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h i g h l i g h t s

� To overcome the major challenges of
global food security and
environmental and social problems
caused by the extensive use of
chemical pesticides, developments of
modern green sustainable
management strategies are urgently
needed for the control of crop
diseases.

� A deeper understanding of the
principles of plant immunity and
induced host immunity offers
potentials for reducing the use of
chemical pesticides and paves the
way for sustainable agriculture.

� The sustainable environment-friendly
disease prevention and control
technologies based on plant
immunity inducers are
comprehensively summarized in this
review.

� The significance of the application of
plant immunity inducers for plant
disease control is systematically
summarized.

� By focusing on research advances of
plant immunity inducers, this review
offers future perspectives of plant
immunity inducers and provides a
theoretical reference for researchers.

g r a p h i c a l a b s t r a c t

Diverse environment-friendly technologies are applied in sustainable prevention and control of

crop diseases. Inducing host immunity, ecological regulation, biological control, agricultural control,
physical and chemical control, and scientific drug use are utilized to control crop diseases and ensure
the safety of agricultural production, agricultural product quality and protect agricultural ecological
environment.
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Crops are constantly attacked by various pathogens. These pathogenic microorganisms, such as fungi,
oomycetes, bacteria, viruses, and nematodes, threaten global food security by causing detrimental crop
diseases that generate tremendous quality and yield losses worldwide. Chemical pesticides have
undoubtedly reduced crop damage; however, in addition to increasing the cost of agricultural production,
the extensive use of chemical pesticides comes with environmental and social costs. Therefore, it is nec-
essary to vigorously develop sustainable disease prevention and control strategies to promote the tran-
sition from traditional chemical control to modern green technologies. Plants possess sophisticated and
efficient defense mechanisms against a wide range of pathogens naturally. Immune induction technology
based on plant immunity inducers can prime plant defense mechanisms and greatly decrease the occur-
rence and severity of plant diseases. Reducing the use of agrochemicals is an effective way to minimize
environmental pollution and promote agricultural safety.
Aim of review: The purpose of this work is to offer valuable insights into the current understanding and
future research perspectives of plant immunity inducers and their uses in plant disease control, ecological
and environmental protection, and sustainable development of agriculture.
Key scientific concepts of review: In this work, we have introduced the concepts of sustainable and

environment-friendly concepts of green disease prevention and control technologies based on plant
immunity inducers. This article comprehensively summarizes these recent advances, emphasizes the
importance of sustainable disease prevention and control technologies for food security, and highlights
the diverse functions of plant immunity inducers-mediated disease resistance. The challenges encoun-
tered in the potential applications of plant immunity inducers and future research orientation are also
discussed.
� 2023 Production and hosting by Elsevier B.V. on behalf of Cairo University This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

The world currently faces huge challenges, including rapid pop-
ulation growth, climate change, food security, environmental
degradation, and pandemic diseases caused by pathogens [1]. It
is expected that the global population will swell to 10 billion in
2050. Global food security will become an important issue for
the 21st century because food demand is expected to increase
70%-100% by 2050 [2]. Crops are continuously subjected to all
kinds of stresses, which threaten the survival of crops and cause
significant yield and quality losses in crops [3,4]. Biotic stresses
such as pathogens, pests, and competition, represent the major
limiting factors for crop production (Fig. 1). Among them, plant
pathogens and pests are responsible for 5 major crop yield losses
worldwide (wheat 10.1–28.1% rice 24.6–40.9%, maize 19.5–41.1%,
potato 8.1–21.0%, and soybean 11.0–32.4%) [5].

Plant diseases caused by bacterial, fungal, viral, and nematode
pathogens frequently result in huge yield and quality declines in
crops, especially in developing countries, and cost the global econ-
omy more than $220 billion every year [5,6]. Firstly, plant bacterial
disease is a common disease in agricultural production. Huang-
longbing (HLB) is a severe citrus bacterial disease that seriously
harms citrus production worldwide. The bacterial pathogen Candi-

datus Liberibacter spp. is thought to cause HLB that severely affects
tree health, citrus fruits development, ripening, and quality. HLB
was responsible for up to 2.22 billion tons of oranges losses in
the United States from 2017 to 2018 [7]. Secondly, plant fungal dis-
eases are the largest group of plant diseases. Rice blast caused by
the fungal pathogen Magnaporthe oryzae is a destructive disease
and is responsible for up to 30% of rice yield losses worldwide.
The metric value of these losses is enough to feed 60 million people
[8]. Presently, 88% of the global wheat plants are susceptible to
stripe rust caused by Puccinia striiformis, and yield losses inflicted
by this pathogen are nearly 5.47 million tons annually, which is
equivalent to an economic loss of $979 million [9]. Thirdly, plant
viral pathogens are harmful to crops [10], and around 1484 plant
virus species are identified by the ICTV (International Committee
on Taxonomy of Viruses) in 2019. Viruses cause a major portion
of plant diseases and have a global cost of more than $30 billion

annually [1,11]. For example, cassava mosaic begomovirus infec-
tion causes cassava crop yield losses of 25 million tons annually
[6]. Finally, to date, over 4100 species of plant-parasitic nematodes
are described [12]. Plant-parasitic nematodes can be harmful to
various crops, such as, soybean, rice, corn, and wheat. Losses
caused by plant parasitic nematodes are estimated at $80 billion
annually [12]. Rice is infected by over 200 plant nematodes at var-
ious stages of development and the parasitic nematode diseases of
rice are becoming more and more serious. They account for an esti-
mated US$16 billion in the world’s rice losses each year [13].
Therefore, in order to decrease the losses caused by diseases, it is
important to develop effective disease prevention and control
technologies.

