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Abstract

The problem of sampling constrained continuous distributions has frequently

appeared in many machine/statistical learning models. Many Markov Chain

Monte Carlo (MCMC) sampling methods have been adapted to handle differ-

ent types of constraints on random variables. Among these methods, Hamilton

Monte Carlo (HMC) and the related approaches have shown significant advan-

tages in terms of computational efficiency compared with other counterparts.

In this article, we first review HMC and some extended sampling methods,

and then we concretely explain three constrained HMC-based sampling

methods, reflection, reformulation, and spherical HMC. For illustration, we

apply these methods to solve three well-known constrained sampling prob-

lems, truncated multivariate normal distributions, Bayesian regularized regres-

sion, and nonparametric density estimation. In this review, we also connect

constrained sampling with another similar problem in the statistical design of

experiments with constrained design space.
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1 | INTRODUCTION

In many machine learning applications, it is necessary to sample from distributions with various types of constraints.
For example, the truncated multivariate normal distribution can be difficult to sample from, especially for high-
dimensional cases. Even using the leave-one-out type of Gibbs sampling scheme (Held & Holmes, 2006; Kang
et al., 2021), the algorithms can still be computationally costly. Another common example is the regression model with
norm constraint on the parameters, k βkq ≤C, such as Lasso (l1 norm, q¼ 1) (Tibshirani, 1996) or bridge estimator (lq
norm, q≥ 0) (Frank & Friedman, 1993; Fu, 1998). Other examples include copula models, latent Dirichlet allocation,
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covariance matrix estimation, and nonparametric density function estimation. Often, the resulting models are intracta-
ble, and thus sampling from these constrained distributions is a challenging task (Brubaker et al., 2012; Neal
et al., 2012; Neal & Roberts, 2008; Pakman & Paninski, 2014; Sherlock & Roberts, 2009). In this article, we give an over-
view of the statistical sampling methods for constrained distributions. Specifically, we focus on distributions of continu-
ous variables and provide a more detailed explanation of methods based on Hamiltonian Monte Carlo (HMC) and
some related approaches. Sampling constrained discrete distributions (Chewi et al., 2022; Jacob et al., 2021;
Jessen, 1970) is not included in this review due to their different nature from continuous distributions.

There are various types of boundary constraints on the parameters of many statistical models, such as positive
requirement, linear (summation) constraint, upper bound on a vector norm of the parameters, and so on. Sometimes,
the constraints can be considered as certain general manifolds, for example, sphere, positive definite matrices, and Sti-
efel manifold. Specifically, the norm constraint imposed on the regression coefficients in regularized regression can be
considered a sphere manifold (Lan et al., 2014; Lan & Shahbaba, 2016). Manifold methods are also used for sampling
from a positive definite matrix in Lan et al. (2020) and Holbrook et al. (2018). Many sampling approaches have been
introduced to tackle one or several kinds of constraints. Based on the nature of these methods, we roughly categorize
them into three groups.

1. Rejection Type. These methods simply discard samples that violate the constraints or keep trying until the proposed
sample satisfies the constraint. Most Markov Chain Monte Carlo (MCMC) or other statistical sampling algorithms
can be easily modified to achieve this goal. For example, Lang et al. (2007) proposed a rejection-based sequential
Monte Carlo for Bayesian estimation of constrained dynamic systems, and Li and Ghosh (2015) also developed
methods based on rejection for truncated multivariate normal and student-t distributions subject to linear inequality
constraints. Since these approaches do not directly address the constraints, they can be computationally inefficient
for complicated constraints and high-dimensional problems.

2. Reflection Type. These approaches consider the boundary of the constrained domain as an (energy) wall and make a
reflection (hit-and-bounce) for the sampler to move inward the constrained domain whenever it hits the (energy)
wall. For example, Neal (2011) suggested modifying the standard HMC by setting the potential energy to infinity for
parameter values that violate the constraints. Following this idea, Pakman and Paninski (2014) proposed an exact
HMC for truncated multivariate Gaussian distributions. Betancourt (2011) and Olander (2020) applied such an
HMC-based reflection idea to nested sampling which requires likelihood-restricted prior sampling (Skilling, 2006).

3. Reformulation Type. These techniques transform the constrained sampling problem or the constrained domain into
something easier to work with. Motivated by the constrained optimization methods, Brubaker et al. (2012) proposed
a family of HMC-based MCMC methods, which incorporated the constraint on parameters c θð Þ¼ 0 using Lagrange
multipliers. Ahn and Chewi (2021) recently derived another optimization-motivated algorithm using mirror-
Langevin dynamics. In many cases, distributions with constraints in ℝd can be transformed into distributions on
manifolds. Some HMC-related algorithms have been created to sample distributions on manifolds. For example,
Kook et al. (2022) used Riemannian manifold HMC instead of the original HMC with a Lagrange multiplier. Byrne
and Girolami (2013) showed how HMC methods can be designed for and applied to the distribution defined on man-
ifolds embedded in Euclidean space by the explicit forms for geodesics if they exist. In particular, motivated by Byrne
and Girolami (2013), Spherical HMC (Lan et al., 2014; Lan & Shahbaba, 2016) does not require any manifold embed-
ding. It focuses on constraints that can be transformed into vector norms and eventually mapped onto a hyper-
sphere. Spherical HMC can be viewed as a more efficient special case of Brubaker et al. (2012) and Kook et al.
(2022). A related work SPInS (Chaudhry et al., 2021) maps a hyper-ball containing the constrained domain inside
out so that sampler can be defined on a larger unbounded space.

