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Abstract

Building on previous research of Chi and Chi (2022), the current paper revisits
estimation in robust structured regression under the L2E criterion. We adopt the
majorization-minimization (MM) principle to design a new algorithm for updating
the vector of regression coefficients. Our sharp majorization achieves faster conver-
gence than the previous alternating proximal gradient descent algorithm (Chi and
Chi, 2022). In addition, we reparameterize the model by substituting precision for
scale and estimate precision via a modified Newton’s method. This simplifies and
accelerates overall estimation. We also introduce distance-to-set penalties to enable
constrained estimation under nonconvex constraint sets. This tactic also improves
performance in coefficient estimation and structure recovery. Finally, we demonstrate
the merits of our improved tactics through a rich set of simulation examples and a
real data application.
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1 Introduction

Linear least squares regression quantifies the relationship between a response and a set of

predictors. As such, it has been the most popular and productive technique of classical

statistics. The growing complexity of modern datasets necessitates special structures on the

vector of regression coefficients. A typical example is sparse regression for high-dimensional

data, where the number of predictors exceeds the number of responses. In this setting, as-

suming the coefficient vector is sparse not only improves a regression model’s interpretabil-

ity but also improves its prediction accuracy. The most popular vehicle for dealing with

sparse regression is the least absolute shrinkage and selection operator (Lasso) (Tibshirani,

1996). Other examples of structured regression include isotonic regression (Barlow and

Brunk, 1972), convex regression (Seijo and Sen, 2011), and ridge regression (Hoerl and

Kennard, 1970).

Traditional structured regression estimates parameters by constrained least squares.

Unfortunately, least squares estimates are extremely sensitive to outliers. A single out-

lier can ruin estimation accuracy. Consequently, robust structured regression has gained

considerable traction in recent years. Numerous authors have contributed to the current

body of techniques. To mention a few, Alvarez and Yohai (2012) propose a family of

robust estimates for isotonic regression that replaces the least squares criterion with the

M-estimation criterion (Huber, 1992). Blanchet et al. (2019) employ absolute error loss in

robust convex regression. This is also an instance of an M-estimator. Nguyen and Tran

(2012) suggest an extended Lasso method incorporating a stochastic noise term to account

for corrupted observations in robust sparse multiple regression. Alfons et al. (2013) add a
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Lasso penalty to the least trimmed squares (LTS) loss to produce a robust sparse estimator

that trims outliers by effectively minimizing the sum of squared residuals over a selected

subset. Lozano et al. (2016) adopt the minimum distance criterion to design a log-scaled

loss function and propose the minimum distance Lasso method for robust sparse regression.

Other robust sparse regression methods can be found in Wang et al. (2007); She and Owen

(2011); Wang et al. (2013).

The above works investigate robust structured regression on a case-by-case basis. Yang

et al. (2018) develop a family of trimmed regularized M-estimators with a wider focus but

with the need to select the degree of trimming. Recently, Chi and Chi (2022) derive yet

another general framework for robust structured regression that simultaneously estimates

regression coefficients as well as a precision parameter, which plays the same role as the

trimming parameter in Yang et al. (2018). Chi and Chi (2022) use the L2E criterion

(Scott, 1992) to quantify goodness-of-fit and a convex penalty to enforce structure. Their

algorithmic framework solves the corresponding optimization problem by block descent.

Although the computational framework presented in Chi and Chi (2022) is general, there is

room for some nontrivial improvements. First, the proposed proximal gradient algorithm

for updating both the regression coefficients and the precision parameter at each block

descent iteration can be slow to converge. Second, the box constraint on the precision

parameter introduces two additional hyper-parameters that must be specified. Finally,

while Chi and Chi (2022) focused on convex penalties and constraints, the framework

that they introduced is not inherently limited to convex options and warrants extension to

important nonconvex alternatives that impose desirable structures.
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The limitations in Chi and Chi (2022) just discussed motivate the current paper and

its new contributions. First, we derive a majorization-minimization algorithm to accelerate

the estimation of the regression coefficients. Second, we reparameterize the precision pa-

rameter to eliminate the box constraint. A simple one-dimensional approximate Newton’s

method quickly solves the resulting smooth unconstrained problem for updating precision.

