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Abstract

Building on previous research of Chi and Chi (2022), the current paper revisits
estimation in robust structured regression under the LoE criterion. We adopt the
majorization-minimization (MM) principle to design a new algorithm for updating
the vector of regression coefficients. Our sharp majorization achieves faster conver-
gence than the previous alternating proximal gradient descent algorithm (Chi and
Chi, 2022). In addition, we reparameterize the model by substituting precision for
scale and estimate precision via a modified Newton’s method. This simplifies and
accelerates overall estimation. We also introduce distance-to-set penalties to enable
constrained estimation under nonconvex constraint sets. This tactic also improves
performance in coefficient estimation and structure recovery. Finally, we demonstrate
the merits of our improved tactics through a rich set of simulation examples and a
real data application.

Keywords: Integral squared error criterion; MM principle; Newton’s method; penalized
estimation; distance penalization



1 Introduction

Linear least squares regression quantifies the relationship between a response and a set of
predictors. As such, it has been the most popular and productive technique of classical
statistics. The growing complexity of modern datasets necessitates special structures on the
vector of regression coefficients. A typical example is sparse regression for high-dimensional
data, where the number of predictors exceeds the number of responses. In this setting, as-
suming the coefficient vector is sparse not only improves a regression model’s interpretabil-
ity but also improves its prediction accuracy. The most popular vehicle for dealing with
sparse regression is the least absolute shrinkage and selection operator (Lasso) (Tibshirani,
1996). Other examples of structured regression include isotonic regression (Barlow and
Brunk, 1972), convex regression (Seijo and Sen, 2011), and ridge regression (Hoerl and
Kennard, 1970).

Traditional structured regression estimates parameters by constrained least squares.
Unfortunately, least squares estimates are extremely sensitive to outliers. A single out-
lier can ruin estimation accuracy. Consequently, robust structured regression has gained
considerable traction in recent years. Numerous authors have contributed to the current
body of techniques. To mention a few, Alvarez and Yohai (2012) propose a family of
robust estimates for isotonic regression that replaces the least squares criterion with the
M-estimation criterion (Huber, 1992). Blanchet et al. (2019) employ absolute error loss in
robust convex regression. This is also an instance of an M-estimator. Nguyen and Tran
(2012) suggest an extended Lasso method incorporating a stochastic noise term to account

for corrupted observations in robust sparse multiple regression. Alfons et al. (2013) add a



Lasso penalty to the least trimmed squares (LTS) loss to produce a robust sparse estimator
that trims outliers by effectively minimizing the sum of squared residuals over a selected
subset. Lozano et al. (2016) adopt the minimum distance criterion to design a log-scaled
loss function and propose the minimum distance Lasso method for robust sparse regression.
Other robust sparse regression methods can be found in Wang et al. (2007); She and Owen
(2011); Wang et al. (2013).

The above works investigate robust structured regression on a case-by-case basis. Yang
et al. (2018) develop a family of trimmed regularized M-estimators with a wider focus but
with the need to select the degree of trimming. Recently, Chi and Chi (2022) derive yet
another general framework for robust structured regression that simultaneously estimates
regression coefficients as well as a precision parameter, which plays the same role as the
trimming parameter in Yang et al. (2018). Chi and Chi (2022) use the LyE criterion
(Scott, 1992) to quantify goodness-of-fit and a convex penalty to enforce structure. Their
algorithmic framework solves the corresponding optimization problem by block descent.
Although the computational framework presented in Chi and Chi (2022) is general, there is
room for some nontrivial improvements. First, the proposed proximal gradient algorithm
for updating both the regression coefficients and the precision parameter at each block
descent iteration can be slow to converge. Second, the box constraint on the precision
parameter introduces two additional hyper-parameters that must be specified. Finally,
while Chi and Chi (2022) focused on convex penalties and constraints, the framework
that they introduced is not inherently limited to convex options and warrants extension to

important nonconvex alternatives that impose desirable structures.