In general, algorithms of the rejection type tend to be inefficient because frequent rejected attempts cause a significant
waste of computation. The reflection type is intuitive but its efficiency usually depends on the specific constraints. Certain
constrained domains may need too many reflections in high-dimensional space and hence the excessive computational
time. The reformulation type is more intrinsic and sophisticated in incorporating the constraints in the step of proposing
new samples. More importantly, they usually can be easily scaled to large dimensions and handle more varieties of con-
straints. Therefore, we are going to focus on the reflection and reformulation types of methods in the following review.

In recent years, optimal transport (OT) and the more general variational inference methods have gained much atten-
tion from the machine learning community and have been adapted to many statistical and machine learning models.
Although in theory variational inference methods, including OT, can deal with distributions with any compact support
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regions, in numerical implementation it is much more challenging when the support region is not the entire ℝd with d
being the dimension of the variables. Das and Bhattacharya (2020) addressed the issue of state-dependent nonlinear
equality-constrained state estimation using Bayesian filtering based on OT. Ahn and Chewi (2021) proposed using the
mirror-Langevin algorithm, which is a discretization of the mirror-Langevin diffusion, for constrained sampling.

Constrained sampling is naturally connected with numerical integration in constrained domains. Quasi-Monte
Carlo methods deal with numerical integration over rectangular-constrained domains (Leobacher &
Pillichshammer, 2014; Owen, 2013). Other quadrature methods have to be modified for non-rectangular constraints
(Gessner et al., 2020; Legrain, 2021; Olshanskii & Safin, 2016; Saye, 2022). Constrained sampling is also related to the
statistical design of experiments. Dragulji�c et al. (2012), Pratola et al. (2017), and Huang et al. (2021) proposed different
methods to generate space-filling designs, which essentially approximate the uniform distribution, in various irregular-
constrained domains. Kang (2019) developed algorithms to generate different optimal designs, including a distance-cri-
terion-based space-filling design, in complicated design regions.

In the remaining article, we first review the necessary background on HMC and its related methods in Section 2.
Next, we review in detail three reflection and reformulation approaches in Section 3. Three constrained sampling prob-
lems are illustrated in Section 4, including truncated multivariate Gaussian distributions, Bayesian regularized regres-
sion, and non-parametric density estimation. In Section 5, we connect constrained sampling with the constrained
design of experiments and review some existing methods for constructing different types of constrained designs. The
article concludes in Section 6.

2 | HAMILTONIAN MONTE CARLO AND EXTENSIONS

MCMC can be inherently inefficient due to its random walk nature. Different from the Gibbs sampler and Metropolis
algorithms, HMC simulates Hamiltonian dynamics to propose new states and reduce the local random walk behavior,
and thus moves more rapidly toward the target distribution. The proposed states of HMC are significantly distant from
the current states and yet still have a high acceptance probability. Neal (2011) recalled the origin and history of HMC
and detailed the HMC method and its appealing properties. Here we briefly review the HMC algorithm and its manifold
extensions such as the Riemannian/Lagrangian Monte Carlos, geodesic Monte Carlo, and so on.

2.1 | Hamiltonian Monte Carlo

We begin with an introduction to Hamiltonian dynamics, which is the basis of HMC. It consists of a d-dimensional vec-
tor θ, called position state, and a d-dimensional vector ϕ, called momentum state. For illustration, Neal (2011) used a
simple physical example, the dynamics of a frictionless puck that slides over a surface of varying height. The potential
energy of the puck, denoted by U θð Þ, is proportional to the height given position θ. The kinetic energy of the puck, den-
oted by K ϕð Þ, is equal to jϕj2=m, with m the mass of the puck. The total energy of the dynamic, called Hamiltonian
function and denoted by H θ,ϕð Þ, is the sum of the potential energy and kinetic energy of the puck, that is,

H θ,ϕð Þ¼U θð ÞþK ϕð Þ: ð1Þ

As the puck slides over the surface, the potential energy increases as it moves over a rising slope and the kinetic
energy decreases as the velocity of the puck, ϕ=m, decreases. The two energies change in opposite directions when the
puck moves over a descending slope. Due to frictionless assumption, the total energy remains the same as the initial
state of the system. The system of θ,ϕð Þ evolves following the Hamilton's equations

θ
_
¼ dθ

dt
¼ ∂H θ,ϕð Þ

∂ϕ
¼rϕK ϕð Þ, ð2Þ

ϕ
_
¼ dϕ

dt
¼� ∂H θ,ϕð Þ

∂θ
¼�rθU θð Þ: ð3Þ
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HMC applies Hamiltonian dynamics to MCMC sampling. The position vector θ is the random variable of interest.
The potential energy is U θð Þ¼� logp θð Þ, where p θð Þ is the density function of the target distribution to be sampled
from. In the Bayesian framework, p θð Þ is the posterior distribution p θjyð Þ, where y represents data and θ the unknown
parameters. The momentum vector ϕ can be considered as an auxiliary random variable that is usually assumed to fol-
low a multivariate normal distribution N 0,Mð Þ, where M is a user-specified covariance matrix (often chosen to be
identity matrix I), also known as a mass matrix. Thus the kinetic energy becomes K ϕð Þ¼
� logN ϕ j 0,Mð Þ¼ϕΤM�1ϕ=2þ constant. To numerically solve (2) and (3) with the above potential and kinetic ener-
gies, the leapfrog method (Verlet, 1967) is commonly used to approximate the Hamilton's equations by discretizing
time. The HMC uses the leapfrog method to simulate Hamiltonian dynamics for some time horizon τ¼ Lϵ to propose
new samples that are further accepted or rejected according to certain probability as the next state. Algorithm 1 shows
the HMC procedure.

