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Abstract
The variability and predictability of tropical cyclone genesis frequency (TCGF) during 1973-2010
at both basin-wide and sub-basin scales in the Northwest Pacific are investigated using a 100-
member ensemble of 60-km-resolution atmospheric simulations that are forced with observed sea
surface temperatures (SSTs). The sub-basin regions include the South China Sea (SCS) and the
four quadrants of the open ocean. The ensemble-mean results well reproduce the observed
interannual-to-decadal variability of TCGF in the southeast (SE), northeast (NE), and northwest
(NW) quadrants, but show limited skill in the SCS and southwest (SW) quadrant. The skill in the
SE and NE quadrants is responsible for the model’s ability to replicate the observed variability in
basin-wide TCGF. Above-normal TCGF is tied to enhanced relative SST (i.e., local SST minus
tropical-mean SST) either locally or to the southeast of the corresponding regions in both the
observations and ensemble mean for the SE, NE and NW quadrants, but only in the ensemble mean
for the SCS and SW quadrant. These results demonstrate the strong SST control of TCGF in the
SE, NE and NW quadrants; both empirical and theoretical analyses suggest that ensembles of ~10,
20, 35 and 15 members can capture the SST-forced TCGF variability in these three sub-basin

regions and the entire basin, respectively. In the SW quadrant and SCS, TCGF contains excessive
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noise, particularly in the observations, and thus shows low predictability. The variability and
predictability of the large-scale atmospheric environment and synoptic-scale disturbances and their

contributions to those of TCGF are also discussed.
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1. Introduction

The Northwest Pacific (NWP) is the basin where tropical cyclones (TCs) are the most
active in terms of both genesis frequency and lifetime peak intensity (e.g., Chan and Shi 1996;
Chia and Ropelewski 2002; Camargo and Sobel 2005). These violent storms can bring about major
societal and economic impacts to the countries and regions in East and Southeast Asia, where large
and dense population resides (e.g., Zhang et al. 2009; Woodruff et al. 2013). Thus, it is of great
importance to have a good understanding and accurate prediction of the variability in NWP TC
activity (e.g., Knutson et al. 2010; Kossin et al. 2016; Lee et al. 2020). In this study, we focus on
TC genesis frequency (TCGF) at both basin-wide and sub-basin scales in the NWP.

The variations in basin-wide TCGF over the NWP have been extensively studied during
the past two decades, with a focus on the role of sea surface temperatures (SSTs). The SST factors
that have been identified include the central-Pacific El Nifio—Southern Oscillation (ENSO), the
Pacific Meridional Mode (PMM), and SST anomalies in the tropical Indian and Atlantic Oceans
(e.g., Wang et al. 2013; Wang and Wang 2019; Zhan et al. 2019). A positive phase of central-
Pacific ENSO (also known as El Niflo Modoki and Date Line El Nifio; Larkin and Harrison 2005;
Ashok et al. 2007; Kao and Yu 2009) tends to encourage basin-wide TC genesis by inducing
favorable atmospheric conditions, such as above-normal low-level vorticity, over the majority of
the NWP (e.g., Chen and Tam 2010; Kim et al. 2011; Mei et al. 2015; Liu and Chen 2018; Patricola
etal. 2018; Wu et al. 2018; Zhao and Wang 2019). More recently, the PMM, which is characterized
by a meridional dipole pattern of SST anomalies and has strong associations with the central-
Pacific ENSO (e.g., Larson and Kirtman 2014; Capotondi and Sardeshmukh 2015; Amaya 2019),
has also been proposed as a mechanism driving the variability in NWP basin-wide TCGF.

Specifically, a positive phase of the PMM promotes TC formation in the NWP, mainly via its
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effect on dynamic factors (e.g., reduced vertical wind shear; Zhang et al. 2016; Liu et al. 2019). In
addition, tropical SST anomalies outside the Pacific may also influence TC genesis in the NWP.
Positive SST anomalies in the tropical Indian Ocean, which often emerge during the summers
following El Nifios, can substantially suppress TC genesis in the NWP by generating an
anticyclonic circulation anomaly in the lower troposphere over the NWP (e.g., Xie et al. 2009,2016;
Duetal. 2011; Zhanetal. 2011; Li2012; Tao etal. 2012; Ha et al. 2015). Anomalous SST warming
in the tropical North Atlantic has also been linked to below-normal TC activity in the NWP and
the mechanisms may involve the Walker circulation and SSTs in the Indian Ocean and subtropical
North Pacific (e.g., Huo et al. 2015; Yu et al. 2016; Zhang et al. 2017; Gao et al. 2018).

TC genesis in the NWP also exhibits strong spatial variations, and TCs forming in different
parts of the NWP have considerable differences in their characteristics, including track orientation,
landfalling location, and lifetime peak intensity (e.g., Camargo 2007a,b; Mei and Xie 2016; Kim
and Seo 2016; Nakamura et al. 2017). Accordingly, a good understanding of the variability and
changes in regional TCGF is more important than that in basin-wide TCGF (e.g., Liu and Chan
2003; Vecchi et al. 2014). A well-known factor responsible for the spatial inhomogeneity in NWP
TCGEF variability is the traditional or eastern-Pacific ENSO. This type of ENSO has opposite
effects on the large-scale environment in the southeast and northwest portions of the NWP, and
thereby leads to a shift in TC genesis without significantly altering basin-wide TCGF (e.g., Chan
1985; Lander 1994; Wang and Chan 2002; Camargo and Sobel 2005; Chen et al. 2006; Choi et al.
2015). Using primarily observations, a recent study by Wu et al. (2019) shows that TCGF in the
southeast and northwest quadrants can also be affected by SSTs in the tropical Indian Ocean, and
TCGF variability in the northeast quadrant may be related to SSTs in the tropical North Atlantic.

Despite the past efforts on understanding regional variations in TCGF, a comprehensive
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examination of TCGF variability over all sub-basin regions of the NWP (e.g., the South China Sea)
using both observations and the simulations that explicitly produce TCs is still lacking. In addition,
both the observations and simulations exhibit substantial internal variability, and the internal
variability has been suggested to have strong spatial dependence. It is accordingly expected that
the predictability of TCGF may vary considerably across different sub-basin regions of the NWP.

In this study, we attempt to fill these gaps and explore the variability and predictability! of
both basin-wide and sub-basin TCGF in the NWP using a set of 60-km-resolution atmospheric
simulations with an unprecedented ensemble size. After describing the datasets and methods in
use (section 2) and comparing the observed and simulated TCGF climatology (section 3), we
investigate the SST-forced interannual-to-decadal variability in the simulated TCGF, compare it
with the observations, and study the underlying physical mechanisms (section 4). We then in
section 5 explore the internal variability and predictability of TCGF as well as those of the large-
scale atmospheric environment and synoptic-scale disturbance activity, the two modulators of
TCGEF. Concluding remarks are given in section 6. For the convenience of reading, the acronyms
and abbreviations used in this paper are listed in Table 1.
2. Data and Methods
2.1 Observational and reanalysis data

Owing to the discrepancies among available TC best track datasets (e.g., Barcikowska et
al. 2017), we use three best track datasets produced respectively by the Joint Typhoon Warning
Center (Chu et al. 2002), Shanghai Typhoon Institute of the China Meteorological Administration
(Ying et al. 2014), and Japan Meteorological Agency, all of which provide the location and

intensity of TCs at 6-h intervals. We use the mean of the three best track data to represent the

! Note that the predictability discussed in this study is “potential predictability”, since the simulations in use are forced
with perfect boundary (observed SST) conditions (Kang and Shukla 2006).
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observations. Given that relatively large uncertainties exist in TC data during the early time period
and the simulations (see section 2.2) end in 2010, here we focus on TCs reaching at least tropical
storm intensity during 1973-2010. As an example of the uncertainties in TC best track data, Fig.
S1 in the online supplemental material shows that the annual mean initial intensity (measured by
sustained surface wind speed) of TCs is larger prior to 1973 than after, and thus the genesis
locations may not be accurate before 1973. TCGF is calculated as the total number of TCs forming
in the entire basin or each sub-basin region (defined in section 2.3) on a yearly basis.

In addition, monthly SSTs and atmospheric variables (including sea level pressure, specific
and relative humidity, temperature, 850- and 250-hPa horizontal winds, and 500-hPa vertical
pressure velocity) from the Japanese 55-year Reanalysis (JRA-55; Kobayashi et al. 2015) are used
to study the physical mechanisms underlying the year-to-year variability in observed TCGF.

2.2 Simulations

The simulations in use are the historical simulations from the Database for Policy Decision
Making for Future Climate Change (d4PDF; Mizuta et al. 2017). They were run with the
Meteorological Research Institute Atmospheric General Circulation Model (AGCM), version 3.2,
of 60-km resolution, and forced with observed monthly SSTs and sea ice concentration (COBE-
SST2; Hirahara et al. 2014) as well as climatological monthly sea ice thickness. The simulations
cover the period from 1951 to 2010, and consist of 100 member simulations that differ in initial
conditions and slightly in the prescribed SSTs.? The simulations replicate the year-to-year
variations in large-scale atmospheric circulation associated with global tropical SST variability

(Kamae et al. 2017a,b; Ueda et al. 2018).