The limitations in Chi and Chi (2022) just discussed motivate the current paper and
its new contributions. First, we derive a majorization-minimization algorithm to accelerate
the estimation of the regression coefficients. Second, we reparameterize the precision pa-
rameter to eliminate the box constraint. A simple one-dimensional approximate Newton’s
method quickly solves the resulting smooth unconstrained problem for updating precision.
Finally, we demonstrate improved statistical performance by imposing nonconvex penalties.
Specifically, we adopt distance-to-set penalties to improve estimation accuracy subject to
structural constraints. These improvements do not compromise robustness.

The rest of this paper is organized as follows. In Section 2, we review the LyE criterion,
the majorization-minimization (MM) principle, and distance penalization. In Section 3, we
set up the optimization problem for robust structured regression under the LyE criterion.
In Section 4, we introduce strategies that improve the estimation techniques of Chi and
Chi (2022). In Sections 5 and 6, we provide a rich set of simulation examples and a real
data application to demonstrate the empirical performance of our new algorithms. We end

with a discussion in Section 7.

2 Background

2.1 The LsE Criterion

Although traditionally used in nonparametric estimation, the LyE criterion, also known
as the integrated squared error (ISE), can be exploited in parametric settings for robust

estimation. Suppose the goal is to estimate a density function f(x | €), where the true



parameter 6, is unknown. The LyE criterion seeks to estimate @ by minimizing the Lo

distance between f(x | 8) and f(x | 8.); thus

6 — arguiny [ [f(2|6)~ f(z|6.)" do
= argmine/f(az | 6)? doc — 2/f(a: | 0)f(x | 0,)dx + /f(a: 1 6,)%dz. (1)

The third integral in formula (1) does not depend on 6 and can be excluded from the
minimization. The second integral is the expectation of f(x | @) and can be approximated
by an unbiased estimate, namely its sample mean. Therefore, an approximate Lo estimate

of @ is

b = arguing [ flw|0)dz > Y flai|6). )
=1

where n denotes the sample size. The LoE represents a trade-off between efficiency and
robustness. It is less efficient but more robust than the maximum likelihood estimate
(MLE) (Scott, 2001; Warwick and Jones, 2005). Chi and Chi (2022) discuss in detail how

the LoE estimator imparts robustness in structured regression.

2.2 The MM Principle

The majorization-minimization principle (Lange et al., 2000; Lange, 2016) for minimizing
an objective function h(@) involves two steps, a) majorization of h(@) by a surrogate func-
tion g(@ | 8)) anchored at the current iterate 8, and then b) minimization of 6 — ¢(6 | ;)

to construct 8y,1. The surrogate function g(0 | ;) must satisfy the two requirements:
h(6r) = g(6k|6), tangency (3)

h(@) < g(0]86;) forall 8 domination. (4)
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Figure 1: An example of sharp quadratic majorization. The quadratic g; (0 | 6y) offers the

sharpest majorization of the loss h(f) and falls below every looser quadratic majorization
92(9 ’ 90)

Under these conditions, the iterates enjoy the descent property h(6r11) < h(6) as demon-

strated by the relations

h(Oki1) < 9Ok | 0x) < g(0x|0r) = h(6y),

reflecting conditions (3) and (4). Ideally, the MM principle converts a hard optimiza-
tion problem into a sequence of easier ones. The key to success is the construction of a
tight majorization that can be easily minimized. In some problems it is possible to con-
struct a sharp majorization within a limited class of majorizers. Figure 1 depicts a sharp
quadratic majorization that is best among all quadratic majorizations that share the same
tangency point. Sharp majorization accelerates the convergence of a derived MM algorithm
(de Leeuw and Lange, 2009). In practice, majorization can be done piecemeal by exploiting

the convexity or concavity of the various terms comprising the objective.



