the SDD, the region covered by each
video may overlap completely, partially, or not at all. Similarly,
the time of recording may be the same or different. An example
in which both the location and time overlap is shown in Fig. 8.

When both time and location overlap, interactions that occur
within the overlapping regions appear in multiple videos. This
leads to redundancy in the observed interactions depending on
the methods used. Fig. 9 uses Ml and p to demonstrate how this

Fig. 8.  Here the same frame is taken from each video in the Coupa scene. The
overlap in location is reflected by dashed lines, and the simultaneous recording
time can be seen from the four pedestrians who are in the same locations in each
video,

TABLE ¥
OUTLINE OF OVERLAFPING AND SPLIT VIDEQS TN THE SDD
Thrcrlap Bookstere  Coopa DeathCiecle  Gares  Hyaeg  Lite Nexos (e
Tication Parial — Factial Tl T S T T G < i s
Time Partiel Fall Fias Pactial  Partil Dl Potial  Full
- Widea -5 -2 Fromie L= A[ISEY -3 P -3
47 749 14
56 13 &8
211

overlap may affect different measures. The MI values within the
overlapping regions differ between the two videos, while the
values of p are highly similar.

The discrepancy between MI values is explained since MI
relies on the full past of the trajectories, leading to higher
MI values in video 1 during the overlapping frames as there
is more past trajectory data providing information about the
current interaction. Since p only relies on the past one second
of information, the interactions result in nearly identical values
of p. This demonstrates how measures such as our p, which
care only about local information, lead to redundant values in
overlapping sections of different videos.

Several videos in the SDD overlap both in location and
recording time, which may influence how certain applications
such as object tracking or trajectory prediction are used on the
datasel (e.g. users may assess the accuracy and consistency of
tracking a single individual across two videos, while trajectory

Authorized licensed use limited to: Liniversity of Maine. Downloaded on July 01 2023 at 02:1821 UTC from IEEE Xplore. Resfrictions apphy.



ANDLE er al.: STANFORD DRONE DATASET 15 MORE COMPLEX THAN WE THINK: AN ANALYSIS OF KEY CHARACTERISTICS

(@) MIvalues during Interactian in Video 1 ML Values during [nteraction in Video 2

i} '.'alu: by Frame in Vides 2

61
1AL
Bla
— Agent B
B = H‘Iﬂl'ﬂ

v
= Agent TH
== Agent 83
.

1060 '|:-w i e

Frame Humber |30 fps)

o T
Frama Humber (30 fps)

() p values during

1871

Interactian in Video 1

o Values during [nteraction in Video 2

p value by Frame In Wideo 1 P Malue by Frame n Video 2
o = Agent 76 | l Inl m— hgant i
== Agert 01 == hgent 50
.;.. J 15

n-.n-
v 03

LEe) I
aoon 1200 JapD plde]
Frame Humber (30 fps)

Hann L] 00

Framss Mumber (10 fps)

i ple=l

Fig, 9, The trajectories of the same two individuals are plotted from two videos in the SDID"s Coupa scene. A portion of this interaction is included in hoth videos
approximately between frames 3000 and 3200, MI takes different values over these frames for each video. In contrast, the p values which only rely on the most
recent 30 frames at each time point show nearly identical values for each video between these overlapping frames. This demonstrates how the video overlaps may

impact results differently depending on the methods being used.

Fig, 10,  Here we provide composite images of each scene as an aid for usars
of the SDD to more easily understand where each video is in relstion to the
others within a given scene.

prediction models may need to split their training and test data
accordingly ).

When only the time of recording is the same, the effects are
less predictable. IT the scenes are nearby (for instance within a
college campus), then behaviors associated with a given time
would affect multiple recordings such as rush hour traffic or
students going to class. In the inD dataset, all recordings of a
given intersection record the same location at different times.
Because of this, the features within that location are present in
each of the recordings belonging to that scene. For features that

significantly impact behavior, such as bus stops or benches, this
redundancy could disproportionately emphasize those features.