2 The initial conditions in different members were the snapshots on different dates in former simulations with the same
AGCM. The small perturbations added to the observed SSTs represent SST sampling and analysis errors, and were
generated using empirical orthogonal functions (EOFs) that represent the interannual variability in SSTs. Details on
how the initial conditions and SSTs were perturbed can be found in the appendix of Mizuta et al. (2017).
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The simulations generate TC-like vortices. These vortices are detected and tracked using
sea level pressure, 850-hPa vorticity, 850-hPa, 300-hPa and surface winds, warm-core temperature,
and duration of the tracks following a methodology that combines Murakami et al. (2012) and Mei
et al. (2014). We have examined some randomly selected vortices and found that they share many
similarities with TCs in the observations. As in Yoshida et al. (2017), the simulations reproduce
many statistics of TCs in the observations, such as the geographical distribution of climatological
TC occurrence [e.g., Fig. 2 in Yoshida et al. (2017)]. We have shown in Mei et al. (2019) that the
simulations capture 70% of the variability in observed North Atlantic hurricane frequency. We,
however, recognize a notable caveat of using the AGCM simulations is that these simulations may
not generate correct surface wind speeds and fluxes, which in turn may affect TC-related
thermodynamic parameters (e.g., potential intensity) and TC activity (Emanuel and Sobel 2013).

In the simulations, we consider storms with a lifetime peak intensity of at least 11 m s™! as
TCs. The choice of 11 m s™! is made to match the annual averaged TCGF in the simulations to that
in the observations during 1973-2010 (i.e., ~25.74 per year). This threshold value is smaller than
what is used in the observations (i.e., 17.5 m s!), primarily owing to the relatively low resolution
of the model and the differences in the average time period over which storm intensity is estimated
(e.g., Bacmeister et al. 2018; Li and Sriver 2018). Using different threshold values produces similar
results and does not alter the main conclusions of this study (e.g., Table S1 in the online
supplemental material).

In each member simulation, a variable (e.g., basin-wide TCGF) can be divided into two
components: forced component tied to the imposed SST, and internal component due to the
randomness in atmospheric processes. Accordingly, the SST-forced component is approximated

by the ensemble mean of the 100-member simulations, and its year-to-year variations are referred
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to as forced variability. The internal variability is determined by the deviations of individual
member simulations from the ensemble mean. It is worth noting that the perturbations added to
the SSTs have negligible effects on the forced variability and no significant effects on the internal
variability in the atmospheric variables and simulated TC frequency (Mizuta et al. 2017; Mei et al.
2019).
2.3 Definition of the five sub-basin regions

In studying the ENSO effects on TC genesis over different portions of the NWP, Wang
and Chan (2002) use 140°E/17°N as the boundaries for the four quadrants of the open ocean during
the early and peak TC season and 150°E/17°N during the late season. In a recent study by Wu et
al. (2019), 150°E/15°N are adopted as the boundaries to obtain nearly equal areas for the four
quadrants of the open ocean. Here we employ 144°E/16°N as the dividing longitude/latitude,
which are located around the middle of those used in previous studies, for the four quadrants of
the open ocean (Fig. 1); changing the boundaries by a couple of degrees reaches very similar
conclusions. The South China Sea (SCS) comprises the fifth sub-basin region of the NWP.
2.4 Correlation skill of the ensemble mean in reproducing the observed variability

Here we extend the results shown in section 4b (page 3161) of Mei et al. (2019) to make
them applicable to generic cases. Let z(t) be the observed time series of a given variable (e.g.,
basin-wide TCGF in this study) z(t) = x,(t) + €(t), where x,(t) represents the signal in the
observations and £(t) represents the noise with mean 0 and standard deviation a,. Let y;(t) be the
simulated time series of the same variable of interest in the ith member simulation: y;(t) =
Xm(t) +e;(t),i =1,2,...,N, where x,,(t) represents the signal in the simulations, e;(t)
represents the model noise with mean 0 and standard deviation g, (i.e., the internal variability

defined in section 2.2), and N is the total number of member simulations.
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Assume that x,(t), €(t), x,,(t), and e;(t) are weakly stationary time series, and that
ei(t),i =1,2,..,N, are uncorrelated with each other and are uncorrelated with £(t) at all leads
and lags. Define the ensemble mean of the N simulations as ¥(t) = N™1 ¥ ¥, y;(t). With some

algebra, we can write the population correlation between y(t) and the observations (i.e., z(t)) as

cov(y(t),z(t)) _ Pm,00mJo (1)

ar(y(t))var(z(1)) - J(Grzn"'N_lo-g)(ag'i'og) ’

Pen = COI‘(}_/(t),Z(t)) = v
where p,, , 1s the population correlation between x, (t) and x,, (t), g,, is the standard deviation of
Xm(t) and is also known as the forced variability defined in section 2.2, and g, is the standard

deviation of x,(t). It follows that the population correlation between the ith member simulation

and the observations is

Pm,00m0o =12, N,

COr(yi(t)rZ(t)) = \/(0.2 + 0-2)(0'2 + 02) .

which is denoted by p. Then we have the following identity that links p,, and p:

Pen = P

o taoi 1+ SNR™2
o2 + N1z P |1+ N-TsNR-2’

where SNR = ¢,,, /0, is known as the signal-to-noise ratio in the model simulations.
In practice, p is estimated by 7 = N™1 ¥ ¥ . r;, the mean of the sample correlation 7;
between individual member simulations and the observations. Accordingly, the sample correlation

between the ensemble mean and the observations, 7., can be estimated as

_ 1+SNR™2
Ten = r\l 1+N-1SNR-2’ (2)

where SNR, the estimator of SNR, is defined in the following subsection.
2.5 Computing the signal-to-noise ratio (SNR) in practice

Using the same notation as in section 2.4, we obtain the following identities:
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of = var(yi(t)) =0} + 02,
oZ = var(y(t)) = 04 + N'0Z.

It follows that

1
o2 _—N—l(NGJ% —033),
N
o? =N_1(a§—03—§
We calculate the SNR as
_ Om _ lNo)%—o}Z,
SNR="2= |- o 3)

In practice, we estimate 03—3 as 62, the sample variance of the ensemble mean ¥(t), and
estimate o by averaging the sample variances of y;(t) in individual member simulations, i.e.,

gy =N"1 N . s?, where s? is the sample variance of y;(t). We then obtain the estimated SNR,

denoted as SNR. The SNR calculated using this method is more accurate and stable than that
computed using the method described in Mei et al. (2014, 2015, 2019), as illustrated in Fig. S2 of
the online supplemental material and numerically confirmed using the toy model described in
section 4b (page 3160) of Mei et al. (2019).
2.6 Calculations of a genesis potential index and synoptic-scale disturbance activity

A genesis potential index (GPI), which integrates four thermodynamic and dynamic factors
and represents the favorability of the large-scale atmospheric environment in which TCs develop,

is calculated following Emanuel (2010) as:

aln|3[max(Vp;—35,0)?]

GPI = X*325+Vgp)*

4)
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where a is a constant and in this study set to be 10'6, 7 is the 850-hPa absolute vorticity, Vpy is the
TC potential intensity, y is the 600-hPa entropy deficit, and Vg, is the magnitude of the 250-850-
hPa wind shear vector [see also Korty et al. (2012) and Tang and Emanuel (2012)].

To quantify the contribution of each component (e.g., 850-hPa vorticity) to the changes in
the GPI, we recompute the GPI using the original, year-to-year varying values for that component
but the climatology of 1973—-2010 for the remaining three components, following Camargo et al.
(2007c). This procedure is carried out for all the four components of the GPI. Note that the sum of
the contributions of the four individual components is close but not exactly equal to the changes
in the GPI, owing to the nonlinearity of the GPI formula, as discussed in Camargo et al. (2007c).

The synoptic-scale disturbance activity is assessed following Li et al. (2010) and Vecchi et
al. (2019). Specifically, for each year at each grid it is defined as the variance of 2—8-day bandpass
filtered 850-hPa relative vorticity during the peak TC season (e.g., June—November for the NWP).
To minimize the effects of TCs, the vorticity within 500 km of each TC location is removed before
computing the variance.