Currently, chemical pesticides are the primary means for con-
trolling crop diseases and they are often considered indispensable
to secure the global food supply. However, besides increasing the
cost of agricultural production, the extensive use of agrochemicals
caused many environmental and societal problems. Firstly, pesti-
cide exposure poses a direct threat to human health and the indis-
criminate use of agrochemicals caused pesticide residues in food
[14], which increase food safety risks. Secondly, the indiscriminate
use of agrochemicals kills large numbers of non-target organisms,
destroying agricultural biodiversity and the balance of the ecosys-
tem. Thirdly, the indiscriminate use of agrochemicals leads to pes-
ticide residues in soil and water, which affects farmland ecological
security. Finally, chemical pesticides have also caused the develop-
ment of resistant strains of pathogens and pests, which prompts
more pesticide utilization, aggravating the problem. Not surpris-
ingly, chemical pesticides have been banned by Europe in posthar-
vest stone fruit [15]. Therefore, research and development of new
technologies of plant disease control, while minimizing chemical
pesticides, is urgently needed to facilitate the transformation from
traditional chemical control to modern green control of plant dis-
ease, which is safer for human health and the environment. There-
fore, in this study, we outline the various strategies of sustainable
prevention and control and future perspectives of this approach
with a major focus on the inducers of plant immunity.

The principles of plant immunity

The development of inducers to promote plant protection in
agriculture has been facilitated by the remarkable progress that
we have made in our understanding of the molecular mechanisms
of plant defense. Plants possess a two-tiered immunity defense
system [16]. According to the standard Zig-Zag model, the first
branch uses cell surface-anchored pattern recognition receptors
(PRRs) that identify conserved pathogen-associated molecular pat-
terns (PAMPs), causing PAMP-triggered immunity (PTI) [17,18].
PRRs trigger Ca2+ signaling, reactive oxygen species (ROS) produc-
tion, activation of protein kinases, such as, calcium-dependent pro-
tein kinases (CPKs) and mitogen-activated protein kinase (MAPK)
cascades, and ultimately transcriptional reprogramming to acti-
vate PTI responses. To counteract PTI, pathogens evolved various
effector proteins and deliver them into the host to alter plant phys-
iology to suppress PTI, resulting in effector-triggered susceptibility
(ETS) [19]. The other branch of plant innate immunity utilizes
intracellular immune receptors (nucleotide-binding (NB) leucine-
rich repeat (LRR) receptor (NLR) proteins) to recognize these effec-
tors, causing effector-triggered immunity (ETI), which is accompa-
nied by rapid cell death termed hypersensitive response (HR), and
thus locally restricts pathogens spread [18,20]. Although PTI and
ETI have often presented as two distinct immune signaling path-
ways, recent studies indicate that these pathways share compo-
nents and work synergistically to resist pathogen infections
(Fig. 2) [21–23]. Although antiviral immunity conceptions are gen-

Fig. 1. Crops are subject to all kinds of biotic stresses. Biotic stresses are
composed of pathogens (bacteria, fungi, oomycetes, viruses, and nematodes), pests
(arthropods, birds, and mammals) and competitive weeds.
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erally excluded from the classic Zig-Zag model of plant innate
immunity [24], recent studies suggest that PTI also plays an impor-
tant role in antiviral defense in plants [25,26]. Viral double-
stranded RNAs (dsRNAs) are considered as the PAMPs of viral
pathogens. RNA silencing (RNAi) that recognizes dsRNAs may func-
tion similarly to PTI and play an important role in immune defense
responses against viral pathogens (Fig. 2) [24,27]. Viruses have
evolved viral suppressors of RNAi (VSRs), such as coat proteins
(CPs) as effector proteins to suppress RNAi-mediated defense
responses, effectively triggering ETS [24]. Plant then developed R
proteins that recognize VSRs or effectors to confer ETI against viral
pathogens. Thus, the RNAi-based PTI and the R gene-based ETI
form the two layers of immunity that constitute plant antiviral
innate immunity.

In addition to local resistance conferred by the plant’s innate
immunity in local tissue, plants also evolved induced systemic
resistance (ISR) and systemic acquired resistance (SAR) that pro-
tect systemic or uninfected tissues (Fig. 2). SAR can be activated
plant-wide by local pathogen infection. In contrast to ETI, which
is often race-specific and confers resistance to avirulent pathogens,
SAR results in a long-lasting and broad-spectrum systemic resis-
tance to a wide range of pathogens, making it an attractive candi-
date for plant protection in agriculture. PTI, ETI, and SAR are all
associated with the production of the plant defense hormone sali-
cylic acid (SA) [28]. SA also induces the expression of genes
involved in RNAi, thereby activating RNAi [29]. The modes of
action of PTI, ETI, SAR, and RNAi are briefly described in Fig. 2.
Overall, these four branches of plant immunity partially overlap
and work additively or synergistically to protect the host from var-
ious pathogens (Fig. 2). For example, SAR and ISR in Arabidopsis
had an additive effect on resistance to Pseudomonas syringae pv.
tomato DC3000 (Pst DC3000) [30]. Various biomolecules that are
capable of priming plant defense can be employed as inducers of
plant immunity in agriculture. Thus, understanding the principles
of plant immunity and the genetic and molecular mechanisms of

disease resistance and induced host immunity offers great poten-
tial for reducing the use of agrochemicals and paving the way for
sustainable agriculture [31].