Finally, we demonstrate improved statistical performance by imposing nonconvex penalties.

Specifically, we adopt distance-to-set penalties to improve estimation accuracy subject to

structural constraints. These improvements do not compromise robustness.

The rest of this paper is organized as follows. In Section 2, we review the L2E criterion,

the majorization-minimization (MM) principle, and distance penalization. In Section 3, we

set up the optimization problem for robust structured regression under the L2E criterion.

In Section 4, we introduce strategies that improve the estimation techniques of Chi and

Chi (2022). In Sections 5 and 6, we provide a rich set of simulation examples and a real

data application to demonstrate the empirical performance of our new algorithms. We end

with a discussion in Section 7.

2 Background

2.1 The L2E Criterion

Although traditionally used in nonparametric estimation, the L2E criterion, also known

as the integrated squared error (ISE), can be exploited in parametric settings for robust

estimation. Suppose the goal is to estimate a density function f(x | θ), where the true
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parameter θ∗ is unknown. The L2E criterion seeks to estimate θ by minimizing the L2

distance between f(x | θ) and f(x | θ∗); thus

θ̂ = argminθ

∫

[f(x | θ)− f(x | θ∗)]
2 dx

= argminθ

∫

f(x | θ)2 dx− 2

∫

f(x | θ)f(x | θ∗) dx+

∫

f(x | θ∗)
2 dx. (1)

The third integral in formula (1) does not depend on θ and can be excluded from the

minimization. The second integral is the expectation of f(x | θ) and can be approximated

by an unbiased estimate, namely its sample mean. Therefore, an approximate L2 estimate

of θ is

θ̂L2E = argminθ

∫

f(x | θ)2 dx− 2

n

n
∑

i=1

f(xi | θ), (2)

where n denotes the sample size. The L2E represents a trade-off between efficiency and

robustness. It is less efficient but more robust than the maximum likelihood estimate

(MLE) (Scott, 2001; Warwick and Jones, 2005). Chi and Chi (2022) discuss in detail how

the L2E estimator imparts robustness in structured regression.

2.2 The MM Principle

The majorization-minimization principle (Lange et al., 2000; Lange, 2016) for minimizing

an objective function h(θ) involves two steps, a) majorization of h(θ) by a surrogate func-

tion g(θ | θk) anchored at the current iterate θk and then b) minimization of θ 7→ g(θ | θk)

to construct θk+1. The surrogate function g(θ | θk) must satisfy the two requirements:

h(θk) = g(θk | θk), tangency (3)

h(θ) ≤ g(θ | θk) for all θ, domination. (4)
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Figure 1: An example of sharp quadratic majorization. The quadratic g1(θ | θ0) offers the

sharpest majorization of the loss h(θ) and falls below every looser quadratic majorization

g2(θ | θ0).

Under these conditions, the iterates enjoy the descent property h(θk+1) ≤ h(θk) as demon-

strated by the relations

h(θk+1) ≤ g(θk+1 | θk) ≤ g(θk | θk) = h(θk),

reflecting conditions (3) and (4). Ideally, the MM principle converts a hard optimiza-

tion problem into a sequence of easier ones. The key to success is the construction of a

tight majorization that can be easily minimized. In some problems it is possible to con-

struct a sharp majorization within a limited class of majorizers. Figure 1 depicts a sharp

quadratic majorization that is best among all quadratic majorizations that share the same

tangency point. Sharp majorization accelerates the convergence of a derived MM algorithm

(de Leeuw and Lange, 2009). In practice, majorization can be done piecemeal by exploiting

the convexity or concavity of the various terms comprising the objective.
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2.3 Distance Penalization

To estimate a parameter vector θ subject to a set constraint θ ∈ C, it is often convenient

to employ a squared Euclidean distance penalty (Chi et al., 2014; Xu et al., 2017). For a

closed set C, the penalty is defined as

1

2
dist(θ, C)2 = min

β∈C

1

2
‖θ − β‖22. (5)

The beauty of this penalty is that it is majorized at the current iterate θk by the spherical

quadratic

1

2
‖θ − PC(θk)‖22, (6)

where PC(θ) denotes the Euclidean projection of θ onto C (Bauschke and Combettes, 2011).