3. Climatology of TCGF

Figure 1 displays the geographical distribution of climatological TC genesis over the NWP
at 2°x2° grids in the observations and ensemble mean of the simulations. Generally, the model
reproduces the large-scale pattern and magnitude of TC genesis in the observations. For instance,
in both the observations and simulations, TCs form primarily in the SCS and south of 24°N over
the open ocean; and over the open ocean, TC genesis exhibits a southeast-northwest orientation. It
is worth noting that the spatial distribution is smoother in the simulations than in the observations,
simply because of the averaging effect of the ensemble mean. In addition, in the SCS TC genesis

on average is located slightly more south in the simulations than in the observations.
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The model is also skillful at replicating the climatological seasonal cycle of the observed
TCGF in the NWP and its five sub-basin regions (Fig. 2). The skill is higher in the northwest (NW),
northeast (NE) and southeast (SE) quadrants than in the SCS and the southwest (SW) quadrant in
terms of the magnitude and phase of the seasonal cycle. Specifically, the simulations well capture
the peak month of TCGF in the former three regions: August for the NW and NE quadrants and
October for the SE quadrant; and in both the observations and simulations, no TCs occur between
December and April in the NW and NE quadrants. In the SCS, the simulated seasonal cycle has a
magnitude similar to that in the observations, but lags in phase by approximately one month, with
fewer TCs forming during May—August and more TCs during October—March in the simulations.
In the SW quadrant, the magnitude of the seasonal cycle in the simulations is only around half of
that in the observations, with fewer TCs during June—October and more TCs during
December—March. Interestingly, in this region both the observed and simulated seasonal cycles
exhibit a local dip in August, which is a robust feature in nearly all the 100 member simulations
and warrants a further investigation.

Based on the seasonal cycle of TCGF, the following months are defined as active TC
seasons for the NWP and its sub-basin regions: June—November for the entire basin, the SCS, and
the SW quadrant; July—October for the NW and NE quadrants; and July—December for the SE
quadrant. In the following sections, SSTs, the large-scale atmospheric condition, and synoptic-
scale disturbance activity averaged or defined in these months will be used to explore the physical
mechanisms underlying the year-to-year variability of TCGF in the corresponding regions.

4. Forced variability in TCGF and its connections to the large-scale environment and
synoptic-scale disturbances

4.1 Interannual-to-decadal variations in TCGF

10
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Figure 3a shows the year-to-year variations of basin-wide TCGF in the ensemble mean of
the simulations (thick black curve) and in the observations (thick red curve). The ensemble mean
captures nearly half of the variance in observed TCGF, with a correlation coefficient of around 0.7.
In both the observations and ensemble mean, basin-wide TCGF shows an upward trend from the
mid-1970s to late 1990s, experiences a substantial drop in 1998 when a strong La Nifa event takes
place, and stays at a relatively low level afterwards.

The skill of the model at reproducing the interannual-to-decadal variability in basin-wide
TCGF is attributable to two factors: (i) the model’s skill at replicating TCGF variability in the SE
and NE quadrants of the basin, and (ii) the dominance of TCGF of these two quadrants in the
variability of basin-wide TCGF. For these two quadrants, the correlation coefficients between the
simulated and observed TCGF are 0.88 and 0.45, respectively (Figs. 3c,f). Meanwhile, TCGF in
these two quadrants evolve in a manner similar to basin-wide TCGF. They respectively account
for around 31% and 29% of the total variance in basin-wide TCGF (the correlation coefficients
= 0.56 and 0.54, respectively) in the observations and around 60% and 27% (» = 0.78 and 0.52,
respectively) in the ensemble mean (Table 2), while they are nearly uncorrelated with each other
in both the observations and simulations (» =-0.10 and 0.01, respectively; Table 2).

The model also shows skills at capturing a considerable portion of the observed TCGF
variability in the NW quadrant (» = 0.48; Fig. 3b). This, however, does not contribute to the
model’s good performance in reproducing the observed variability in basin-wide TCGF, because
TCGF in this quadrant explains less than 1% of the variations in basin-wide TCGF (the correlation
coefficients between TCGF in the NW quadrant and basin-wide TCGF are -0.03 and -0.09 in the
observations and ensemble mean, respectively; Table 2). It is worth noting that TCGF in this

quadrant negatively covaries with TCGF in the SE quadrant (» =-0.54 and -0.48 in the observations

11
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and ensemble mean, respectively), largely owing to the ENSO effect; this will be discussed in
section 4.2.

On the contrary, the model has limited skill at reproducing the observed TCGF variability
in the SW quadrant of the basin and the SCS: the correlation coefficients between the simulated
and observed TCGF are 0.14 and 0.32 respectively for these two sub-basin regions, both
insignificant at the 0.05 level (Figs. 3d,e). This result echoes the underperformance of the model
in simulating the observed climatological seasonal cycle over the two regions (section 3 and Figs.
2d,e). These discrepancies between the simulations and observations are primarily due to the
intrinsically low predictability of TC genesis in the observations over these two regions, which
will be discussed in section 5.

4.2 Linkages to SSTs and the large-scale atmospheric environment

The high skill of the model at reproducing the observed TCGF variability in the SE, NW
and NE quadrants demonstrates the strong SST control of TC genesis in these sub-basin regions
given the fact that the simulations are forced with observed SSTs. Next, we shall attempt to identify
the regions where SSTs are important for TCGF of the entire NWP and its sub-basin regions. We
have calculated the correlation coefficients between TCGF in individual regions and global
original SST and those between TCGF and global relative SST (i.e., SST minus tropical-mean
SST); the calculations were carried out separately for the observations and ensemble mean. The
results for relative SST are broadly consistent with those for original SST, and here we focus on
relative SST (Fig. 4) because (1) relative SST better represents dynamic and thermodynamic
processes (e.g., convection), and (2) using relative SST produces more consistent results between

the simulations and observations, facilitating the interpretation of the linkages between TCGF and

12
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SSTs. For the sake of completeness, we also show the results for original SST in Fig. S3 of the
online supplemental material.

In both the observations and simulations, an active NWP TC season is characterized by
above-normal relative SSTs over the off-equatorial tropical central North Pacific and below-
normal relative SSTs in the Indo-West Pacific and tropical North Atlantic (Figs. 4a,d).? This
anomalous SST pattern is consistent with the findings in previous studies, which show that NWP
TCs may be modulated by SSTs in the tropical Pacific, Indian and Atlantic Oceans (e.g., Clark
and Chu 2002; Du et al. 2011; Zhan et al. 2011; Wang et al. 2013; Mei et al. 2015; Yu et al. 2016;
Zhang et al. 2016; Patricola et al. 2018; Zhao and Wang 2019; Wu et al. 2020). Next, we shall
identify the SST pattern and large-scale atmospheric conditions that are responsible for the year-
to-year variations of TCGF in individual sub-basin regions.

A La Nifa-like state favors TC genesis in the NW quadrant of the basin in both the
observations and simulations (Figs. 4b,e). When SSTs in the central-to-eastern equatorial Pacific
are colder than usual, the NW quadrant experiences above-normal relative SSTs. The increased
relative SSTs in this quadrant tend to enhance relative humidity in the middle troposphere of the
region (Fig. 5a and Fig. S5a in the online supplemental material) via intensified convection (Figs.
Séb,e in the online supplemental material), and thereby promote TC genesis. This result is in line
with Camargo et al. (2007c) and Li et al. (2022), both of which emphasize the importance of
relative humidity in modulating TC genesis over this region.

High TCGEF in the NE quadrant of the basin is associated with above-normal relative SSTs

over 150°E-160°W, 10°-25°N in both the observations and simulations (Figs. 4c,f). High relative

3 We note that the effect of the relative SST anomalies over the tropical central Pacific is more prominent in the model
ensemble mean than in the observations. This discrepancy can be primarily attributed to the fact that the observations
represent one realization of all possibilities that could occur (cf. Fig. S4 in the online supplemental material and Fig.
4a), whereas the ensemble mean approximates the average of all possibilities.
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SSTs in this region produce excessive latent heat release via strengthened convective activity (Figs.
Séc,f in the online supplemental material), which generate an anomalous cyclonic circulation to
its northwest as a Rossby wave response in the lower troposphere (Figs. 4c,f). The enhanced low-
level vorticity, along with increased relative humidity, provides favorable environment nurturing
TC genesis in the NE quadrant of the NWP (Fig. 5b and Fig. S5b in the online supplemental
material).

In the simulations, the year-to-year variations of TCGF over the SCS are also linked to a
La Nifia-like SST pattern (Fig. 4j). This pattern resembles the SST pattern for TCGF of the NW
quadrant despite a slightly westward shift (cf. Figs. 4e,j), corresponding to a significantly positive
correlation between TCGF in these two regions (Table 2). The enhanced relative SSTs in the SCS
and east of the Philippines increase moisture in the middle troposphere (Fig. 5c) and generate a
cyclonic circulation anomaly to the northwest (Fig. 4j), strengthening low-level vorticity (Fig. 5¢);
both increased mid-level relative humidity and low-level vorticity facilitate TC genesis in the SCS.
In the observations, a similar but insignificant SST pattern is detected for TCGF of the SCS (Fig.
4g). This implies that the internal variability in the observed TCGF is much stronger than the
forced variability in this region, consistent with the relatively low skill of the simulations at
replicating observed TCGF in this region (Fig. 3d).

