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Abstract

Systems with both quantitative and qualitative responses are widely encountered in many applications. Design of
experiment methods are needed when experiments are conducted to study such systems. Classic experimental design
methods are unsuitable here because they often focus on one type of response. In this paper, we develop a Bayesian D-
optimal design method for experiments with one continuous and one binary response. Both noninformative and conjugate
informative prior distributions on the unknown parameters are considered. The proposed design criterion has meaningful
interpretations regarding the D-optimality for the models for both types of responses. An efficient point-exchange search
algorithm is developed to construct the local D-optimal designs for given parameter values. Global D-optimal designs
are obtained by accumulating the frequencies of the design points in local D-optimal designs, where the parameters are
sampled from the prior distributions. The performances of the proposed methods are evaluated through two examples.

keywords and phrases: Bayesian D-optimal design, conjugate prior, generalized linear model, multivariate responses,
noninformative prior, point-exchange.

1. INTRODUCTION

In many applications, both quantitative and qualitative
responses are often collected for evaluating the quality of
the system. Often, the two types of responses are mutu-
ally dependent. We call such a system with both types of
quality responses quantitative-qualitative system. Such sys-
tems are widely encountered in practice [27, 26, 25]. In [25],
the authors studied an experiment of the lapping stage of
the wafer manufacturing process. The qualitative response
is the conformity of the site total indicator reading (STIR)
of the wafer, which has two possible outcomes: whether or
not the STIR of a wafer is within the tolerance. The quan-
titative response is the total thickness variation (TTV) of
the wafer. [26] focused on the birth records and examined
the mutual dependency of birth weight and preterm birth.
The birth weight of an infant is a quantitative outcome and
the preterm birth is a binary indicator of whether an in-
fant is born before 36 gestational weeks. The two types
of outcomes are correlated as an infant is usually under-
weight if the infant is born preterm. In [27], two case studies
of quantitative-qualitative systems from material sciences
and gene expressions are illustrated. In the gene expression
study, the qualitative response has three possible outcomes:
healthy individuals, patients with Crohn’s disease, and pa-
tients with Ulcerative colitis.

This work is motivated by a study of an etching process
in a wafer manufacturing process. In the production of sili-
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con wafers, the silicon ingot is sliced into wafers in fine ge-
ometry parameters. Inevitably, this step leaves scratches on
the wafers’ surface. An etching process is used to improve
the surface finish, during which the wafers are submerged
in the container of etchant for chemical reaction. The qual-
ity of the wafers after etching is measured by two response
variables: the total thickness variation of the wafer (TTV)
and the binary judgment that whether the wafer has cloudy
stains in its appearance. The two responses measure the
quality from different but connected aspects. There is a hid-
den dependency between the continuous TTV and binary
judgment of stains. To improve the etching quality, expen-
sive experiments are to be carried out to reveal this hidden
dependency and to model the quality-process relationship.
Therefore, an ideal experimental design for continuous and
binary responses should be able to extract such useful infor-
mation with economic run size.

The classic design of experiments methods mainly focus
on experiments with a single continuous response. There
have been various methods developed for a single discrete
response too, including [40, 44, 38, 43, 42]. For multiple re-
sponses, [11] proposed the seminal work for continuous re-
sponses, [8] developed a design method for bivariate binary
responses modeled by Copula functions. In the case of mixed
types of responses, the literature is very scarce. A naive de-
sign method is to combine the two designs that are sepa-
rately constructed for each type of response. However, such
a naive strategy could be reasonable for one type of response
but problematic for the other by ignoring the dependency
between the types of responses, as shown in Example 1.
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Figure 1: (a) Observations from design for Z; (b) Observations from design for Y ; (c) Observations from the combined
design. Dashed line “- - -” denotes E(Y |Z = 1) = 1; solid line “—” denotes E(Y |Z = 0) = 1 − x2; point “+” denotes
(xi, yi) with zi = 1; point “o” denotes (xi, yi) with zi = 0.

Example 1. Denote by Y and Z a continuous response and
a binary response, respectively. Assume that the true model
of the binary response Z is E(Z|x) = π(x) = exp(1+x)/(1+
exp(1+x)). The true model of Y is related to Z in the form
Y |Z = z ∼ N(1 − (1 − z)x2, 0.32). Thus, E(Y |Z = 1) = 1
and E(Y |Z = 0) = 1−x2. Using the naive design method, a
14-point design is constructed, which consists of an 8-point
local D-optimal design for the model of Z with log(π(x)/(1−
π(x)) = η0 + η1x, and a 6-point D-optimal design for linear
regression with a quadratic model of x. Given the design,
we generate the responses from the true models of Y and Z.
Figure 1 (a)-(c) show the data (xi, yi, zi) from the 8-point,
6-point and their combined 14-point design, respectively.

In this example, there is a strong dependency between the
two responses since the true underlying models of E(Y |Z)
are different when Z = 1 and Z = 0. In both designs for
a single response shown in Figure 1 (a) and (b), the design
points are balanced and reasonably distributed for the tar-
geted response. However, since there are no Y observations
for Z = 0 at x = 1.0 shown in Figure 1 (c), the quadratic
model for Y |Z = 0 is not estimable. Clearly, the combined
design is not suitable here. Note that this problem is not
caused by outliers, since all the points for Z = 1 (with “+”)
are varied around Y = 1 and the points for Z = 0 (with
“o”) are around Y = 1− x2. In fact P (Z = 0|x = 1) = 0.12,
which is relatively small. Thus it is less likely to observe Y
with Z = 0 at x = 1.0. A simple solution is to add more
replications at x = 1.0, but it is not clear how many replica-
tions should be sufficient. It becomes more difficult to spot a
direct solution when the experiments get more complicated.

Such experiments call for new experimental design meth-
ods to account for both continuous and binary responses.
Note that under the experimental design framework, the
linear model is often considered for modeling the continu-
ous response, and the generalized linear model (GLM) is
often considered for modeling the qualitative response. A
joint model must be developed to incorporate both types

of responses. Compared to the classic design methods for
linear models or GLMs, design for the joint model is more
challenging due to the following aspects. First, the design
criterion for the joint model is more complicated, as the joint
model is more complicated than the separate ones. Second,
experimental design for the GLM itself is more difficult than
that for the linear model, which is naturally inherited by the
design for the joint model. Third, efficient design construc-
tion algorithms are needed to handle the complexity of the
design criterion based on the joint model. [23] proposed an
A-optimal design for the experiments with both quantitative
and qualitative responses. The A-optimality was derived un-
der a Bayesian framework proposed in [25]. Although [23]
addressed the three challenges to a degree, the A-optimality
is not a commonly used criterion. More importantly, only
informative prior is considered, which circumvented some
difficulties brought by noninformative prior of the parame-
ters.

In this paper, we choose the most commonly used D-
optimal design criterion and propose a novel Bayesian de-
sign method for the continuous and binary responses. The
proposed method considers both cases of noninformative pri-
ors and informative priors. With the noninformative priors,
the Bayesian framework is equivalent to the frequentist ap-
proach. In this case, we also establish some regularity con-
ditions on the experimental run sizes. With the informative
priors, we develop the D-optimal design using conjugate pri-
ors. The derived design criterion has meaningful interpreta-
tions in terms of the D-optimality criteria for the models of
both continuous and binary responses. Moreover, we develop
an efficient point-exchange algorithm to construct the pro-
posed designs. The construction algorithm can be applied
to more general settings other than factorial designs.