Strategies for sustainable prevention and control of crop

diseases

The purpose of sustainable prevention and control of crop dis-
eases is to ensure agricultural product quality and environmental
safety while maximizing yield primarily by decreasing the use of
agrochemicals. It involves prioritization of environment-friendly
technologies and approaches such as biological control, agricul-
tural control, physical and chemical control with natural products,
activation of host immunity, and scientific drug use to control crop
diseases combined with ecological regulations (Fig. 3). These
approaches promote standardized crop production and enhance
the safety and quality of agricultural products, while reducing
the risks of pesticide use and protecting the ecological environ-
ment. Among these approaches, disease control through the activa-
tion of plant immunity by applying inducers of plant immunity has
become popular recently and is a promising sustainable strategy
for the future.

Mode of action of plant immune inducers

Plant immunity inducers have negligible direct bactericidal,
antifungal, or antiviral activities; however, they can stimulate the
plant immune system. We propose new insights on the mode of
action of plant immunity inducers (Fig. 4). Our action model
schematically illustrates the key points of three components
(recognition or detection, signal transduction, or activation, or
modulation, and defense response or effective resistance) of
inducer-triggered defense. Briefly, the recognition or detection of
inducers by plant cell-surface receptors or intracellular receptors

Fig. 2. Diagram of the four modes of plant immune system: PTI, ETI, SAR, and RNAi.
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Fig. 4. A diagram for the mode of action of plant immunity inducers. Firstly, plant immunity inducers are recognized by the plasma membrane receptors or intracellular
receptors, such as pattern-recognition receptors (PRRs) and hormone receptors. Next, the receptors work in conjunction with some proteins to transmit immune signals
downstream via the multiple signal transduction pathways, such as, Ca2+, MAPK, phytohormones (like ABA, ET, JA, SA), and protein phosphorylation (like phosphorylating
RBOHD). Finally, the signal downstream triggers the multiple disease-related immune responses, which result in the increased resistance to various pathogens.

Fig. 3. Diverse environment-friendly technologies are applied in sustainable prevention and control of crop diseases. Inducing host immunity, ecological regulation,
biological control, agricultural control, physical and chemical control, and scientific drug use are used to control crop diseases and ensure the safety of agricultural production,
agricultural product quality and protect agricultural ecological environment.

F. Zhu, M.-Y. Cao, Q.-P. Zhang et al. Journal of Advanced Research xxx (xxxx) xxx

5



Table 1

Oligosaccharides that show immune inducer activity in various plant species.

Oligosaccharides
inducers

Source Plants Disease Pathogen Application Defense responses

Chitin [32,33] Fungal cell
wall

Rice, Barley,
Strawberry

Rice blast, Gray mold,
Fusarium head blight

Magnaporthe oryzae, Fusarium
graminearum, Botrytis cinerea

Spray Induce phytoalexins formation, cell death, accumulation of ROS, MAP
kinase activation, PR genes, chitinase activity, PAL activity, callose
deposition, stomatal closure, accumulation of NO

Oligogalacturonides
[34]

Plant cell
wall

Wheat Powdery mildew,
Gray mold

Pectobacterium carotovorum sp.
carotovorum SCC1,
Botrytis cinerea, Blumeria

graminis

f. sp. Tritici

Spray Induce defense-related genes, phosphorylation of MPK3 and MPK6,
production of ROS and NO, OXO activity, PO activity, SA signaling
pathway

Laminarin [35,36,37] Brown
algae

Tobacco, Grapevine Bacteriosis, Tobacco
mosaic disease,
Downy mildew, Olive
leaf spot

Erwinia carotovora

subsp. Carotovora, Plasmopara

viticola, Tobacco mosaic virus,
Fusicladium oleagineum

Add elicitor to cell
culture, Syringe, Spray

Accumulation of PR proteins, release of H2O2, stimulation of PAL and
LOX activity, increase level of SA, plasma membrane depolarization,
induce defense-related genes

Curdlan [38,39] Alcaligenes

faecalis var.
myxogenes

Potato, Tobacco Late blight, Tobacco
mosaic disease

Tobacco mosaic virus,
Phytophthora infestans

Infiltration, Spray Expression of defense-related proteins, increase accumulation of SA,
induce PAL, GLU and CTN activity, extracellular alkalinization
response, H2O2 and NO burst, induce stomatal closure, inhibition of
stomatal opening

Sucrose [40,41] Plant Rice, Lupin Fusarium wilt, Rice
blast

Fusarium oxysporum,
Magnaporthe oryzae

Spray, Add to the
medium

Induce defense-related genes, PAL activity, level of isoflavonoids
Anthocyanin accumulation, activation of PR genes

Trehalose [42] Plant Wheat Wheat powdery
mildew

Blumeria graminis f.sp. tritici Spray Induce defense-related transcription factor, PR protein, PAL activity,
PO activity, accumulation of ROS,