In the simulations, the SST pattern responsible for TCGF variations in the SW quadrant is
more or less similar to that for the NE quadrant but with stronger correlations in the lower latitudes
(Fig. 4k). Above-normal relative SSTs over 130°-160°E, 10°S—10°N increase local relative
humidity and generate an anomalous cyclonic circulation to their northwest in the lower

troposphere, promoting low-level vorticity and TC genesis in the SW quadrant (Fig. 5d). In the
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observations, a similar but insignificant SST pattern emerges (Fig. 4h).* This is analogous to what
occurs in the SCS, but the correlation in the observations is even weaker (cf. Figs. 4g,h), indicating
the even stronger internal variability in the observed TCGF and poorer skill of the model in the
SW quadrant (Fig. 3e).

In both the observations and simulations, high TCGF in the SE quadrant is tied to an El
Nifio-like condition (Figs. 4i,1). Above-normal relative SSTs in the central-to-eastern tropical
Pacific and below-normal relative SSTs in the Indo-West Pacific produce a large anomalous low-
level cyclonic circulation over the majority of the North Pacific and an anomalous low-level
anticyclonic circulation covering the SCS and tropical North Indian Ocean (Figs. 41,1). This dipole
pattern of low-level circulation encourages TC genesis in the SE quadrant via enhanced low-level
vorticity and reduced vertical wind shear, and discourages TC genesis in the SCS via reduced low-
level vorticity (Fig. Se and Fig. S5e in the online supplemental material), explaining a negative
correlation between TCGF in these two sub-basin regions (Table 2). The accompanied below-
normal relative SSTs in the NW quadrant suppress TC genesis in the region via reduced relative
humidity in the mid-troposphere (Fig. Se and Fig. S5e in the online supplemental material), as
discussed above, accounting for a negative correlation between TCGF in this region and that in
the SE quadrant (Table 2).

In short, in the simulations above-normal TCGF in all five sub-basin regions can be linked
to enhanced relative SSTs either locally or to the southeast of the region (Figs. 4e,f,j,k,1), which
themselves are associated with changes in both local and remote SSTs (Figs. S3e.f,j,k,1 in the

online supplemental material). The promoted TC genesis is attributable to increased mid-level

4 The lack of significant correlations between TCGF and SSTs over the SW quadrant and the SCS also exist in
individual member simulations (Fig. S7 in the online supplemental material), because of the extremely strong internal
variability in atmospheric processes and TCGF. The 100-member ensemble mean can effectively remove most of the
internal variability, producing significant relationships between TCGF and SSTs shown in Figs. 4j,k.
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relative humidity in the NW quadrant, to increased low-level vorticity and mid-level relative
humidity in the NE and SW quadrants and the SCS, and to increased low-level vorticity and
reduced vertical wind shear in the SE quadrant (Fig. 5). The observational results are consistent
with those from the simulations in the NW, NE and SE quadrants in terms of the associated SST
pattern and large-scale atmospheric conditions (Figs. 4b,c,i and Figs. S5a,b,e in the online
supplemental material). They are, however, mostly insignificant for the SCS and the SW quadrant
(Figs. 4g,h and Figs. S5¢,d in the online supplemental material), echoing the low predictability of
observed TCGF in these two sub-basin regions (Figs. 3d,e).
4.3 Role of synoptic-scale disturbances

Synoptic-scale disturbances provide seeds for TC genesis (Fu et al. 2007, 2012; Zong and
Wu 2015), and their effect on TC genesis under global warming has been emphasized in previous
studies (e.g., Yoshimura and Sugi 2005; Yoshimura et al. 2006; Li et al. 2010; Vecchi et al. 2019).
However, it is unclear whether they significantly affect NWP TCGF on interannual-to-decadal
time scales, and whether their effect on TCGF is similar across different sub-basin regions.

Figures 6a—e show the observed correlation between synoptic disturbance activity (defined
in section 2.6) and TCGF in the five sub-basin regions. In both the NW and SE quadrants, high
TCGF tends to be associated with above-normal synoptic disturbance activity (Figs. 6a,e). As will
be discussed in section 5.4, synoptic disturbance activity in these two regions is also more
predictable than that in other sub-basin regions, contributing to the higher predictability of TCGF
in the two regions. We also note that a season with active synoptic disturbances in the SE quadrant
is likely a season with inactive disturbances in the NW quadrant; this might also contribute to the
significantly negative correlation between TCGF in these two sub-basin regions (Table 2). In

addition, in the NE quadrant the year-to-year variability of disturbance activity may play a
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marginal role in modulating TC genesis (Fig. 6b). On the contrary, the correlation between
synoptic disturbance activity and TCGF is weak and statistically insignificant in both the SCS and
the SW quadrant (Figs. 6¢,d).

In the simulations, synoptic disturbances significantly modulate TC genesis in all sub-basin
regions, with high synoptic disturbance activity favoring TC genesis (Figs. 6f—j). The similarities
and differences between the simulated and observed synoptic disturbance activity will be discussed
in section 5.4.

5. Internal variability

The spread of gray curves in Fig. 3 suggests that TCGF exhibits strong internal variability,
in addition to the forced variability induced by SSTs. The magnitude of the internal variability
may differ considerably among the five sub-basin regions, given the differences in the level of
SST control. In this section, we shall take advantage of the 100-member ensemble and address the
following four aspects pertaining to the internal variability in TCGF of the entire NWP and its sub-
basin regions: (1) difference in the noise level between the observed and simulated TCGF; (2)
relationship between the noise level in the simulated TCGF and the skill of the model; (3) number
of member simulations needed to skillfully capture the observed variations in TCGF; and (4)
internal variability in the large-scale atmospheric environment and synoptic-scale disturbance
activity and their possible contributions to the internal variability in TCGF.

5.1 A comparison between the observed and simulated TCGF in terms of the noise level

The level of noise in TCGF between the observations and simulations can be compared

using the ratio of predictable component (RPC; Eade et al. 2014), a quantity that for a sufficiently

large ensemble size (e.g., 100 member simulations in this study) is expressed as

51t is worth noting that the predictable component defined here is fundamentally different from that reviewed in
DelSole and Tippett (2007): the former measures the fraction of variance that is predictable in either observations or
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RPC = PCobs ~ Ten , (5)

PC ~2 /=2
model 0—3_}/

where PC,}s, the predictable component of the observations, is approximated as the sample
correlation between the observations and the ensemble mean of the simulations (7, ); and PCy,ogel,
the predictable component of the model, is expressed in terms of the ratio of the sample variance

of the ensemble mean, 62, and the averaged sample variance of individual member simulations,
633 (see section 2.5 for the notation). The RPC, thus, reflects the difference in the level of

predictability between the observations and simulations®: an RPC value greater than (smaller than)
1 suggests that the observations are more predictable than the simulations, and that the model is
overdispersive (underdispersive) and thus underconfident (overconfident).

The RPC values for TCGF of the entire NWP and its five sub-basin regions are shown in
the last column of Fig. 7a. It is greater than 1 in the SE and NW quadrants, suggesting that TCGF
in the real world has a lower noise level and thus is more predictable than TCGF in the simulations
over these two regions. In contrast, the RPC value is smaller than 1 in the other three sub-basin
regions, particularly the SW quadrant. This indicates that the model is overconfident in simulating
and predicting the year-to-year variability of TCGF in these regions, and that TCGF in the

observations actually has a higher level of noise than that in the simulations. For basin-wide TCGF,

model simulations, while the latter is defined as the projection vector that minimizes the ratio of the forecast

distribution variance and the climatological distribution variance.
7"m,oﬁm&o

® Plugging the sample version of Eq. (1): 75, = , where 7;, , is the sample correlation between the

J@an-1a@3a7)

signal in the simulations and that in the observations, into Eq. (5), we obtain

o 1+ SNR-2 1+ SNR-2
RPC ~ 2 ——— R Ty, [———,
14 N-1SNR-2 |1 + SNR32 ° |1+ SNR32

where SNR, = 6,/6, is the estimated SNR in the observations. Thus, strictly speaking the RPC is determined by two
factors: the difference between the signal in the simulations and that in the observations (i.e., 73, ,), and the ratio of
the level of predictability in the observations to that in the simulations. In this study, we assume 7;,, , = 1, and the
RPC only reflects the difference in the level of predictability between the observations and simulations.
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the RPC value is slightly greater than 1, implying that the model simulations are slightly noisier
and thus slightly less predictable than the observations.

To further illustrate the discrepancies in the level of noise (and thus predictability) between
the observations and simulations, we perform the following calculations for TCGF of the entire
basin as well as individual sub-basin regions. First, we compute the correlation coefficient between
the observations and each of the 100 member simulations, and plot the histogram of the obtained
100 correlation coefficients in the form of a probability density as a red curve in Fig. 8. Second,
for each individual member simulation, we compute its correlation coefficient with the other 99
member simulations, and plot the probability density of the obtained 99 correlation coefficients as
a gray curve in Fig. 8; the average of the 100 gray curves is plotted as a black curve. Third, we
compute the correlation coefficient between each member simulation and the ensemble mean of
the 100 member simulations, and plot the probability density of the obtained 100 correlation
coefficients as a blue curve in Fig. 8. Lastly, we mark the correlation coefficient between the
observations and the ensemble mean as a vertical dotted magenta line in Fig. 8.