When C is both closed and convex, PC(θ) consists of a single point. For nonconvex sets,

PC(θ) sometimes consists of multiple points. When PC(θ) is single valued, the distance

penalty (5) has gradient θ − PC(θ)

The proximal distance method of constrained optimization minimizes the penalized

objective h(θ) + ρ
2
dist(θ, C)2 (Xu et al., 2017; Keys et al., 2019). The tuning constant ρ

controls the trade-off between minimizing the loss h(θ) and satisfying the constraint θ ∈ C.

Under suitable regularity conditions, the constrained solution can be recovered in the limit

as ρ tends towards infinity (Chi et al., 2014; Keys et al., 2019). Therefore, a large value

of ρ, say 108, is chosen in practice to enforce the constraint. The MM principle suggests

majorizing the distance penalty by the spherical quadratic (6) and applying the proximal

map θk+1 = proxρ−1h[PC(θk)] to generate the next iterate. The proximal distance principle

applies to a wide array of models, including sparse regression, nonnegative regression, and
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low-rank matrix completion. It is accurate in estimation and avoids the severe shrinkage

of Lasso penalization with well-behaved constraint sets (Xu et al., 2017). Landeros et al.

(2020) extend distance penalization to fusion constraints of the form Dβ ∈ C involving

a fusion matrix D such as a discrete difference operator. Although the advantages of

proximal maps are lost, this extension brings more constrained statistical models under the

umbrella of distance penalization.

3 L2E Robust Structured Regression

Consider the classical linear regression model y = Xβ+τ−1ε, where y ∈ R
n is the response

vector, X ∈ R
n×p is the design matrix of predictors, and ε ∈ R

n is the noise vector with

independent standard Gaussian components. The regression coefficients β ∈ R
p and the

precision τ ∈ R+ are the parameters of the model. Collectively, we denote the parameters

by θ = (βT, τ)T. The density of the ith response yi amounts to

f(yi | θ) =
τ√
2π

e−
τ2r2i

2 ,

where ri = yi − xT

i β is the ith residual. A brief calculation shows that equation (2) gives

rise to the L2E loss

h(θ) =

∫

f (y | θ)2 dy − 2

n

n
∑

i=1

f (yi | θ) =
τ

2
√
π
− τ

n

√

2

π

n
∑

i=1

e−
τ2r2i

2 . (7)

Structured regression introduces set constraints on the regression coefficient vector β.

Consequently, L2E aims to solve the constrained optimization problem

min
β∈Rp,τ∈R+

h(β, τ), subject to β ∈ C. (8)
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For example, C = {β ∈ R
p : β1 ≤ β2 ≤ · · · ≤ βp} leads to a robust isotonic regression

problem. Sparsity can be imposed directly by taking C = {β ∈ R
p : ‖β‖0≤ k} for some

positive integer k or indirectly by taking C = {β ∈ R
p : ‖β‖1≤ t} for t > 0. Alternatively,

we can rewrite problem (8) as the non-smooth optimization problem

min
β∈Rp,τ∈R+

h(β, τ) + φ(β), (9)

where the penalty φ(β) is either the 0/∞ indicator of the constraint set C denoted by

ιC(β) or a better behaved but still non-smooth substitute such as the Lasso. Although

we emphasize structured regression, the formulations (8) and (9) also include unstructured

multivariate regression where C = R
p and φ(β) ≡ 0.

Solving problem (8), or equivalently solving (9), is challenging for two reasons. First,

both problems are nonconvex owing to the nonconvexity of the L2E loss (7). Second, the

penalty term φ(β) may be non-differentiable. Fortunately, the block gradients of the L2E

loss with respect to β and τ , ∇βh(β, τ) and ∂
∂τ
h(β, τ), are Lipschitz. This key property

motivates a block descent algorithm (Chi and Chi, 2022) that alternates between reducing

the objective with respect to β and τ , holding the other block fixed. Chi and Chi (2022)

also impose the bounds 0 < τmin ≤ τ ≤ τmax <∞ on τ .