2.3 Distance Penalization

To estimate a parameter vector @ subject to a set constraint 8 € C| it is often convenient
to employ a squared Euclidean distance penalty (Chi et al., 2014; Xu et al., 2017). For a

closed set C, the penalty is defined as
! dist (6 0)2 = min ! |0 /3||2 (5)
2 1 BEIC 2 z

The beauty of this penalty is that it is majorized at the current iterate @ by the spherical

quadratic
1 2
§||9—7DC(9k)||2> (6)

where P (0) denotes the Euclidean projection of @ onto C' (Bauschke and Combettes, 2011).
When C'is both closed and convex, Pc(6) consists of a single point. For nonconvex sets,
Pc(0) sometimes consists of multiple points. When Px(0) is single valued, the distance
penalty (5) has gradient 6 — Pc(0)

The proximal distance method of constrained optimization minimizes the penalized
objective h(@) + £ dist(0, C)* (Xu et al., 2017; Keys et al., 2019). The tuning constant p
controls the trade-off between minimizing the loss h(0) and satisfying the constraint 8 € C'.
Under suitable regularity conditions, the constrained solution can be recovered in the limit
as p tends towards infinity (Chi et al., 2014; Keys et al., 2019). Therefore, a large value
of p, say 108, is chosen in practice to enforce the constraint. The MM principle suggests
majorizing the distance penalty by the spherical quadratic (6) and applying the proximal
map 041 = prox,-1,[Pc(6x)] to generate the next iterate. The proximal distance principle
applies to a wide array of models, including sparse regression, nonnegative regression, and

7



low-rank matrix completion. It is accurate in estimation and avoids the severe shrinkage
of Lasso penalization with well-behaved constraint sets (Xu et al., 2017). Landeros et al.
(2020) extend distance penalization to fusion constraints of the form D3 € C involving
a fusion matrix D such as a discrete difference operator. Although the advantages of
proximal maps are lost, this extension brings more constrained statistical models under the

umbrella of distance penalization.

3 LoE Robust Structured Regression

Consider the classical linear regression model y = X347 '€, where y € R" is the response
vector, X € R™P is the design matrix of predictors, and € € R" is the noise vector with
independent standard Gaussian components. The regression coefficients 3 € R? and the
precision 7 € R, are the parameters of the model. Collectively, we denote the parameters

by @ = (B7,7)T. The density of the ith response y; amounts to

f(yz|9) = e 217

where r; = y; — x] 3 is the ith residual. A brief calculation shows that equation (2) gives

rise to the LoE loss

0 = [rwiora -2 rwie = -T2y et

Structured regression introduces set constraints on the regression coefficient vector 3.

Consequently, LoE aims to solve the constrained optimization problem

min _ h(B,7), subject to B € C. (8)

ﬁERP,TER+



For example, C = {3 € R? : 51 < 3, < --- < f3,} leads to a robust isotonic regression
problem. Sparsity can be imposed directly by taking C' = {8 € R? : ||3]|o< k} for some
positive integer k or indirectly by taking C' = {8 € R? : ||8||1< t} for t > 0. Alternatively,

we can rewrite problem (8) as the non-smooth optimization problem

min_ h(3,7) + ¢(08), 9)

BERP TeR4

where the penalty ¢(3) is either the 0/co indicator of the constraint set C' denoted by
tc(B) or a better behaved but still non-smooth substitute such as the Lasso. Although
we emphasize structured regression, the formulations (8) and (9) also include unstructured
multivariate regression where C' = R? and ¢(8) = 0.

Solving problem (8), or equivalently solving (9), is challenging for two reasons. First,
both problems are nonconvex owing to the nonconvexity of the LoE loss (7). Second, the
penalty term ¢(8) may be non-differentiable. Fortunately, the block gradients of the LoE
loss with respect to 3 and 7, Vgh(3,7) and %h(ﬁ, 7), are Lipschitz. This key property
motivates a block descent algorithm (Chi and Chi, 2022) that alternates between reducing
the objective with respect to 8 and 7, holding the other block fixed. Chi and Chi (2022)
also impose the bounds 0 < Tin < 7 < Tipax < 00 ON 7.