The rest of the paper is organized as follows. Section 2
reviews the general Bayesian quantitative-qualitative (QQ)
model and the optimal design criterion. The Bayesian D-
optimal design criterion is derived using noninformative
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prior distributions in Section 3. In Section 4, the design cri-
terion is derived with conjugate informative priors. Efficient
algorithms for constructing optimal designs are elaborated
in Section 5. One artificial example and the etching exper-
imental design are shown in Section 6. Section 7 concludes
this paper with some discussions.

2. GENERAL BAYESIAN QQ MODEL AND

DESIGN

We first review the general Bayesian QQ model intro-
duced in [25] and focus on the scenario that Y is a continu-
ous response and Z is a binary response. The input variable
x = (x1, . . . , xp)

′ ∈ R
p contains p dimensions. Denote the

data as (xi, yi, zi), i = 1, . . . , n, where yi ∈ R and zi ∈ {0, 1}.
The vectors y = (yi, . . . , yn)

′ and z = (z1, . . . , zn)
′ are the

vectors of response observations. To jointly model the con-
tinuous response Y and the binary response Z given x, con-
sider the joint probability of Y |Z and Z. The conditional
model on Y |Z is assumed to be a linear regression model,
while the model of Z is a logistic regression model. Specifi-
cally, we consider joint modeling of Y and Z as follows,

Z =

{

1, with probability π(x)
0, with probability 1− π(x)

with π(x,η) =
exp(f(x)′η)

1 + exp(f(x)′η)
, (2.1)

where f(x) = (f1(x), . . . , fq(x)) contains q modeling effects
including the intercept, the main, interaction and quadratic
effects, etc., and η = (η1, . . . , ηq)

′ is a vector of parameter
coefficients. Conditioning on Z = z, the quantitative vari-
able Y has the distribution

Y |Z = z ∼ N(μ0+zf(x)′β(1)+(1−z)f(x)′β(2), σ2), (2.2)

where β(i) = (β
(i)
1 , . . . , β

(i)
q )′, i = 1, 2 are the corresponding

coefficients of the model effects. The parameter μ0 is the
mean and σ2 is the noise variance. The above conditional
model (2.2) indicates that Y |Z = 1 ∼ N(μ0+f(x)′β(1), σ2)
and Y |Z = 0 ∼ N(μ0+f(x)′β(2), σ2). We assume the same
variance σ2 for the two conditional distributions of Y |Z = 1
and 0. The design method developed in the paper can be
easily adapted to the case with different variances.

The association between the two responses Y and Z is
represented using the conditional model Y |Z. When the two
linear models for Y |Z = 0 and Y |Z = 1 are different, i.e.,
β(1) �= β(2), then it is important to take account of the
influence of the qualitative response Z when modeling the
quantitative response Y . Let X = (x1, . . . ,xn)

′ be the n×p
design matrix with xi as the ith design point. Based on the
CB model, we can express the sampling distributions as

y|z,β(1),β(2), μ0, σ
2,X ∼

N(μ01+ V1Fβ(1) + V2Fβ(2), σ2In),

z|η,X ∼ Bernoulli(π(xi,η)) for i = 1, . . . , n, and

p(z|η,X) ∝ exp

{

n
∑

i=1

(

zif(xi)
′η − log(1 + ef(xi)

′η)
)

}

,

where p(·) denotes a general density function. Here V1 =
diag{z1, . . . , zn} is a diagonal matrix, In is the n×n identity
matrix and V2 = In − V1, F is the model matrix with the
ith row as f(xi)

′, and 1 is a vector of ones.

Denote p(β(1)), p(β(2)), and p(η) as the prior distribu-
tions of the parameters β(1), β(2), and η. Note that we focus
on the estimation accuracy of the three groups of parame-
ters. The mean μ0 and variance σ2 are considered nuisance
parameters and thus excluded from the optimal design cri-
terion. In this work, we assume that the priors of β(1), β(2),
and η are independent. Under this assumption, the condi-
tional posterior distribution of η, β(1), and β(2) are also
independent as explained in Sections 3 and 4. Under the
Bayesian framework, the conditional posterior distribution
of the parameters (β(1),β(2),η) can be derived as

p(β(1),β(2),η|y, z, μ0, σ
2,X) (2.3)

∝ p(y|z,β(1),β(2), μ0, σ
2,X)p(β(1))p(β(2))p(z|η,X)p(η).

Using (2.3) we develop the general Bayesian optimal de-
sign criterion. Let ψ be a criterion function on the condi-
tional posterior distribution of the parameters. For exam-
ple, it can be the Shannon information (or equivalently, the
Kullback-Leibler distance), A/I-optimality [16], or other de-
sign criteria. However, ψ(·) cannot be directly used as the
final optimal design criterion because its value depends on
the random parameters (β(1),β(2),η) and the experimental
outputs (y, z) that are not yet observed. The randomness
of (β(1),β(2),η) can be removed by calculating the mean
of ψ with respect to these parameters. The uncertainty of
(y, z) can be removed by calculating the mean E(E(ψ|y, z)).
Therefore, the general Bayesian optimal design criterion on
the design matrix X is

Ψ(X|μ0, σ
2) (2.4)

=

∫

p(y, z|μ0, σ
2,X)×

(∫

ψ(p(β(1),β(2),η|y, z, μ0, σ
2,X))×

p(β(1),β(2),η|y, z, μ0, σ
2,X)dβ(1)dβ(2)dη

)

dydz.

It is well-known that the Bayesian D-optimal design is
equivalent to the Shannon information criterion [3], omit-
ting the constant terms to X. The criterion function ψ(·)
of Shannon information is log(·). Next, we develop the
Bayesian D-optimal design criteria (2.4) under different
prior distributions.
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3. OPTIMAL DESIGN UNDER

NONINFORMATIVE PRIORS

When lacking domain knowledge or proper historical
data, experimenters often favor the frequentist approach as
no priors need to be specified. The frequentist approach can
be seen as the Bayesian approach using noninformative pri-
ors. In this section, we derive the optimal design criterion
and the regularity conditions for noninformative priors.

3.1 Design Criterion

Assume the non-informative priors p(β(i)) ∝ 1 for i = 1, 2
and p(η) ∝ 1. The conditional posterior distribution in (2.3)
is the same as the joint distribution of the data. It can be
further factorized into

p(β(1),β(2),η|y, z, μ0, σ
2,X)

∝ p(η|z,X)

2
∏

i=1

p(β(i)|y, z, μ0, σ
2,X),

with the posterior distributions

β(i)|y, z, μ0, σ
2,X ∼

N
(

(F ′ViF )−1F ′Vi(y − μ01), σ
2(F ′ViF )−1

)

(3.1)

for i = 1, 2, and

p(η|z,X) ∝ exp

{

n
∑

i=1

(

zif(xi)
′η − log(1 + ef(xi)

′η)
)

}

.

