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Abstract 8 

The variability and predictability of tropical cyclone genesis frequency (TCGF) during 1973-2010 9 

at both basin-wide and sub-basin scales in the Northwest Pacific are investigated using a 100-10 

member ensemble of 60-km-resolution atmospheric simulations that are forced with observed sea 11 

surface temperatures (SSTs). The sub-basin regions include the South China Sea (SCS) and the 12 

four quadrants of the open ocean. The ensemble-mean results well reproduce the observed 13 

interannual-to-decadal variability of TCGF in the southeast (SE), northeast (NE), and northwest 14 

(NW) quadrants, but show limited skill in the SCS and southwest (SW) quadrant. The skill in the 15 

SE and NE quadrants is responsible for the model’s ability to replicate the observed variability in 16 

basin-wide TCGF. Above-normal TCGF is tied to enhanced relative SST (i.e., local SST minus 17 

tropical-mean SST) either locally or to the southeast of the corresponding regions in both the 18 

observations and ensemble mean for the SE, NE and NW quadrants, but only in the ensemble mean 19 

for the SCS and SW quadrant. These results demonstrate the strong SST control of TCGF in the 20 

SE, NE and NW quadrants; both empirical and theoretical analyses suggest that ensembles of ~10, 21 

20, 35 and 15 members can capture the SST-forced TCGF variability in these three sub-basin 22 

regions and the entire basin, respectively. In the SW quadrant and SCS, TCGF contains excessive 23 
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noise, particularly in the observations, and thus shows low predictability. The variability and 24 

predictability of the large-scale atmospheric environment and synoptic-scale disturbances and their 25 

contributions to those of TCGF are also discussed. 26 
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1. Introduction 43 

 The Northwest Pacific (NWP) is the basin where tropical cyclones (TCs) are the most 44 

active in terms of both genesis frequency and lifetime peak intensity (e.g., Chan and Shi 1996; 45 

Chia and Ropelewski 2002; Camargo and Sobel 2005). These violent storms can bring about major 46 

societal and economic impacts to the countries and regions in East and Southeast Asia, where large 47 

and dense population resides (e.g., Zhang et al. 2009; Woodruff et al. 2013). Thus, it is of great 48 

importance to have a good understanding and accurate prediction of the variability in NWP TC 49 

activity (e.g., Knutson et al. 2010; Kossin et al. 2016; Lee et al. 2020). In this study, we focus on 50 

TC genesis frequency (TCGF) at both basin-wide and sub-basin scales in the NWP. 51 

 The variations in basin-wide TCGF over the NWP have been extensively studied during 52 

the past two decades, with a focus on the role of sea surface temperatures (SSTs). The SST factors 53 

that have been identified include the central-Pacific El Niño–Southern Oscillation (ENSO), the 54 

Pacific Meridional Mode (PMM), and SST anomalies in the tropical Indian and Atlantic Oceans 55 

(e.g., Wang et al. 2013; Wang and Wang 2019; Zhan et al. 2019). A positive phase of central-56 

Pacific ENSO (also known as El Niño Modoki and Date Line El Niño; Larkin and Harrison 2005; 57 

Ashok et al. 2007; Kao and Yu 2009) tends to encourage basin-wide TC genesis by inducing 58 

favorable atmospheric conditions, such as above-normal low-level vorticity, over the majority of 59 

the NWP (e.g., Chen and Tam 2010; Kim et al. 2011; Mei et al. 2015; Liu and Chen 2018; Patricola 60 

et al. 2018; Wu et al. 2018; Zhao and Wang 2019). More recently, the PMM, which is characterized 61 

by a meridional dipole pattern of SST anomalies and has strong associations with the central-62 

Pacific ENSO (e.g., Larson and Kirtman 2014; Capotondi and Sardeshmukh 2015; Amaya 2019), 63 

has also been proposed as a mechanism driving the variability in NWP basin-wide TCGF. 64 

Specifically, a positive phase of the PMM promotes TC formation in the NWP, mainly via its 65 
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effect on dynamic factors (e.g., reduced vertical wind shear; Zhang et al. 2016; Liu et al. 2019). In 66 

addition, tropical SST anomalies outside the Pacific may also influence TC genesis in the NWP. 67 

Positive SST anomalies in the tropical Indian Ocean, which often emerge during the summers 68 

following El Niños, can substantially suppress TC genesis in the NWP by generating an 69 

anticyclonic circulation anomaly in the lower troposphere over the NWP (e.g., Xie et al. 2009,2016; 70 

Du et al. 2011; Zhan et al. 2011; Li 2012; Tao et al. 2012; Ha et al. 2015). Anomalous SST warming 71 

in the tropical North Atlantic has also been linked to below-normal TC activity in the NWP and 72 

the mechanisms may involve the Walker circulation and SSTs in the Indian Ocean and subtropical 73 

North Pacific (e.g., Huo et al. 2015; Yu et al. 2016; Zhang et al. 2017; Gao et al. 2018). 74 

 TC genesis in the NWP also exhibits strong spatial variations, and TCs forming in different 75 

parts of the NWP have considerable differences in their characteristics, including track orientation, 76 

landfalling location, and lifetime peak intensity (e.g., Camargo 2007a,b; Mei and Xie 2016; Kim 77 

and Seo 2016; Nakamura et al. 2017). Accordingly, a good understanding of the variability and 78 

changes in regional TCGF is more important than that in basin-wide TCGF (e.g., Liu and Chan 79 

2003; Vecchi et al. 2014). A well-known factor responsible for the spatial inhomogeneity in NWP 80 

TCGF variability is the traditional or eastern-Pacific ENSO. This type of ENSO has opposite 81 

effects on the large-scale environment in the southeast and northwest portions of the NWP, and 82 

thereby leads to a shift in TC genesis without significantly altering basin-wide TCGF (e.g., Chan 83 

1985; Lander 1994; Wang and Chan 2002; Camargo and Sobel 2005; Chen et al. 2006; Choi et al. 84 

2015). Using primarily observations, a recent study by Wu et al. (2019) shows that TCGF in the 85 

southeast and northwest quadrants can also be affected by SSTs in the tropical Indian Ocean, and 86 

TCGF variability in the northeast quadrant may be related to SSTs in the tropical North Atlantic. 87 

 Despite the past efforts on understanding regional variations in TCGF, a comprehensive 88 
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examination of TCGF variability over all sub-basin regions of the NWP (e.g., the South China Sea) 89 

using both observations and the simulations that explicitly produce TCs is still lacking. In addition, 90 

both the observations and simulations exhibit substantial internal variability, and the internal 91 

variability has been suggested to have strong spatial dependence. It is accordingly expected that 92 

the predictability of TCGF may vary considerably across different sub-basin regions of the NWP.  93 

 In this study, we attempt to fill these gaps and explore the variability and predictability1 of 94 

both basin-wide and sub-basin TCGF in the NWP using a set of 60-km-resolution atmospheric 95 

simulations with an unprecedented ensemble size. After describing the datasets and methods in 96 

use (section 2) and comparing the observed and simulated TCGF climatology (section 3), we 97 

investigate the SST-forced interannual-to-decadal variability in the simulated TCGF, compare it 98 

with the observations, and study the underlying physical mechanisms (section 4). We then in 99 

section 5 explore the internal variability and predictability of TCGF as well as those of the large-100 

scale atmospheric environment and synoptic-scale disturbance activity, the two modulators of 101 

TCGF. Concluding remarks are given in section 6. For the convenience of reading, the acronyms 102 

and abbreviations used in this paper are listed in Table 1. 103 

2. Data and Methods 104 

2.1 Observational and reanalysis data 105 

 Owing to the discrepancies among available TC best track datasets (e.g., Barcikowska et 106 

al. 2017), we use three best track datasets produced respectively by the Joint Typhoon Warning 107 

Center (Chu et al. 2002), Shanghai Typhoon Institute of the China Meteorological Administration 108 

(Ying et al. 2014), and Japan Meteorological Agency, all of which provide the location and 109 

intensity of TCs at 6-h intervals. We use the mean of the three best track data to represent the 110 

 
1 Note that the predictability discussed in this study is “potential predictability”, since the simulations in use are forced 

with perfect boundary (observed SST) conditions (Kang and Shukla 2006). 



 4 

observations. Given that relatively large uncertainties exist in TC data during the early time period 111 

and the simulations (see section 2.2) end in 2010, here we focus on TCs reaching at least tropical 112 

storm intensity during 1973–2010. As an example of the uncertainties in TC best track data, Fig. 113 

S1 in the online supplemental material shows that the annual mean initial intensity (measured by 114 

sustained surface wind speed) of TCs is larger prior to 1973 than after, and thus the genesis 115 

locations may not be accurate before 1973. TCGF is calculated as the total number of TCs forming 116 

in the entire basin or each sub-basin region (defined in section 2.3) on a yearly basis.  117 

 In addition, monthly SSTs and atmospheric variables (including sea level pressure, specific 118 

and relative humidity, temperature, 850- and 250-hPa horizontal winds, and 500-hPa vertical 119 

pressure velocity) from the Japanese 55-year Reanalysis (JRA-55; Kobayashi et al. 2015) are used 120 

to study the physical mechanisms underlying the year-to-year variability in observed TCGF. 121 

2.2 Simulations 122 

 The simulations in use are the historical simulations from the Database for Policy Decision 123 

Making for Future Climate Change (d4PDF; Mizuta et al. 2017). They were run with the 124 

Meteorological Research Institute Atmospheric General Circulation Model (AGCM), version 3.2, 125 

of 60-km resolution, and forced with observed monthly SSTs and sea ice concentration (COBE-126 

SST2; Hirahara et al. 2014) as well as climatological monthly sea ice thickness. The simulations 127 

cover the period from 1951 to 2010, and consist of 100 member simulations that differ in initial 128 

conditions and slightly in the prescribed SSTs. 2  The simulations replicate the year-to-year 129 

variations in large-scale atmospheric circulation associated with global tropical SST variability 130 