Following either the Hamilton's equations (2) and (3) or the leapfrog procedure, the intuition of HMC is straightforward
as explained in Gelman et al. (2013). When the current value of θ is at a flat region of p θð Þ, similar to the situation when
the puck is on a flat surface, the velocity of the puck, and thus its momentum ϕ, becomes close to a constant. Therefore,
the position θ would move at a constant speed exploring the flat region. If the position θ moves to a region with decreas-
ing density of p θð Þ, which is not favorable, then rθ logp θð Þ is negative, and thus the momentum ϕ would decrease in
the direction of movement. Next, the position θ would move in this unfavorable direction with a reduced velocity. The
trends reverse if θ value moves to a region with an increasing density of p θð Þ. The system possesses three important
properties for the proof of ergodicity: (i) time-reversibility (going from the end of a trajectory with the reversed momen-
tum takes the sampler back to the starting point); (ii) volume-preservation (volume moving along the flow
Tt : θ,ϕð Þ 7! θ�,ϕ�ð Þ does not change); and (iii) energy conservation (approximately under discretized system). The exact
proof of convergence of HMC can be found in Neal (1994) and Neal (2011). The choice of ϵ should be sufficiently small
so that the acceptance rate is high but not too small so that the computation is still efficient. The length of trajectory is
also a crucial parameter for HMC and it can be varied from 20 to 1000, depending on the complexity and dimension of
the problem. Trial and error can be used for setting both ϵ and L. More discussion can be found in Neal (2011).

2.2 | Riemannian and Lagrangian Monte Carlo

Girolami and Calderhead (2011) extended HMC to Riemannian HMC (RHMC) by defining Hamiltonian dynamics on a
Riemannian manifold of distributions. Compared with HMC, RHMC can exploit fully the geometric properties of the
parameter space of θ using a position-specific mass matrix, that is, M ¼G θð Þ, where G θð Þ is usually set as the Fisher
information matrix of p θð Þ. The distribution of momentum vector ϕ is N 0,G θð Þð Þ, which is no longer independent of θ.
The Hamiltonian function (1) becomes

H θ,ϕð Þ¼ψ θð ÞþK θ,ϕð Þ¼� logp θð Þþ1
2
logdet G θð Þð Þþ1

2
ϕΤG θð Þ�1ϕ: ð4Þ

ALGORITHM 1 Hamiltonian Monte Carlo (HMC)

1: Initialize θ 0ð Þ at current θt�1, and randomly sample ϕ 0ð Þ �N 0,Mð Þ
2: for ℓ¼ 0 to L�1 do
3: Update ϕ by a half-step of ϵ: ϕ ℓþ1

2ð Þ ¼ϕ ℓð Þ þ 1
2ϵrθ logp θ ℓð Þ

� �
.

4: Update θ by a full-step of ϵ: θ ℓþ1ð Þ ¼ θ ℓð Þ þϵM�1ϕ ℓþ1
2ð Þ.

5: Update ϕ by another half-step of ϵ: ϕ ℓþ1ð Þ ¼ϕ ℓþ1
2ð Þ þ 1

2ϵrθ logp θ ℓþ1ð Þ
� �

.
6: end for
7: Set θ�,ϕ�ð Þ¼ θ Lð Þ,ϕ Lð Þ

� �
and compute the accept rate r¼ p θ�ð ÞN ϕ�j0,Mð Þ

p θt�1ð ÞN ϕt�1j0,Mð Þ.
8: Set θt ¼ θ� with probability min r,1ð Þ and θt ¼ θt�1 otherwise.
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where ψ θð Þ¼� logp θð Þþ 1
2 logdet G θð Þð Þ, and K θ,ϕð Þ¼ 1

2ϕ
ΤG θð Þ�1ϕ. Due to dependence of ϕ on θ, the dynamics of θ

and ϕ become non-separable. The previous version of the leapfrog is not applicable. Instead, the generalized leapfrog
(Iserles, 1986) is used, which is an implicit scheme of fixed-point iterations.

To avoid the time-consuming iterations, Lan et al. (2015) introduced the Lagrangian Monte Carlo (LMC). It
uses a variable transformation approach that changes Hamiltonian dynamics to Lagrangian dynamics. Specifically, let
v¼G θð Þ�1ϕ and its distribution is v�N 0,G θð Þ�1

� �
. As v is the momentum divided by mass, it can be considered as

velocity intuitively. The original Hamilton's equations in HMC (2) and (3) become the following Lagrangian dynamics
(a.k.a. Euler–Lagrange equation):

dθ
dt
¼ v, ð5Þ

dv
dt
¼�η θ,vð Þ�G θð Þ�1rθψ θð Þ, ð6Þ

where η θ,vð Þ is a vector whose kth element is vΤΓk θð Þv. Here Γk
i,j θð Þ≔ 1

2

P
lg
k,l ∂ igl,jþ ∂ jgi,l� ∂ lgi,j
� �

are the Christoffel
symbols, where gi,j¼ G θð Þ½ �i,j and gi,j¼ G θð Þ�1

� �
i,j and ∂ i means partial derivative with respect to θi. Based on the

Lagrangian dynamics, Lan et al. (2015) proposed an explicit integrator, which is time reversible but not volume preserv-
ing. This is different from the HMC and RHMC. However, one can adjust the acceptance probability with the Jacobian
determinant to satisfy the detailed balance condition. The LMC algorithm in Lan et al. (2015) is shown to be computa-
tionally more stable and efficient than RHMC.