Chitosan [43,44] Crustacea Rice, Phaseolus
Vulgaris, Grapevine

Powdery mildew,
Bacterial leaf blight,
Bacterial leaf streak

Tobacco necrosis virus, Erysiphe
necator, Xanthomonas oryzae

pv. Oryzae, Xanthomonas oryzae

pv. Oryzicola

Spray, Add to the
bacterial solution

Disrupt cell membranes, induce PAL, POX and PPO activity, callose
deposition, increase synthesis of polyphenols and abscisic acid
content

Cellodextrins [45] Plant Grapevine Gray mold Botrytis cinerea Add elicitor to cell
culture

Induce defense-related genes, induction of oxidative burst and
cytosolic calcium variation, phytoalexin accumulation

Algino-
oligosaccharides
[46,47]

Seaweed Soybean, Rice Rice blast Pseudomonas aeruginosa,
Magnaporthe grisea

Spray Induce PAL, POD, CAT activity, accumulation of phytoalexin

Sulfated fucan
oligosaccharides
[48]

Seaweed Tobacco Tobacco mosaic
disease

Tobacco mosaic virus Add elicitor to cell
culture

Induce PAL activity, PR genes, accumulation of phytoalexin and SA,
release of H2O2

Ulvans [49,50] Macroalgae Medicago truncatula,
Common bean,
Grapevine,
Cucumber, Wheat

Bean rust, Angular
leaf spot, Septoria
tritici blotch

Colletotrichum trifolii, Erysiphe
polygoni, Erysiphe necator,
Sphareotheca fuliginea, Uromyces

appendiculatus, Pseudocercospora
griseola, Zymoseptoria tritici

Spray Induce defense-related genes, ROS metabolism and octadecanoids

Carrageenans [51] Rodophyta Tobacco Tobacco mosaic
disease

Tobacco mosaic virus, Botrytis

cinerea, Pectobacterium

carotovorum

Spray Induce OXO, PAL activity, jasmonic acid related genes and the
accumulation of several phenylpropanoid compounds
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is the beginning of the immunity responses. The receptors,
together with some proteins such as BAK1 (BRI1-associated recep-
tor kinase 1), transfer signals to downstream players through the
multiple signal transduction pathways, including MAPK, phytohor-
mones, and protein phosphorylation. Finally, the downstream sig-
nal triggers multiple defense responses such as cellular Ca2+ inflow,
NO synthesis, ROS production, HR, SAR, defense/pathogenesis-
related (PRs) proteins, callose and phytoalexin accumulation, lig-
nin deposition, stomatal closure, and SA production, enabling
plants to enhance resistance against various pathogens. To avoid
the excessive accumulation of ROS-caused oxidative stress during
infection by pathogenic microorganisms, several inducers also pro-
mote the activities of several ROS scavenging related-enzymes and
regulate redox balance. A great diversity of compounds and natural
products involved in plant immunity are deployed as inducers of
plant immunity as discussed below.

Oligosaccharides (OGAs)

The oligosaccharides implicated in plant disease resistance are
generated by the enzymatic degradation of polysaccharides. These
oligosaccharides normally function as PAMPs or DAMPs, which are
recognized by PRRs to activate plant immunity. Their activities are
highly dependent on not only their degree of polymerization (DP)

but also the dose. As shown in Table 1, various kinds of oligosac-
charides, such as chitin and alginates, have been confirmed to act
as immune inducers and consequently activate plant defense
responses. The chemical structures of various oligosaccharides
are shown in Fig. 5.

b-glucans

The first identified active oligosaccharides that functioned as
inducers were b-glucans, which triggered defense responses of
plants through the activation of phenylalanine ammonia-lyase
(PAL) activity. b-glucans are widely found in the cell walls of plants
and fungi. b-1,3-/ b-1,6-Glucans have been extensively explored for
several decades because of their involvement in plant disease
resistance [52]. Laminarin, a b-1,3-glucan, isolated from brown
algae, has an average DP of 25–33 glucose units and up to three
b-glucose branches in position 6. It can induce multiple defense
responses in tobacco plants. However, induced defense by lami-
narin is slower than other b-1,3-glucans with lower DP (2–10)
[38]. Application of laminarin to tobacco plants triggers a strong
enhancement of Phe ammonia-lyase, caffeic acid O-
methyltransferase, and lipoxygenase activities, as well as accumu-
lation of SA. As a result, PR proteins have been accumulated, which
lead to the activation of resistance to Erwinia carotovora [35]. Sul-

Fig. 5. Chemical structures of oligosaccharides with immune inducer activities.
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fated b-1,3-glucan, but not b-1,3 glucan, induced the SA-mediated
defense pathway against TMV in Arabidopsis and tobacco plants
[36].

Chitin

Chitin is also found in the cell walls of fungi and is one of the
best characterized PAMPs [53]. The receptors for chitin have also
been identified in various plants. The chitin elicitor receptor kinase
1 (CERK1) is crucial for chitin elicitor signaling in Arabidopsis [54].
In rice, fungal chitin can be recognized by the LysM-RLP Chitin
elicitor-binding protein (CEBiP) which is a specific chitin receptor
[55]. Exogenous application of chitin could trigger typical PTI by
binding to the chitin elicitor receptor, which could lead to
enhanced resistance against pathogens in various crops, including
rice, wheat, cotton, oilseed rape, and strawberry [56].