(Kamae et al. 2017a,b; Ueda et al. 2018). 131 

 
2 The initial conditions in different members were the snapshots on different dates in former simulations with the same 

AGCM. The small perturbations added to the observed SSTs represent SST sampling and analysis errors, and were 

generated using empirical orthogonal functions (EOFs) that represent the interannual variability in SSTs. Details on 

how the initial conditions and SSTs were perturbed can be found in the appendix of Mizuta et al. (2017). 
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 The simulations generate TC-like vortices. These vortices are detected and tracked using 132 

sea level pressure, 850-hPa vorticity, 850-hPa, 300-hPa and surface winds, warm-core temperature, 133 

and duration of the tracks following a methodology that combines Murakami et al. (2012) and Mei 134 

et al. (2014). We have examined some randomly selected vortices and found that they share many 135 

similarities with TCs in the observations. As in Yoshida et al. (2017), the simulations reproduce 136 

many statistics of TCs in the observations, such as the geographical distribution of climatological 137 

TC occurrence [e.g., Fig. 2 in Yoshida et al. (2017)]. We have shown in Mei et al. (2019) that the 138 

simulations capture 70% of the variability in observed North Atlantic hurricane frequency. We, 139 

however, recognize a notable caveat of using the AGCM simulations is that these simulations may 140 

not generate correct surface wind speeds and fluxes, which in turn may affect TC-related 141 

thermodynamic parameters (e.g., potential intensity) and TC activity (Emanuel and Sobel 2013). 142 

 In the simulations, we consider storms with a lifetime peak intensity of at least 11 m s-1 as 143 

TCs. The choice of 11 m s-1 is made to match the annual averaged TCGF in the simulations to that 144 

in the observations during 1973–2010 (i.e., ~25.74 per year). This threshold value is smaller than 145 

what is used in the observations (i.e., 17.5 m s-1), primarily owing to the relatively low resolution 146 

of the model and the differences in the average time period over which storm intensity is estimated 147 

(e.g., Bacmeister et al. 2018; Li and Sriver 2018). Using different threshold values produces similar 148 

results and does not alter the main conclusions of this study (e.g., Table S1 in the online 149 

supplemental material). 150 

 In each member simulation, a variable (e.g., basin-wide TCGF) can be divided into two 151 

components: forced component tied to the imposed SST, and internal component due to the 152 

randomness in atmospheric processes. Accordingly, the SST-forced component is approximated 153 

by the ensemble mean of the 100-member simulations, and its year-to-year variations are referred 154 
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to as forced variability. The internal variability is determined by the deviations of individual 155 

member simulations from the ensemble mean. It is worth noting that the perturbations added to 156 

the SSTs have negligible effects on the forced variability and no significant effects on the internal 157 

variability in the atmospheric variables and simulated TC frequency (Mizuta et al. 2017; Mei et al. 158 

2019).  159 

2.3 Definition of the five sub-basin regions 160 

 In studying the ENSO effects on TC genesis over different portions of the NWP, Wang 161 

and Chan (2002) use 140°E/17°N as the boundaries for the four quadrants of the open ocean during 162 

the early and peak TC season and 150°E/17°N during the late season. In a recent study by Wu et 163 

al. (2019), 150°E/15°N are adopted as the boundaries to obtain nearly equal areas for the four 164 

quadrants of the open ocean. Here we employ 144°E/16°N as the dividing longitude/latitude, 165 

which are located around the middle of those used in previous studies, for the four quadrants of 166 

the open ocean (Fig. 1); changing the boundaries by a couple of degrees reaches very similar 167 

conclusions. The South China Sea (SCS) comprises the fifth sub-basin region of the NWP.  168 

2.4 Correlation skill of the ensemble mean in reproducing the observed variability 169 

 Here we extend the results shown in section 4b (page 3161) of Mei et al. (2019) to make 170 

them applicable to generic cases. Let 𝑧(𝑡) be the observed time series of a given variable (e.g., 171 

basin-wide TCGF in this study) 𝑧(𝑡) = 𝑥!(𝑡) + 𝜀(𝑡), where 𝑥!(𝑡) represents the signal in the 172 

observations and 𝜀(𝑡) represents the noise with mean 0 and standard deviation 𝜎". Let 𝑦#(𝑡) be the 173 

simulated time series of the same variable of interest in the ith member simulation: 𝑦#(𝑡) =174 

𝑥$(𝑡) + 𝑒#(𝑡), 𝑖 = 1, 2, . . . , 𝑁 , where 𝑥$(𝑡)  represents the signal in the simulations, 𝑒#(𝑡) 175 

represents the model noise with mean 0 and standard deviation 𝜎% (i.e., the internal variability 176 

defined in section 2.2), and 𝑁 is the total number of member simulations. 177 
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 Assume that 𝑥!(𝑡), 𝜀(𝑡), 𝑥$(𝑡), and 𝑒#(𝑡) are weakly stationary time series, and that 178 

𝑒#(𝑡), 𝑖 = 1, 2, … , 𝑁, are uncorrelated with each other and are uncorrelated with 𝜀(𝑡) at all leads 179 

and lags. Define the ensemble mean of the 𝑁 simulations as 𝑦3(𝑡) = 𝑁&'∑ 𝑦#(𝑡)(#)' . With some 180 

algebra, we can write the population correlation between 𝑦3(𝑡) and the observations (i.e., 𝑧(𝑡)) as 181 

𝜌*+ = cor9𝑦3(𝑡), 𝑧(𝑡): = ,-.(01(2),5(2))
6.78(01(2)).78(5(2)) = 9!,#:!:#

;(:!$ <(%&:'$)(:#$<:($)
	,                       (1) 182 

where 𝜌$,! is the population correlation between 𝑥!(𝑡) and 𝑥$(𝑡), 𝜎$ is the standard deviation of 183 

𝑥$(𝑡) and is also known as the forced variability defined in section 2.2, and 𝜎! is the standard 184 

deviation of 𝑥!(𝑡). It follows that the population correlation between the ith member simulation 185 

and the observations is 186 

cor9𝑦#(𝑡), 𝑧(𝑡): = 𝜌$,!𝜎$𝜎!<(𝜎$= + 𝜎%=)(𝜎!= + 𝜎"=)	 , 𝑖 = 1, 2, … , 𝑁, 187 

which is denoted by 𝜌. Then we have the following identity that links 𝜌*+ and 𝜌: 188 

𝜌*+ = 𝜌= 𝜎$= + 𝜎%=𝜎$= + 𝑁&'𝜎%= = 𝜌= 1 + SNR&=1 + 𝑁&'SNR&=	, 189 

where SNR = 𝜎$/𝜎% is known as the signal-to-noise ratio in the model simulations. 190 

 In practice, 𝜌  is estimated by 𝑟̅ = 𝑁&'∑ 𝑟#(#)' , the mean of the sample correlation 𝑟# 191 

between individual member simulations and the observations. Accordingly, the sample correlation 192 

between the ensemble mean and the observations, 𝑟*+, can be estimated as 193 

𝑟*+ = 𝑟̅D '<>?@A%$
'<(%&>?@A%$	,                                                           (2) 194 

where SNRE , the estimator of SNR, is defined in the following subsection. 195 

2.5 Computing the signal-to-noise ratio (SNR) in practice 196 

 Using the same notation as in section 2.4, we obtain the following identities: 197 
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𝜎0= = var9𝑦#(𝑡): = 𝜎$= + 𝜎%=	, 198 

𝜎01= = var9𝑦3(𝑡): = 𝜎$= + 𝑁&'𝜎%=	. 199 

It follows that 200 

𝜎$= = 1𝑁 − 1 9𝑁𝜎01= − 𝜎0=:	, 201 

𝜎%= = 𝑁𝑁 − 1 9𝜎0= − 𝜎01=:	. 202 

We calculate the SNR as 203 

SNR = :!
:' = ='

(
(:)*$&:)$
:)$&:)*$ 	.                                                       (3) 204 

 In practice, we estimate 𝜎01= as 𝜎I01=, the sample variance of the ensemble mean 𝑦3(𝑡), and 205 

estimate 𝜎0= by averaging the sample variances of 𝑦#(𝑡) in individual member simulations, i.e., 206 

𝜎I0= = 𝑁&' ∑ 𝑠#=(#)' , where 𝑠#= is the sample variance of 𝑦#(𝑡). We then obtain the estimated SNR, 207 

denoted as SNRE . The SNR calculated using this method is more accurate and stable than that 208 

computed using the method described in Mei et al. (2014, 2015, 2019), as illustrated in Fig. S2 of 209 

the online supplemental material and numerically confirmed using the toy model described in 210 

section 4b (page 3160) of Mei et al. (2019).  211 

2.6 Calculations of a genesis potential index and synoptic-scale disturbance activity 212 

 A genesis potential index (GPI), which integrates four thermodynamic and dynamic factors 213 

and represents the favorability of the large-scale atmospheric environment in which TCs develop, 214 

is calculated following Emanuel (2010) as: 215 

GPI = B|D|+EF7G(H,-&IJ,K)$L
M./+(=J<H01).  ,                                                           (4) 216 
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where 𝑎 is a constant and in this study set to be 1016, 𝜂 is the 850-hPa absolute vorticity, 𝑉NO is the 217 

TC potential intensity, 𝜒 is the 600-hPa entropy deficit, and 𝑉PQ is the magnitude of the 250–850-218 

hPa wind shear vector [see also Korty et al. (2012) and Tang and Emanuel (2012)]. 219 

 To quantify the contribution of each component (e.g., 850-hPa vorticity) to the changes in 220 

the GPI, we recompute the GPI using the original, year-to-year varying values for that component 221 

but the climatology of 1973–2010 for the remaining three components, following Camargo et al. 222 