Byrne and Girolami (2013) developed these manifold HMC algorithms for a class of problems where the geodesic
equation (the system (5) and (6) without G θð Þ�1rθψ θð Þ term) can be analytically solved. Lan et al. (2014); Lan and
Shahbaba (2016) proposed a specific geodesic MC on a hyper-sphere (whose geodesic is a great circle) and applied it to
sample from distributions with constraints defined by vector norm.

3 | CONSTRAINED SAMPLING BASED ON HMC

In this section, we explain three different constrained sampling methods which are adapted from the original HMC.
They are Wall HMC, Constrained HMC, and Sphere HMC, which are among the most representative ones in the reflec-
tion and reformulation types of algorithms.

3.1 | Constrained HMC by reflection

Neal (2011) discussed a method of handling the constraint c θð Þ≥ 0 by modifying the original potential energy U θð Þ to
create a “soft” wall:

Ur θð Þ¼U θð Þþw θð Þ, w θð Þ¼
0, if c θð Þ≥ 0,

rrþ1jc θð Þjr , else:

�
ð7Þ

Such constraint becomes a “hard” wall with infinite barrier

eU θð Þ¼ lim
r!∞

Ur θð Þ¼
U θð Þ, if c θð Þ≥ 0,

∞, else:

�
ð8Þ
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Suppose the sampler just hits the wall, that is, c θð Þ<0. According to (3) with Ur , we have the momentum ϕ updated
as

ϕtþ1¼ϕt�rθU θð ÞΔt� rrþ2
jc θð Þjr

c θð Þ Δtrθc θð Þ ð9Þ

We can choose the time step Δt¼C rð Þ! 0 as r!∞ such that we have the following perfect reflection for updating
momentum (Betancourt, 2011)

ϕtþ1¼ϕt�2 ϕt,nh in, n¼rθc θð Þ= krθc θð Þ k : ð10Þ

Such reflection-based HMC (named as “Wall HMC” in Lan et al. (2014)) proceeds with eU θð Þ replacing U θð Þ in Algo-
rithm 1 where the half-step momentum updates (lines 3 and 5) are replaced by the above reflection (10) once hitting
the wall (constraint violated). Betancourt (2011) and Olander (2020) successfully applied this algorithm to nest sam-
pling. Pakman and Paninski (2014) developed a more sophisticated exact HMC algorithm for truncated multivariate
Gaussian distributions based on a similar idea of reflection.

3.2 | Constrained HMC by reformulation

Brubaker et al. (2012) considered HMC for a general constraint c θð Þ¼ 0 that defines a connected, differentiable sub-
manifold of ℝd, denoted as ℳ¼ θ�ℝdjc θð Þ¼ 0

	 

. The constraint determines the tangent bundle of ℳ,

Tℳ¼ θ, _θ
� �

jc θð Þ¼ 0 and ∂c
∂θ
_θ¼ 0

	 

where ∂c

∂θ is the Jacobian of the constraints. Now we have the new Hamiltonian as

H θ,ϕ,λð Þ¼ bH θ,ϕð Þþ λΤc θð Þ, bH θ,ϕð Þ¼ψ θð ÞþK θ,ϕð Þ ð11Þ

where λ is the Lagrange multiplier. Then the Hamiltonian dynamics with the above guided Hamiltonian bH θ,ϕð Þ
become (2) and (3) with extra an equation c θð Þ¼ 0 and are defined on the cotangent bundle

T �ℳ¼ θ,ϕð Þjc θð Þ¼ 0 and ∂c
∂θ

∂bH
∂ϕ¼ 0

n o
. Brubaker et al. (2012) used a consistent integrator called RATTLE

(Andersen, 1983; Leimkuhler & Reich, 1994) to solve the constrained Hamiltonian dynamics in their proposed con-
strained HMC (CHMC).

ϕ ℓþ1
2ð Þ ¼ϕ ℓð Þ �ϵ

2

∂ bH θ ℓð Þ,ϕ ℓþ1
2ð Þ

� �
∂θ

þ ∂c
∂θ

θ ℓð Þ
� �

λ

24 35
θ ℓþ1ð Þ ¼ θ ℓð Þ þϵ

2

∂ bH θ ℓð Þ,ϕ ℓþ1
2ð Þ

� �
∂ϕ

þ
∂ bH θ ℓþ1ð Þ,ϕ ℓþ1

2ð Þ
� �

∂ϕ

24 35
0 ¼ c θ ℓþ1ð Þ

� �
ϕ ℓþ1ð Þ ¼ϕ ℓþ1

2ð Þ �ϵ
2

∂ bH θ ℓþ1ð Þ,ϕ ℓþ1
2ð Þ

� �
∂θ

þ ∂c
∂θ

θ ℓþ1ð Þ
� �

μ

24 35
0 ¼ ∂c

∂θ
θ ℓþ1ð Þ

� � ∂ bH θ ℓþ1ð Þ,ϕ ℓþ1ð Þ
� �

∂ϕ

ð12Þ

where λ and μ are Lagrange multipliers associated with the state and momentum constraints (the third and the fifth
equations of (12)). This generalizes the leapfrog method to handle the manifold constraints. The proposed state θ� is
accepted with probability defined by H in (11).
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3.3 | Spherical HMC

Lan et al. (2014) considered HMC defined on a special manifold, hyper-sphere, denoted as