The groups of videos in each scene which overlap in time or
location for each scene in the SDD are listed in Table V. In this
table, “partial” overlap indicates that only a subset of the videos
within the scene overlap either in time or location. We list which
videos were shot simultaneously in the “Split Videos™ data. The
cause for such videos appears to be that certain videos are shot
over a larger area prior to being broken into multiple videos,
each covering a smaller subset of the area from the original
recording. This is most clear with Coupa as seen in Fig. 8.
We additionally provide the composite images of each scene
in Fig. 10 for reference. These composite images allow users
of the dataset o better visualize how individual videos relate to
one another within a scene to identify where these characteristic
overlaps occur,

V. DISCUSSION AND COMCLUSION

In this work, we have demonstrated several key characteristics
of the SDD which have not been properly addressed before.
These characteristics are: the properties of the lost annotations,
differences in class diversity and behavior compared with the
inD» dataset, and the scene layout. We have provided clear and
intuitive visualizations and descriptions of each, including the
potential impacts they have in different applications.

For those that have previously used the SDD without account-
ing for these characteristics, it is possible that the accuracy
of their model was worsened by erroneous preprocessing or
because the SDD was not well suited to their methods. In this
paper, we have shown the potential for the former case by leaving
the lost annotations in during preprocessing for the trajectory
prediction models PECNet and Y-Net (Table IT), which resulted
in a worsened ability of the networks to generalize to the inD
dataset when trained on the SDD compared to models trained
without the lost annotations being included. We have also pro-
vided a comparison to the inD) dataset to help future researchers
make informed decisions regarding which data best fits their
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methods. We believe that these contributions will not only make
it easier to work with the SDD, but also to do so properly while
being able to better interpret the results obtained regardless of
the application.

Understanding the properties of the SDD's annotated data is
vital when using it, as detailing how your data is preprocessed
i{whether or not you have removed lost annotations, how you
handle trajectories which become split as a result, etc), signifi-
cantly improves others” ability to reproduce your results. Despite
this, information surrounding these steps is frequently left out
of publications. While the presence of split trajectories is worth
noting and more difficult to identify, we suspect that it is also
less impactful than the lost coordinates. Any model which is
not expected to recognize that all four partial trajectories in
Fig. 6 belong to the same pedestrian (whose class changes from
pedestrian to biker mid-trajectory) may train just as well by
treating them as four unique individuals with non-overlapping
[rames.

The differences in classes between the two datasets has im-
plications for when each dataset is best suited for a given ap-
plication. Agents navigating the SDD are less adherent to scene
teatures such as sidewalks, and there are far fewer moving cars.
This suggests that the 5DD would be well suited for applications
intended for use in areas such as parks or shopping centers, where
pedestrians make up most of the traffic and are less observant of
scene features. By contrast, the in[» dataset may be better suited
for street traffic where the prevalence of moving cars forces
foot-traffic to more strictly adhere to sidewalks.

Lastly our demonstration of the overlap between videos in
the SDD is useful for applications which can take advantage of
this characteristic. An example of this is for tracking, where
the overlapping locations could be used to test a method’s
ability to track an individual’s trajectory across multiple adjacent
videos. This information can be used by those looking to utilize
different training/testing splits for the SDD data. Most trajectory
prediction papers using the SDD utilize the Trajnet split outlined
in [18]. For the most part this split accounts for overlapping
scene locations and simultaneous recordings, however we pro-
vide information in Table V regarding which scenes contain
overlapping locations or are recorded simultaneously in case
other users of the dataset wanlt to investigate alternative splits.
This information is supplemented by the composite images of
each scene provided in Fig. 10, which as best we could determine
have yet to be published or provided anywhere. While simple,
this information is not readily clear when using the SDD, and
we've included it in keeping with this work’s goal of improving
the usability of the SDD.
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