(2007c). This procedure is carried out for all the four components of the GPI. Note that the sum of 223 

the contributions of the four individual components is close but not exactly equal to the changes 224 

in the GPI, owing to the nonlinearity of the GPI formula, as discussed in Camargo et al. (2007c). 225 

 The synoptic-scale disturbance activity is assessed following Li et al. (2010) and Vecchi et 226 

al. (2019). Specifically, for each year at each grid it is defined as the variance of 2–8-day bandpass 227 

filtered 850-hPa relative vorticity during the peak TC season (e.g., June–November for the NWP). 228 

To minimize the effects of TCs, the vorticity within 500 km of each TC location is removed before 229 

computing the variance. 230 

3. Climatology of TCGF 231 

 Figure 1 displays the geographical distribution of climatological TC genesis over the NWP 232 

at 2°´2° grids in the observations and ensemble mean of the simulations. Generally, the model 233 

reproduces the large-scale pattern and magnitude of TC genesis in the observations. For instance, 234 

in both the observations and simulations, TCs form primarily in the SCS and south of 24°N over 235 

the open ocean; and over the open ocean, TC genesis exhibits a southeast-northwest orientation. It 236 

is worth noting that the spatial distribution is smoother in the simulations than in the observations, 237 

simply because of the averaging effect of the ensemble mean. In addition, in the SCS TC genesis 238 

on average is located slightly more south in the simulations than in the observations. 239 
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 The model is also skillful at replicating the climatological seasonal cycle of the observed 240 

TCGF in the NWP and its five sub-basin regions (Fig. 2). The skill is higher in the northwest (NW), 241 

northeast (NE) and southeast (SE) quadrants than in the SCS and the southwest (SW) quadrant in 242 

terms of the magnitude and phase of the seasonal cycle. Specifically, the simulations well capture 243 

the peak month of TCGF in the former three regions: August for the NW and NE quadrants and 244 

October for the SE quadrant; and in both the observations and simulations, no TCs occur between 245 

December and April in the NW and NE quadrants. In the SCS, the simulated seasonal cycle has a 246 

magnitude similar to that in the observations, but lags in phase by approximately one month, with 247 

fewer TCs forming during May-August and more TCs during October-March in the simulations. 248 

In the SW quadrant, the magnitude of the seasonal cycle in the simulations is only around half of 249 

that in the observations, with fewer TCs during June-October and more TCs during 250 

December-March. Interestingly, in this region both the observed and simulated seasonal cycles 251 

exhibit a local dip in August, which is a robust feature in nearly all the 100 member simulations 252 

and warrants a further investigation.   253 

 Based on the seasonal cycle of TCGF, the following months are defined as active TC 254 

seasons for the NWP and its sub-basin regions: June-November for the entire basin, the SCS, and 255 

the SW quadrant; July-October for the NW and NE quadrants; and July-December for the SE 256 

quadrant. In the following sections, SSTs, the large-scale atmospheric condition, and synoptic-257 

scale disturbance activity averaged or defined in these months will be used to explore the physical 258 

mechanisms underlying the year-to-year variability of TCGF in the corresponding regions.  259 

4. Forced variability in TCGF and its connections to the large-scale environment and 260 

synoptic-scale disturbances 261 

4.1 Interannual-to-decadal variations in TCGF 262 
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 Figure 3a shows the year-to-year variations of basin-wide TCGF in the ensemble mean of 263 

the simulations (thick black curve) and in the observations (thick red curve). The ensemble mean 264 

captures nearly half of the variance in observed TCGF, with a correlation coefficient of around 0.7. 265 

In both the observations and ensemble mean, basin-wide TCGF shows an upward trend from the 266 

mid-1970s to late 1990s, experiences a substantial drop in 1998 when a strong La Niña event takes 267 

place, and stays at a relatively low level afterwards.  268 

 The skill of the model at reproducing the interannual-to-decadal variability in basin-wide 269 

TCGF is attributable to two factors: (i) the model’s skill at replicating TCGF variability in the SE 270 

and NE quadrants of the basin, and (ii) the dominance of TCGF of these two quadrants in the 271 

variability of basin-wide TCGF. For these two quadrants, the correlation coefficients between the 272 

simulated and observed TCGF are 0.88 and 0.45, respectively (Figs. 3c,f). Meanwhile, TCGF in 273 

these two quadrants evolve in a manner similar to basin-wide TCGF. They respectively account 274 

for around 31% and 29% of the total variance in basin-wide TCGF (the correlation coefficients r 275 

= 0.56 and 0.54, respectively) in the observations and around 60% and 27% (r = 0.78 and 0.52, 276 

respectively) in the ensemble mean (Table 2), while they are nearly uncorrelated with each other 277 

in both the observations and simulations (r = -0.10 and 0.01, respectively; Table 2). 278 

 The model also shows skills at capturing a considerable portion of the observed TCGF 279 

variability in the NW quadrant (r = 0.48; Fig. 3b). This, however, does not contribute to the 280 

model’s good performance in reproducing the observed variability in basin-wide TCGF, because 281 

TCGF in this quadrant explains less than 1% of the variations in basin-wide TCGF (the correlation 282 

coefficients between TCGF in the NW quadrant and basin-wide TCGF are -0.03 and -0.09 in the 283 

observations and ensemble mean, respectively; Table 2). It is worth noting that TCGF in this 284 

quadrant negatively covaries with TCGF in the SE quadrant (r = -0.54 and -0.48 in the observations 285 
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and ensemble mean, respectively), largely owing to the ENSO effect; this will be discussed in 286 

section 4.2. 287 

 On the contrary, the model has limited skill at reproducing the observed TCGF variability 288 

in the SW quadrant of the basin and the SCS: the correlation coefficients between the simulated 289 

and observed TCGF are 0.14 and 0.32 respectively for these two sub-basin regions, both 290 

insignificant at the 0.05 level (Figs. 3d,e). This result echoes the underperformance of the model 291 

in simulating the observed climatological seasonal cycle over the two regions (section 3 and Figs. 292 

2d,e). These discrepancies between the simulations and observations are primarily due to the 293 

intrinsically low predictability of TC genesis in the observations over these two regions, which 294 

will be discussed in section 5. 295 

4.2 Linkages to SSTs and the large-scale atmospheric environment 296 

 The high skill of the model at reproducing the observed TCGF variability in the SE, NW 297 

and NE quadrants demonstrates the strong SST control of TC genesis in these sub-basin regions 298 

given the fact that the simulations are forced with observed SSTs. Next, we shall attempt to identify 299 

the regions where SSTs are important for TCGF of the entire NWP and its sub-basin regions. We 300 

have calculated the correlation coefficients between TCGF in individual regions and global 301 

original SST and those between TCGF and global relative SST (i.e., SST minus tropical-mean 302 

SST); the calculations were carried out separately for the observations and ensemble mean. The 303 

results for relative SST are broadly consistent with those for original SST, and here we focus on 304 

relative SST (Fig. 4) because (1) relative SST better represents dynamic and thermodynamic 305 

processes (e.g., convection), and (2) using relative SST produces more consistent results between 306 

the simulations and observations, facilitating the interpretation of the linkages between TCGF and 307 
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SSTs. For the sake of completeness, we also show the results for original SST in Fig. S3 of the 308 

online supplemental material.  309 

 In both the observations and simulations, an active NWP TC season is characterized by 310 

above-normal relative SSTs over the off-equatorial tropical central North Pacific and below-311 

normal relative SSTs in the Indo-West Pacific and tropical North Atlantic (Figs. 4a,d).3 This 312 

anomalous SST pattern is consistent with the findings in previous studies, which show that NWP 313 

TCs may be modulated by SSTs in the tropical Pacific, Indian and Atlantic Oceans (e.g., Clark 314 

and Chu 2002; Du et al. 2011; Zhan et al. 2011; Wang et al. 2013; Mei et al. 2015; Yu et al. 2016; 315 

Zhang et al. 2016; Patricola et al. 2018; Zhao and Wang 2019; Wu et al. 2020). Next, we shall 316 

identify the SST pattern and large-scale atmospheric conditions that are responsible for the year-317 

to-year variations of TCGF in individual sub-basin regions. 318 

 A La Niña-like state favors TC genesis in the NW quadrant of the basin in both the 319 

observations and simulations (Figs. 4b,e). When SSTs in the central-to-eastern equatorial Pacific 320 

are colder than usual, the NW quadrant experiences above-normal relative SSTs. The increased 321 

relative SSTs in this quadrant tend to enhance relative humidity in the middle troposphere of the 322 

region (Fig. 5a and Fig. S5a in the online supplemental material) via intensified convection (Figs. 323 

S6b,e in the online supplemental material), and thereby promote TC genesis. This result is in line 324 

with Camargo et al. (2007c) and Li et al. (2022), both of which emphasize the importance of 325 

relative humidity in modulating TC genesis over this region.  326 

 High TCGF in the NE quadrant of the basin is associated with above-normal relative SSTs 327 

over 150°E-160°W, 10°-25°N in both the observations and simulations (Figs. 4c,f). High relative 328 

 
3 We note that the effect of the relative SST anomalies over the tropical central Pacific is more prominent in the model 

ensemble mean than in the observations. This discrepancy can be primarily attributed to the fact that the observations 

represent one realization of all possibilities that could occur (cf. Fig. S4 in the online supplemental material and Fig. 