(3.2)

Conditioning on z, the posterior distributions of (β1,β2)
and η are independent. Note that the noninformative prior
p(η) ∝ 1 is proper because it leads to proper posterior
p(η|z,X). Under the noninformative priors, the Bayesian
estimation is identical to the frequentist estimation.

Using the posterior distributions (3.1)–(3.2) and the cri-
terion function ψ(·) = log(·) in the general Bayesian optimal
design criterion (2.4), we obtain the Bayesian D-optimal de-
sign criterion (3.3).

Ψ(X|μ0, σ
2) = Ez,η {log(p(η|z,X))} (3.3)

+
1

2

2
∑

i=1

EηEz|η {log det{(F ′ViF )}}+ constant.

The derivation is in Supplement S1. The first additive term
in (3.3) is exactly the Bayesian D-optimal design crite-
rion for GLMs. Unfortunately, its exact integration is not
tractable. The common approach in experimental design for
GLMs is to use a normal approximation for the posterior
distribution p(η|z,X) [3, 28]. Such an approximation leads
to

Ez,η {log(p(η|z,X))} ≈ Eη{log det I(η|X)}+ constant,
(3.4)

where I(η|X) is the Fisher information matrix. We can eas-
ily show that

I(η|X) = −Ez

(

∂2l(z,η|X)

∂η∂ηT

)

=

n
∑

i=1

f(xi)f(xi)
′π(xi,η)(1− π(xi,η)) = F ′W0F ,

where W0 is a diagonal weight matrix

W0 = diag{π(x1,η)(1−π(x1,η)), . . . , π(xn,η)(1−π(xn,η))}.

Omitting the irrelevant constant, we approximate the exact
criterion Ψ(X|μ0, σ

2) in (3.3) as follows.

Ψ(X|μ0, σ
2) ≈ Eη{log det(F ′W0F )}

+
1

2

2
∑

i=1

EηEz|η {log det(F ′ViF )} . (3.5)

To construct the optimal design, we consider maximizing
the approximated Ψ(X|μ0, σ

2) in (3.5). But this is not triv-
ial, because it involves the expectation on Zi’s in the second
additive term. To overcome this challenge, [18] constructed
optimal designs by simulating samples from the joint distri-
bution of responses and the unknown parameters. But this
method can be computationally expensive for even slightly
larger dimensions of experimental factors. Instead of simu-
lating Zi’s, we derive the following Theorem 1 that gives a
tractable upper bound Q(X). Thus we propose using the
upper bound Q(X) as the optimal criterion.

Theorem 1. Assume that the matrices F ′W0F , F ′V1F ,
and F ′V2F are all nonsingular. Omitting the irrelevant con-
stant, an upper bound of the approximated Ψ(X|μ0, σ

2) is

Q(X) = Eη

{

log det(F ′W0F ) +
1

2

2
∑

i=1

log det(F ′WiF )

}

,

(3.6)
where W1 = diag{π(x1,η), . . . , π(xn,η)} and W2 = In −
W1.

The proof of Theorem 1 is in Supplement S1. Note that
Theorem 1 requires that F ′WiF for i = 0, 1, 2 are all non-
singular. Obviously W0 = W1W2. It is easy to see that
F ′W0F is nonsingular if and only if both F ′W1F and
F ′W2F are nonsingular.

The matrices F ′V1F and F ′V2F involve the responses
Zi’s that are not yet observed at the experimental design
stage. We can only choose the experimental run size and the
design points to avoid the singularity problem with a larger
probability for given values of η. Once the run size is chosen,
the design points can be optimally arranged by maximizing
Q(X). The weight matrix W1 (or W2) gives more weight
to the feasible design points that are more likely to lead to
Z = 1 (or Z = 0) observations so that the parameters β(1)
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(or β(2)) of the linear model Y |Z = 1 (or Y |Z = 0) are more
likely to be estimable. Next, we introduce some regularity
conditions on the run size and number of replications to
alleviate the singularity problem.

3.2 Regularity Conditions

Let m be the number of distinct design points in the de-
sign matrix X, ni be the number of repeated point xi in
X for i = 1, . . . ,m. Thus n =

∑m

i=1 ni and ni ≥ 1 for
i = 1, . . . ,m. First, it is necessary that m ≥ q for the lin-
ear regression model to be estimable under the noninfor-
mative priors. The if-and-only-if condition for F ′W0F to
be nonsingular is that rank(F ′W0F ) ≥ q. If m ≥ q and
π(xi,η) ∈ (0, 1) for i = 1, . . . ,m, then F ′WiF for i = 0, 1, 2
are all nonsingular and thus positive definite. To make sure
π(xi,η) ∈ (0, 1) for i = 1, . . . ,m, it is sufficient to assume
that η is finitely bounded. This condition is typically used
for the frequentist D-optimal design for GLMs. For instance,
[44] suggested using the centroids of the finite bounded space
of η to develop the local D-optimal design for GLMs. [13]
clustered different local D-optimal designs with η randomly
sampled from its bounded space.

The if-and-only-if condition for F ′V1F and F ′V2F being
nonsingular is

m
∑

i=1

I

(

ni
∑

j=1

Zij > 0

)

≥ q and
m
∑

i=1

I

(

ni
∑

j=1

Zij < ni

)

≥ q,

(3.7)
where Zij is the jth random binary response at the unique
design point xi and I(·) is the indicator function. In the
following, we discuss how to choose sample sizes ni and n
under two scenarios (i) m = q and (ii) m > q.

Proposition 1. Assume m = q. Both F ′V1F and F ′V2F

are nonsingular if and only if I(0 <
∑ni

j=1 Zij < ni) = 1
for i = 1, 2, . . . ,m. For any given κ ∈ (0, 1), a sufficient
condition on ni for Pr(0 <

∑ni

j=1 Zij < ni) ≥ κ is

ni ≥ 1 +

⌈

log(1− κ)

log (max {π(xi,η), 1− π(xi,η)})

⌉

(3.8)

for i = 1, 2, . . . ,m, and a necessary condition is

ni ≥
⌈

2 log
(

1−κ
2

)

log π(xi,η) + log(1− π(xi,η))

⌉

(3.9)

for i = 1, 2, . . . ,m.

Proposition 2. Assume m > q. To make both F ′V1F and
F ′V2F nonsingular with large probability, or equivalently,

E

⎧

⎨

⎩

m
∑

i=1

I

(

ni
∑

j=1

Zij > 0

)

⎫

⎬

⎭

≥ q

and

E

⎧

⎨

⎩

m
∑

i=1

I

(

ni
∑

j=1

Zij < ni

)

⎫

⎬

⎭

≥ q,

(i) a sufficient condition is

n0 ≥ max

⌈{

1,
log(1− q/m)

log(1− πmin)
,
log(1− q/m)

log πmax

}⌉

,

(3.10)
which is the same as

n ≥
⌈

m ·max

{

1,
log(1− q/m)

log(1− πmin)
,
log(1− q/m)

log πmax

}⌉

,

(3.11)
where n0 = min{n1, . . . , nm}, πmin = minmi=1 π(xi,η),
πmax = maxmi=1 π(xi,η) and xi’s are the unique design
points;

(ii) a necessary condition is

n0 ≥
⌈

max

{

1,
log(1− q/m)

log(1− πmax)
,
log(1− q/m)

log πmin

}⌉

(3.12)
which is the same as

n ≥
⌈

m ·max

{

1,
log(1− q/m)

log(1− πmax)
,
log(1− q/m)

log πmin

}⌉

.