An appealing property of block descent is that the objective function is guaranteed to
decrease at each iteration. Chi and Chi (2022) apply proximal gradient descent to decrease
the objective in each block update. Because the proximal gradient updates are based on
a loose loss majorization, the algorithm is slow to converge. To ameliorate this fault, we

propose new strategies for updating B and 7 in the next section.



4 Computational Methods

4.1 Updating the Regression Coefficients

Consider the problem of updating the regression coefficients 3. Because the contribution

—e 771/2 to the LyE loss (7) is differentiable and concave with respective to 72

2, we can
exploit the concave majorization
flw) < fluw) + fur)(u — uw)
in the form
—e T 7"2/2 < e T rkZ/Q + 26—7' Tk'z/2 ( T2 ) (10>
— 2 ki

around the tangency point r7,. By omitting irrelevant multiplicative and additive terms,

this produces the surrogate function

F(B1B7) = —Z TRy - alBY = Sl - X3 (1)

for the LoE loss (7), where 74; = y; — @] By is the ith residual at iteration k, g = vWyy,
X = VW, X, and W, € R™" ig a diagonal weight matrix with the ith diagonal entry
o2,

The next proposition demonstrates that the surrogate (11) is the sharpest quadratic
majorization in the residual variables r;. It does not claim that the majorization (11) is the
sharpest multivariate quadratic majorization in the full variable B. Despite this fact, the
majorization yields substantial gains in computational efficiency over the looser proximal

gradient majorization pursued by Chi and Chi (2022).
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Proposition 4.1. Let f(r) = —e~" with a > 0. Then the symmetric quadratic function

g(r) = —e~%% + ae=¥"(r2 — 1r?) is the sharp quadratic magorizer of f(r).

Proof. Van Ruitenburg (2005) proves that a univariate quadratic function g(r) majorizing
a univariate differentiable function f(r) and touching it at two points is sharp. In the

present case, g(r) touches f(r) at the points r = +ry. O
For an LyE loss with penalty ¢(3), the next MM iterate is

. .. &
Bri1 = argmingcg, 5”9 — XB|53+9(8).
In the setting of distance penalization with a fusion penalty, the surrogate reduces to the

least squares criterion
2

g X
- /8 )
VPPc (D) VrD

which is amenable to minimization by the QR algorithm or the conjugate gradient algo-

DN | —

2

rithm. The computational complexity of the 3 update is dominated by this least squares
problem. Indeed, computation of the current residuals, the matrix Wy, the product gy, and
the product X require, respectively, operation counts of O(np), O(n), O(n), and O(np).
Updating B using proximal gradient descent requires similar steps. Evaluation of the prox-
imal map of ¢(3) reduces to penalized least squares with an identity design matrix. Hence,
with a diagonal design matrix X, the computational cost per iteration of the current MM
algorithm is essentially the same as that of the proximal gradient descent algorithm in
Chi and Chi (2022). The numbers of iterations until convergence of the two algorithms
are vastly different however. Additionally, the distance penalized MM algorithm is more
flexible in allowing nonconvex and fusion constraints.
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4.2 Updating the Precision Parameter

There are two concerns in updating 7, namely the slow convergence of proximal gradi-
ent descent and the presence of box constraints on 7. To attack the latter concern, we
reparameterize by setting 7 = e” for any real valued 7. Because the stationary condition
for minimizing the loss h(8,e") with respect to n is intractable, we turn to a variant of

Newton’s method. The required first and second derivatives are

0 e e 2 & 6377\/5 =

_ ny — _ ]z AT 2

8nh<ﬁ’€) NG n\/;Zwﬁ— - szm

0? e 463"

a—nzh(ﬁ’en) = \/72“’%7’ ——\[ZwZ——waz Tis

e2r2/2

where w; = e~ and r; is the ith residual. The Newton increment only points down-
hill when 2 T h(B,e") is positive. This prompts discarding the negative contributions and

relying on the approximation

2 U 3n
a h(Be) ~ d = L X \[sz

Our modified Newton’s iterates are defined by

Mer1 = nk_tkzd_ (576"’“)

where ¢, is a positive stepsize parameter chosen via Armijo backtracking started at ¢, = 1.
Little backtracking is needed because replacmg h(,@, e") by the larger value d diminishes
the chances of overshooting the minimum of h(3, ).