4a), whereas the ensemble mean approximates the average of all possibilities. 
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SSTs in this region produce excessive latent heat release via strengthened convective activity (Figs. 329 

S6c,f in the online supplemental material), which generate an anomalous cyclonic circulation to 330 

its northwest as a Rossby wave response in the lower troposphere (Figs. 4c,f). The enhanced low-331 

level vorticity, along with increased relative humidity, provides favorable environment nurturing 332 

TC genesis in the NE quadrant of the NWP (Fig. 5b and Fig. S5b in the online supplemental 333 

material). 334 

 In the simulations, the year-to-year variations of TCGF over the SCS are also linked to a 335 

La Niña-like SST pattern (Fig. 4j). This pattern resembles the SST pattern for TCGF of the NW 336 

quadrant despite a slightly westward shift (cf. Figs. 4e,j), corresponding to a significantly positive 337 

correlation between TCGF in these two regions (Table 2). The enhanced relative SSTs in the SCS 338 

and east of the Philippines increase moisture in the middle troposphere (Fig. 5c) and generate a 339 

cyclonic circulation anomaly to the northwest (Fig. 4j), strengthening low-level vorticity (Fig. 5c); 340 

both increased mid-level relative humidity and low-level vorticity facilitate TC genesis in the SCS. 341 

In the observations, a similar but insignificant SST pattern is detected for TCGF of the SCS (Fig. 342 

4g). This implies that the internal variability in the observed TCGF is much stronger than the 343 

forced variability in this region, consistent with the relatively low skill of the simulations at 344 

replicating observed TCGF in this region (Fig. 3d). 345 

 In the simulations, the SST pattern responsible for TCGF variations in the SW quadrant is 346 

more or less similar to that for the NE quadrant but with stronger correlations in the lower latitudes 347 

(Fig. 4k). Above-normal relative SSTs over 130°-160°E, 10°S-10°N increase local relative 348 

humidity and generate an anomalous cyclonic circulation to their northwest in the lower 349 

troposphere, promoting low-level vorticity and TC genesis in the SW quadrant (Fig. 5d). In the 350 
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observations, a similar but insignificant SST pattern emerges (Fig. 4h).4 This is analogous to what 351 

occurs in the SCS, but the correlation in the observations is even weaker (cf. Figs. 4g,h), indicating 352 

the even stronger internal variability in the observed TCGF and poorer skill of the model in the 353 

SW quadrant (Fig. 3e).  354 

 In both the observations and simulations, high TCGF in the SE quadrant is tied to an El 355 

Niño-like condition (Figs. 4i,l). Above-normal relative SSTs in the central-to-eastern tropical 356 

Pacific and below-normal relative SSTs in the Indo-West Pacific produce a large anomalous low-357 

level cyclonic circulation over the majority of the North Pacific and an anomalous low-level 358 

anticyclonic circulation covering the SCS and tropical North Indian Ocean (Figs. 4i,l). This dipole 359 

pattern of low-level circulation encourages TC genesis in the SE quadrant via enhanced low-level 360 

vorticity and reduced vertical wind shear, and discourages TC genesis in the SCS via reduced low-361 

level vorticity (Fig. 5e and Fig. S5e in the online supplemental material), explaining a negative 362 

correlation between TCGF in these two sub-basin regions (Table 2). The accompanied below-363 

normal relative SSTs in the NW quadrant suppress TC genesis in the region via reduced relative 364 

humidity in the mid-troposphere (Fig. 5e and Fig. S5e in the online supplemental material), as 365 

discussed above, accounting for a negative correlation between TCGF in this region and that in 366 

the SE quadrant (Table 2). 367 

 In short, in the simulations above-normal TCGF in all five sub-basin regions can be linked 368 

to enhanced relative SSTs either locally or to the southeast of the region (Figs. 4e,f,j,k,l), which 369 

themselves are associated with changes in both local and remote SSTs (Figs. S3e,f,j,k,l in the 370 

online supplemental material). The promoted TC genesis is attributable to increased mid-level 371 

 
4 The lack of significant correlations between TCGF and SSTs over the SW quadrant and the SCS also exist in 

individual member simulations (Fig. S7 in the online supplemental material), because of the extremely strong internal 

variability in atmospheric processes and TCGF. The 100-member ensemble mean can effectively remove most of the 

internal variability, producing significant relationships between TCGF and SSTs shown in Figs. 4j,k. 
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relative humidity in the NW quadrant, to increased low-level vorticity and mid-level relative 372 

humidity in the NE and SW quadrants and the SCS, and to increased low-level vorticity and 373 

reduced vertical wind shear in the SE quadrant (Fig. 5). The observational results are consistent 374 

with those from the simulations in the NW, NE and SE quadrants in terms of the associated SST 375 

pattern and large-scale atmospheric conditions (Figs. 4b,c,i and Figs. S5a,b,e in the online 376 

supplemental material). They are, however, mostly insignificant for the SCS and the SW quadrant 377 

(Figs. 4g,h and Figs. S5c,d in the online supplemental material), echoing the low predictability of 378 

observed TCGF in these two sub-basin regions (Figs. 3d,e).  379 

4.3 Role of synoptic-scale disturbances 380 

 Synoptic-scale disturbances provide seeds for TC genesis (Fu et al. 2007, 2012; Zong and 381 

Wu 2015), and their effect on TC genesis under global warming has been emphasized in previous 382 

studies (e.g., Yoshimura and Sugi 2005; Yoshimura et al. 2006; Li et al. 2010; Vecchi et al. 2019). 383 

However, it is unclear whether they significantly affect NWP TCGF on interannual-to-decadal 384 

time scales, and whether their effect on TCGF is similar across different sub-basin regions. 385 

 Figures 6a-e show the observed correlation between synoptic disturbance activity (defined 386 

in section 2.6) and TCGF in the five sub-basin regions. In both the NW and SE quadrants, high 387 

TCGF tends to be associated with above-normal synoptic disturbance activity (Figs. 6a,e). As will 388 

be discussed in section 5.4, synoptic disturbance activity in these two regions is also more 389 

predictable than that in other sub-basin regions, contributing to the higher predictability of TCGF 390 

in the two regions. We also note that a season with active synoptic disturbances in the SE quadrant 391 

is likely a season with inactive disturbances in the NW quadrant; this might also contribute to the 392 

significantly negative correlation between TCGF in these two sub-basin regions (Table 2). In 393 

addition, in the NE quadrant the year-to-year variability of disturbance activity may play a 394 
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marginal role in modulating TC genesis (Fig. 6b). On the contrary, the correlation between 395 

synoptic disturbance activity and TCGF is weak and statistically insignificant in both the SCS and 396 

the SW quadrant (Figs. 6c,d). 397 

 In the simulations, synoptic disturbances significantly modulate TC genesis in all sub-basin 398 

regions, with high synoptic disturbance activity favoring TC genesis (Figs. 6f-j). The similarities 399 

and differences between the simulated and observed synoptic disturbance activity will be discussed 400 

in section 5.4. 401 

5. Internal variability 402 

 The spread of gray curves in Fig. 3 suggests that TCGF exhibits strong internal variability, 403 

in addition to the forced variability induced by SSTs. The magnitude of the internal variability 404 

may differ considerably among the five sub-basin regions, given the differences in the level of 405 

SST control. In this section, we shall take advantage of the 100-member ensemble and address the 406 

following four aspects pertaining to the internal variability in TCGF of the entire NWP and its sub-407 

basin regions: (1) difference in the noise level between the observed and simulated TCGF; (2) 408 

relationship between the noise level in the simulated TCGF and the skill of the model; (3) number 409 

of member simulations needed to skillfully capture the observed variations in TCGF; and (4) 410 

internal variability in the large-scale atmospheric environment and synoptic-scale disturbance 411 

activity and their possible contributions to the internal variability in TCGF. 412 

5.1 A comparison between the observed and simulated TCGF in terms of the noise level 413 

 The level of noise in TCGF between the observations and simulations can be compared 414 

using the ratio of predictable component (RPC; Eade et al. 2014)5, a quantity that for a sufficiently 415 

large ensemble size (e.g., 100 member simulations in this study) is expressed as 416 

 
5 It is worth noting that the predictable component defined here is fundamentally different from that reviewed in 

DelSole and Tippett (2007): the former measures the fraction of variance that is predictable in either observations or 
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RPC = NR230
NR42567

≈ S68
;:T)*$ :T)$U

 ,                                                       (5) 417 

where PC-VP , the predictable component of the observations, is approximated as the sample 418 

correlation between the observations and the ensemble mean of the simulations (𝑟*+); and PCF-W*X, 419 

the predictable component of the model, is expressed in terms of the ratio of the sample variance 420 

of the ensemble mean, 𝜎I01=, and the averaged sample variance of individual member simulations, 421 

𝜎I0=  (see section 2.5 for the notation). The RPC, thus, reflects the difference in the level of 422 

predictability between the observations and simulations6: an RPC value greater than (smaller than) 423 

1 suggests that the observations are more predictable than the simulations, and that the model is 424 

overdispersive (underdispersive) and thus underconfident (overconfident).  425 

 The RPC values for TCGF of the entire NWP and its five sub-basin regions are shown in 426 

the last column of Fig. 7a. It is greater than 1 in the SE and NW quadrants, suggesting that TCGF 427 

in the real world has a lower noise level and thus is more predictable than TCGF in the simulations 428 

over these two regions. In contrast, the RPC value is smaller than 1 in the other three sub-basin 429 

regions, particularly the SW quadrant. This indicates that the model is overconfident in simulating 430 

and predicting the year-to-year variability of TCGF in these regions, and that TCGF in the 431 

observations actually has a higher level of noise than that in the simulations. For basin-wide TCGF, 432 

 

model simulations, while the latter is defined as the projection vector that minimizes the ratio of the forecast 

distribution variance and the climatological distribution variance. 
6 Plugging the sample version of Eq. (1): 𝑟9: = ;!,#<=!<=#

>(<=!$ @A%&<='$)(<=#$@<=($)
, where 𝑟C,D is the sample correlation between the 

signal in the simulations and that in the observations, into Eq. (5), we obtain  

RPC ≈ 𝑟C,D1 + 𝑁EFSNR, EG-1 + SNR, EG
1 + SNR, DEG

≈ 𝑟C,D-1 + SNR, EG
1 + SNR, DEG

		, 
where SNR, D = 𝜎1D/𝜎1H is the estimated SNR in the observations. Thus, strictly speaking the RPC is determined by two 

factors: the difference between the signal in the simulations and that in the observations (i.e., 𝑟C,D), and the ratio of 

the level of predictability in the observations to that in the simulations. In this study, we assume 𝑟C,D = 1, and the 