(3.13)

Proposition 1 gives a sufficient condition on the lower
bound of ni when saturated design (m = q) is used. Under
the sufficient condition, the nonsingularity of FV1F and
FV2F holds with a probability larger than κm. For Example
1 in Section 1, suppose that if the possible values of x can
only be −1, 0, 1, then m = q = 3. Let η = (1, 1)′. If κ = 0.5,
then the numbers of replications for x = −1, 0, 1 need to
satisfy n1 ≥ 2, n2 ≥ 4, and n3 ≥ 7, respectively. If κ = 0.9,
then n1 ≥ 5, n2 ≥ 9, and n3 ≥ 20. Proposition 1 is useful
in Step 1 to construct the initial design in Algorithm 2 in
Section 5.

Proposition 2 provides one sufficient condition and one
necessary condition when m > q on the smallest number of
replications and the overall run size. But these conditions
only examine the nonsingularity of the two matrices with
large probability, which is weaker than Proposition 1. For
given η value, Algorithm 2 in Section 5.1 can return the lo-
cal D-optimal design. Proposition 2 can be useful to check
the local D-optimal design, as πmin and πmax depend on η.
Take the artificial example in Section 6.1 for instance. The
local D-optimal design for ρ = 0 (Table S1 in Supplement
S2) has m = 50 unique design points and there are q = 22
effects. According to Proposition 2, the sufficient condition
requires n0 ≥ 7 and the necessary condition requires n0 ≥ 1.
The local D-optimal design in Table S1 only satisfies the
necessary condition. To meet the sufficient condition n has
to be much larger. For the global optimal design consider-
ing all possible η values, Proposition 2 can provide some



6 L. Kang, X. Deng, and R. Jin

guidelines for the design construction when η is varied in a
relatively small range.

4. OPTIMAL DESIGN UNDER CONJUGATE

PRIORS

When prior information for parameters β(1), β(2), and
η is available, it would be desirable to consider the optimal
design under the informative priors. In this section, we detail
the proposed Bayesian D-optimal design using the conjugate
priors.

4.1 Design Criterion

For the parameters β(1) and β(2), the conjugate priors are
normal distribution since Y |Z follows normal distribution.
Thus we consider their priors as

β(1) ∼ N(0, τ2R1), β(2) ∼ N(0, τ2R2).

where τ2 is the prior variance and Ri is the prior correlation
matrix of β(i) for i = 1, 2. Here we use the same prior vari-
ance τ2 only for simplicity. The matrix Ri can be specified
flexibly such as using (F ′F )−1, or those in [20] for factorial
designs.

For the parameters η, we choose the conjugate prior de-
rived in [4]. It takes the form

η ∼ D(s, b)

∝ exp

{

n
∑

i=1

s
(

bif(xi)
′η − log(1 + ef(xi)

′η)
)

}

, (4.1)

where D(s, b) is the distribution with parameters (s, b). Here
s is a scalar factor and b ∈ (0, 1)n is the marginal mean of
z as shown in [10]. The value of b can be interpreted as a
prior prediction (or guess) for E(Z). Based on the priors for
(β(1),β(2),η) we can derive the posteriors as follows.

Proposition 3. For priors β(i) ∼ N(0, τ2Ri), i = 1, 2, and
η ∼ D(s, b), the posterior distributions of β(1), β(2) and η

are independent of each other with the following forms,

β(i)|y, z, μ0, σ
2,X ∼ N

(

H−1
i F ′Vi(y − μ01), σ

2H−1
i

)

,

for i = 1, 2 and

η|z,X ∼ D

(

1 + s,
z + sb

1 + s

)

,

where Hi = F ′ViF + ρR−1
i with ρ = σ2

τ2 .

The proof of Proposition 3 can be derived following the
standard Bayesian framework, thus is omitted. To derive the
Bayesian D-optimal design criterion, we take the posterior
distributions in Proposition 3 to (2.4) and set ψ(·) = log(·).
The derivation is very similar to that in (3.3), and thus we
obtain the exact design criterion as

Ψ(X|μ0, σ
2) = Ez,η {log(p(η|z,X))} (4.2)

+
1

2

2
∑

i=1

EηEz|η

{

log det(F ′ViF + ρR−1
i )
}

+ constant.

As the integration of Ez,η {log(p(η|z,X))} is not tractable,
we adopt the same normal approximation of the posterior
distribution p(η|z,X) as in (3.4). A straightforward calcu-
lation leads to getting Fisher information matrix I(η|X) =
(1 + s)F ′W0F . Thus we have

Ez,η {log(p(η|z,X))} ≈ Eη{log det(F ′W0F )}+ constant.
(4.3)

Disregarding the constant, we can approximate the exact
Ψ(X|μ0, σ

2) by

Ψ(X|μ0, σ
2) ≈ Eη{log det(F ′W0F )}

+
1

2

2
∑

i=1

EηEz|η

{

log det(F ′ViF + ρR−1
i )
}

.

The following Theorem 2 gives an upper bound of the ap-
proximated criterion Ψ(X|μ0, σ

2) to avoid the integration
with respect to z, which plays the same role as Theorem 1.

Theorem 2. Assume that the prior distributions of β(i) are
β(i) ∼ N(0, τ2Ri) for i = 1, 2 and η has either the conjugate
prior η ∼ D(s, b) or the noninformative prior p(η) ∝ 1. If
F ′W0F is nonsingular, an upper bound of the approximated
Ψ(X|μ0, σ

2) is

Q(X) =

Eη

(

log det(F ′W0F ) +
1

2

2
∑

i=1

log det(F ′WiF + ρR−1
i )

)

.

(4.4)

For the same argument as in Section 3, we use the upper
bound in (4.4) as the optimal design criterion. Note that
since ρR−1

i is added to F ′ViF and F ′WiF , F ′ViF +ρR−1
i

and F ′WiF + ρR−1
i are nonsingular. The derivation of

Ψ(X|μ0, σ
2) and Q(X) only needs F ′W0F to be nonsin-

gular, which requires m ≥ q and η to be finitely bounded as
in Section 3.

4.2 Interpretation

Note that the criterion in (4.4) has a similar formulation
with Q(X) in (3.6). The only difference is that (3.6) does
not involve ρR−1

i . For consistency, we use the formula (4.4)
as the design criterion Q(X) for both cases. When nonin-
formative priors for β(1) and β(2) are used, we set ρ = 0.
From another point of view, as τ2 → ∞, ρ → 0, the vari-
ances in the priors p(β1) and p(β2) diffuse and result in a
noninformative priors.

The criterion Q(X), consisting of three additive terms,
can be interpreted intuitively. The first additive term
Eη{log det(F ′W0F )} is known as the Bayesian D-optimal
criterion for logistic regression and Eη{log det(F ′WiF +
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ρR−1
i )} is the Bayesian D-optimal criterion for the linear

regression model of Y . To explain the weights, we rewrite
Q(X) as follows.