For TCGF of the NW and SE quadrants and of the entire basin, the center of the red curve
is located to the right of the center of the black curve and the value marked by the magenta line is
higher than the mean value implied by the blue curve (Figs. 8a,b,f; Table S2 in the online
supplemental material). These results suggest that in these two sub-basin regions or when
considering the TCGF over the entire NWP, individual member simulations on average are more
similar to the observations than to each other and the observations have a higher predictability than
the simulations. On the contrary, for TCGF of the NE and SW quadrants and the SCS, the mean
value implied by the red curve is smaller than that by the black curve and the value denoted by the

magenta line is smaller than the mean value implied by the blue curve (Figs. 8c—e; Table S2 in the
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online supplemental material). These indicate that in these three sub-basin regions, the
observations on average have a higher level of noise than individual member simulations and
accordingly individual simulations are more similar to each other than to the observations.

These results from the comparisons of the probability distributions of the correlation
coefficients are consistent with the RPC values discussed above. Both show that in the NW and
SE quadrants and when viewing the entire NWP as a whole, TCGF in the observations has a lower
level of noise and thus is more predictable than that in the simulations; and that the opposite holds
true for TCGF of the NE and SW quadrants and the SCS.

5.2 Noise level in the simulated TCGF and its relationship with the skill of the ensemble mean
at reproducing the observations

In both the NW and SE quadrants, TCGF is more predictable in the observations than in
the simulations, with an RPC value of 1.37 and 1.04, respectively. The larger RPC value in the
NW quadrant suggests that the difference in the noise level between the observations and
simulations is greater in the NW quadrant than in the SE quadrant. This implies that the model
would have a greater skill at reproducing the observed variability of TCGF in the NW quadrant
than in the SE quadrant, others being equal. However, the correlation between the observed and
simulated TCGF is weaker for the NW quadrant (0.48 for the NW quadrant vs. 0.88 for the SE
quadrant; Figs. 3b,f and the last column of Fig. 7c). Such a contradiction can be reconciled by
taking into account the SNR of TCGF in the model simulations, as it is one of the two factors

determining the correlation skill of the model, according to Eq. (5):

~RPC- |42/62 = RpC. [HHNISNRZ2 / !
Ten  RPC- |6}/6% = RPC |———— ~ RPC" |—0n-, (6)

where the last approximation holds for a large N (e.g., 100 in this study).
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The last column of Fig. 7b shows the SNR of simulated TCGF in individual sub-basin
regions and the entire NWP. TCGF in the SE quadrant has the highest SNR (i.e., 1.58), with the
internal variability accounting for only 29% of the total variability. In contrast, the SNR of TCGF
in the NW quadrant (i.e., 0.36) is the lowest among the five sub-basin regions, with as much as
89% of the total variability due to the internal variability. It is apparent that the simulated TCGF
in the NW quadrant exhibits a much higher level of noise (or a larger disagreement among
individual member simulations) than that in the SE quadrant. Accordingly, despite of a higher RPC
value, observed TCGF contains more noise in the NW quadrant, leading to a lower skill of the
model at replicating the observed TCGF variations there (i.e., a smaller 7,,,; the last column of Fig.
7c).

On the other hand, the SNR of TCGF in the SW quadrant is around 50% higher than that
in the NW quadrant (i.e., 0.54 vs. 0.36). However, the much higher noise level in the observations
in the SW quadrant (RPC = 0.30 vs. 1.37 in the NW quadrant) ruins the model’s ability to capture
the observed TCGF variability in this region (7., = 0.14 vs. 0.48 in the NW quadrant). This result
implicates that the SNR, representing the noise level in a model, by itself cannot be used to quantify
the skill of the model at reproducing and predicting the observations.

The SNRs of TCGF in the SCS and the NE quadrant are 0.45 and 0.62, respectively, and
their respective RPC values are 0.76 and 0.85. Both the relatively low SNR and RPC contribute to
the poor performance of the model in capturing the observed TCGF variability in the SCS. The
SNR of basin-wide TCGF is 0.92, primarily owing to the low noise level in the SE quadrant.

5.3 Number of member simulations needed to skillfully capture the observed TCGF variability

As discussed earlier, averaging across member simulations can reduce the noise level in

the ensemble mean and thereby improve the model’s skill at capturing the observed variability. In
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this subsection, we shall examine the dependence of the model’s skill on the number of member
simulations. To achieve this, we adopt a random sampling method to independently draw N (N =
1,2,3,...,98,99, 100) member simulations from the entire 100 member simulations to form an
ensemble, and then compute the correlation coefficient between the obtained ensemble mean and
the observations. For each choice of N, we repeat the procedure 2000 times, yielding a collection
of 2000 correlation coefficients. We then visualize the distribution of the collection of the
correlation coefficients using a box-and-whisker plot.

Figure 9a shows the results for basin-wide TCGF. As expected, increasing the ensemble
size tends to reduce the random variations retained in the ensemble mean, and as a result, narrow
down the range of the correlation coefficient and increase its mean value. The mean value increases
dramatically when the ensemble size increases from 1 to 10, and converges toward 0.7 (i.e., the
correlation coefficient between the observations and the ensemble mean of all 100 member
simulations) with a further increase in ensemble size. Overall, an ensemble of 15 simulations is
needed to maximize the skill of the model at capturing the observed variability in basin-wide
TCGF over the NWP.

A similar pattern can be found in the distribution of the correlation coefficient between the
ensemble mean and the observations for individual sub-basin regions, with the range of the
correlation coefficient narrowing and the mean value increasing as the ensemble size grows (Figs.
9b—f). A comparison of the six subplots in Fig. 9 reveals two distinct aspects as follows. (i) For a
specific ensemble size, the spread of the correlation coefficient is negatively associated with the
SNR. (ii) As ensemble size increases, the mean value converges faster when the SNR is higher

and/or 1, in Eq. (2) is smaller, with the effect of the SNR dominating over the effect of ;.
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Next, we derive a mathematical formula to quantify (ii), as it provides particularly helpful
guidance on the designs of numerical experiments in terms of the number of needed ensemble

members. Taking the derivative of 7,,, with respect to N in Eq. (2), we obtain

dren _ 7SNR™2 1+SNR™2 %
dN ~ 2N2 (14N-1SNR-2)3 °

When N gets bigger, 1., levels off. By continuity, we can always find an integer N,;,, numerically

such that when N > Ny, the rate of change in 7., is smaller than p * 7o, max, Where p is a

predetermined tolerance level (e.g., p = 2.5 X 1073) and 7o max =7V 1 + SNR-2.
When N~'SNR~2 is sufficiently small (a condition often fulfilled in cases with SNR > 0.2),
we apply the Taylor series expansion to Eq. (7) and obtain

dren _ 7"SNR™2y1+SNR~2 )
dn 2N243N-SNR-2 °

By setting the derivative in Eq. (8) to p - #v/ 1 + SNR~2, we obtain

2

- 3p+/8p-SNR2+9p2 ©)

Nmin

In practice, we take Ny,i, as the ceiling of the right-hand side of Eq. (9). Figure 10 displays Npin
as a function of the SNR for various values of p, with solid curves showing numerical solutions
based on Eq. (7) and dashed curves corresponding to Eq. (9). As expected, a smaller ensemble size
is needed for simulating variables with a higher SNR.

We then proceed to estimate the number of member simulations required to capture the
observed TCGF variability in individual sub-basin regions based on Fig. 9 with p = 2.5 x 1073,
It is evident that the required ensemble size differs considerably among the sub-basin regions.
Specifically, for the SE quadrant, where the SNR is very large, 10 member simulations are
sufficient to replicate the observed variations in TCGF (Fig. 9f). For the NW and NE quadrants,

35 and 20 members are needed, respectively (Figs. 9b,c). These AGCM-based estimations are
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shown as black symbols in Fig. 10 and in line with our theoretical results (blue curves in Fig. 10).

For the SCS, more than 100 simulations will probably yield a correlation skill of the model

significant at the 0.05 level (Fig. 9d). For the SW quadrant, increasing the ensemble size does not

help improve the skill of the model (Fig. 9e), because of the very high noise level in the

observations.

5.4 Internal variability and predictability of the large-scale environment and synoptic-scale
disturbance activity

As discussed in sections 4.2 and 4.3, both the large-scale atmospheric environment and
synoptic-scale disturbances can modulate TCGF. It is natural to expect that their internal
variability contributes to the internal variability in TCGF. In this subsection, we examine the
variability and predictability of both the large-scale environment and synoptic-scale disturbances
over individual sub-basin regions of the NWP.

The first five columns in Fig. 7b show the SNRs of the GPI and its four components over
the five sub-basin regions. The SNR of the GPI is greater than 1 in all sub-basin regions, except
the NW quadrant, suggesting the relatively low noise level in the simulated large-scale
atmospheric environment. Among the four components of the GPI, thermodynamic factors (i.e.,
potential intensity and mid-level saturation deficit) have higher SNRs than dynamic factors (i.e.,
vertical wind shear and low-level vorticity), and vertical wind shear has the highest level of noise
among the four components; the exceptions are low-level vorticity and vertical wind shear in the
SE quadrant. These results indicate that thermodynamic variables generally have higher
similarities across member simulations than dynamic variables, except in the SE quadrant where

ENSO exerts strong influences on dynamic fields.