An appealing property of block descent is that the objective function is guaranteed to

decrease at each iteration. Chi and Chi (2022) apply proximal gradient descent to decrease

the objective in each block update. Because the proximal gradient updates are based on

a loose loss majorization, the algorithm is slow to converge. To ameliorate this fault, we

propose new strategies for updating β and τ in the next section.
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4 Computational Methods

4.1 Updating the Regression Coefficients

Consider the problem of updating the regression coefficients β. Because the contribution

−e−τ2r2i /2 to the L2E loss (7) is differentiable and concave with respective to r2i , we can

exploit the concave majorization

f(u) ≤ f(uk) + f ′(uk)(u− uk)

in the form

−e−τ2r2i /2 ≤ −e−τ2r2
ki
/2 +

τ 2

2
e−τ2r2

ki
/2
(

r2i − r2ki
)

(10)

around the tangency point r2ki. By omitting irrelevant multiplicative and additive terms,

this produces the surrogate function

f(β | βk, τ) =
1

2

n
∑

i=1

e−τ2r2
ki
/2(yi − xT

i β)
2 =

1

2
‖ỹ − X̃β‖22 (11)

for the L2E loss (7), where rki = yi − xT

i βk is the ith residual at iteration k, ỹ =
√
Wky,

X̃ =
√
WkX, and Wk ∈ R

n×n is a diagonal weight matrix with the ith diagonal entry

e−τ2r2
ki
/2.

The next proposition demonstrates that the surrogate (11) is the sharpest quadratic

majorization in the residual variables ri. It does not claim that the majorization (11) is the

sharpest multivariate quadratic majorization in the full variable β. Despite this fact, the

majorization yields substantial gains in computational efficiency over the looser proximal

gradient majorization pursued by Chi and Chi (2022).
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Proposition 4.1. Let f(r) = −e−ar2 with a > 0. Then the symmetric quadratic function

g(r) = −e−ar2
k + ae−ar2(r2 − r2k) is the sharp quadratic majorizer of f(r).

Proof. Van Ruitenburg (2005) proves that a univariate quadratic function g(r) majorizing

a univariate differentiable function f(r) and touching it at two points is sharp. In the

present case, g(r) touches f(r) at the points r = ±rk.

For an L2E loss with penalty φ(β), the next MM iterate is

βk+1 = argminβ∈Rp

1

2
‖ỹ − X̃β‖22+φ(β).

In the setting of distance penalization with a fusion penalty, the surrogate reduces to the

least squares criterion

1

2

∥

∥

∥

∥

∥

∥

∥

∥









ỹ

√
ρPC(Dβk)









−









X̃

√
ρD









β

∥

∥

∥

∥

∥

∥

∥

∥

2

2

,

which is amenable to minimization by the QR algorithm or the conjugate gradient algo-

rithm. The computational complexity of the β update is dominated by this least squares

problem. Indeed, computation of the current residuals, the matrix Wk, the product ỹ, and

the product X̃ require, respectively, operation counts of O(np), O(n), O(n), and O(np).

Updating β using proximal gradient descent requires similar steps. Evaluation of the prox-

imal map of φ(β) reduces to penalized least squares with an identity design matrix. Hence,

with a diagonal design matrix X, the computational cost per iteration of the current MM

algorithm is essentially the same as that of the proximal gradient descent algorithm in

Chi and Chi (2022). The numbers of iterations until convergence of the two algorithms

are vastly different however. Additionally, the distance penalized MM algorithm is more

flexible in allowing nonconvex and fusion constraints.
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4.2 Updating the Precision Parameter

There are two concerns in updating τ , namely the slow convergence of proximal gradi-

ent descent and the presence of box constraints on τ . To attack the latter concern, we

reparameterize by setting τ = eη for any real valued η. Because the stationary condition

for minimizing the loss h(β, eη) with respect to η is intractable, we turn to a variant of

Newton’s method. The required first and second derivatives are

∂

∂η
h(β, eη) =

eη

2
√
π
− eη

n

√

2

π

n
∑

i=1

wi +
e3η

n

√

2

π

n
∑

i=1

wir
2

i

∂2

∂η2
h(β, eη) =

eη

2
√
π
+

4e3η

n

√

2

π

n
∑

i=1

wir
2

i −
eη

n

√

2

π

n
∑

i=1

wi −
e5η

n

√

2

π

n
∑

i=1

wir
4

i ,

where wi = e−e2ηr2i /2 and ri is the ith residual. The Newton increment only points down-

hill when ∂2

∂η2
h(β, eη) is positive. This prompts discarding the negative contributions and

relying on the approximation

∂2

∂η2
h(β, eη) ≈ d =

eη

2
√
π
+

4e3η

n

√

2

π

n
∑

i=1

wir
2

i .