Our modified Newton’s method enjoys the same computational complexity as proximal
gradient descent. The dominant computational expense in updating n in both algorithms
comes from computing the residuals ;. This step requires O(np) operations. Once all r;
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are updated, computing the derivatives only requires an additional O(n) operations. In
summary, our new strategy converges in fewer iterations, removes the box constraint on 7,
and enjoys the same computational cost per iteration as proximal gradient descent.
Algorithm 1 summarizes our algorithm for minimizing the penalized loss (9). As in Chi
and Chi (2022), we set the maximum numbers of inner iterations for updating 8 and 7
to be Ng and N,, respectively, at each outer iteration. Extreme values Ng and NN, tend
to slow overall convergence. In our simulation studies, we set Ng = NN, = 100. In the

algorithm the notation W, signifies that W depends on the previous inner iterate 3.

Algorithm 1 Block descent with MM and approximate Newton for problem (9)
Initialize: By € RP, 79 € Ry, Ng, and V,,.
1: for k=1,2,--- do
2 B < Br
fori=1,--- ,Ngdo
?l: vW.y
X =W, X

. 1, . =
BT = argmingeg, o[y — XB3+¢(8)
end for
Bi < B+
nt <« log(7,_1)
fori=1,---,N, do

0 +
o=t d (B, e
n n 7 an (18/676 )

—_

—_
—_

12:  end for+
13: T < el
14: end for

We close this section by stressing the importance of the weight matrix W, in the success
of LoE regression. The diagonal entry e T2 of W, depends on the ¢th residual from
the previous inner iterate B, and downweights case ¢ if its residual is large. The converged

weights also conveniently flag outliers. We will exploit this bonus later in Section 6.
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5 Numerical Experiments

To compare the estimation accuracy and computational efficiency of Algorithm 1 (abbrevi-
ated MM) and proximal gradient descent (abbreviated PG), we consider isotonic regression
and convex regression. To highlight the advantages of distance penalization over competing
model selection methods, we consider sparse regression and trend filtering. For the sake of
brevity, we relegate two of the examples to the supplement. Readers wishing to implement
our version of LyE regression should visit the eponymous L2E R package (Liu et al., 2022)

on the Comprehensive R Archive Network (CRAN).

5.1 Robust Isotonic Regression

(Classical isotonic regression involves minimizing the least squares criterion
ly=BI5 = > (i~ 8
i=1

subject to B belonging to the set C; = {3 € R" : f; < --- < §,}. Independent standard
normal errors are implicit in this formulation. Here the design matrix X = I,,, and the
mean function of the model is monotonically increasing and piecewise constant. In the LoE
version of the problem, we impose the 0/co penalty ¢(8) = t¢,(3). The MM update of
(B succumbs to the gpava function in the isotone R package (de Leeuw et al., 2010). As
mentioned earlier, the MM 3 update enjoys the same per-iteration computational cost as
the PG 3 update (Chi and Chi, 2022).

In our simulation, 1000 responses are generated by sampling points x; evenly from

[—2.5,2.5] and setting y; = 23 +s; +¢;, where the ¢; are i.i.d. standard normal deviates, and
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Figure 2: Simulation results for isotonic regression under different numbers of outliers.

Boxplots depict the MSE (left panel) and run time (right panel) over 100 replicates.

the s; shift the underlying cubic signal. The responses define mean vector 3 € R0, Out-
liers are introduced at consecutive responses by setting s; = 14 for ¢ = 251,252, - -+, 250+m,
where m is the number of outliers; all other responses have s; = 0. The shift of 14
makes the contaminated responses match the maximum observed value in the uncontam-
inated responses. Each method is tested over 100 replicates and initialized by By = vy,
70 = MAD(y) ™! for PG, and 7y = —log]MAD(y)] for MM, where MAD(y) is the recipro-
cal of the median absolute deviation of the responses.