Sd¼ θ�ℝdþ1jk θk22¼
Pdþ1

i¼1 θ
2
i ¼ 1

n o
. This algorithm is particularly useful to handle a class of constraints defined by

the following vector (β�ℝd) q-norm:

k βkq¼
Pd
i¼1
jβijq

� �1=q

, q� 0, þ∞ð Þ

max
1≤ i≤ d

jβij, q¼þ∞

8>><>>: ð13Þ

The q-norm domain, Qd ≔ β�ℝdjk βkq ≤ 1
	 


, can be transformed to the unit ball ℬd
0 1ð Þ≔ θ�ℝdjk θk2 ≤ 1

	 

by

either βi 7!θi¼ sgn βið Þjβijq=2 (shown the left panel of Figure 1) or β 7!θ¼ βkβk∞kβk2 (shown in the right panel of Figure 1).
To define HMC for these constrained distributions, Lan and Shahbaba (2016) proposed an idea of spherical augmen-

tation to further map the unit ball ℬd
0 1ð Þ to the hyper-sphere Sd by appending an auxiliary variable θdþ1 to the original

vector θ�ℬd
0 1ð Þ such that the extended parameter eθ¼ θ,θdþ1ð Þ�Sd. The lower hemisphere (θdþ1¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k θk22

p
) is

also identified with the upper hemisphere (θdþ1¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k θk22

p
) by ignoring the sign of θdþ1. After collecting sampleseθn o

using spherical HMC defined on the sphere, Sd, the last component θdþ1 is discarded and the obtained samples

θf g automatically satisfy the constraint k θk2 ≤ 1. As illustrated in Figure 2, the boundary of the constraint, that is,

k θk2¼ 1, corresponds to the equator on the sphere Sd. Therefore, as the sampler moves on the sphere, for example,
from A to B, passing across the equator from one hemisphere to the other translates to “bouncing back” off the bound-
ary in the original parameter space.

On the Riemannian manifold Sd,G θð Þ
� �

where G θð Þ¼ IdþθθΤ= 1�k θk22
� �

is the canonical spherical metric, the tan-

gent space at eθ is defined as TeθSd¼ ev¼ v,vdþ1ð Þ�ℝdþ1jeθΤev¼ 0
n o

. We have the Hamiltonian (4) redefined on the tan-

gent bundle TSd¼ eθ,ev� �
jkeθk2¼ 1 and eθΤev¼ 0

n o
:

H eθ,ev� �
¼H� eθ,ev� �

þ1
2
logdet G θð Þð Þ, H� eθ,ev� �

¼U eθ� �
þK evð Þ ð14Þ

where the potential energy U eθ� �
¼U θð Þ, and the kinetic energy K evð Þ¼ 1

2v
ΤG θð Þv¼ 1

2 kevk22 which is defined for the

velocity random variable ev�N 0,P eθ� �� �
with P eθ� �

¼ Idþ1�eθeθΤ being the projection matrix.

FIGURE 1 Transforming q-norm constrained domain to the unit ball. Left: from general q-norm domain Qd to unit ball ℬd
0 1ð Þ; Right:

from the unit cube Cd to the unit ball ℬd
0 1ð Þ.
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With such guided Hamiltonian function H� in (14), the Hamiltonian dynamics can be defined on the Riemannian
manifold Sd,G θð Þ

� �
in terms of θ,pð Þ, or equivalently as the following Lagrangian dynamics in terms of θ,evð Þ (Lan

et al., 2015):

_eθ ¼ ev
_ev ¼ �kevk22eθ�P eθ� �

reθU θð Þ
ð15Þ

where the projection matrix P eθ� �
maps the directional derivative reθU θð Þ onto the tangent space TeθSd. The dynamics

(15) can be split into two dynamics

_eθ ¼ 0
_ev ¼ �P eθ� �

reθU θð Þ

8<: ð16aÞ

_eθ ¼ ev
_ev ¼ �P eθ� �

reθU θð Þ

8<: ð16bÞ

where the solution to (16a) only involves updating velocity and (16b) is the geodesic equation on Sd with the solution
being the big circle. Spherical HMC (SphHMC) proceeds by proposing a joint state by alternate updates according to
(16a) (lines 5 and 8 in Algorithm 2) and (16b) (lines 6–7 in Algorithm 2) and accepting or rejecting the proposal based
on the acceptance probability defined by H. Algorithm 2 summarizes the details of spherical HMC (SphHMC).

θ

A B

θ~=(θ,θd+1)

θd+1= 1−||θ||2

θ

θd+1

A

B

FIGURE 2 Transforming the unit ball ℬd
0 1ð Þ to the sphere Sd.
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4 | APPLICATIONS OF CONSTRAINED SAMPLING

4.1 | Truncated multivariate Gaussian

For illustration purposes, we start with a truncated bivariate Gaussian distribution,

β1
β2

� �
�N 0,

1 0:5

0:5 1

� �� �
, 0≤ β1 ≤ 5, 0≤ β2 ≤ 1

This is a rectangular type constraint with the lower and upper limits as l¼ 0,0ð Þ and u¼ 5,1ð Þ respectively. The
original rectangle domain can be mapped to 2d unit disc ℬ2

0 1ð Þ to use c-SphHMC, or mapped to 2d rectangle ℛ2
0 where

s-SphHMC can be directly applied (Lan & Shahbaba, 2016).
The upper leftmost panel of Figure 3 shows the heatmap based on the exact density function, and the other panels

show the corresponding heatmaps based on MCMC samples from RWM, Wall HMC, exact HMC, c-SphHMC, and
s-SphHMC, respectively. All algorithms generate probability density estimates that visually match the true density.
Table 1 compares the true mean and covariance of the above truncated bivariate Gaussian distribution with the point
estimates using 2�105 (2�104 for each of 10 repeated experiments with different random seeds) MCMC samples in
each method. Overall, all methods estimate the mean and covariance reasonably well.