Our modified Newton’s iterates are defined by

ηk+1 = ηk − tkd
−1

k

∂

∂η
h(β, eηk),

where tk is a positive stepsize parameter chosen via Armijo backtracking started at tk = 1.

Little backtracking is needed because replacing ∂2

∂η2
h(β, eη) by the larger value d diminishes

the chances of overshooting the minimum of h(β, eη).

Our modified Newton’s method enjoys the same computational complexity as proximal

gradient descent. The dominant computational expense in updating η in both algorithms

comes from computing the residuals ri. This step requires O(np) operations. Once all ri
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are updated, computing the derivatives only requires an additional O(n) operations. In

summary, our new strategy converges in fewer iterations, removes the box constraint on τ ,

and enjoys the same computational cost per iteration as proximal gradient descent.

Algorithm 1 summarizes our algorithm for minimizing the penalized loss (9). As in Chi

and Chi (2022), we set the maximum numbers of inner iterations for updating β and η

to be Nβ and Nη, respectively, at each outer iteration. Extreme values Nβ and Nη tend

to slow overall convergence. In our simulation studies, we set Nβ = Nη = 100. In the

algorithm the notation W+ signifies that W depends on the previous inner iterate β+.

Algorithm 1 Block descent with MM and approximate Newton for problem (9)

Initialize: β0 ∈ R
p, τ0 ∈ R+, Nβ, andNη.

1: for k = 1, 2, · · · do
2: β+ ← βk−1

3: for i = 1, · · · , Nβ do

4: ỹ =
√
W+y

5: X̃ =
√
W+X

6: β+ = argminβ∈Rp

1

2
‖ỹ − X̃β‖22+φ(β)

7: end for
8: βk ← β+

9: η+ ← log(τk−1)
10: for i = 1, · · · , Nη do

11: η+ = η+ − tid
−1

i

∂

∂η
h(βk, e

η+)

12: end for
13: τk ← eη

+

14: end for

We close this section by stressing the importance of the weight matrixW+ in the success

of L2E regression. The diagonal entry e−τ2r2
+i/2 of W+ depends on the ith residual from

the previous inner iterate β+ and downweights case i if its residual is large. The converged

weights also conveniently flag outliers. We will exploit this bonus later in Section 6.
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5 Numerical Experiments

To compare the estimation accuracy and computational efficiency of Algorithm 1 (abbrevi-

ated MM) and proximal gradient descent (abbreviated PG), we consider isotonic regression

and convex regression. To highlight the advantages of distance penalization over competing

model selection methods, we consider sparse regression and trend filtering. For the sake of

brevity, we relegate two of the examples to the supplement. Readers wishing to implement

our version of L2E regression should visit the eponymous L2E R package (Liu et al., 2022)

on the Comprehensive R Archive Network (CRAN).

5.1 Robust Isotonic Regression

Classical isotonic regression involves minimizing the least squares criterion

‖y − β‖22 =
n

∑

i=1

(yi − βi)
2

subject to β belonging to the set C1 = {β ∈ R
n : β1 ≤ · · · ≤ βn}. Independent standard

normal errors are implicit in this formulation. Here the design matrix X = In, and the

mean function of the model is monotonically increasing and piecewise constant. In the L2E

version of the problem, we impose the 0/∞ penalty φ(β) = ιC1
(β). The MM update of

β succumbs to the gpava function in the isotone R package (de Leeuw et al., 2010). As

mentioned earlier, the MM β update enjoys the same per-iteration computational cost as

the PG β update (Chi and Chi, 2022).

In our simulation, 1000 responses are generated by sampling points xi evenly from

[−2.5, 2.5] and setting yi = x3
i +si+εi, where the εi are i.i.d. standard normal deviates, and
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Figure 2: Simulation results for isotonic regression under different numbers of outliers.