Figure 2 displays boxplots of the MSEs and run times in seconds in fitting the isotonic
regression model under different numbers of outliers. We include the results from ordinary
least squares (abbreviated LS) as a baseline. As anticipated, the estimation accuracy of LS
degrades as the number of outliers increases. In contrast, both MM and PG exhibit much
more modest increases in estimation error, with MM less sensitive to outliers than PG. Note
that the optimization problems of PG and MM differ slightly. We put a box constraint on
7 for PG but reparameterize 7 as 7 = " for MM to eliminate the box constraint on 7. For

sufficiently large box constraints, the solutions to the two problems coincide, but differences
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Figure 3: Boxplots of the mean number of outer block descent iterations (left panel), the
mean number of inner iterations for updating 3 per outer iteration (middle panel), and the
mean number of inner iterations for updating 7 per outer iteration (right panel). All plots

refer to the experiment summarized in Figure 2.

in the algorithms will still produce different algorithm iterate trajectories. As discussed
in Section 3, the LoE optimization problem is nonconvex and may exhibit multiple local
minima. Thus, PG and MM may converge to different minima and produce different MSEs.

The right panel of Figure 2 shows the significant speed advantage of MM over PG. Run
times of PG increase rapidly as the number of outliers increases, while run times of MM
are far more stable against the number of outliers. MM is less computationally efficient
than LS, which avoids computation of case weights. The difference in run time between
PG and MM is directly attributable to MM’s reduced number of outer iterations until
convergence. For the same experiment, Figure 3 depicts boxplots of the mean number of
outer block descent iterations, the mean number of inner iterations for updating 3 per
outer iteration, and the mean number of inner iterations for updating 7 per outer iteration.

Note that in our implementation, we terminate the inner iterations for updating 3 and 7
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if certain convergence conditions are satisfied. Readers may refer to the L2E package for
details. It may seem paradoxical that PG takes fewer inner iterations than MM to update
B. However, recall that PG is fitting a less snug surrogate than MM. PG also takes far
more inner iterations than MM to update 7. This reflects the speed of our approximate
Newton method.

The robust isotonic simulations also illustrate the ability of LoE regression to handle
outliers under various contamination levels. To explore this tendency, we fix the number
of outliers at m = 100, vary the shifts s; over the grid {2,5,8, 14,20}, adopt the same
initialization as the previous experiment, and run 100 replicates for each scenario. Figure
4 summarizes the estimation and computation performance of PG, MM, and LS under
different contamination levels. When the data are only slightly contaminated (s; = 2), the
two robust methods, PG and MM, fail to detect the outliers and achieve estimation accuracy
comparable to LS. However, as the level of contamination s; grows, the MSE of LS increases
rapidly, while the MSE of MM behaves robustly and quickly declines. Interestingly, the
MSE of PG decreases gradually as the shift grows. These results suggest that both PG
and MM need a certain level of contamination to successfully detect outliers. MM is more
responsive to the contamination than PG even if the data are modestly contaminated. This
is yet another advantage of MM over PG.

The right panel of Figure 4 illustrates how PG’s run times increase as the contamination
level increases. The run times of MM, however, are stable with contamination level and
consistently shorter than those of PG, though longer than those of LS. Figure 5 explains

the difference in the computational performance between PG and MM. The numbers of
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Figure 4: Simulation results for isotonic regression under different contamination levels.

Boxplots depict the MSE (left panel) and run time (right panel) over 100 replicates.

inner iterations for updating B and 7 for both PG and MM are insensitive to contamination
level. MM’s number of outer block descent iterations is always small, while PG’s number

of outer iterations increases. This difference explains the speed advantage of MM.