24



567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

In all individual sub-basin regions, the GPI and the components dominating the forced
variability in TCGF (section 4.2; e.g., saturation deficit for the NW quadrant and low-level
vorticity for the SE quadrant) have higher SNRs than TCGF (Fig. 7b). This suggests that the large-
scale environment has a lower level of noise than TCGF in the simulations and thus contributes
relatively little to the large noise in the simulated TCGF, similar to what occurs in the North
Atlantic basin (Mei et al. 2019). When considering the variations in the SNR across sub-basin
regions, a good correspondence exists between the GPI and TCGF. Specifically, the SNR is the
highest in the SE quadrant for both the GPI and TCGF, and the lowest in the NW quadrant.

The RPC values of the GPI are smaller than 1 in all sub-basin regions, except in the NE
quadrant, indicating that the large-scale environment has a higher noise level in the observations
than in the simulations and that the model is overconfident in predicting it (Fig. 7a). Despite this,
the model is still skillful at reproducing the observed variability in the large-scale environment
(Fig. 7c) because of the relatively large SNRs in the simulations (Fig. 7b). Among the four
components of the GPI, the RPC values of thermodynamic factors are generally larger than those
of dynamic factors (Fig. 7a). This, along with the higher SNRs, results in a higher skill of the
model at simulating and predicting the thermodynamic factors in the observations (Fig. 7c).

In contrast to the SNR, the RPC of the GPI is not unanimously higher than that of TCGF
in individual sub-basin regions (Fig. 7a). Instead, it is higher in the SCS and the SW and NE
quadrants but lower in the SE and NW quadrants. In the former three sub-basin regions, the higher
RPCs, together with higher SNRs, lead to a higher skill of the model at simulating the observed
variability in the large-scale environment than that in TCGF (Fig. 7c). This indicates that factors
other than the large-scale environment play a more important role in limiting the model’s skill at

reproducing the observed TCGF variability in these regions. The lower RPCs in the latter two
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regions (i.e., the SE and NW quadrants) reduce the model’s ability to capture the observed
variability in the large-scale environment, making it comparable to the model’s skill at replicating
that of TCGF in these two regions (Fig. 7c).

Figures 1la,b show the spatial distribution of the RPC and SNR of synoptic-scale
disturbance activity over the NWP, respectively. The SNR is relatively large in the deep tropics,
particularly the SE quadrant (Fig. 11b). The area with a lower noise level in the observations than
in the simulations (i.e., RPC > 1) is located only sporadically over the SE and NW quadrants of
the basin (Fig. 11a). As a result, the model shows skills at replicating the observed year-to-year
variations in synoptic disturbance activity over the SE quadrant and a small portion of the NW and
NE quadrants, but not in the other two sub-basin regions (Fig. 11c).

Based on the results in this subsection and in subsections 4.2 and 4.3, we can reach the
following conclusions. (1) In the SE, NW and NE quadrants, the model’s skill at replicating the
observed large-scale atmospheric environment and synoptic-scale disturbance activity contributes
to the model’s skill at reproducing the observed TCGF variability (particularly in the SE quadrant).
(2) In the SCS and the SW quadrant, the very high noise level in the observed TCGF and synoptic-
scale disturbance activity contributes to the weak associations between them and between TCGF
and the large-scale atmospheric environment in the observations. The high noise level and these
weak associations in turn are largely responsible for the model’s poor performance in replicating
the observed TCGF variations.

6. Summary and Conclusions

Using best track data and a large ensemble of 60-km-resolution atmospheric simulations

forced with observed sea surface temperatures (SSTs), this study has examined the variability and

predictability of both basin-wide and sub-basin tropical cyclone (TC) genesis frequency (TCGF)
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in the Northwest Pacific (NWP). The sub-basin regions include the South China Sea (SCS) and
the four quadrants of the open ocean that are divided by 144°E and 16°N. The simulations well
reproduce the geographical distribution of climatological TC genesis in the observations in terms
of both the large-scale pattern and amplitude (Fig. 1). The model is also able to simulate the
climatological seasonal cycle of the observed TCGF in the entire NWP and individual sub-basin
regions, particularly in the northwest (NW), northeast (NE) and southeast (SE) quadrants (Fig. 2).

The ensemble mean of the simulations is skillful at replicating the year-to-year variability
of the observed TCGF in the NW, NE and SE quadrants of the basin (Figs. 3b,c,f), indicating the
strong SST control of TC genesis in these sub-basin regions. The model’s skill in the SE and NE
quadrants is responsible for the model’s ability to capture the observed interannual-to-decadal
variability in basin-wide TCGF (Fig. 3a), since TCGF of these two sub-basin regions dominates
the variability of basin-wide TCGF in both the observations and simulations (Table 2). On the
contrary, the ensemble mean shows limited skill at reproducing the observed TCGF variations in
the SCS and the southwest (SW) quadrant (Figs. 3d,e), primarily owing to the high noise level and
low predictability of TC genesis in the observations over these regions.

We then proceeded to explore the physical mechanisms behind TCGF variability in
individual sub-basin regions. In the ensemble mean of the simulations, above-normal TCGF is
attributable to increased mid-level relative humidity in the NW quadrant, to increased low-level
vorticity and mid-level relative humidity in the NE and SW quadrants and the SCS, and to
increased low-level vorticity and reduced vertical wind shear in the SE quadrant (Fig. 5). These
favorable large-scale atmospheric conditions, in turn, can be linked to enhanced relative SSTs (i.e.,
local SSTs minus tropical-mean SST) either locally or to the southeast of the corresponding

regions (Fig. 4), which themselves are associated with changes in both local and remote SSTs (e.g.,
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SSTs in the tropical Indian and Atlantic Oceans; Fig. S3 in the online supplemental material). The
observations (Fig. 4 and Fig. S5 in the online supplemental material) show results that are
statistically significant and consistent with the simulations in the NW, NE and SE quadrants, but
insignificant results in the SCS and the SW quadrant, echoing the low predictability of TCGF in
the observations over the latter two regions (Figs. 3d,e).

In the ensemble mean, enhanced synoptic-scale disturbance activity also tends to promote
TC genesis in all sub-basin regions (Figs. 6f—j). In the observations, however, the effect of synoptic
disturbance activity is prominent in the SE and NW quadrants, marginally significant in the NE
quadrant, and insignificant in the SCS and the SW quadrant (Figs. 6a—e). The stronger correlations
in the ensemble mean are due in part to the fact that a considerable portion of random variations
are averaged out in the ensemble mean. The connections between synoptic disturbance activity in
individual sub-basin regions and SSTs remain unclear, and are currently being explored using both
observations and simulations and will be presented in a follow-up manuscript.

We have also investigated the internal variability and predictability of TCGF in the NWP,
taking advantage of the unprecedentedly large ensemble of simulations. We started by comparing
the level of noise between the observations and simulations. In the NW and SE quadrants and the
entire NWP, TCGF in the simulations has a higher level of noise and thus is less predictable than
that in the observations (Figs. 8a,b,f); in other words, the model is overdispersive and
underconfident (i.e., RPC > 1; Fig. 7a). In contrast, in the NE and SW quadrants and the SCS, the
model is underdispersive and overconfident, and the observed TCGF is less predictable than the
simulated TCGF (i.e., RPC < 1; Fig. 7a and Figs. 8c—e).

We then quantified the noise level in the simulations by means of the signal-to-noise ratio

(SNR; Fig. 7b). The SNR of TCGF is highest in the SE quadrant, and is smaller than 1 in other
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regions with the smallest value in the NW quadrant. It is slightly less than 1 for TCGF of the entire
basin, primarily owing to the low noise level in the SE quadrant. We further showed that neither
the SNR nor RPC alone can be used to quantify the skill of the model at replicating and predicting
the observations, as the noise levels in both the simulations and observations are important.

We also assessed the impact of ensemble size on the skill of the model at reproducing the
observations using the simulations (Fig. 9) and a theoretical analysis [Egs. (7),(9)]. The results
show that 15 members are sufficient to capture the observed year-to-year variability in basin-wide
TCGF over the NWP (Figs. 9a,10). For individual sub-basin regions, 10, 20 and 35 members are
needed to replicate the observed TCGF variability in the SE, NE and NW quadrants, respectively
(Figs. 9b,c,f,10). For the SCS, more than 100 members would produce a correlation skill
marginally significant at the 0.05 level (Fig. 9d). For the SW quadrant, where a very high level of
noise is present in the observations (Figs. 7a,b), increasing ensemble size is futile (Fig. 9¢). These
results provide helpful information on the number of ensemble members needed to capture the
observed variability and to obtain reliable predictions. This can be instructive for future designs of
numerical experiments that target studying and predicting TCGF in the NWP.