Boxplots depict the MSE (left panel) and run time (right panel) over 100 replicates.

the si shift the underlying cubic signal. The responses define mean vector β ∈ R
1000. Out-

liers are introduced at consecutive responses by setting si = 14 for i = 251, 252, · · · , 250+m,

where m is the number of outliers; all other responses have si = 0. The shift of 14

makes the contaminated responses match the maximum observed value in the uncontam-

inated responses. Each method is tested over 100 replicates and initialized by β0 = y,

τ0 = MAD(y)−1 for PG, and η0 = − log[MAD(y)] for MM, where MAD(y) is the recipro-

cal of the median absolute deviation of the responses.

Figure 2 displays boxplots of the MSEs and run times in seconds in fitting the isotonic

regression model under different numbers of outliers. We include the results from ordinary

least squares (abbreviated LS) as a baseline. As anticipated, the estimation accuracy of LS

degrades as the number of outliers increases. In contrast, both MM and PG exhibit much

more modest increases in estimation error, with MM less sensitive to outliers than PG. Note

that the optimization problems of PG and MM differ slightly. We put a box constraint on

τ for PG but reparameterize τ as τ = eη for MM to eliminate the box constraint on τ . For

sufficiently large box constraints, the solutions to the two problems coincide, but differences
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Figure 3: Boxplots of the mean number of outer block descent iterations (left panel), the

mean number of inner iterations for updating β per outer iteration (middle panel), and the

mean number of inner iterations for updating τ per outer iteration (right panel). All plots

refer to the experiment summarized in Figure 2.

in the algorithms will still produce different algorithm iterate trajectories. As discussed

in Section 3, the L2E optimization problem is nonconvex and may exhibit multiple local

minima. Thus, PG and MM may converge to different minima and produce different MSEs.

The right panel of Figure 2 shows the significant speed advantage of MM over PG. Run

times of PG increase rapidly as the number of outliers increases, while run times of MM

are far more stable against the number of outliers. MM is less computationally efficient

than LS, which avoids computation of case weights. The difference in run time between

PG and MM is directly attributable to MM’s reduced number of outer iterations until

convergence. For the same experiment, Figure 3 depicts boxplots of the mean number of

outer block descent iterations, the mean number of inner iterations for updating β per

outer iteration, and the mean number of inner iterations for updating τ per outer iteration.

Note that in our implementation, we terminate the inner iterations for updating β and τ
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if certain convergence conditions are satisfied. Readers may refer to the L2E package for

details. It may seem paradoxical that PG takes fewer inner iterations than MM to update

β. However, recall that PG is fitting a less snug surrogate than MM. PG also takes far

more inner iterations than MM to update τ . This reflects the speed of our approximate

Newton method.

The robust isotonic simulations also illustrate the ability of L2E regression to handle

outliers under various contamination levels. To explore this tendency, we fix the number

of outliers at m = 100, vary the shifts si over the grid {2, 5, 8, 14, 20}, adopt the same

initialization as the previous experiment, and run 100 replicates for each scenario. Figure

4 summarizes the estimation and computation performance of PG, MM, and LS under

different contamination levels. When the data are only slightly contaminated (si = 2), the

two robust methods, PG and MM, fail to detect the outliers and achieve estimation accuracy

comparable to LS. However, as the level of contamination si grows, the MSE of LS increases

rapidly, while the MSE of MM behaves robustly and quickly declines. Interestingly, the

MSE of PG decreases gradually as the shift grows. These results suggest that both PG

and MM need a certain level of contamination to successfully detect outliers. MM is more

responsive to the contamination than PG even if the data are modestly contaminated. This

is yet another advantage of MM over PG.

The right panel of Figure 4 illustrates how PG’s run times increase as the contamination

level increases. The run times of MM, however, are stable with contamination level and

consistently shorter than those of PG, though longer than those of LS. Figure 5 explains

the difference in the computational performance between PG and MM. The numbers of
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Figure 4: Simulation results for isotonic regression under different contamination levels.

Boxplots depict the MSE (left panel) and run time (right panel) over 100 replicates.

inner iterations for updating β and τ for both PG and MM are insensitive to contamination

level. MM’s number of outer block descent iterations is always small, while PG’s number

of outer iterations increases. This difference explains the speed advantage of MM.