Chitosan

Chitosan found in zygomycete cell walls is a deacetylated
derivative of chitin [57]. Chitosan has been proven to induce strong
defense responses against fungal pathogens in various plant spe-
cies. Chitosan oligomers can induce chitinase activity in melon
plants. Exogenous application of chitosan oligosaccharides to
wheat plants induces lignin deposition and increases the levels of
phenolic acids [58]. Moreover, DP also affects the biological activity
of chitosan. Chitosan oligomers with a DP ranging between 7 and
10 are usually the most active plant immunity inducers [59].

Alginates

Alginate oligomers are produced by the depolymerization of
alginates. Alginate oligomers with DP between 2 and 10 have been
shown to exert PAMP function to induce defense responses in var-
ious plant species. The algino-oligosaccharides induced defense
responses by stimulating phytoalexin accumulation and antimicro-
bial activity on Pseudomonas aeruginosa [46]. In Arabidopsis, treat-
ment with alginate oligosaccharide triggered a strong resistance
against Pst DC3000 through the SA signaling pathway [60].

Oligogalacturonides

Some oligosaccharides derived from plant cell walls during a
pathogen infection are considered DAMPs and could induce
defense responses [61]. Oligogalacturonides (OGs) are examples
of DAMPs that stimulate plant immunity and are oligomers of
alpha-1,4-linked galacturonosyl residues released from plant cell
walls upon partial degradation of homogalacturonan. OGs have
been shown to induce resistance against pathogen infections by
inducing ROS production, phytoalexins, callose deposition, nitric
oxide (NO), and pathogenesis-related proteins [61]. OGs could also
trigger nitrate reductase (NR)-dependent fast and long-lasting NO
generation together with an increased NR activity and transcript
level of NR gene, which lead to the enhanced ROS accumulation
and the defense genes PER4 and a b-1,3-glucanase expression
against Botrytis cinerea in Arabidopsis [62]. Moreover, a novel
oligosaccharide, mannan oligosaccharide (MOS) hydrolyzed from
locust bean gum, has great potential as a plant immunity inducer
for managing plant disease. Treatment of tobacco or rice with
MOS led to increased intracellular Ca2+, MAPK cascades, ROS, SA
and JA-dependent signaling pathways, activation of defense-
related genes, and the accumulation of four phytoalexins. MOS sig-
naling induces multiple defense responses against Phytophthora

nicotianae and Xanthomonas oryzae in tobacco and rice, respec-
tively [63]. Recently, Poaceae-specific cell wall-derived oligosac-
charides, namely the tetrasaccharide 31-b-D-Cellotriosyl-glucose

and the trisaccharide 31-b-D-Cellobiosyl-glucose, have been shown
to bind the immune receptor OsCERK1 and lead to the activation of
strong immune responses against M. oryzae infection in rice [64].
Thus, oligosaccharides are effectively used as inducers of plant
immunity in many crops.

Proteins and peptides

Some immune-inducing proteins derived from pathogens (bac-
teria, fungi, and oomycetes) have been shown to trigger plant
immune systems to increase resistance to various pathogens. Here
are some examples.

Bacterial proteins- harpins

Plant disease resistance can be induced by a protein from the
fire blight bacterial pathogen Erwinia amylovora. This protein was
named the hypersensitive protein (harpin) [65]. Harpin is a
glycine-rich and heat-stable protein. Harpins can serve as inducers
of HR, activate defense responses, and promote plant growth
against a broad array of pathogens by regulating multiple signaling
pathways in a range of non-host plant species (Fig. 6) [66]. The
HrpN of E. amylovora is the first identified harpin protein and can
trigger resistance. Since then, multiple harpins have been identi-
fied from various Gram-negative plant-pathogenic bacteria [67].
Similarly, Hpa1, another harpin protein, is produced by X. oryzae

[68]. Exogenous application of Hpa1 increases resistance against
bacterial blight, rice blast, sheath blight, and TMV in various plant
species and improves plant growth [69–71]. Recently, harpins have
been categorized into four major groups (Hpa1, HrpN, HrpW1, and
HrpZ1) based on domain structures and protein similarity; A fifth
group of harpins includes unclassified harpins [72]. The details of
the mechanism of harpins-induced plant immunity against patho-
gens are shown in Fig. 6.

Fungal proteins

Several immunity-inducing proteins derived from fungi could
also trigger plant innate immunity. PevD1, a novel immune-
inducing protein isolated from Verticillium dahliae, is a pathogen-
secreted protein. Treatment of plants with PevD1 induced HR,
extracellular-medium alkalization, H2O2 production, phenolics
metabolism, callose deposition, and lignin synthesis, and caused
necrotic lesions, ultimately leading to SAR, and enhanced resis-
tance to a viral pathogen [73]. PevD1 also triggered plant immunity
through the up-regulation of PR genes, cell wall modifications,
metabolite deposition, JA signaling, and Ca2+-responsive pathways,
enhancing resistance against Pst DC3000 and B. cinerea [74]. Patho-
gens secrete a range of cell wall-degrading enzymes (CWDEs) to
invade plants, and CWDEs also act as inducers of immune
responses. VdPEL1, a novel immune inducing protein isolated from
V. dahlia, is a pectate lyase with pectin hydrolytic activity, which
has been shown to trigger cell death in plants [75]. Purified VdPEL1
protein induced defense responses and systemic resistance in cot-
ton and tobacco, which resulted in increased resistance to B.