RPC only reflects the difference in the level of predictability between the observations and simulations. 
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the RPC value is slightly greater than 1, implying that the model simulations are slightly noisier 433 

and thus slightly less predictable than the observations.  434 

 To further illustrate the discrepancies in the level of noise (and thus predictability) between 435 

the observations and simulations, we perform the following calculations for TCGF of the entire 436 

basin as well as individual sub-basin regions. First, we compute the correlation coefficient between 437 

the observations and each of the 100 member simulations, and plot the histogram of the obtained 438 

100 correlation coefficients in the form of a probability density as a red curve in Fig. 8. Second, 439 

for each individual member simulation, we compute its correlation coefficient with the other 99 440 

member simulations, and plot the probability density of the obtained 99 correlation coefficients as 441 

a gray curve in Fig. 8; the average of the 100 gray curves is plotted as a black curve. Third, we 442 

compute the correlation coefficient between each member simulation and the ensemble mean of 443 

the 100 member simulations, and plot the probability density of the obtained 100 correlation 444 

coefficients as a blue curve in Fig. 8. Lastly, we mark the correlation coefficient between the 445 

observations and the ensemble mean as a vertical dotted magenta line in Fig. 8. 446 

 For TCGF of the NW and SE quadrants and of the entire basin, the center of the red curve 447 

is located to the right of the center of the black curve and the value marked by the magenta line is 448 

higher than the mean value implied by the blue curve (Figs. 8a,b,f; Table S2 in the online 449 

supplemental material). These results suggest that in these two sub-basin regions or when 450 

considering the TCGF over the entire NWP, individual member simulations on average are more 451 

similar to the observations than to each other and the observations have a higher predictability than 452 

the simulations. On the contrary, for TCGF of the NE and SW quadrants and the SCS, the mean 453 

value implied by the red curve is smaller than that by the black curve and the value denoted by the 454 

magenta line is smaller than the mean value implied by the blue curve (Figs. 8c-e; Table S2 in the 455 
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online supplemental material). These indicate that in these three sub-basin regions, the 456 

observations on average have a higher level of noise than individual member simulations and 457 

accordingly individual simulations are more similar to each other than to the observations.  458 

 These results from the comparisons of the probability distributions of the correlation 459 

coefficients are consistent with the RPC values discussed above. Both show that in the NW and 460 

SE quadrants and when viewing the entire NWP as a whole, TCGF in the observations has a lower 461 

level of noise and thus is more predictable than that in the simulations; and that the opposite holds 462 

true for TCGF of the NE and SW quadrants and the SCS. 463 

5.2 Noise level in the simulated TCGF and its relationship with the skill of the ensemble mean 464 

at reproducing the observations 465 

 In both the NW and SE quadrants, TCGF is more predictable in the observations than in 466 

the simulations, with an RPC value of 1.37 and 1.04, respectively. The larger RPC value in the 467 

NW quadrant suggests that the difference in the noise level between the observations and 468 

simulations is greater in the NW quadrant than in the SE quadrant. This implies that the model 469 

would have a greater skill at reproducing the observed variability of TCGF in the NW quadrant 470 

than in the SE quadrant, others being equal. However, the correlation between the observed and 471 

simulated TCGF is weaker for the NW quadrant (0.48 for the NW quadrant vs. 0.88 for the SE 472 

quadrant; Figs. 3b,f and the last column of Fig. 7c). Such a contradiction can be reconciled by 473 

taking into account the SNR of TCGF in the model simulations, as it is one of the two factors 474 

determining the correlation skill of the model, according to Eq. (5): 475 

     𝑟*+ ≈ RPC ∙ D𝜎I01= 𝜎I0=U = RPC ∙ D'<(%&>?@A%$
'<>?@A%$ ≈ RPC ∙ D '

'<>?@A%$ ,                           (6) 476 

where the last approximation holds for a large 𝑁 (e.g., 100 in this study). 477 
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 The last column of Fig. 7b shows the SNR of simulated TCGF in individual sub-basin 478 

regions and the entire NWP. TCGF in the SE quadrant has the highest SNR (i.e., 1.58), with the 479 

internal variability accounting for only 29% of the total variability. In contrast, the SNR of TCGF 480 

in the NW quadrant (i.e., 0.36) is the lowest among the five sub-basin regions, with as much as 481 

89% of the total variability due to the internal variability. It is apparent that the simulated TCGF 482 

in the NW quadrant exhibits a much higher level of noise (or a larger disagreement among 483 

individual member simulations) than that in the SE quadrant. Accordingly, despite of a higher RPC 484 

value, observed TCGF contains more noise in the NW quadrant, leading to a lower skill of the 485 

model at replicating the observed TCGF variations there (i.e., a smaller 𝑟*+; the last column of Fig. 486 

7c).  487 

 On the other hand, the SNR of TCGF in the SW quadrant is around 50% higher than that 488 

in the NW quadrant (i.e., 0.54 vs. 0.36). However, the much higher noise level in the observations 489 

in the SW quadrant (RPC = 0.30 vs. 1.37 in the NW quadrant) ruins the model’s ability to capture 490 

the observed TCGF variability in this region (𝑟*+ = 0.14 vs. 0.48 in the NW quadrant). This result 491 

implicates that the SNR, representing the noise level in a model, by itself cannot be used to quantify 492 

the skill of the model at reproducing and predicting the observations. 493 

 The SNRs of TCGF in the SCS and the NE quadrant are 0.45 and 0.62, respectively, and 494 

their respective RPC values are 0.76 and 0.85. Both the relatively low SNR and RPC contribute to 495 

the poor performance of the model in capturing the observed TCGF variability in the SCS. The 496 

SNR of basin-wide TCGF is 0.92, primarily owing to the low noise level in the SE quadrant. 497 

5.3 Number of member simulations needed to skillfully capture the observed TCGF variability 498 

 As discussed earlier, averaging across member simulations can reduce the noise level in 499 

the ensemble mean and thereby improve the model’s skill at capturing the observed variability. In 500 
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this subsection, we shall examine the dependence of the model’s skill on the number of member 501 

simulations. To achieve this, we adopt a random sampling method to independently draw N (N = 502 

1, 2, 3, …, 98, 99, 100) member simulations from the entire 100 member simulations to form an 503 

ensemble, and then compute the correlation coefficient between the obtained ensemble mean and 504 

the observations. For each choice of N, we repeat the procedure 2000 times, yielding a collection 505 

of 2000 correlation coefficients. We then visualize the distribution of the collection of the 506 

correlation coefficients using a box-and-whisker plot. 507 

 Figure 9a shows the results for basin-wide TCGF. As expected, increasing the ensemble 508 

size tends to reduce the random variations retained in the ensemble mean, and as a result, narrow 509 

down the range of the correlation coefficient and increase its mean value. The mean value increases 510 

dramatically when the ensemble size increases from 1 to 10, and converges toward 0.7 (i.e., the 511 

correlation coefficient between the observations and the ensemble mean of all 100 member 512 

simulations) with a further increase in ensemble size. Overall, an ensemble of 15 simulations is 513 

needed to maximize the skill of the model at capturing the observed variability in basin-wide 514 

TCGF over the NWP. 515 

 A similar pattern can be found in the distribution of the correlation coefficient between the 516 

ensemble mean and the observations for individual sub-basin regions, with the range of the 517 

correlation coefficient narrowing and the mean value increasing as the ensemble size grows (Figs. 518 

9b-f). A comparison of the six subplots in Fig. 9 reveals two distinct aspects as follows. (i) For a 519 

specific ensemble size, the spread of the correlation coefficient is negatively associated with the 520 

SNR. (ii) As ensemble size increases, the mean value converges faster when the SNR is higher 521 

and/or 𝑟*+ in Eq. (2) is smaller, with the effect of the SNR dominating over the effect of 𝑟*+. 522 
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 Next, we derive a mathematical formula to quantify (ii), as it provides particularly helpful 523 

guidance on the designs of numerical experiments in terms of the number of needed ensemble 524 

members. Taking the derivative of 𝑟*+ with respect to 𝑁 in Eq. (2), we obtain 525 

WS68
W( = S̅∙>?@A%$

=($ D '<>?@A%$
('<(%&>?@A%$)+		.                                                (7) 526 

When 𝑁 gets bigger, 𝑟*+ levels off. By continuity, we can always find an integer 𝑁F[+ numerically 527 

such that when 𝑁 > 𝑁F[+  the rate of change in 𝑟*+  is smaller than 𝑝 ∙ 𝑟*+_F7G , where 𝑝  is a 528 

predetermined tolerance level (e.g., 𝑝 = 2.5 × 10&I) and 𝑟*+_F7G = 𝑟̅<1 + SNRE &=.   529 

 When 𝑁&'SNRE &= is sufficiently small (a condition often fulfilled in cases with SNRE > 0.2), 530 

we apply the Taylor series expansion to Eq. (7) and obtain 531 

WS68
W( ≈ S̅∙>?@A%$6'<>?@A%$

=($<I(∙>?@A%$ 	.                                                      (8) 532 

By setting the derivative in Eq. (8) to 𝑝 ∙ 𝑟̅<1 + SNRE &=, we obtain 533 

𝑁F[+ = =
I]<6^]∙>?@A$<_]$	.                                                     (9) 534 

In practice, we take 𝑁F[+ as the ceiling of the right-hand side of Eq. (9). Figure 10 displays 𝑁F[+ 535 

as a function of the SNR for various values of 𝑝, with solid curves showing numerical solutions 536 

based on Eq. (7) and dashed curves corresponding to Eq. (9). As expected, a smaller ensemble size 537 

is needed for simulating variables with a higher SNR. 538 

 We then proceed to estimate the number of member simulations required to capture the 539 

observed TCGF variability in individual sub-basin regions based on Fig. 9 with 𝑝 = 2.5 × 10&I. 540 