Lastly, we evaluated the internal variability and predictability of the seasonal-mean large-
scale atmospheric environment and synoptic-scale disturbance activity and their potential
contributions to the internal variability in TCGF. In the simulations, the large-scale environment
generally has a SNR greater than 1 and exhibits a lower level of noise than TCGF in all sub-basin
regions (Fig. 7b), suggesting relatively less noise in the simulated large-scale environment. Despite
the fact that for the large-scale environment the noise level in the observations is higher than that
in the simulations (i.e., RPC < 1; Fig. 7a), the large SNR leads to good performance of the model

in reproducing the observed variability in the large-scale environment (Fig. 7c). A comparison of
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the model’s skill at reproducing the large-scale environment with the model’s skill at replicating
TCGF suggests that (i) the former substantially contributes to the latter in the SE, NW and NE
quadrants; and that (ii) in all sub-basin regions, factors other than the large-scale environment are
more important contributors to the internal variability in TCGF, particularly in the SCS and the
SW quadrant.

The model also shows skill at reproducing the observed variability in synoptic-scale
disturbance activity in the SE quadrant and a small portion of the NW and NE quadrants but not
in the other two sub-basin regions (Fig. 11c), contributing to the model’s skill at reproducing the
observed TCGF variability in the SE, NW and NE quadrants. The relatively high skill of the model
at replicating synoptic-scale disturbance activity in the NW quadrant is primarily due to the noise
level in the observations being lower than that in the simulations (i.e., RPC > 1; Fig. 11a), whereas
in the NE quadrant it is primarily due to the low noise level in the simulations (i.e., relatively high
SNR; Fig. 11b). In the SE quadrant, both factors contribute (Figs. 11a,b).

In short, the ensemble mean of the simulations is skillful at reproducing the observed
interannual-to-decadal variability of TCGF in the SE, NE and NW quadrants, but shows limited
skill in the SCS and the SW quadrant. The remarkably good performance over the SE quadrant
(Fig. 31) is due to (i) the high skill of the model at replicating the observed variability of the large-
scale environment and synoptic-scale disturbance activity and (ii) the strong modulation of TCGF
by the large-scale environment and synoptic-scale disturbance activity in both the observations
and simulations. On the contrary, the particularly poor performance over the SW quadrant (Fig.
3e) is attributed to (i) the weak connections between TCGF and the large-scale
environment/synoptic-scale disturbance activity in the observations, which are due to the presence

of extremely strong internal variability, and (ii) the inability of the model to reproduce the observed
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variability in the large-scale environment and synoptic-scale disturbance activity. The low
predictability of TCGF in the SCS and the SW quadrant may reduce the predictability of seasonal
TC landfalling activity over the Indochina, South China, and the Philippines (Fig. S8 in the online
supplemental material). More research is needed to fully understand the variability of TCGF in the
SW quadrant as well as in the SCS. We are especially interested in the effects of surrounding
landmasses, which could inhibit seeds in these two sub-basin regions from reaching TC state.

As noted in section 2.2, one caveat of the present study is that the employed simulations
are Atmospheric Model Intercomparison Project (AMIP)-type simulations and the missing air-sea
interaction can lead to biases in surface energy fluxes, which in turn may affect the simulated TC
activity (particularly the intensity). Simulations with coupled models would mitigate this issue,
though they prevent an accurate quantification of the internal variability induced by atmospheric
processes. In addition, the results presented here are based on simulations produced by one model.
It would be desirable to test our results with other AGCMs of similar and/or higher resolutions.
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Figure 1: Geographical distribution of the climatological TC genesis (per year in 2°x2° grids) in
the NWP in (a) the observations and (b) the ensemble mean of the simulations. Dashed blue lines
delineate the divisions of the five sub-basin regions: the northwest quadrant (NW), the northeast
quadrant (NE), the South China Sea (SCS), the southwest quadrant (SW), and the southeast
quadrant (SE).

Figure 2: Simulated and observed seasonal evolutions of the climatological TCGF in (a) the entire
NWP and (b—f) its five sub-basin regions: the NW quadrant, the NE quadrant, the SCS, the SW
quadrant, and the SE quadrant. In each panel, thin gray curves show the results for individual
member simulations and thick black curve shows the results for the ensemble mean of the
simulations; thin red curves show the results for three different best track data sets (section 2.1)
and the thick red curve shows their average. Note that the scale of y axis in (a) is different from
that in (b)—(f).

Figure 3: Temporal evolution of the simulated (ensemble mean; thick black) and observed (mean

of the best track data; thick red) annual TCGF in (a) the entire NWP and (b—f) its five sub-basin
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regions: the NW quadrant, the NE quadrant, the SCS, the SW quadrant, and the SE quadrant. In
each panel, thin gray curves show the results for individual member simulations, thin red curves
show the results for individual best track data sets, and the number in the upper-right corner shows
the correlation coefficient between the thick red and black curves. Note that the scale of y axis in
(a) is different from that in (b)—(f).

Figure 4: Correlation coefficients between relative SSTs and TCGF of the entire NWP or one of
its sub-basin regions (color shading) and coefficients of 850-hPa winds regressed on the
normalized TCGF (vectors; m s’!; the regressions are performed separately for the zonal and
meridional components and then the regression coefficients from the two regressions form the
vectors). (a)—(c),(g)—(i) show the results for the observations, and (d)—(f),(j)—(1) are for the
ensemble mean of the simulations. (a),(d) show the results for the entire NWP; (b),(e) for the NW
quadrant; (c),(f) for the NE quadrant; (g),(j) for the SCS; (h),(k) for the SW quadrant; and (i),(1)
for the SE quadrant. SSTs and winds are averaged over the peak season of individual regions (e.g.,
June—November for the entire NWP; section 3). Green curves delineate the areas where relative
SSTs are significantly correlated with TCGF at the 0.05 level. Wind vectors are shown only in the
areas where the regression coefficients are significant at the 0.1 level and greater than 0.05 m s™!
in magnitude.

Figure 5: Coefficients of the GPI and of the respective contributions of its four components (i.e.,
potential intensity Vp;, mid-level saturation deficit y, vertical wind shear Vg, and low-level
vorticity 1) regressed on the normalized TCGF of (a) the NW quadrant, (b) the NE quadrant, (c)
the SCS, (d) the SW quadrant, and (e) the SE quadrant in the ensemble mean of the simulations.

Black dots denote the areas where the regression coefficients are significant at the 0.05 level.
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Figure 6: Correlation coefficients between synoptic-scale disturbance activity and TCGF of (a),(f)
the NW quadrant, (b),(g) the NE quadrant, (¢),(h) the SCS, (d),(i) the SW quadrant and (e),(j) the
SE quadrant. (a)—(e) show the results for the observations, and (f)—(j) are for the ensemble mean
of the simulations. Black dots denote the areas where the correlation coefficients are significant at
the 0.05 level.

Figure 7: (a) Bar plots of the RPC of the GPI and its four components (i.e., potential intensity Vp,
mid-level saturation deficit y, vertical wind shear Vg, and low-level vorticity ) as well as the
TCGEF over individual sub-basin regions (shown in different colors). For the TCGF, the result for
the entire basin (cyan) is also displayed. (b) As in (a), but for the SNR. (c) As in (a), but for the
correlation coefficient between the observations and the ensemble mean of the 100 simulations.
Black dots show the mean value of the correlation coefficients in individual member simulations,
with vertical black lines denoting +one standard deviation.

Figure 8: Histograms of the correlation coefficients between TCGF in one member simulation and
that in the other 99 member simulations (gray curves), between TCGF in the observations and that
in the 100 member simulations (red curve), and between TCGF in one member simulation and the
ensemble mean of the 100 member simulations (blue curve) for (a) the entire NWP and (b—f)
individual sub-basin regions: the NW quadrant, the NE quadrant, the SCS, the SW quadrant, and
the SE quadrant. In each panel, black curve shows the average of the gray curves, and vertical
dotted magenta line shows the correlation coefficient between TCGF in the observations and that
in the ensemble mean of the 100 member simulations.

Figure 9: Box-and-whisker plots of the correlation coefficients between TCGF in the simulations
and that in the observations as a function of ensemble size for (a) the entire NWP and (b—f)

individual sub-basin regions: the NW quadrant, the NE quadrant, the SCS, the SW quadrant, and
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the SE quadrant. In each panel, green dots show the theoretical results based on Eq. (2), and the
horizontal dashed purple line denotes the critical value of the correlation coefficient significant at
the 0.05 level.

Figure 10: Number of ensemble members needed to reach the level-off of the model skill at
reproducing observed/SST-forced TCGF variability versus the SNR of simulated TCGF for
various predetermined tolerance levels (p): p = 0.001 (red), p = 0.0025 (blue), p = 0.005
(green), and p = 0.01 (magenta). Solid curves show numerical solutions based on Eq. (7) and
dashed curves corresponding to Eq. (9). Black symbols show the empirical results based on the
AGCM simulations with p = 0.0025: the circle for the SE quadrant, the square for the entire NWP,
the diamond for the NE quadrant, the star for the SCS, and the triangle for the NW quadrant; the
result for the SW quadrant is not shown because of the very low model skill in this sub-basin
region.