Q(X) = 1 · Eη (log det(F ′W0F ))

+ 1 ·
(

1

2

2
∑

i=1

Eη(log det(F
′WiF + ρR−1

i ))

)

.

Since there are equal numbers of binary and continuous
response observations, the design criterion should put the
same weight (equal to 1) on both design criteria for Z and
Y . For the two criteria for the linear regression models, the
same weight 1/2 is used. This is also reasonable because
we assume πi ∈ (0, 1). Then none of the diagonal entries
of W1 and W2 are zero, so the two terms should split the
total weight 1 assigned for the entire linear regression part.
Therefore, even though Q(X) are derived analytically, all
the additive terms and their weights make sense intuitively.

4.3 Prior Parameters

Note that the conjugate prior p(η) requires prior param-
eters (s, b) to be specified. Moreover, the prior distribution
(4.1) contains f(xi), which depends on the design points.
When sampling η from the prior (4.1), it does not matter
whether f(xi)’s are actually from the design points. If rel-
evant historical data is available, we can simply sample η

from the likelihood of the data. Alternatively, one can adopt
the method in [4] to estimate the parameters (s, b). Without
the relevant data, we would use the noninformative prior for
η, i.e., p(η) ∝ 1 in the bounded region for η.

The design criterion Q(X) contains some unknown pa-
rameters, including the noise-to-signal ratio ρ = σ2/τ2 and
the correlation matrices Ri’s for i = 1, 2. The value of ρ has
to be specified either from the historical data or from the
domain knowledge. Typically we would assume ρ < 1 such
that the measurement error has a smaller variance than the
signal variance.

The setting of Ri can also be specified flexibly. If his-
torical data are available, Ri can be set as the estimated
correlation matrix of β(i). Otherwise, we can use the cor-
relation matrix in [20] and [24], which is targeted for fac-
torial design. Specifically, let β be the unknown coefficients
of the linear regression model and the prior distribution is
β ∼ N(0, τ2R). For 2-level factor coded in −1 and 1, [20]
suggests that R is a diagonal matrix and the priors for in-
dividual βj is

β0 ∼ N(0, τ2), (4.5)

βj ∼ N(0, τ2r), i = 1, . . . , p,

βj ∼ N(0, τ2r2), i = p+ 1, . . . , p+

(

p

2

)

,

...

β2p−1 ∼ N(0, τ2rp),

where βj i = 1, . . . , p are main effects, βj j = p+1, . . . , p+
(

p
2

)

are 2-factor-interactions and up to the p-factor-interaction
β2p−1. The variance of βj decreases exponentially with the
order of their corresponding effects by r ∈ (0, 1), thus it
incorporates the effects hierarchy principle [46]. [20] showed
that if f(x) contains all the 2p effects of all p orders, τ2R can
be represented alternatively by Kronecker product as τ2R =
ς2
⊗p

j=1 Fj(xj)
−1

Ψj(xj)(Fj(xj))
−1. The model matrix for

the 2-level factor and the correlation matrix are

Fj(xj) =

(

1 −1
1 1

)

and Ψj(xj) =

(

1 ζ
ζ 1

)

. (4.6)

To keep the two different presentations equivalent, let ζ =
1−r
1+r

and τ2 = ( 1+ζ
2 )pς2. For the mixed-level of 2- and 3-

level experiments, [24] have extended the 2-level case to the
format

τ2R = ς2
p2+p3,c+p3,q
⊗

j=1

Fj(xj)
−1

Ψj(xj)(Fj(xj)
−1)′, (4.7)

where p2 is the number of 2-level factors, p3,c is the number
of 3-level qualitative (categorical) factors, and p3,q is the
number of 3-level quantitative factors. For all the 3-level
factors, the model matrix is

Fj(xj) =

⎛

⎜

⎜

⎝

1 −
√

3
2

√

1
2

1 0 −
√
2

1
√

3
2

√

1
2

⎞

⎟

⎟

⎠

. (4.8)

An isotropic correlation function is recommended for the 3-
level qualitative factors and a Gaussian correlation function
for quantitative factors. Thus, the correlation matrices for
the 3-level qualitative and quantitative factors are

Ψj(xj) =

⎛

⎝

1 ζ ζ
ζ 1 ζ
ζ ζ 1

⎞

⎠ and Ψj(xj) =

⎛

⎝

1 ζ ζ4

ζ 1 ζ
ζ4 ζ 1

⎞

⎠ ,

(4.9)
respectively. To keep the covariance (4.7) consistent with
the 2-level case we still set ζ = 1−r

1+r
. To keep the variance of

the intercept equal to τ2 [24], we set

τ2 = ς2
(

1 + ζ

2

)p2
(

1 + 2ζ

3

)p3,c
(

3 + 4ζ + 2ζ4

9

)p3,q

,

and thus

R =

((

1 + ζ

2

)p2
(

1 + 2ζ

3

)p3,c
(

3 + 4ζ + 2ζ4

9

)p3,q
)−1

×
p2+p3,c+p3,q
⊗

j=1

Fj(xj)
−1

Ψj(xj)(Fj(xj)
−1)′.

It is straightforward to prove that R is a diagonal matrix if
only 2-level and 3-level qualitative factors are involved, but
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not so if any 3-level quantitative factors are involved, and
the first diagonal entry of R is always 1.

To specify different prior distributions for β(1) and β(2),
we only need to use different values r1 (or ζ1) and r2 (or
ζ2) to construct the prior correlation matrix. If the prior
knowledge assumes that the two responses Z and Y are in-
dependent, one can set r1 = r2 = r so that the two correla-
tion matrices Ri’s are the same, denoted as R. [24] has used
r = 1/3 (equivalently ζ = 1/2) according to a meta-analysis
of 113 data sets from published experiments [30]. Thus we
also use r = 1/3 in all the examples. The readers can specify
different values for r1 and r2 if needed.

In computation, we construct R using the Kronecker
product in (4.7). But such R is for f(x) containing effects
of all possible orders. Usually, we would assume the model
just contains lower-order effects. So we just pick the rows
and columns that correspond to the lower-order effects as-
sumed in the model as the correlation matrix.

5. DESIGN SEARCH ALGORITHM

In this work, we focus on the construction of optimal de-
sign based on factorial design, which is suited for the prior
distribution introduced in Section 4.3. For optimizing the
design criterion Q(X) we consider two cases. First, for fixed
η value, we develop a point-exchange algorithm to construct
a local optimal design that maximizes the criterion Q(X|η).
Second, we construct a global optimal design based on the
prior distribution of η. Specifically, we construct the local
optimal designs for different η’s sampled from its prior dis-
tribution. Then the global optimal continuous design is ob-
tained by accumulating the frequencies of design points se-
lected into those local optimal designs.

5.1 Local Optimal Design for Fixed η

For a fixed η, we adapt the point-wise exchange algorithm
to maximize the criterion

Q(X|η) = log det(F ′W0F )+
1

2

n
∑

i=1

log det(F ′WiF+ρR−1
i ).

The point-wise exchange algorithm is commonly used to
construct D-optimal designs. It was first introduced by [16]
and then widely used in many works [5, 35].