5.2 Robust Sparse Regression

Sparse linear regression minimizes the penalized least squares criterion

1

2
‖y −Xβ‖22 + φ(β),

with φ(β) promoting sparsity. Typical choices of φ(β) includes the Lasso and the nonconvex

MCP penalty (Zhang et al., 2010). In the L2E framework, each MM update solves a φ-

penalized least squares problem. The ncvfit function in the R package ncvreg is ideal for

this purpose (Breheny and Huang, 2011). In the distance penalty context, the constraint

set is C2 = {β ∈ R
p : ‖β‖0≤ k}, where the positive integer k encodes the sparsity level.

The MM update of β relies on the proximal distance principle and reduces to least squares.

To shed light on the statistical performance of L2E regression with Lasso, MCP, and
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Figure 5: Boxplots of the mean number of outer block descent iterations (left panel), the

mean number of inner iterations for updating β per outer iteration (middle panel), and the

mean number of inner iterations for updating τ per outer iteration (right panel). All plots

refer to the experiment summarized in Figure 4.

distance penalties, we undertake a small simulation study involving a sparse coefficient vec-

tor β = (1, 1, 1, 1, 1, 0, · · · , 0)T ∈ R
50 and a design matrix X ∈ R

200×50 whose independent

entries are standard Gaussian deviates. The response y is simulated as y = Xβ+ ε where

components of ε are standard normal noises. We then shift the first m entries of y and

the first m rows of X by 5 to produce observations that are outlying with respect to the

responses and also high leverage with respect to the predictors. The number of outliers

m is chosen from the grid {10, 20, 30, 50}. For the distance penalization, the ideal choice

of the sparsity parameter k is 5. We employ five-fold cross-validation to select the tuning

parameters for all three penalties. The sparsity level k for distance penalization is varied

over the grid {3, 5, 7, 9, 11, 13, 15}, and the penalty constant ρ is set to 108 to enforce the

desired sparsity as discussed in Section 2.3. We initialize L2E estimation by setting β0 = 0

and η0 = − log[MAD(y)]. All performance metrics depend on 100 replicates. These met-
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Figure 6: Simulation results for sparse regression under different numbers of outliers. Av-

erage performance based on 100 replicates for each method.

rics include: (a) estimation accuracy (measured by the relative error compared to the true

β), (b) support recovery (measured by the F1 score), (c) the number of true positives, and

(d) the number of false positives. The F1 score (harmonic mean of precision and recall)

accounts for both true and false positives and takes on values in [0, 1], with a higher score

indicating better support recovery.

Figure 6 shows the performance of the Lasso, MCP, and distance penalties in robust

sparse regression with the L2E loss under different numbers of outliers. Estimation degrades

for all three methods as the number of outliers increases. Distance penalization consistently

achieves a lower relative error than Lasso and MCP, except for m = 50, where all methods
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Figure 7: Simulation results for sparse regression under different noise levels. Average

performance based on 100 replicates for each method.

produce unacceptable estimates. In support recovery, distance penalization consistently

delivers a much higher F1 score than Lasso and MCP. The two plots in the bottom row

of Figure 6 highlight the difference in support recovery among the three methods. Lasso

identifies the most true positives but suffers from the most false positives in each scenario.

MCP selects fewer irrelevant variables compared to Lasso but misses some true positives.

In contrast, distance penalization identifies a number of true positives comparable to Lasso

while maintaining a much lower false positive rate.

In the second experiment, we compare the performance of the different analysis methods

(Lasso, MCP, and distance penalization) under different noise levels. We fix the number
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of outliers at m = 20 and sample the precision parameter τ over the grid {0.3, 0.5, 1, 1.5}.

A small value of τ represents a high noise level. We use the rules of our first experiment

to produce outliers, select tuning parameters, and initialize L2E estimation. Figure 7

summarizes our analysis results under different noise levels. As expected, the estimation

errors of all three methods decrease as the value of τ increases. Distance penalization

outperforms Lasso and MCP in estimation accuracy when the noise level is relatively low

(τ ≥ 1). In addition, distance penalization compares favorably with Lasso and MCP

in F1 score across different noise levels. The plots of true and false positives provide

detailed insight into the support recovery of the different methods. All methods achieve a

larger number of true positives as the value of τ increases, with Lasso leading the others.