It is evident that the required ensemble size differs considerably among the sub-basin regions. 541 

Specifically, for the SE quadrant, where the SNR is very large, 10 member simulations are 542 

sufficient to replicate the observed variations in TCGF (Fig. 9f). For the NW and NE quadrants, 543 

35 and 20 members are needed, respectively (Figs. 9b,c). These AGCM-based estimations are 544 
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shown as black symbols in Fig. 10 and in line with our theoretical results (blue curves in Fig. 10). 545 

For the SCS, more than 100 simulations will probably yield a correlation skill of the model 546 

significant at the 0.05 level (Fig. 9d). For the SW quadrant, increasing the ensemble size does not 547 

help improve the skill of the model (Fig. 9e), because of the very high noise level in the 548 

observations.  549 

5.4 Internal variability and predictability of the large-scale environment and synoptic-scale 550 

disturbance activity 551 

 As discussed in sections 4.2 and 4.3, both the large-scale atmospheric environment and 552 

synoptic-scale disturbances can modulate TCGF. It is natural to expect that their internal 553 

variability contributes to the internal variability in TCGF. In this subsection, we examine the 554 

variability and predictability of both the large-scale environment and synoptic-scale disturbances 555 

over individual sub-basin regions of the NWP. 556 

 The first five columns in Fig. 7b show the SNRs of the GPI and its four components over 557 

the five sub-basin regions. The SNR of the GPI is greater than 1 in all sub-basin regions, except 558 

the NW quadrant, suggesting the relatively low noise level in the simulated large-scale 559 

atmospheric environment. Among the four components of the GPI, thermodynamic factors (i.e., 560 

potential intensity and mid-level saturation deficit) have higher SNRs than dynamic factors (i.e., 561 

vertical wind shear and low-level vorticity), and vertical wind shear has the highest level of noise 562 

among the four components; the exceptions are low-level vorticity and vertical wind shear in the 563 

SE quadrant. These results indicate that thermodynamic variables generally have higher 564 

similarities across member simulations than dynamic variables, except in the SE quadrant where 565 

ENSO exerts strong influences on dynamic fields.   566 
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 In all individual sub-basin regions, the GPI and the components dominating the forced 567 

variability in TCGF (section 4.2; e.g., saturation deficit for the NW quadrant and low-level 568 

vorticity for the SE quadrant) have higher SNRs than TCGF (Fig. 7b). This suggests that the large-569 

scale environment has a lower level of noise than TCGF in the simulations and thus contributes 570 

relatively little to the large noise in the simulated TCGF, similar to what occurs in the North 571 

Atlantic basin (Mei et al. 2019). When considering the variations in the SNR across sub-basin 572 

regions, a good correspondence exists between the GPI and TCGF. Specifically, the SNR is the 573 

highest in the SE quadrant for both the GPI and TCGF, and the lowest in the NW quadrant.  574 

 The RPC values of the GPI are smaller than 1 in all sub-basin regions, except in the NE 575 

quadrant, indicating that the large-scale environment has a higher noise level in the observations 576 

than in the simulations and that the model is overconfident in predicting it (Fig. 7a). Despite this, 577 

the model is still skillful at reproducing the observed variability in the large-scale environment 578 

(Fig. 7c) because of the relatively large SNRs in the simulations (Fig. 7b). Among the four 579 

components of the GPI, the RPC values of thermodynamic factors are generally larger than those 580 

of dynamic factors (Fig. 7a). This, along with the higher SNRs, results in a higher skill of the 581 

model at simulating and predicting the thermodynamic factors in the observations (Fig. 7c). 582 

 In contrast to the SNR, the RPC of the GPI is not unanimously higher than that of TCGF 583 

in individual sub-basin regions (Fig. 7a). Instead, it is higher in the SCS and the SW and NE 584 

quadrants but lower in the SE and NW quadrants. In the former three sub-basin regions, the higher 585 

RPCs, together with higher SNRs, lead to a higher skill of the model at simulating the observed 586 

variability in the large-scale environment than that in TCGF (Fig. 7c). This indicates that factors 587 

other than the large-scale environment play a more important role in limiting the model’s skill at 588 

reproducing the observed TCGF variability in these regions. The lower RPCs in the latter two 589 
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regions (i.e., the SE and NW quadrants) reduce the model’s ability to capture the observed 590 

variability in the large-scale environment, making it comparable to the model’s skill at replicating 591 

that of TCGF in these two regions (Fig. 7c).  592 

 Figures 11a,b show the spatial distribution of the RPC and SNR of synoptic-scale 593 

disturbance activity over the NWP, respectively. The SNR is relatively large in the deep tropics, 594 

particularly the SE quadrant (Fig. 11b). The area with a lower noise level in the observations than 595 

in the simulations (i.e., RPC > 1) is located only sporadically over the SE and NW quadrants of 596 

the basin (Fig. 11a). As a result, the model shows skills at replicating the observed year-to-year 597 

variations in synoptic disturbance activity over the SE quadrant and a small portion of the NW and 598 

NE quadrants, but not in the other two sub-basin regions (Fig. 11c).  599 

 Based on the results in this subsection and in subsections 4.2 and 4.3, we can reach the 600 

following conclusions. (1) In the SE, NW and NE quadrants, the model’s skill at replicating the 601 

observed large-scale atmospheric environment and synoptic-scale disturbance activity contributes 602 

to the model’s skill at reproducing the observed TCGF variability (particularly in the SE quadrant). 603 

(2) In the SCS and the SW quadrant, the very high noise level in the observed TCGF and synoptic-604 

scale disturbance activity contributes to the weak associations between them and between TCGF 605 

and the large-scale atmospheric environment in the observations. The high noise level and these 606 

weak associations in turn are largely responsible for the model’s poor performance in replicating 607 

the observed TCGF variations. 608 

6. Summary and Conclusions 609 

 Using best track data and a large ensemble of 60-km-resolution atmospheric simulations 610 

forced with observed sea surface temperatures (SSTs), this study has examined the variability and 611 

predictability of both basin-wide and sub-basin tropical cyclone (TC) genesis frequency (TCGF) 612 
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in the Northwest Pacific (NWP). The sub-basin regions include the South China Sea (SCS) and 613 

the four quadrants of the open ocean that are divided by 144°E and 16°N. The simulations well 614 

reproduce the geographical distribution of climatological TC genesis in the observations in terms 615 

of both the large-scale pattern and amplitude (Fig. 1). The model is also able to simulate the 616 

climatological seasonal cycle of the observed TCGF in the entire NWP and individual sub-basin 617 

regions, particularly in the northwest (NW), northeast (NE) and southeast (SE) quadrants (Fig. 2).  618 

 The ensemble mean of the simulations is skillful at replicating the year-to-year variability 619 

of the observed TCGF in the NW, NE and SE quadrants of the basin (Figs. 3b,c,f), indicating the 620 

strong SST control of TC genesis in these sub-basin regions. The model’s skill in the SE and NE 621 

quadrants is responsible for the model’s ability to capture the observed interannual-to-decadal 622 

variability in basin-wide TCGF (Fig. 3a), since TCGF of these two sub-basin regions dominates 623 

the variability of basin-wide TCGF in both the observations and simulations (Table 2). On the 624 

contrary, the ensemble mean shows limited skill at reproducing the observed TCGF variations in 625 

the SCS and the southwest (SW) quadrant (Figs. 3d,e), primarily owing to the high noise level and 626 

low predictability of TC genesis in the observations over these regions. 627 

 We then proceeded to explore the physical mechanisms behind TCGF variability in 628 

individual sub-basin regions. In the ensemble mean of the simulations, above-normal TCGF is 629 

attributable to increased mid-level relative humidity in the NW quadrant, to increased low-level 630 

vorticity and mid-level relative humidity in the NE and SW quadrants and the SCS, and to 631 

increased low-level vorticity and reduced vertical wind shear in the SE quadrant (Fig. 5). These 632 

favorable large-scale atmospheric conditions, in turn, can be linked to enhanced relative SSTs (i.e., 633 

local SSTs minus tropical-mean SST) either locally or to the southeast of the corresponding 634 

regions (Fig. 4), which themselves are associated with changes in both local and remote SSTs (e.g., 635 
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SSTs in the tropical Indian and Atlantic Oceans; Fig. S3 in the online supplemental material). The 636 

observations (Fig. 4 and Fig. S5 in the online supplemental material) show results that are 637 

statistically significant and consistent with the simulations in the NW, NE and SE quadrants, but 638 

insignificant results in the SCS and the SW quadrant, echoing the low predictability of TCGF in 639 

the observations over the latter two regions (Figs. 3d,e). 640 

 In the ensemble mean, enhanced synoptic-scale disturbance activity also tends to promote 641 

TC genesis in all sub-basin regions (Figs. 6f-j). In the observations, however, the effect of synoptic 642 

disturbance activity is prominent in the SE and NW quadrants, marginally significant in the NE 643 

quadrant, and insignificant in the SCS and the SW quadrant (Figs. 6a-e). The stronger correlations 644 

in the ensemble mean are due in part to the fact that a considerable portion of random variations 645 

are averaged out in the ensemble mean. The connections between synoptic disturbance activity in 646 

individual sub-basin regions and SSTs remain unclear, and are currently being explored using both 647 

observations and simulations and will be presented in a follow-up manuscript. 648 