cinerea and V. dahliae infection [75]. A secreted protein elicitor
MoHrip1 isolated from M. oryzae can induce the events of defense
responses, including callose deposition, H2O2 production, and alka-
lization of the extracellular medium, and activation of SA and gib-
berellin (GA) signaling [76,77]. MoHrip1 enhanced systemic
resistance to blast fungi in rice and tobacco while promoting plant
growth.
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Oomycete proteins

Immune-inducing proteins secreted by oomycetes have also
been shown to trigger plant defense responses. Elicitins are struc-
turally conserved extracellular proteins that are secreted by
Pythium and Phytophthora pathogen species and act as oomycete
PAMPs [78]. Elicitins induce HR and systemic resistance in various
plants [78]. Recent studies suggest that elicitins can be recognized
by immune receptors and activate broad-spectrum resistance. The
receptor-like protein ELR from the wild potato mediates the per-
ception of the elicitin from Phytophthora, and this receptor-like
protein potentially promoted resistance against several oomycete
[79]. Moreover, cryptogein secreted by Phytophthora cryptogea

could induce an intense defense response in tobacco plants con-
sisting of HR and SAR [80]. In addition, cryptogein also induces
multiple signal transduction events in plants, including ROS and
NO production, MAPK activation, cell death, lipid peroxidation,
and LOX gene transcription [81]. A list of plant diseases managed
by applying immune-inducing proteins in various plant species
are summarized in Table 2.

Glycoproteins

The application of some pathogen glycoproteins could trigger
host immune responses (Table 3). The first reported glycoprotein
was identified in Phytophthora megasperma. This glycoprotein
could trigger defense-related phytoalexin production [107]. Fol-
lowing this discovery, various pathogen glycoproteins have been
identified and applied as elicitors that induce host defense

responses. BcGs1, a glycoprotein isolated from B. cinerea, has been
shown to act as an elicitor that activated hormone signal pathways,
HR and H2O2 production in tomato and tobacco leaves, elevated
the expression of the defense genes PR-1a, tomato protein kinase

1 (TPK1b) and prosystemin [47]. These events lead to strong resis-
tance against B. cinerea, Pst DC3000 and TMV in systemic leaves
[47]. Moreover, GP-1, a novel glycoprotein has also been demon-
strated to induce immunity in tobacco plants. Exogenous applica-
tion of GP-1 triggered defense responses, including Ca2+ influx,
oxidative burst, HR, callose apposition, PCD, increase in NO, and
stomatal closure as well as the activation of SA and JA defense
pathways and the systemic accumulation of PR proteins in Nico-

tiana benthamiana, which led to the enhanced resistance to TMV
[108].

Peptides

Several peptides derived from pathogens and plants also act as
inducers of plant defense and activate PTI. One of the first identi-
fied peptides is Pep13 (13 amino acid residue peptide,
VWNQPVRGFKVYE) from Phytophthora sojae, which can induce
the expression of defense marker genes against potato and parsley
late blight diseases [90]. Flg22 (QRLSTGSRINSAKDDAAGLQIA) iso-
lated from P. aeruginosa is a conserved 22 amino acid sequence
at the N-terminal of bacterial flagellin. Exogenous application of
Flg22 to tomato, potato, and Arabidopsis plants induced ROS accu-
mulation and biosynthesis of ethylene. At the same time, a higher
concentration of Flg22 can elicit necrosis or HR [91]. Flg22 isolated
from Xanthomonas campestris pv. campestris (QQLSSGKRITSASV-

Fig. 6. A schematic model of harpin-induced plant immunity. Harpins activate plant immunity and promote plant growth by regulating multiple signaling pathways. The
exogenous application of harpins promotes K+ efflux, induces extracellular alkalization, and Ca2+ influx, and activates the RBOH and NOS, which result in the production of
ROS and NO, respectively. NO and ROS promote each other to regulate HR. In addition, harpin treatment interferes with the function of mitochondria and inhibits the
respiration of plants, which result in HR. Harpins also enhance plant immunity by promoting MAPK signal cascades, defense-related enzyme activities, and callose deposition.
The application of harpins could activate the expression of NDR1 and EDS1, promote SA synthesis, activate SA signal transduction pathway, and induce the expression of PR
genes and SAR-related genes. Furthermore, harpins can also regulate the accumulation of ethylene (ET). ET binds its receptor ETR1 to activate the C-terminal domain of EIN2
and regulate the transcription factor EIN3 / EIL1, thereby enhancing the expression of ET signaling pathway genes, activating plant immunity, and promoting plant growth.
Harpin treatment can induce the synthesis of GA. GA binds its receptor GID1 to promote the binding of GID1 to the DELLA protein, a negative regulator of GA signaling
pathway, resulting in the conformational change of the DELLA protein. Then the conformational change of DELLA protein interacts with SCFSLY1 and leads to the poly-
ubiquitination of DELLA protein. Finally, DELLA is degraded by 26S proteasome. Therefore, the repression by DELLA protein is removed, and then the expression of GA
signaling pathway genes and plant growth are promoted. In addition, harpins can also increase photosynthetic efficiency and promote plant growth, which enhance plant
resistance to pathogens infection.
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Table 2

Various proteins and peptides that enhanced resistance to a broad range of pathogens in different plant species.