However, Lasso is plagued by an increasingly large number of false positives as the value of τ

increases. Distance penalization achieves a smaller number of false positives, is less sensitive

to the noise than Lasso and MCP, and stands out among the three methods in support

recovery. This sparse regression example emphasizes the flexibility of L2E regression in

accommodating different penalization methods and the advantages of distance penalization

in both estimation accuracy and structure recovery.

6 Real Data Application

To illustrate the application of L2E regression in unconstrained robust multivariate regres-

sion and its effectiveness in detecting outliers, we now turn to the Hertzsprung-Russell

diagram data of star cluster CYG OB1 investigated in Rousseeuw and Leroy (2005); Scott

(2001); Scott and Wang (2021). This data set includes two variables collected from 47 stars
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in the direction of Cygnus. The predictor variable is the logarithm of the temperature at

the star’s surface, and the response variable is the logarithm of its light intensity. Though

small, this data set is commonly used in robust regression owing to its four known outliers

– four bright giant stars observed at low temperatures (Vansina and De Greve, 1982).

In this example, the penalty term φ(β) = 0. Therefore, the MM update of β reduces

to a standard least squares problem solvable by many efficient algorithms. In our imple-

mentation, we invoke the lm function in the R package stats (R Core Team, 2020). We

initialize β0 = 0 and η0 = − log[MAD(y)]. The left panel in Figure 8 displays the fitted

L2E regression model. In comparison with ordinary least squares, L2E successfully reduces

the influence of the four outliers and fits the remaining data points well. The converged

weights wi = e−τ2r2i /2, where ri denotes the i-th L2E residual, serve as a diagnostic tool to

detect outliers. As discussed in Section 4, a small weight suggests a potential outlier. The

histogram of the logarithm of weights in the right panel in Figure 8 clearly identifies the

four outliers. These are colored in red in the scatter plot in the left panel. As a practical

matter, we tried different initializations of β in L2E estimation. Different initial values

could potentially lead to different estimates. A direct and simple way to compare initial-

izations is to rank their converged L2E losses (7). In this real data example, the neutral

initialization β0 = 0 yields the smallest L2E loss.

7 Discussion

Because robust structured regression is resistant to the undue influence of outliers, it is

valuable in many noisy data applications. The L2E computational framework (Chi and
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Figure 8: Fitted regression models from L2E and LS for the Hertzsprung-Russell Diagram

Data (left panel). The four known outliers are successfully detected by the L2E according

to the histogram of the resulting weights (right panel).

Chi, 2022) for robust structured regression has the advantage of allowing the simultaneous

estimation of regression coefficients and precision. This paper retains the overall strategy

of block descent but introduces several non-trivial improvements. We introduce an MM

algorithm based on a sharp majorization to accelerate convergence. Each MM update of

β reduces to penalized least squares and can be readily handled by existing regression

solvers. Although this plug-and-play tactic already formed part of the proximal gradient

algorithm in Chi and Chi (2022), our tight majorization leads to better results. We also

reparameterize precision to avoid box constraint and update the new precision parameter

by an approximate Newton’s method. The computational cost per iterate remains the

same, but again the number of iterations until convergence drops considerably. Finally,

we extend penalization to distance and nonconvex penalties. These steps lead to better

statistical performance and model selection.

We demonstrate the merits of our refined computational framework through a rich set

of simulation examples, including isotonic regression, convex regression, sparse regression,
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and trend filtering, and a real data application to unconstrained multivariate regression.

Given the same penalties, our simulation results show that the new algorithms outperform

the original ones in both computational speed and estimation accuracy. Distance penalties

to sparsity sets, in particular, show competitive advantages in both estimation accuracy

and model selection. The real data example illustrates the convenience of using the refined

framework to identify outliers. Overall, the innovations introduced here make L2E an

attractive tool for robust regression.

Supplementary Material

Supplementary materials and code for this article are available online. The supplement.pdf

file contains the two simulation examples of convex regression and trend filtering under

the L2E criterion. The L2E-code.zip file includes code for implementing the L2E isotonic

regression and reproducing Figures 2 and 3 in the paper. To implement other L2E regression

methods in the article, we refer readers to the eponymous L2E R package on the CRAN.
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