 We have also investigated the internal variability and predictability of TCGF in the NWP, 649 

taking advantage of the unprecedentedly large ensemble of simulations. We started by comparing 650 

the level of noise between the observations and simulations. In the NW and SE quadrants and the 651 

entire NWP, TCGF in the simulations has a higher level of noise and thus is less predictable than 652 

that in the observations (Figs. 8a,b,f); in other words, the model is overdispersive and 653 

underconfident (i.e., RPC > 1; Fig. 7a). In contrast, in the NE and SW quadrants and the SCS, the 654 

model is underdispersive and overconfident, and the observed TCGF is less predictable than the 655 

simulated TCGF (i.e., RPC < 1; Fig. 7a and Figs. 8c-e). 656 

 We then quantified the noise level in the simulations by means of the signal-to-noise ratio 657 

(SNR; Fig. 7b). The SNR of TCGF is highest in the SE quadrant, and is smaller than 1 in other 658 
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regions with the smallest value in the NW quadrant. It is slightly less than 1 for TCGF of the entire 659 

basin, primarily owing to the low noise level in the SE quadrant. We further showed that neither 660 

the SNR nor RPC alone can be used to quantify the skill of the model at replicating and predicting 661 

the observations, as the noise levels in both the simulations and observations are important. 662 

 We also assessed the impact of ensemble size on the skill of the model at reproducing the 663 

observations using the simulations (Fig. 9) and a theoretical analysis [Eqs. (7),(9)]. The results 664 

show that 15 members are sufficient to capture the observed year-to-year variability in basin-wide 665 

TCGF over the NWP (Figs. 9a,10). For individual sub-basin regions, 10, 20 and 35 members are 666 

needed to replicate the observed TCGF variability in the SE, NE and NW quadrants, respectively 667 

(Figs. 9b,c,f,10). For the SCS, more than 100 members would produce a correlation skill 668 

marginally significant at the 0.05 level (Fig. 9d). For the SW quadrant, where a very high level of 669 

noise is present in the observations (Figs. 7a,b), increasing ensemble size is futile (Fig. 9e). These 670 

results provide helpful information on the number of ensemble members needed to capture the 671 

observed variability and to obtain reliable predictions. This can be instructive for future designs of 672 

numerical experiments that target studying and predicting TCGF in the NWP.  673 

 Lastly, we evaluated the internal variability and predictability of the seasonal-mean large-674 

scale atmospheric environment and synoptic-scale disturbance activity and their potential 675 

contributions to the internal variability in TCGF. In the simulations, the large-scale environment 676 

generally has a SNR greater than 1 and exhibits a lower level of noise than TCGF in all sub-basin 677 

regions (Fig. 7b), suggesting relatively less noise in the simulated large-scale environment. Despite 678 

the fact that for the large-scale environment the noise level in the observations is higher than that 679 

in the simulations (i.e., RPC < 1; Fig. 7a), the large SNR leads to good performance of the model 680 

in reproducing the observed variability in the large-scale environment (Fig. 7c). A comparison of 681 
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the model’s skill at reproducing the large-scale environment with the model’s skill at replicating 682 

TCGF suggests that (i) the former substantially contributes to the latter in the SE, NW and NE 683 

quadrants; and that (ii) in all sub-basin regions, factors other than the large-scale environment are 684 

more important contributors to the internal variability in TCGF, particularly in the SCS and the 685 

SW quadrant.  686 

 The model also shows skill at reproducing the observed variability in synoptic-scale 687 

disturbance activity in the SE quadrant and a small portion of the NW and NE quadrants but not 688 

in the other two sub-basin regions (Fig. 11c), contributing to the model’s skill at reproducing the 689 

observed TCGF variability in the SE, NW and NE quadrants. The relatively high skill of the model 690 

at replicating synoptic-scale disturbance activity in the NW quadrant is primarily due to the noise 691 

level in the observations being lower than that in the simulations (i.e., RPC > 1; Fig. 11a), whereas 692 

in the NE quadrant it is primarily due to the low noise level in the simulations (i.e., relatively high 693 

SNR; Fig. 11b). In the SE quadrant, both factors contribute (Figs. 11a,b). 694 

 In short, the ensemble mean of the simulations is skillful at reproducing the observed 695 

interannual-to-decadal variability of TCGF in the SE, NE and NW quadrants, but shows limited 696 

skill in the SCS and the SW quadrant. The remarkably good performance over the SE quadrant 697 

(Fig. 3f) is due to (i) the high skill of the model at replicating the observed variability of the large-698 

scale environment and synoptic-scale disturbance activity and (ii) the strong modulation of TCGF 699 

by the large-scale environment and synoptic-scale disturbance activity in both the observations 700 

and simulations. On the contrary, the particularly poor performance over the SW quadrant (Fig. 701 

3e) is attributed to (i) the weak connections between TCGF and the large-scale 702 

environment/synoptic-scale disturbance activity in the observations, which are due to the presence 703 

of extremely strong internal variability, and (ii) the inability of the model to reproduce the observed 704 
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variability in the large-scale environment and synoptic-scale disturbance activity. The low 705 

predictability of TCGF in the SCS and the SW quadrant may reduce the predictability of seasonal 706 

TC landfalling activity over the Indochina, South China, and the Philippines (Fig. S8 in the online 707 

supplemental material). More research is needed to fully understand the variability of TCGF in the 708 

SW quadrant as well as in the SCS. We are especially interested in the effects of surrounding 709 

landmasses, which could inhibit seeds in these two sub-basin regions from reaching TC state. 710 

 As noted in section 2.2, one caveat of the present study is that the employed simulations 711 

are Atmospheric Model Intercomparison Project (AMIP)-type simulations and the missing air-sea 712 

interaction can lead to biases in surface energy fluxes, which in turn may affect the simulated TC 713 

activity (particularly the intensity). Simulations with coupled models would mitigate this issue, 714 

though they prevent an accurate quantification of the internal variability induced by atmospheric 715 

processes. In addition, the results presented here are based on simulations produced by one model. 716 

It would be desirable to test our results with other AGCMs of similar and/or higher resolutions. 717 
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Figure 2: Simulated and observed seasonal evolutions of the climatological TCGF in (a) the entire 965 
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member simulations and thick black curve shows the results for the ensemble mean of the 968 
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that in (b)-(f). 971 
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June-November for the entire NWP; section 3). Green curves delineate the areas where relative 987 

SSTs are significantly correlated with TCGF at the 0.05 level. Wind vectors are shown only in the 988 
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in magnitude. 990 

Figure 5: Coefficients of the GPI and of the respective contributions of its four components (i.e., 991 

potential intensity 𝑉NO , mid-level saturation deficit 𝜒 , vertical wind shear 𝑉PQ  and low-level 992 
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Black dots denote the areas where the regression coefficients are significant at the 0.05 level. 995 
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the NW quadrant, (b),(g) the NE quadrant, (c),(h) the SCS, (d),(i) the SW quadrant and (e),(j) the 997 

SE quadrant. (a)-(e) show the results for the observations, and (f)-(j) are for the ensemble mean 998 

of the simulations. Black dots denote the areas where the correlation coefficients are significant at 999 

the 0.05 level. 1000 

Figure 7: (a) Bar plots of the RPC of the GPI and its four components (i.e., potential intensity 𝑉NO, 1001 

mid-level saturation deficit 𝜒, vertical wind shear 𝑉PQ and low-level vorticity 𝜂) as well as the 1002 

TCGF over individual sub-basin regions (shown in different colors). For the TCGF, the result for 1003 

the entire basin (cyan) is also displayed. (b) As in (a), but for the SNR. (c) As in (a), but for the 1004 

correlation coefficient between the observations and the ensemble mean of the 100 simulations. 1005 

Black dots show the mean value of the correlation coefficients in individual member simulations, 1006 

with vertical black lines denoting ±one standard deviation. 1007 

Figure 8: Histograms of the correlation coefficients between TCGF in one member simulation and 1008 

that in the other 99 member simulations (gray curves), between TCGF in the observations and that 1009 

in the 100 member simulations (red curve), and between TCGF in one member simulation and the 1010 

ensemble mean of the 100 member simulations (blue curve) for (a) the entire NWP and (b-f) 1011 

individual sub-basin regions: the NW quadrant, the NE quadrant, the SCS, the SW quadrant, and 1012 

the SE quadrant. In each panel, black curve shows the average of the gray curves, and vertical 1013 

dotted magenta line shows the correlation coefficient between TCGF in the observations and that 1014 

in the ensemble mean of the 100 member simulations. 1015 

Figure 9: Box-and-whisker plots of the correlation coefficients between TCGF in the simulations 1016 

and that in the observations as a function of ensemble size for (a) the entire NWP and (b-f) 1017 

individual sub-basin regions: the NW quadrant, the NE quadrant, the SCS, the SW quadrant, and 1018 
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the SE quadrant. In each panel, green dots show the theoretical results based on Eq. (2), and the 1019 

horizontal dashed purple line denotes the critical value of the correlation coefficient significant at 1020 

the 0.05 level. 1021 

Figure 10: Number of ensemble members needed to reach the level-off of the model skill at 1022 

reproducing observed/SST-forced TCGF variability versus the SNR of simulated TCGF for 1023 

various predetermined tolerance levels (𝑝 ): 𝑝 = 0.001  (red), 𝑝 = 0.0025  (blue), 𝑝 = 0.005 1024 

(green), and 𝑝 = 0.01 (magenta). Solid curves show numerical solutions based on Eq. (7) and 1025 

dashed curves corresponding to Eq. (9). Black symbols show the empirical results based on the 1026 

AGCM simulations with 𝑝 = 0.0025: the circle for the SE quadrant, the square for the entire NWP, 1027 

the diamond for the NE quadrant, the star for the SCS, and the triangle for the NW quadrant; the 1028 

result for the SW quadrant is not shown because of the very low model skill in this sub-basin 1029 

region. 1030 

Figure 11: (a) Spatial distribution of the RPC of synoptic-scale disturbance activity during the 1031 

NWP TC season (i.e., June-November). Green contours delineate the areas with the RPC equal to 1032 