To evaluate the efficiency of the above-mentioned methods, we repeat this experiment for higher dimensions,
D¼ 10, and D¼ 100. As before, we set the mean to zero and set the i, jð Þth element of the covariance matrix to
Σij¼ 1= 1þji� jjð Þ. Further, we impose the following constraints on the parameters,

0≤ βi ≤ ui

where ui (i.e., the upper bound) is set to 5 when i¼ 1; otherwise, it is set to 0:5.
For each method, we obtain 105 MCMC samples after discarding the initial 104 samples. We set the tuning parame-

ters of algorithms such that their overall acceptance rates are within a reasonable range. As shown in Table 2, Spherical
HMC algorithms are substantially more efficient than RWM and Wall HMC. For RWM, the proposed states are rejected

ALGORITHM 2 Spherical HMC (SphHMC)

1: Initialize eθ 0ð Þ
at current eθ.

2: Sample a new velocity value ev 0ð Þ �N 0,Idþ1ð Þ, and set ev 0ð Þ  P eθ 0ð Þ� �ev 0ð Þ.

3: Calculate H eθ 0ð Þ
,ev 0ð Þ

� �
¼U θ 0ð Þ

� �
þK ev 0ð Þ

� �
.

4: for ℓ¼ 0 to L�1 do
5: ev ℓþ1

2ð Þ ¼ev ℓð Þ � ϵ
2P eθ ℓð Þ� �

reθU θ ℓð Þ
� �

6: eθ ℓþ1ð Þ ¼eθ ℓð Þ
cos kev ℓþ1

2ð Þ k ϵ
� �

þ ev ℓþ12ð Þ
kev ℓþ12ð Þk

sin kev ℓþ1
2ð Þ k ϵ

� �
7: ev ℓþ1

2ð Þ  �eθ ℓð Þ kev ℓþ1
2ð Þ k sin kev ℓþ1

2ð Þ k ϵ
� �

þev ℓþ1
2ð Þ cos kev ℓþ1

2ð Þ k ϵ
� �

8: ev ℓþ1ð Þ ¼ev ℓþ1
2ð Þ � ϵ

2P eθ ℓþ1ð Þ� �
reθU θ ℓþ1ð Þ

� �
9: end for
10: Calculate H eθ Lð Þ

,ev Lð Þ
� �

¼U θ Lð Þ
� �

þK ev Lð Þ
� �

.

11: Calculate the acceptance probability α¼ min 1, exp �H eθ Lð Þ
,ev Lð Þ

� �
þH eθ 0ð Þ

,ev 0ð Þ
� �h in o

.

12: Accept or reject the proposal according to α for the next state eθ0 .
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about 95% of times due to violation of the constraints. On average, Wall HMC bounces off the wall at around 3.81
(L¼ 2) and 6.19 (L¼ 5) times per iteration for D¼ 10 and D¼ 100, respectively. Exact HMC is quite efficient for rela-
tively low dimensional truncated Gaussian (D¼ 10); however, it becomes very slow for higher dimensions (D¼ 100). In
contrast, by augmenting the parameter space, Spherical HMC algorithms handle the constraints more efficiently. Since
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FIGURE 3 Density plots of a truncated bivariate Gaussian using exact density function (upper leftmost) and MCMC samples from

RWM, Wall HMC, exact HMC, c-SphHMC, and s-SphHMC, respectively. Solid elliptical curves always show true unconstrained probability

density contours. Dashed lines define linear constrained domains. Colored heatmaps indicate constrained probability density based on truth

or estimation from MCMC samples.

TABLE 1 Comparing the point estimates for the mean and covariance of a bivariate truncated Gaussian distribution using RWM, Wall

HMC, exact HMC, and SphHMC.

Method Mean Covariance

Truth 0:7906

0:4889

� �
0:3269 0:0172

0:0172 0:08

� �
RWM 0:7796�0:0088

0:4889�0:0034

� �
0:3214�0:009 0:0158�0:001

0:0158�0:001 0:0798�5e�04

� �
Wall HMC 0:7875�0:0049

0:4884�8e�04

� �
0:3242�0:0043 0:017�0:001

0:017�0:001 0:08�3e�04

� �
exact HMC 0:7909�0:0025

0:4885�0:001

� �
0:3272�0:0026 0:0174�7e�04

0:0174�7e�04 0:08�3e�04

� �
SphHMC 0:79�0:005

0:4864�0:0016

� �
0:3249�0:0045 0:0172�0:0012

0:0172�0:0012 0:0801�0:001

� �
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s-SphHMC is more suited for rectangular-type constraints, it is substantially more efficient than c-SphHMC in this
example.

It is worth mentioning that some new non-HMC methods have been developed to sample from the truncated multi-
variate normal distributions. Examples include the bouncy particle sampler in Zhang et al. (2021) and zig–zag HMC in
Nishimura et al. (2021); Zhang et al. (2022) which use the non-reversible zig–zag process in Bierkens et al. (2019). But
since they are non-HMC methods or designed for truncated Gaussians, we skip reviewing them in more details.

4.2 | Bayesian regularized regression

In regression analysis, overly complex models tend to overfit the data. Regularized regression models control complex-
ity by imposing a penalty on model parameters. Bridge regression (Frank & Friedman, 1993) is a family of regression

TABLE 2 Comparing the efficiency of RWM, Wall HMC, exact HMC, and SphHMC in terms of sampling from truncated Gaussian

distributions.