The point-wise exchange algorithm finds the optimal de-
sign from a candidate set. Here the candidate set is chosen
to be the full factorial design without replicates. For now, we
develop the method for 2- and 3-level factors, but it can be
generalized to factors of more levels. Use previous notation
that p2, p3,c, p3,q as the number of 2-level, 3-level categor-
ical, and 3-level quantitative factors. The total number of
full factorial design points is N = 2p23p3,c+p3,q , which can
be large if the experiment involves many factors. To make
the algorithm efficient, we filter out the candidate points
that are unlikely to be the optimal design points. Following

the suggestion from [12], we exclude the candidate design
points whose corresponding probabilities π(x,η) is outside
of [0.15, 0.85]. This range is used because the approximate

variance of log
(

πi

1−πi

)

is nearly constant for πi ∈ (0.2, 0.8)

but increases rapidly if πi is outside that range [45]. Denote
the reduced candidate set as Xc with size N ′.

Next we construct the initial design of size n, such that
F ′W0F is nonsingular, and so should be F ′WiF if ρ = 0
for i = 1, 2. If N ′ ≥ q, we construct the initial design by
reduction. Starting the initial design as Xc, we remove the
design points one by one until there are q points left. The
remaining n− q design points are then sampled from these
q initial design points with probabilities proportional to the
lower bounds in the sufficient condition in Proposition 1.
For removing one design point, we select the one having the
smallest deletion function d(x) defined in (5.1). Shortcut
formulas are developed in Supplement S1 for updating the
inverse of the matrices F ′W0F and F ′WiF+ρR for i = 1, 2
after one design point is removed. If N ′ ≤ q, we have to
restore the candidate set back to the full factorial design and
construct the initial design in the same reduction fashion.

To simplify the notation for d(x), we define vi(x1,x2) =
f(x1)

′Mif(x2) and vi(x) = f(x)′Mif(x) for i = 0, 1, 2,

where M0 = (F ′W0F )
−1

and Mi =
(

F ′WiF + ρR−1
i

)−1

for i = 1, 2. Denote X as the current design and X−i the
design of X with the ith row removed. Then the deletion
function can be derived as

d(xi) = Q(X|η)−Q(X−i|η) (5.1)

= − log [1− π(xi,η)(1− π(xi,η))v0(xi)]

− 1

2
log [1− π(xi,η)v1(xi)]−

1

2
log [1− (1− π(xi,η))v2(xi)] .

The smaller d(xi) is, the less contribution the corresponding
point makes for the overall objective Q(X|η).

One key of the point-wise exchange algorithm is to com-
pute Δ(x,xi) = Q(X∗|η)−Q(X|η), the change in the cri-
terion after the candidate design point x replaces xi in the
current design X. Here X∗ is the new design matrix after
the exchange. To compute Δ(x,xi) efficiently, we can obtain
the following formula.

Δ(x,xi) = Q(X∗|η)−Q(X|η) (5.2)

= logΔ0(x,xi) +
1

2

2
∑

i=1

logΔi(x,xi),

where Δi(x,xi) for i = 0, 1, 2 are derived in Supplement S1.
The matrices Mi for i = 0, 1, 2 need to be updated after
the exchange of design points. Denote the updated matrices
as M∗

i for the updated design X∗. We derive the shortcut
formulas to easily compute M∗

i for i = 0, 1, 2 as shown in
Supplement S1.

Given the initial design, we can iteratively exchange the
current design points with candidate design points to im-
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prove the objective Q(X|η). The details are listed in the
following Algorithm 1.

Algorithm 1 Exchange-Point Algorithm for Local D-
Optimal Design.

Step 0 Generate the candidate design set from full factorial

design. Filter out the points with probabilities π(x,η)
outside of [0.15, 0.85].

Step 1 Generate the initial design. Based on the initial design

X, update the matrices F , Wi, and Mi for i = 0, 1, 2.

Compute the current objective value Q(X|η).

Step 2 Compute the deletion function d(xi) for each xi in X.

Randomly sample one design point with probability in-

versely proportional to d(xi)’s. Denote it as xi0 .

Step 3 Find x∗ as the candidate point having the largest

Δ(x,xi0). If Δ(x∗,xi0) > 0, exchange x∗ with xi0 in

X and update the objective function value to Q(X|η)+
Δ(x∗,xi0).

Step 4 Repeat Step 2 and 3 until the objective function has

been stabilized or the maximum number of iterations is

reached.

The Algorithm 1 can return different optimal designs due
to different initial designs and the random sampling in Step
2. Thus, we run Algorithm 1 a few times and return the de-
sign with the best optimal value. We have several remarks
regarding the algorithm. (1) The initial design generated via
reduction does not have singularity issues. (2) The updated
design from point-exchange does not have the singularity
problem either, based on the way x∗ is selected and M∗

i

for i = 0, 1, 2 are computed. (3) To avoid being trapped
in a local maximum, in Step 2 we randomly sample the
design point for an exchange instead of deterministically
picking the “worst” point. (4) Different from some other
point-exchange algorithms, the candidate set here remains
the same through Steps 1-4 since no points are deleted if
they are selected in the design. It enables the resultant op-
timal design having replicated design points.

5.2 Global Optimal Design

Based on Algorithm 1 for local D-optimal design, we can
use the following Algorithm 2 to construct global optimal
design.

In Step 1 of generating η uniformly, we can use uniform
design [14], maximin Latin hypercube design [34], or other
space filling design methods [21, 31, 37] to select samples
ηj for j = 1, . . . , B. From Algorithm 2, it is likely that the
discrete design obtained in Step 3 has some design points
with ni = 1. When experimenters prefer to have replications
at every design point, they can choose a saturated design by
sampling m = q unique design points in Step 3. Then sample
some η values as in Step 0. Compute the lower bounds for
ni for every η sample according to Proposition 1 and use the
averaged lower bounds to set ni. If

∑m

i=1 ni exceeds n, the

Algorithm 2 Algorithm for Global D-Optimal Design.

Step 0 If p(η) is informative, simulate ηj ∼ p(η) for j =
1, . . . , B. Otherwise, η is uniformly distributed in a rect-

angular high-dimensional space.

Step 1 For each ηj , call Algorithm 1 to construct the local op-

timal design Xj .

Step 2 For each point in the candidate set, count its frequency

of being selected in the local optimal designs. The con-

tinuous optimal design is formed by the normalized fre-

quency as a discrete distribution.

Step 3 To obtain a discrete optimal design, sample n design

points from the continuous optimal design.

experimenters have to either increase the experiment budget
or reduce the κ value.

6. EXAMPLES

In this section, we use two examples to demonstrate the
proposed Bayesian D-optimal design and the construction
method. For both examples, we set r = 1/3 (equivalently
ζ = 1/2) as explained in Section 4.3. Since there are few ex-
isting works on experimental design for continuous and bi-
nary responses, we compare the proposed method with three
alternative designs: the optimal designs for the quantitative-
only response, the optimal design for the binary-only re-
sponse, and the naively combined design method as men-
tioned in Example 1.