1. (b) As in (a), but for the SNR. Blue and green contours delineate the areas with the SNR equal 1033 

to 0.5 and 1, respectively. (c) As in (a), but for the correlation coefficient between the observations 1034 

and the ensemble mean of the 100 member simulations. Black dots denote the areas where the 1035 

correlation coefficients are significant at the 0.05 level. 1036 
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Tables 1042 

Table 1: List of acronyms and abbreviations used in this paper. 1043 

AGCM 
Atmospheric General 

Circulation Model 
RPC 

Ratio of predictable 

component 

AMIP 
Atmospheric Model 

Intercomparison Project 
SCS South China Sea 

d4PDF 

Database for Policy 

Decision Making for 

Future Climate Change 

SE Southeast 

ENSO 
El Niño–Southern 

Oscillation 
SNR Signal-to-noise ratio 

GPI Genesis potential index SSTs Sea surface temperatures 

NE Northeast SW Southwest 

NW Northwest TCGF 
Tropical cyclone genesis 

frequency 

NWP Northwest Pacific TCs Tropical cyclones 

PMM Pacific Meridional Mode   

 1044 

 1045 

 1046 

 1047 

 1048 
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Table 2: Pairwise correlation coefficients of TCGF among different regions: the entire basin 1049 

(NWP), the NW quadrant (NW), the NE quadrant (NE), the SCS (SCS), the SW quadrant (SW), 1050 

and the SE quadrant (SE). The numbers outside and inside the parentheses show the results for the 1051 

observations and the ensemble mean of the simulations, respectively. The numbers in bold are the 1052 

correlation coefficients significant at the 0.01 level. 1053 

Regions NW NE SCS SW SE 

NWP -0.03 (-0.09) 0.54 (0.52) 0.11 (-0.23) 0.29 (0.27) 0.56 (0.78) 

NW  0.24 (0.35) -0.05 (0.53) -0.10 (0.17) -0.54 (-0.48) 

NE   0.06 (0.31) 0.08 (0.33) -0.10 (0.01) 

SCS    -0.02 (0.37) -0.25 (-0.69) 

SW     -0.16 (-0.21) 

 1054 

 1055 

 1056 

 1057 

 1058 

 1059 

 1060 

 1061 

 1062 

 1063 

 1064 

 1065 

 1066 
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Figures 1067 

 1068 

Figure 1: Geographical distribution of the climatological TC genesis (per year in 2°´2° grids) in 1069 

the NWP in (a) the observations and (b) the ensemble mean of the simulations. Dashed blue lines 1070 

delineate the divisions of the five sub-basin regions: the northwest quadrant (NW), the northeast 1071 

quadrant (NE), the South China Sea (SCS), the southwest quadrant (SW), and the southeast 1072 

quadrant (SE). 1073 
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 1079 

Figure 2: Simulated and observed seasonal evolutions of the climatological TCGF in (a) the entire 1080 

NWP and (b-f) its five sub-basin regions: the NW quadrant, the NE quadrant, the SCS, the SW 1081 

quadrant, and the SE quadrant. In each panel, thin gray curves show the results for individual 1082 

member simulations and thick black curve shows the results for the ensemble mean of the 1083 

simulations; thin red curves show the results for three different best track data sets (section 2.1) 1084 

and the thick red curve shows their average. Note that the scale of y axis in (a) is different from 1085 

that in (b)-(f). 1086 
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 1091 

Figure 3: Temporal evolution of the simulated (ensemble mean; thick black) and observed (mean 1092 

of the best track data; thick red) annual TCGF in (a) the entire NWP and (b-f) its five sub-basin 1093 

regions: the NW quadrant, the NE quadrant, the SCS, the SW quadrant, and the SE quadrant. In 1094 

each panel, thin gray curves show the results for individual member simulations, thin red curves 1095 

show the results for individual best track data sets, and the number in the upper-right corner shows 1096 

the correlation coefficient between the thick red and black curves. Note that the scale of y axis in 1097 

(a) is different from that in (b)-(f). 1098 
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 1105 

Figure 4: Correlation coefficients between relative SSTs and TCGF of the entire NWP or one of 1106 

its sub-basin regions (color shading) and coefficients of 850-hPa winds regressed on the 1107 

normalized TCGF (vectors; m s-1; the regressions are performed separately for the zonal and 1108 

(a) Entire NWP - Obs. (b) NW NWP - Obs. (c) NE NWP - Obs.

(d) Entire NWP - Sim. (e) NW NWP - Sim. (f) NE NWP - Sim.

(g) SCS - Obs. (h) SW NWP - Obs. (i) SE NWP - Obs.

(j) SCS - Sim. (k) SW NWP - Sim. (l) SE NWP - Sim.
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meridional components and then the regression coefficients from the two regressions form the 1109 

vectors). (a)-(c),(g)-(i) show the results for the observations, and (d)-(f),(j)-(l) are for the 1110 

ensemble mean of the simulations. (a),(d) show the results for the entire NWP; (b),(e) for the NW 1111 

quadrant; (c),(f) for the NE quadrant; (g),(j) for the SCS; (h),(k) for the SW quadrant; and (i),(l) 1112 

for the SE quadrant. SSTs and winds are averaged over the peak season of individual regions (e.g., 1113 

June-November for the entire NWP; section 3). Green curves delineate the areas where relative 1114 

SSTs are significantly correlated with TCGF at the 0.05 level. Wind vectors are shown only in the 1115 

areas where the regression coefficients are significant at the 0.1 level and greater than 0.05 m s-1 1116 

in magnitude. 1117 

 1118 
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 1119 

Figure 5: Coefficients of the GPI and of the respective contributions of its four components (i.e., 1120 

potential intensity 𝑉NO , mid-level saturation deficit 𝜒 , vertical wind shear 𝑉PQ  and low-level 1121 

vorticity 𝜂) regressed on the normalized TCGF of (a) the NW quadrant, (b) the NE quadrant, (c) 1122 

the SCS, (d) the SW quadrant, and (e) the SE quadrant in the ensemble mean of the simulations. 1123 

Black dots denote the areas where the regression coefficients are significant at the 0.05 level. 1124 
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 1127 

Figure 6: Correlation coefficients between synoptic-scale disturbance activity and TCGF of (a),(f) 1128 

the NW quadrant, (b),(g) the NE quadrant, (c),(h) the SCS, (d),(i) the SW quadrant and (e),(j) the 1129 

SE quadrant. (a)-(e) show the results for the observations, and (f)-(j) are for the ensemble mean 1130 

of the simulations. Black dots denote the areas where the correlation coefficients are significant at 1131 

the 0.05 level. 1132 
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 1136 

Figure 7: (a) Bar plots of the RPC of the GPI and its four components (i.e., potential intensity 𝑉NO, 1137 

mid-level saturation deficit 𝜒, vertical wind shear 𝑉PQ and low-level vorticity 𝜂) as well as the 1138 

TCGF over individual sub-basin regions (shown in different colors). For the TCGF, the result for 1139 

the entire basin (cyan) is also displayed. (b) As in (a), but for the SNR. (c) As in (a), but for the 1140 

correlation coefficient between the observations and the ensemble mean of the 100 simulations. 1141 
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Black dots show the mean value of the correlation coefficients in individual member simulations, 1142 

with vertical black lines denoting ±one standard deviation. 1143 
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 1160 

Figure 8: Histograms of the correlation coefficients between TCGF in one member simulation and 1161 

that in the other 99 member simulations (gray curves), between TCGF in the observations and that 1162 

in the 100 member simulations (red curve), and between TCGF in one member simulation and the 1163 

ensemble mean of the 100 member simulations (blue curve) for (a) the entire NWP and (b-f) 1164 

individual sub-basin regions: the NW quadrant, the NE quadrant, the SCS, the SW quadrant, and 1165 

the SE quadrant. In each panel, black curve shows the average of the gray curves, and vertical 1166 

dotted magenta line shows the correlation coefficient between TCGF in the observations and that 1167 

in the ensemble mean of the 100 member simulations. 1168 
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 1169 

Figure 9: Box-and-whisker plots of the correlation coefficients between TCGF in the simulations 1170 

and that in the observations as a function of ensemble size for (a) the entire NWP and (b-f) 1171 

individual sub-basin regions: the NW quadrant, the NE quadrant, the SCS, the SW quadrant, and 1172 

the SE quadrant. In each panel, green dots show the theoretical results based on Eq. (2), and the 1173 

horizontal dashed purple line denotes the critical value of the correlation coefficient significant at 1174 

the 0.05 level. 1175 
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 1183 

 1184 

Figure 10: Number of ensemble members needed to reach the level-off of the model skill at 1185 

reproducing observed/SST-forced TCGF variability versus the SNR of simulated TCGF for 1186 

various predetermined tolerance levels (𝑝 ): 𝑝 = 0.001  (red), 𝑝 = 0.0025  (blue), 𝑝 = 0.005 1187 

(green), and 𝑝 = 0.01 (magenta). Solid curves show numerical solutions based on Eq. (7) and 1188 

dashed curves corresponding to Eq. (9). Black symbols show the empirical results based on the 1189 

AGCM simulations with 𝑝 = 0.0025: the circle for the SE quadrant, the square for the entire NWP, 1190 

the diamond for the NE quadrant, the star for the SCS, and the triangle for the NW quadrant; the 1191 

result for the SW quadrant is not shown because of the very low model skill in this sub-basin 1192 

region. 1193 
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 1196 

Figure 11: (a) Spatial distribution of the RPC of synoptic-scale disturbance activity during the 1197 

NWP TC season (i.e., June-November). Green contours delineate the areas with the RPC equal to 1198 

1. (b) As in (a), but for the SNR. Blue and green contours delineate the areas with the SNR equal 1199 

to 0.5 and 1, respectively. (c) As in (a), but for the correlation coefficient between the observations 1200 

and the ensemble mean of the 100 member simulations. Black dots denote the areas where the 1201 

correlation coefficients are significant at the 0.05 level. 1202 
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