Dimension Method APa s/iterb ESS (min, med, max)c Min(ESS)/sd Speedup

D = 10 RWM 0.62 5.72E�05 (48, 691, 736) 7.58 1.00

Wall HMC 0.83 1.19E�04 (31,904, 86,275, 87,311) 2441.72 322.33

Exact HMC 1.00 7.60E�05 (1e+05, 1e+05, 1e+05) 11,960.29 1578.87

SphHMC 0.82 2.53E�04 (62,658, 85,570, 86,295) 2253.32 297.46

D = 100 RWM 0.81 5.45E�04 (1, 4, 54) 0.01 1.00

Wall HMC 0.74 2.23E�03 (17,777, 52,909, 55,713) 72.45 5130.21

Exact HMC 1.00 4.65E�02 (97,963, 1e+05, 1e+05) 19.16 1356.64

SphHMC 0.73 3.45E�03 (55,667, 68,585, 72,850) 146.75 10,390.94

aAcceptance probability.
bSeconds per iteration.
c(Minimum, median, maximum) effective sample size.
dMinimal ESS per second.
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models where the coefficients are obtained by minimizing the residual sum of squares subject to a constraint on the
magnitude of regression coefficients as follows:

min
β

Xn
i¼1

yi�Xiβð Þ2 subject to k βkq ≤ r ð17Þ

When q¼ 1, this corresponds to Lasso (least absolute shrinkage and selection operator) proposed by Tibshirani
(1996) which allows the model to force some of the coefficients to become exactly zero (i.e., become excluded from the
model). When q¼ 2, this model is known as ridge regression. Bridge regression is more flexible by allowing different q
norm constraints for different effects on shrinking the magnitude of parameters (see Figure 4).

Park and Casella (2008) and Hans (2009) proposed Bayesian Lasso by employing a conjugate prior distribution of
the form P βð Þ/ exp �λjβjð Þ. Frank and Friedman (1993) also constructed a complicated prior for the Bayesian inference
of bridge regression. With spherical HMC, there is much flexibility in choosing priors with q-norm constraints. We can
define the following Bayesian regularized linear regression model:

yjX ,β,σ2ϵ �N Xβ,σ2ϵI
� �

β � p βð Þ1 k βkq ≤ r
� � ð18Þ

Figure 4 compares the parameter estimates of Bayesian Lasso to the estimates obtained from two Bridge regression
models with q¼ 1:2 and q¼ 0:8 for the diabetes data set (N = 442, D = 10) studied in Park and Casella (2008). Trun-
cated Gaussian prior β�N 0,σ2Ið Þ1 k βkq ≤ r

� �
is considered and posterior samples are collected using spherical HMC

algorithm. Figure 4 illustrates the parameter estimates bβ with respect to the shrinkage factor s≔ kbβLassok1= kbβOLSk1
varying from 0 to 1, where bβOLS denotes the estimates obtained by ordinary least squares (OLS) regression. As expected,
tighter constraints (e.g., q¼ 0:8) would lead to faster shrinkage of regression parameters as we decrease s. Note, the
model (18) can easily be generalized to generalized linear models or nonparametric models such as Gaussian process
regression.

4.3 | Non-parametric density estimation

In this example of non-parametric density estimation, we show how a density function p xð Þ can be modeled on an infi-
nite dimensional sphere and how the spherical HMC can be applied to the Bayesian inference to efficiently obtain the
posterior estimate. We briefly explain the method in the following. More details can be found in Holbrook et al. (2020).

Suppose we want to attribute a smooth density function p xð Þ to observed data xnf gNn¼1 on finite domain D�ℝd.
Define the space of density functions p xð Þ and the space of square-root density functions, q xð Þ¼

ffiffiffiffiffiffiffiffiffi
p xð Þ

p
:

P≔ p :D!ℝ j p≥ 0,
Z
D
p xð Þμ dxð Þ¼ 1

� �

Q≔ q :D!ℝ j
Z
D
q xð Þ2μ dxð Þ¼ 1

� �
,

respectively. Although the space P contains the functions of interest, we instead opt to deal with the space Q of square-
root densities, which can be viewed as the unit sphere in the infinite-dimensional Hilbert space L2 Dð Þ. We model the
square-root density with a GP prior multiplied by the Dirac measure restricting the function to the unit sphere:

q 	ð Þ�GP 0,Cð Þ�δ q 	ð Þ�Qð Þ: ð19Þ

where C has Eigen-pairs λℓ,ϕℓ xð Þf g such that Cϕℓ xð Þ¼ λℓϕℓ xð Þ for ℓ�ℕ.
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Based on the Karhunen–Loève representation (Wang, 2008) of the Gaussian random function, we have the follow-
ing expansion of q:

q 	ð Þ¼
X∞
ℓ¼1

qℓϕi 	ð Þ,qℓ �
ind

N 0,λ2ℓ
� �

ð20Þ

If we let ϕℓ xð Þf g be an orthonormal basis on L Dð Þ, then the unit sphere restriction, δ q�Qð Þ, translates to following
requirement on the infinite sequence q≔ qℓf g:

q�S∞¼ q� ℓ2j q,qh iℓ2 ¼
X∞
i¼1

q2i ¼ 1

( )
:

In practice, we truncate the K–L expansion (20) at L>0 terms and have q¼ qℓf g
L
ℓ¼1 �S

L�1.
Now we have the prior for q and the likelihood of the data x≔ xnf gNn¼1 given q as follows

π qð Þ/ δ q�SL�1
� �YL

i¼1
exp �q2i = 2λ2i

� �� �
,

π xjqð Þ¼
YN
n¼1

q2 xnð Þ¼
YN
n¼1
j
XL
ℓ¼1

qℓϕℓ xnð Þj2,

We can then apply the spherical HMC to sample from the posterior π qjxð Þ/ π qð Þπ xjqð Þ which is naturally defined
on the sphere SL�1.