6.1 Artificial Example

In this artificial experiment, there are three 2-level factors
x1 ∼ x3, one 3-level categorical factor x4, and one 3-level
quantitative factor x5. The underlying model assumed is
the complete quadratic model and f(x) contains q = 22
model effects including the intercept and the following model
effects.
First order effects:

x1, x2, x3, x4,1, x4,2, x5,l,

Second order effect:

x1x2, x1x3, x1x4,1, x1x4,2, x1x5,l, x2x3, x2x4,1, x2x4,2,

x2x5,l, x3x4,1, x3x4,2, x3x5,l, x4,1x5,l, x4,2x5,l, x5,quad.

Here for the 3-level factors x4 and x5, the effects x4,1

(1st comparison) and x5,l (linear effect) have values
{

−
√

3
2 , 0,

√

3
2

}

, and x4,2 (2nd comparison) and x5,quad

(quadratic effect) have values
{

−
√

1
2 ,
√
2,
√

1
2

}

. For the 2-

level factors, the effects xi i = 1, 2, 3 have the same val-
ues as the design settings {−1, 1}. We consider indepen-
dent uniform distribution for each ηi. Specifically, ηi ∼
Uniform[−1, 1] for the intercept and the first order effects
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Table 1. An example of η value for the local D-optimal design.

Effect η Effect η Effect η Effect η

Intercept −0.0153 x1 −0.6067 x2 0.7212 x1x2 0.0080

x3 −0.1682 x1x3 0.0010 x2x3 0.1349 x4,1 0.0283

x1x4,1 0.0594 x2x4,1 −0.1719 x3x4,1 0.1492 x4,2 −0.1468

x1x4,2 0.0553 x2x4,2 −0.0634 x3x4,2 −0.2629 x5,l −0.0660

x1x5,l −0.1054 x2x5,l −0.0857 x3x5,l −0.0807 x4,1x5,l −0.1198

x4,2x5,l −0.0292 x5,quad −0.1336

and Uniform[−0.5, 0.5] for the second order effects. The
ranges of ηi’s satisfy the effect hierarchy principle.

We set the experimental run size to be n = 66. Table 1
illustrates the values of a randomly chosen η. Using Algo-
rithm 2 with this η, we construct the proposed local D-
optimal designs for QQ model DQQ for ρ = 0 and ρ = 0.3,
respectively. For comparison, we also generate three alter-
native designs via R package AlgDesign developed by [41].
Specifically, they are (i) the 66-run classic D-optimal design
for linear regression model, denoted as DL, (ii) the 66-run
local D-optimal design for logistic regression model given
the η, denoted as DG, (iii) and the naively combined de-
sign of 44-run local D-optimal design for logistic regression
model and 22-run D-optimal design for the linear regression
model, denoted as DC . The details of these designs can be
found in Table S1 in Supplement S2.

To evaluate the performance of the proposed design in
comparison with alternative designs, we consider the effi-
ciency between two designs [44] as

eff(D1, D2|η) = exp

{

1

q
(Q(D1|η)−Q(D2|η))

}

. (6.1)

Table 2 reports the efficiency of DQQ compared with DL,
DG, and DC , respectively. The proposed QQ optimal de-
sign DQQ gains the best efficiency over the three alternative
designs. It appears that the combined design DC has the
second-best design efficiency.

Table 2. Design efficiency between the proposed local design

DQQ and three alternative designs.

ρ eff(DQQ, DL|η) eff(DQQ, DG|η) eff(DQQ, DC |η)

0 1.08 1.11 1.05

0.3 1.10 1.14 1.07

Next, we focus on the comparison of DQQ with DC under
different η values. We generate a maximin Latin hypercube
design of B = 500 runs (R package lhs by [2]) for η with the
lower and upper bounds specified earlier. For each of the η

values, we construct a local QQ optimal design DQQ and the
combined design DC . Figure 2 shows the histogram of the
eff(DQQ, DC |η) for different η value. All eff(DQQ, DC |η)
values are larger than 1, indicating that the local QQ opti-
mal design outperforms the combined design.

Based on Algorithm 2, we accumulate frequencies of lo-
cally optimal designs and obtain the global D-optimal de-
signs shown in Figure 3. Denote dQQ and dC are the pro-
posed global optimal design for the QQ model and the global
optimal combined design, respectively. The bar plots show
the normalized frequencies for all the candidate points with
the largest 22 frequencies colored blue. From Figure 3, for
dQQ, the points in the middle have much smaller frequencies
than the other points. It is known that these points in the
middle correspond to the points with x5 = 0 in Table S1.
Note that these points are only necessary for estimating the
coefficient for x5,quad, whose variances are the smallest in
the prior for β(i)’s based on the effects hierarchy principle.
In contrast, such a pattern is not observed for points with
x4 = 0. The reason is that x4 is a categorical variable and
x4 = −1, 0, 1 are equally necessary to estimate the effects
x4,1 and x4,2. For dC , the points with the largest 22 fre-
quencies correspond to the 22-run D-optimal design for the
linear regression model, which is independent of η and re-
mains the same every time. The points with x5 = 1 and
−1 only have slightly higher frequencies than the ones with
x5 = 0, due to the way we specify the prior distribution of
η.

To compare the performances of the global designs, the
design efficiencies in (6.1) is used with Q(d|η) adapted as

Q(d|η) =

log det

(

n

N
∑

i=1

d(xi)π(xi,η)(1− π(xi,η))f(xi)f(xi)
′

)

+
1

2
log det

(

n
N
∑

i=1

d(xi)π(xi,η)f(xi)f(xi)
′ + ρR

)

+
1

2
log det

(

n

N
∑

i=1

d(xi)(1− π(xi,η))f(xi)f(xi)
′ + ρR

)

for a global optimal design d given η value. Here d(xi) is the
probability frequency for candidate design point xi specified
by the design d and

∑N

i=1 d(xi) = 1. For the global optimal
designs dQQ and dC obtained previously, Figure 4 shows
the histograms of the eff(dQQ, dC |η) values, where the η

values are generated from another 100-run maximin Latin
hypercube design. It is clear that dQQ is universally better
than dC , thus the proposed design is more robust to different
values of η.
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Figure 2: Artificial example: the efficiency between each local DQQ and DC under different η values: (a) ρ = 0 (b) ρ = 0.3.

Figure 3: Artificial example: global QQ optimal designs for (a) ρ = 0 and (b) ρ = 0.3 and (c) global combined design.

6.2 Etching Experiment

In the etching process described in Section 1, the etchant
is circulating at a certain flow rate. The wafers are rotated
and swung horizontally and vertically. Meanwhile, the air is
blown in the etchant with certain pressure. There are five
factors involved in the etching process, the wafer rotation
speed (x1), the pressure for blowing the bubbles (x2), the
horizontal and vertical frequencies for swinging wafers (x3,
x4), and the flow rate of circulating the etchant (x5). The
engineers intend to experiment to study the relationship be-
tween these factors and the two QQ responses.

Because of the newly developed process, the historical
data on similar processes are not directly applicable to this
experiment. Based on some exploratory analysis, we set
ρ = 0.5. Both domain knowledge and data have shown
that the wafer appearance is the worst when both the ro-
tating speed (x1) and bubble pressure (x2) are low. Ac-
cordingly, we set the prior of η as follows. For intercept

η0 ∼ Uniform[0, 6]. The linear effects of rotating speed and
bubble pressure follow Uniform[1, 5]. The other linear effects
follow Uniform[−1, 1] and the second order interactions and
quadratic effects Uniform[−0.3, 0.3]. The experimental run
size is set to be n = 21 × 6 = 126, 6 times the number of
effects q = 21.