5.2 Robust Sparse Regression

Sparse linear regression minimizes the penalized least squares criterion

lly — XBIZ + ().

with ¢(3) promoting sparsity. Typical choices of ¢(3) includes the Lasso and the nonconvex
MCP penalty (Zhang et al., 2010). In the LoE framework, each MM update solves a ¢-
penalized least squares problem. The ncvfit function in the R package ncvreg is ideal for
this purpose (Breheny and Huang, 2011). In the distance penalty context, the constraint
set is Cy = {B € R? : ||B|lo< k}, where the positive integer k encodes the sparsity level.
The MM update of 3 relies on the proximal distance principle and reduces to least squares.

To shed light on the statistical performance of LoE regression with Lasso, MCP, and
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Figure 5: Boxplots of the mean number of outer block descent iterations (left panel), the
mean number of inner iterations for updating 3 per outer iteration (middle panel), and the
mean number of inner iterations for updating 7 per outer iteration (right panel). All plots

refer to the experiment summarized in Figure 4.

distance penalties, we undertake a small simulation study involving a sparse coefficient vec-
tor 8= (1,1,1,1,1,0,--- ,0)" € R and a design matrix X € R20%50 whose independent
entries are standard Gaussian deviates. The response y is simulated as y = X 3 + € where
components of € are standard normal noises. We then shift the first m entries of y and
the first m rows of X by 5 to produce observations that are outlying with respect to the
responses and also high leverage with respect to the predictors. The number of outliers
m is chosen from the grid {10,20,30,50}. For the distance penalization, the ideal choice
of the sparsity parameter k is 5. We employ five-fold cross-validation to select the tuning
parameters for all three penalties. The sparsity level k for distance penalization is varied
over the grid {3,5,7,9,11,13,15}, and the penalty constant p is set to 10® to enforce the
desired sparsity as discussed in Section 2.3. We initialize LyE estimation by setting By = 0

and 1y = —log[MAD(y)]. All performance metrics depend on 100 replicates. These met-
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Av-

rics include: (a) estimation accuracy (measured by the relative error compared to the true

B3), (b) support recovery (measured by the F1 score), (c¢) the number of true positives, and

(d) the number of false positives. The F1 score (harmonic mean of precision and recall)

accounts for both true and false positives and takes on values in [0, 1], with a higher score

indicating better support recovery.

Figure 6 shows the performance of the Lasso, MCP, and distance penalties in robust

sparse regression with the Lo E loss under different numbers of outliers. Estimation degrades

for all three methods as the number of outliers increases. Distance penalization consistently

achieves a lower relative error than Lasso and MCP, except for m = 50, where all methods
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Figure 7: Simulation results for sparse regression under different noise levels. Average

performance based on 100 replicates for each method.

produce unacceptable estimates. In support recovery, distance penalization consistently
delivers a much higher F1 score than Lasso and MCP. The two plots in the bottom row
of Figure 6 highlight the difference in support recovery among the three methods. Lasso
identifies the most true positives but suffers from the most false positives in each scenario.
MCP selects fewer irrelevant variables compared to Lasso but misses some true positives.
In contrast, distance penalization identifies a number of true positives comparable to Lasso
while maintaining a much lower false positive rate.

In the second experiment, we compare the performance of the different analysis methods

(Lasso, MCP, and distance penalization) under different noise levels. We fix the number
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of outliers at m = 20 and sample the precision parameter 7 over the grid {0.3,0.5,1, 1.5}.
A small value of 7 represents a high noise level. We use the rules of our first experiment
to produce outliers, select tuning parameters, and initialize LoE estimation. Figure 7
summarizes our analysis results under different noise levels. As expected, the estimation
errors of all three methods decrease as the value of 7 increases. Distance penalization
outperforms Lasso and MCP in estimation accuracy when the noise level is relatively low
(t > 1). In addition, distance penalization compares favorably with Lasso and MCP
in F1 score across different noise levels. The plots of true and false positives provide
detailed insight into the support recovery of the different methods. All methods achieve a
larger number of true positives as the value of 7 increases, with Lasso leading the others.
However, Lasso is plagued by an increasingly large number of false positives as the value of 7
increases. Distance penalization achieves a smaller number of false positives, is less sensitive
to the noise than Lasso and MCP, and stands out among the three methods in support
recovery. This sparse regression example emphasizes the flexibility of LoE regression in
accommodating different penalization methods and the advantages of distance penalization

in both estimation accuracy and structure recovery.