Proteins Source Plants Disease Pathogen Application Defense responses

HrpN [82] Erwinia

amylovora

Tobacco Botrytis cinerea Spray, Transgenic SAR pathway, promote plant growth, resistance-related genes expression, SA-
dependent and JA/ET-dependent defense pathways, enhance superoxide
production

Hpa1 [68–71] Xanthomonas

oryzae

Rice,
Pinellia

ternata

Bacterial blight, Rice
blast, Sheath blight,
Tobacco mosaic
disease

Xanthomonas oryzae,

Magnaporthe grisea,

Thanatephorus cucumeris,

Tobacco mosaic virus

Seed soak, Spray Promote plant growth, hydrogen peroxide signal transduction, induce an increase
in defense-related enzyme activity, increase the expression of disease resistance-
related genes, increase the content of hydrogen peroxide, phenolics, and callose,
reduce the content of malondialdehyde

PevD1 [73,74] Verticillium

dahlia

Tobacco,
Cotton

Verticillium wilt,
Tobacco mosaic
disease

Botrytis cinerea, Pseudomonas

syringae pv. tomato DC3000,
Tobacco mosaic virus

Leaf injection Hypersensitive response (HR), hydrogen peroxide production, extracellular-
medium alkalization, callose deposition, phenolics metabolism, and lignin
synthesis, cause necrotic lesions, induce SAR; trigger innate immunity and to result
in the up-regulation of pathogen-related genes, metabolite deposition, cell wall
modifications, JA signaling and Ca2+-responsive pathways

PEL1 [75] Verticillium

dahlia

Tobacco,
Cotton

Botrytis cinerea, Verticillium

dahlia

Leaf syringe-infiltration Cell death, accumulation of ROS, defense-related genes expression, callose
deposition

Hrip1 [77,83] Magnaporthe

oryzae,

Alternaria

tenuissima

Rice,
Tobacco

Rice blast, Tobacco
mosaic disease

Magnaporthe oryzae, Tobacco

mosaic virus

Spray, Leaf infiltration Hydrogen peroxide production, callose deposition, alkalization of the extracellular
medium, activation of SA signaling pathway, the gibberellin (GA) pathway,
promote plant growth, enhance systemic resistance, hypersensitive response, NO
production, SAR pathway, defense-related genes expression

HpaXpm [84] Xanthomonas

phaseoli pv.
manihotis HNHK

Tobacco Tobacco mosaic
disease

Tobacco mosaic virus Leaf injection, Foliar
spray

Hypersensitive response, NPR1 gene expression, promote plant growth

PopW [85] Ralstonia

solanacearum

Tobacco Tobacco mosaic
disease

Tobacco mosaic virus Spray Hypersensitive response, SAR, induce expression of PR genes, H2O2 burst, activity of
defense-related enzymes, increase tobacco yield, improve tobacco foliar quality

ELR [79] Solanum

microdontum

Potato Potato late blight Phytophthora infestans,

oomycete plant pathogens
Transgenic

Cryptogein [78,81] Phytophthora

cryptogea

Tobacco Phytophthora parasitica Leaf infiltration Hypersensitive response, SAR, ROS and NO production, mitogen-activated protein
kinase (MAPK) activation, cell death, lipid peroxidation and LOX gene
transcription, cell wall modifications

BcGs1 [47] Botrytis cinerea Tobacco,
Tomato

Tobacco mosaic
disease, Gray mold

Tobacco mosaic virus, Botrytis

cinerea

Injection Induce hypersensitive response, up-regulation the PR genes, prosystemin elicitor

Gp-1 [86] Streptomyces Tobacco Tobacco mosaic
disease

Tobacco mosaic virus Leaf spray Induce HR, PCD, H2O2 and Ca2+, induce elevated NO levels, stomatal closure,
accumulation of callose, activation of defense-related genes

GhGLP2 [87] Wheat cell wall Gossypium

hirsutum L.

Verticillium wilt,
Fusarium wilt

Verticillium dahliae, Fusarium

oxysporum.

Root drench Induce PDF and PR genes expression, up-regulation the antioxidant enzyme.
callose deposition, lignin formation

PLCP [88] Papaya cell Citrus Citrus yellow shoot Liberbacter asianticum

jagoueix

Leaf spray Activate the expression of SA related genes, induce PR genes expression, cell death,
conduct MAPK signaling, activation the G-protein coupled receptors

GhLecRK-2 [89] Fungal cell wall Cotton Verticillium wilt Verticillium dahliae Spray, Add to the
bacterial solution

Activate WRKY gene

Pep13 [90] Phytophtora

sojae

Potato,
parsley

late blight disease Phytophtora infestans Cell treatment Function as a PAMP for the activation of innate defense reactions, expression of
defense-related genes,

flg22 [91] Pseudomonas

aeruginosa,

Xanthomonas

campestris

pv. campestris

Tomato,
tobacco,
potato,

Pseudomonas syringae pv.
tomato DC3000

Cell treatment, Spray Induce a visible alkalinization, oxidative burst, elicit necrotic or hypersensitive
response, Induction of ethylene biosynthesis