We generate a maximin Latin hypercube design of B =
500 runs for η values. For each η value, we obtain the lo-
cal optimal designs DQQ and DC . Here the local combined
design DC has 2/3 of the runs generated from the local D-
optimal design for logistic regression and 1/3 of the runs
from the D-optimal design for linear regression. The effi-
ciency between each pair of local designs DQQ and DC is
reported in Figure 6(a). We can see that almost every lo-
cal design DQQ is better than DC . Moreover, we obtain the
global optimal designs dQQ and dC by accumulating the fre-
quencies of the local designs. To compare dQQ and dC , we
generate another 100-run maximin Latin hypercube design
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Figure 4: Artificial example: the efficiency between each global QQ optimal design and combined design under different η
values: (a) ρ = 0 (b) ρ = 0.3.

for η values and compute the efficiencies between dQQ and
dC under different η values, which are shown in Figure 6
(b). Clearly, dQQ is universally better and more robust to η

than dC .
Fractional factorial design [46] is another commonly used

design in practice. We compare the proposed design with
a 35−2 minimum aberration (MA) fractional factorial de-
sign by defining the contrast subgroup as I = ABD2 =
AB2CE2 = AC2DE = BCDE2. Each design point is repli-
cated 5 times and the overall run is 35−2 × 5 = 135. Figure
6(c) shows the histogram of the efficiencies between dQQ and
the MA design, and the proposed global optimal design is
still superior.

7. DISCUSSION

In this paper, we propose the Bayesian D-optimal design
criterion for QQ responses. The adoption of the Bayesian
approach allows us to consider both the non-informative pri-
ors as the frequentist approach and informative priors when
domain knowledge or historical data are available. A new
point-exchange algorithm is developed for efficiently con-
structing the proposed designs. This algorithm can also be
used to construct non-factorial designs when the candidate
set is not a full factorial design. Moreover, the proposed
method can be directly generalized for the sequential design
with the QQ response. In the following, we discuss some
other scenarios for the proposed method that are not con-
sidered in detail previously.

Non-conjugate Prior for η

Other than the conjugate prior p(η), we can also use a
non-conjugate prior distribution η ∼ N(0, τ20R0). In this
situation, one can consider the normal approximation in

the posterior distribution p(η|z). Then the design crite-
rion for the binary response becomes [3] Ez,η{log(p(η|z)} ≈
Eη

{

log det(F ′W0F + ρ0R
−1
0 )
}

. The overall design crite-
rion Q(X) can be updated as

Q(X) =

2
∑

i=0

Eη

{

log det
(

F ′WiF + τiR
−1
i

)}

,

where ρi = σ2/τi, τi and Ri are the prior variance and corre-
lation of η, β(1), and β(2) respectively. The proposed design
construction algorithm can still be applied with minor mod-
ifications.

Multiple QQ Responses

In this paper, we focus on optimal designs for one quanti-
tative response and one qualitative response. The proposed
method can also be generalized to accommodate the QQ
models with multiple quantitative responses Y1, . . . , Yl and
binary responses Z1, . . . , Zk. For example, a multi-level qual-
itative response can be transformed into a set of dummy bi-
nary responses. One idea is to generalize the QQ models in
(2.1) and (2.2) for both l ≥ 1 and k ≥ 1. For l ≥ 1 and k = 1,
we generalize the QQ model by introducing the correlation
matrix between Y1, . . . , Yl as in the standard multi-response
regression [1]. Then the corresponding optimal design can
be established by studying its likelihood function. For l ≥ 1
and k > 1 with multiple binary responses, considering all 2k

conditional models for (Y1, . . . , Yl|Z1 = 1, . . . , Zk = 1),. . . ,
(Y1, . . . , Yl|Z1 = 0, . . . , Zk = 0) only works for a small k.
Moreover, the construction algorithm can be more compli-
cated as it needs to involve the multi-logit model [32] for
modeling the multiple binary responses. When k is relatively
large, we are going to pursue an alternative QQ model and
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Figure 5: Etching experiment: (a) the global Bayesian QQ D-optimal design for ρ = 0.5 and (b) the global combined
design.

Figure 6: Etching experiment: histograms of the efficiencies (a) efficiencies between local designs DQQ and DC for different
η’s; (b) efficiencies between global designs dQQ and dC ; (c) efficiencies between global design dQQ and the 35−2 MA
fractional factorial design.

develop its corresponding optimal design method as a future
research topic.

Continuous Design

The point-exchange algorithm is to construct the exact
discrete optimal designs, which are different from the theo-
retical continuous optimal designs. As described in Sections
5 and 6, the way of generating the frequency as the local
optimal design is heuristic. The rigorous definition of the lo-
cal continuous D-optimal design criterion is the probability
measure ξ on the design space Ω that maximizes

Q(X|η) = log det

(∫

π(x)(1− π(x))f(x)f(x)′dξ(x)

)

+ log det

(∫

(π
(

x)f(x)f(x)′ + ρR−1
1

)

dξ(x)

)

+ log det

(∫

(

(1− π(x))f(x)f(x)′ + ρR−1
2

)

dξ(x)

)

.

[49] developed a method to obtain the optimal ξ for the non-
linear models. It will be interesting to extend their frame-
work and develop the method to obtain the optimal ξ for
QQ models.

Different QQ Models

The proposed design is not restricted to the logit model
for the binary response. For example, if the probit model
is used, the Bayesian D-optimal design criterion can be di-
rectly obtained by replacing the logit transformation with
the probit transformation in both p(z|η) and p(η). The de-
sign criterion can be derived similarly with minor modifi-
cations. The criterion formula remains the same with the
following different diagonal matrices,

W0 = diag

{

φ2(f(x1)
′η)

Φ(f(x1)′η) (1− Φ(f(x1)′η))
, . . . ,

φ2(f(xn)
′η)

Φ(f(xn)′η) (1− Φ(f(xn)′η))

}

,
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W1 = diag {Φ (f(x1)
′η) , . . . ,Φ (f(xn)

′η)} ,
W2 = I −W1,

where Φ and φ are CDF and PDF of the standard normal
distribution.

It is worth pointing out that the design criterion in the
work is based on the QQ model constructed by the joint
model of Y |Z in (2.1) and Z in (2.2). [26] created a new QQ
model based on Z|U where U is a latent continuous vari-
able that is assumed to be correlated with the observed con-
tinuous response variable Y . Besides the conditional model
structures, other model structures such as mixed graphical
models [47] can also be used as long as the D-optimality can
be derived.

SUPPLEMENTARY MATERIAL

The supplementary material contains the proofs and
derivations for equations (3.3), Theorem 1, Proposition 1
and 2, Theorem 2, the shortcut formulas, update formulas,
and the Δ(x,xi) function in Section 5.1. The supplement
material also includes the table of five different designs for
the artificial example in Section 6.1. The codes and data for
all the algorithms and examples are available from https://
github.com/lulukang/BayesianQQDoE.git.
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