6 Real Data Application

To illustrate the application of LyE regression in unconstrained robust multivariate regres-
sion and its effectiveness in detecting outliers, we now turn to the Hertzsprung-Russell
diagram data of star cluster CYG OBI investigated in Rousseeuw and Leroy (2005); Scott

(2001); Scott and Wang (2021). This data set includes two variables collected from 47 stars
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in the direction of Cygnus. The predictor variable is the logarithm of the temperature at
the star’s surface, and the response variable is the logarithm of its light intensity. Though
small, this data set is commonly used in robust regression owing to its four known outliers
— four bright giant stars observed at low temperatures (Vansina and De Greve, 1982).

In this example, the penalty term ¢(3) = 0. Therefore, the MM update of 3 reduces
to a standard least squares problem solvable by many efficient algorithms. In our imple-
mentation, we invoke the 1m function in the R package stats (R Core Team, 2020). We
initialize By = 0 and 79 = —log[MAD(y)]. The left panel in Figure 8 displays the fitted
Lo E regression model. In comparison with ordinary least squares, LoE successfully reduces
the influence of the four outliers and fits the remaining data points well. The converged

. _ 2.2
weights w; = e~ 7 "i/?

, where r; denotes the i-th LyE residual, serve as a diagnostic tool to
detect outliers. As discussed in Section 4, a small weight suggests a potential outlier. The
histogram of the logarithm of weights in the right panel in Figure 8 clearly identifies the
four outliers. These are colored in red in the scatter plot in the left panel. As a practical
matter, we tried different initializations of 3 in LoE estimation. Different initial values
could potentially lead to different estimates. A direct and simple way to compare initial-

izations is to rank their converged LoE losses (7). In this real data example, the neutral

initialization By = 0 yields the smallest LoE loss.

7 Discussion

Because robust structured regression is resistant to the undue influence of outliers, it is

valuable in many noisy data applications. The LyE computational framework (Chi and
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Figure 8: Fitted regression models from LoE and LS for the Hertzsprung-Russell Diagram
Data (left panel). The four known outliers are successfully detected by the LyE according

to the histogram of the resulting weights (right panel).

Chi, 2022) for robust structured regression has the advantage of allowing the simultaneous
estimation of regression coefficients and precision. This paper retains the overall strategy
of block descent but introduces several non-trivial improvements. We introduce an MM
algorithm based on a sharp majorization to accelerate convergence. Each MM update of
B reduces to penalized least squares and can be readily handled by existing regression
solvers. Although this plug-and-play tactic already formed part of the proximal gradient
algorithm in Chi and Chi (2022), our tight majorization leads to better results. We also
reparameterize precision to avoid box constraint and update the new precision parameter
by an approximate Newton’s method. The computational cost per iterate remains the
same, but again the number of iterations until convergence drops considerably. Finally,
we extend penalization to distance and nonconvex penalties. These steps lead to better
statistical performance and model selection.

We demonstrate the merits of our refined computational framework through a rich set

of simulation examples, including isotonic regression, convex regression, sparse regression,
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and trend filtering, and a real data application to unconstrained multivariate regression.
Given the same penalties, our simulation results show that the new algorithms outperform
the original ones in both computational speed and estimation accuracy. Distance penalties
to sparsity sets, in particular, show competitive advantages in both estimation accuracy
and model selection. The real data example illustrates the convenience of using the refined
framework to identify outliers. Overall, the innovations introduced here make Lo,E an

attractive tool for robust regression.

Supplementary Material

Supplementary materials and code for this article are available online. The supplement.pdf
file contains the two simulation examples of convex regression and trend filtering under
the LoE criterion. The L2E-code.zip file includes code for implementing the LoE isotonic
regression and reproducing Figures 2 and 3 in the paper. To implement other LoE regression

methods in the article, we refer readers to the eponymous L2E R package on the CRAN.
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