Figure 5 depicts 1000 data points (red) drawn from four different distributions on the unit square along with the
contours of the pointwise median of 1000 posterior draws from the model π qjxð Þ as defined above. The data in the first
three plots are generated using truncated Gaussians and mixtures of truncated Gaussians. The data for the last plot is
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generated by Gaussian noise added to the uniform distribution on the circle. The model adapts easily to multimodal
and patterned data samples.

5 | CONSTRAINED DESIGN OF EXPERIMENTS

The statistical design of experiments is naturally related to statistical sampling, although they achieve different goals.
Driven by practical needs, sometimes the design variables have to satisfy certain constraints, which make the design
space irregular.

A common type of constrained physical experiment is the mixture experiment, which is widely used in the chemi-
cal, pharmaceutical, and food industries. The input variables of a mixture experiment are the proportions of different
ingredients of the whole mixture. Thus the values of all the variables are between 0 and 1 (without scaling or other
transformation), and the sum of them must be equal to 1. In Piepel et al. (2005), the experiment contains 21 ingredients
including both rectangular and linear constraints. Mixture experiments can also have layered mixture structures which
makes both design and modeling more complicated (Kang et al., 2011; Shen et al., 2020).

Many computer experiments also involve irregular constraints, and space-filling design methods have to be adapted
to deal with these constraints. Stinstra et al. (2003) showed a large-scale computer experiment for television tube design
that involves 23 input variables and 44 non-rectangular constraints. Dragulji�c et al. (2012) illustrated a Total Elbow
Replacement computer simulation with four input variables and two linear non-rectangular constraints.

There have been many design methods proposed to handle the constraints. Dragulji�c et al. (2012) developed a
column-wise construction method for space-filling design. In Pratola et al. (2017), a dense candidate set is generated
and then the unfeasible candidate points are removed and the optimal design points are selected from the feasible ones.
Maximin distance and the (robust) IMSPE criteria are used for the space-filling design. Huang et al. (2021) proposed a
constrained minimum energy design method for constructing space-filling designs in any non-regular bounded space,
and its key idea is to apply the minimum energy design (a deterministic sampling algorithm) on the target distribution
using the probabilistic constraints proposed in sequentially constrained Monte Carlo.

The aforementioned methods are only for constrained space-filling designs, which can be considered as sampling
from uniform distributions with constraints. Kang (2019) proposed a generic method to construct optimal designs for
an irregular constrained design space. A stochastic coordinate-exchange (SCE) method is developed. In each iteration
of coordinate exchange, the multi-dimensional constraints are projected into the dimension of the coordinate to be
exchanged (or improved) with the other coordinates fixed at the current values. Therefore, the multi-dimensional con-
straints are reduced to one-dimensional rectangular constraints. The generic method can be adapted for different design
criteria, including the D- and linear-optimal design for physical experiments, and the ϕp-optimal space-filling design for
computer experiments. Figure 6 shows three optimal designs constructed by the SCE method for different kinds of
constraints.
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At last, we want to point out a close connection between design of experiments and approximate inference in the
general sense, meaning that the design space may be regular or irregular. Specifically, this connection is between Bayes-
ian optimal design and MCMC sampling. Based on Bayesian framework, Bayesian optimal design d� maximizes the
expected utility function U dð Þ over the design space D with respect to future data y and model parameters θ, according
to the notation from the review article by Ryan et al. (2016). The utility function is defined by

U dð Þ¼
Z
Y

Z
Θ
U d,θ,yð Þp θ jd,yð Þp yjdð Þdθdy,

where p θ jd,yð Þ is the posterior distribution of the parameters and p yjdð Þ is the marginal sampling distribution of the
future observations given the design. The utility function U d,θ,yð Þ is a user-specified design criterion. For example,
U d,θ,yð Þ¼ det cov θ jd,yð Þð Þ½ ��1 of the Bayesian D-posterior precision criterion. Since the utility function U dð Þ is based
on the posterior distribution, many simulation based methods, such as MCMC, sequential MC, approximate Bayesian
computation, and so on, can be used to provide good approximation to the posterior distribution (Amzal et al., 2006;
Drovandi & Pettitt, 2013; Drovandi & Tran, 2018; Ryan et al., 2016). HMC-based methods can certainly be a helpful tool
for Bayesian optimal design, and constrained HMC methods can be used when θ have to meet certain constraints.

6 | CONCLUSION

In this article, we review in detail Hamilton Monte Carlo sampling and its variants, and more importantly, how they
are modified to overcome various constraints. Based on the nature of the algorithms, we categorize them into three
groups, rejection, reflection, and reformulation. Specifically, we explain three constrained HMC-based sampling algo-
rithms, Wall HMC, Constrained HMC, and Sphere HMC. Wall HMC is a reflection-type algorithm and the other two
belong to the reformulation group. Three important applications of constrained sampling algorithms are illustrated.
They are truncated multivariate Gaussian, Bayesian regularized regression, and non-parametric density estimation.

Constrained sampling is an important problem and has broad applications in many statistical/machine learning
models. Some models that are typically not considered to be constrained sampling problems can be solved by con-
strained sampling algorithms, such as regularized regression/classification and density estimation. With the rapid
development of AI and big data technologies, future research on this topic is most likely in the direction of creating fast
algorithms for high-dimensional distributions with complex constraints, their theoretical foundations, and software
implementations.
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