Figure 11: (a) Spatial distribution of the RPC of synoptic-scale disturbance activity during the
NWP TC season (i.e., June-November). Green contours delineate the areas with the RPC equal to
1. (b) As in (a), but for the SNR. Blue and green contours delineate the areas with the SNR equal
to 0.5 and 1, respectively. (c) As in (a), but for the correlation coefficient between the observations
and the ensemble mean of the 100 member simulations. Black dots denote the areas where the

correlation coefficients are significant at the 0.05 level.
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Table 1: List of acronyms and abbreviations used in this paper.

AGCM AFmosphenc General RPC Ratio of predictable
Circulation Model component

AMIP Atmospheric Model SCs South China Sea
Intercomparison Project
Database for Policy

d4PDF Decision Making for SE Southeast
Future Climate Change

ENSO El I\.Imo.—Southern SNR Signal-to-noise ratio
Oscillation

GPI Genesis potential index SSTs Sea surface temperatures

NE Northeast SW Southwest

NW Northwest TCGF Tropical cyclone genesis

frequency
NWP Northwest Pacific TCs Tropical cyclones
PMM Pacific Meridional Mode
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1049  Table 2: Pairwise correlation coefficients of TCGF among different regions: the entire basin
1050 (NWP), the NW quadrant (NW), the NE quadrant (NE), the SCS (SCS), the SW quadrant (SW),
1051  and the SE quadrant (SE). The numbers outside and inside the parentheses show the results for the
1052  observations and the ensemble mean of the simulations, respectively. The numbers in bold are the

1053  correlation coefficients significant at the 0.01 level.

Regions NW NE SCS SW SE
NWP -0.03 (-0.09) 0.54 (0.52) 0.11 (-0.23) 0.29 (0.27) 0.56 (0.78)
NW 0.24 (0.35) -0.05 (0.53) -0.10 (0.17) -0.54 (-0.48)
NE 0.06 (0.31) 0.08 (0.33) -0.10 (0.01)
SCS -0.02 (0.37) -0.25 (-0.69)
SW -0.16 (-0.21)
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
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1069  Figure 1: Geographical distribution of the climatological TC genesis (per year in 2°x2° grids) in
1070 the NWP in (a) the observations and (b) the ensemble mean of the simulations. Dashed blue lines
1071  delineate the divisions of the five sub-basin regions: the northwest quadrant (NW), the northeast
1072  quadrant (NE), the South China Sea (SCS), the southwest quadrant (SW), and the southeast
1073  quadrant (SE).
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Figure 2: Simulated and observed seasonal evolutions of the climatological TCGF in (a) the entire
NWP and (b—f) its five sub-basin regions: the NW quadrant, the NE quadrant, the SCS, the SW
quadrant, and the SE quadrant. In each panel, thin gray curves show the results for individual
member simulations and thick black curve shows the results for the ensemble mean of the
simulations; thin red curves show the results for three different best track data sets (section 2.1)

and the thick red curve shows their average. Note that the scale of y axis in (a) is different from

that in (b)—(f).
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Figure 3: Temporal evolution of the simulated (ensemble mean; thick black) and observed (mean
of the best track data; thick red) annual TCGF in (a) the entire NWP and (b—f) its five sub-basin
regions: the NW quadrant, the NE quadrant, the SCS, the SW quadrant, and the SE quadrant. In
each panel, thin gray curves show the results for individual member simulations, thin red curves
show the results for individual best track data sets, and the number in the upper-right corner shows
the correlation coefficient between the thick red and black curves. Note that the scale of y axis in

(a) is different from that in (b)—(f).
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Figure 4: Correlation coefficients between relative SSTs and TCGF of the entire NWP or one of
its sub-basin regions (color shading) and coefficients of 850-hPa winds regressed on the

normalized TCGF (vectors; m s’!'; the regressions are performed separately for the zonal and
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meridional components and then the regression coefficients from the two regressions form the
vectors). (a)—(c),(g)—(i) show the results for the observations, and (d)—(f),(j)—(1) are for the
ensemble mean of the simulations. (a),(d) show the results for the entire NWP; (b),(e) for the NW
quadrant; (c),(f) for the NE quadrant; (g),(j) for the SCS; (h),(k) for the SW quadrant; and (i),(1)
for the SE quadrant. SSTs and winds are averaged over the peak season of individual regions (e.g.,
June—November for the entire NWP; section 3). Green curves delineate the areas where relative
SSTs are significantly correlated with TCGF at the 0.05 level. Wind vectors are shown only in the
areas where the regression coefficients are significant at the 0.1 level and greater than 0.05 m s™!

in magnitude.
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Figure 5: Coefficients of the GPI and of the respective contributions of its four components (i.e.,
potential intensity Vp;, mid-level saturation deficit y, vertical wind shear Vg, and low-level
vorticity 1) regressed on the normalized TCGF of (a) the NW quadrant, (b) the NE quadrant, (c)
the SCS, (d) the SW quadrant, and (e) the SE quadrant in the ensemble mean of the simulations.

Black dots denote the areas where the regression coefficients are significant at the 0.05 level.
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Figure 6: Correlation coefficients between synoptic-scale disturbance activity and TCGF of (a),(f)
the NW quadrant, (b),(g) the NE quadrant, (¢),(h) the SCS, (d),(i) the SW quadrant and (e),(j) the
SE quadrant. (a)—(e) show the results for the observations, and (f)—(j) are for the ensemble mean

of the simulations. Black dots denote the areas where the correlation coefficients are significant at

the 0.05 level.
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Figure 7: (a) Bar plots of the RPC of the GPI and its four components (i.e., potential intensity Vpy,
mid-level saturation deficit y, vertical wind shear Vg;, and low-level vorticity n) as well as the
TCGF over individual sub-basin regions (shown in different colors). For the TCGF, the result for
the entire basin (cyan) is also displayed. (b) As in (a), but for the SNR. (c) As in (a), but for the

correlation coefficient between the observations and the ensemble mean of the 100 simulations.
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Black dots show the mean value of the correlation coefficients in individual member simulations,

with vertical black lines denoting +one standard deviation.
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Figure 8: Histograms of the correlation coefficients between TCGF in one member simulation and

that in the other 99 member simulations (gray curves), between TCGF in the observations and that

in the 100 member simulations (red curve), and between TCGF in one member simulation and the

ensemble mean of the 100 member simulations (blue curve) for (a) the entire NWP and (b—f)

individual sub-basin regions: the NW quadrant, the NE quadrant, the SCS, the SW quadrant, and

the SE quadrant. In each panel, black curve shows the average of the gray curves, and vertical

dotted magenta line shows the correlation coefficient between TCGF in the observations and that

in the ensemble mean of the 100 member simulations.
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Figure 9: Box-and-whisker plots of the correlation coefficients between TCGF in the simulations
and that in the observations as a function of ensemble size for (a) the entire NWP and (b—f)
individual sub-basin regions: the NW quadrant, the NE quadrant, the SCS, the SW quadrant, and
the SE quadrant. In each panel, green dots show the theoretical results based on Eq. (2), and the
horizontal dashed purple line denotes the critical value of the correlation coefficient significant at

the 0.05 level.
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Figure 10: Number of ensemble members needed to reach the level-off of the model skill at
reproducing observed/SST-forced TCGF variability versus the SNR of simulated TCGF for
various predetermined tolerance levels (p): p = 0.001 (red), p = 0.0025 (blue), p = 0.005
(green), and p = 0.01 (magenta). Solid curves show numerical solutions based on Eq. (7) and
dashed curves corresponding to Eq. (9). Black symbols show the empirical results based on the
AGCM simulations with p = 0.0025: the circle for the SE quadrant, the square for the entire NWP,
the diamond for the NE quadrant, the star for the SCS, and the triangle for the NW quadrant; the

result for the SW quadrant is not shown because of the very low model skill in this sub-basin

region.

59



1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

40N T— i
, A
e
)+ - » ~ B,
30N y 6, P ‘y'. .
20N {#¢ 5 ﬂ. i; 4 N N BF ¢RI S O TR P P
% . .. & A W K

EQ %9" T T T B —= " . — F -
100E 120E 140E 160E 180 100E 120E 140E 160E 180 100E 120E 140E 160E 180
IR TTTITTTITTTTTTT I [ [ [ [ [ [ BT T [ [ 7 [ [ [ [ [T
-16-1.2-08-04 0 04 08 1.2 1.6 01 03 05 07 09 11 13 -09 -06 -03 O 03 06 09

Figure 11: (a) Spatial distribution of the RPC of synoptic-scale disturbance activity during the
NWP TC season (i.e., June-November). Green contours delineate the areas with the RPC equal to
1. (b) As in (a), but for the SNR. Blue and green contours delineate the areas with the SNR equal
to 0.5 and 1, respectively. (c) As in (a), but for the correlation coefficient between the observations
and the ensemble mean of the 100 member simulations. Black dots denote the areas where the

correlation coefficients are significant at the 0.05 level.
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