CAPE1 [92] Tomato Tomato,
Arabidopsis

Pseudomonas syringae pv.
tomato DC3000

Spray Induce H2O2 formation; induce the expression of genes involved in the stress
response, defense response, innate immune response, bacterial defense, and
systemic acquired resistance

LTP4 [93] Grapevine cell
suspension

Grapevine Botrytis cinerea Leaf infiltration

Zea mays immune signaling
peptide 1 (Zip1) [94]

Maize Maize Ustilago maydis Leaves soaking SA accumulation, expression of defense genes,

Phytosulfokines (PSKs) [95] Solanum

lycopersicum

Tomato Botrytis cinerea Spray Promote the binding between calmodulins (CaMs) and the auxin biosynthetic
YUCCAs (YUCs), increase cytosolic [Ca2 + ] facilitate the auxin accumulation

SAMP [96] Australian finger
lime

Citrus Huanglongbing Candidatus Liberibacter
asiaticus

Pneumatic trunk
injection, spray

Induce the expression of defense response genes, promote plant growth
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Table 3

Unsaturated fatty acids with immune inducer activities in different plant species.

Unsaturated fatty acid Chemical structures Source Plant Disease Pathogen Application Defense responses

Palmitoleic acid (16:1)
[97,98]

Solanum

melongena L.
Eggplant Verticillium

wilt
Verticillium dahliae Transgenic

Lycopersicon

esculentum

Mill.

Tomato Powdery
mildew

Erysiphe polygoni DC.
edmund. Salm.

Transgenic

Oleic Acid (18:1) [99] Soybean
(Glycine.max
(L.) Merr.)

Soybean Soybean
phytophthora
root rot

Pseudomonas syringae

pv. glycinea,
Phytophthora sojae

Transgenic, Glycerol
application

NO accumulation, induction of cell death
and PR-1 expression, increased GTPase
activity, SA accumulation, express
pathogenesis-related genes, R gene
expression, production of reactive oxygen
species (ROS)

Linoleic acid (18:2)
[100–102]

Avocado
fruits

Avocado Anthracnose Colletotrichum

gloeosporioides

Ethylene treatment Production of reactive oxygen species
(ROS)

Bean Bean Bean gray
mold

Botrytis cinerea Bacterial liquid
treatment

Linolenic acid (18:3)
[101,103]

Rice Rice Rice blast Magnaporthe grisea Transgenic Oxidative burst, JA signaling pathway,
expression of disease-related genesBean Bean Bean gray

mold
Botrytis cinerea Bacterial liquid

treatment
Petroselinum

crispum

Parsley Phytophthora sojae Elicitor treatment

Arachidonic acid (20:4)
[104–106]

Mortierella

hygrophila

Potato Late blight,
Common
scrab,
Rhizoctonoise

Phytophthora infestans,

Macrosporium solani,

Alternaria solani,

Rhizoctonia solani,

Actinomyces scabes,

Pectobacterium

phytophthorum

Foliar spray Reconstruction of the cell ultrastructure,
increase the amounts of certain enzymes
and protective substances, a decrease in
sterol content, redirection of isoprenoid
biosynthesis from sterol derivatives
toward sesquiterpenoid phytoalexins,
appearance of signal molecules, oxidative
burstMortierella

hygrophila

Tomato Macrosporiose
of leaves,
Septariose of
leaves, Black
bacterial blight
of leaves

Phytophthora infestans,

Alternaria solani,

Macrosporium solani,

Septoria lycopersici,

Xanthomonas

vesicatoria, Meloidogyne

incognita

Foliar spray

Mortierella

hygrophila

Suger beet Cercosporose Foliar spray

Mortierella

hygrophila

Vine plants Powdery
mildew

Foliar spray

Laminaria

digitata

Laminariocolax

tomentosoides
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DAAGLAIS) can also induce plant immunity. Spraying Arabidopsis
plants with Flg22 enhanced resistance to Pst DC3000 [109].

In addition, peptides isolated from plants can also induce plant
immunity. In response to pathogen infection or other stressors, the
expression of PR genes encoding proteins or peptides with antimi-
crobial activities will be induced [110]. Among a total of 17 fami-
lies of PR proteins or peptides, PR1, PR2, and PR5 are apparently
induced by the plant defense hormone SA and are associated with
plant defense against biotrophic and abiotic trophic pathogens
[111]. A peptide named CAPE1, derived from PR-1b, was discov-
ered in tomato plants after wounding or wounding plus methyl-
JA treatment. Exogenous application of its Arabidopsis homolog
AtCAPE1 induces resistance to Pst DC3000 in Arabidopsis plants.
Non-specific lipid transfer proteins (LTPs) belong to the PR15 fam-
ily. One of the type I LTPs VvLTP4 was purified from grapevine cell
suspension. Exogenous application of VvLTP4 provided better pro-
tections to grapevine plants against B. cinerea than JA alone, with
the VvLTP4-JA providing the best protection [93]. Immune signal-
ing peptide 1 (Zip1) is a 17-aa peptide isolated from maize leaves.
Soaking maize leaves with Zip1 can induce SA production in maize,
in which case, the resistance of maize to Ustilago maydiswas signif-
icantly improved [94]. Phytosulfokines (PSKs) are a kind of sulfated
tyrosine-containing pentapeptides, which are ubiquitous in higher
plants. Spraying PSKs on tomato plants could enhance the binding
activity between calmodulins and auxin biosynthetic YUCCAs
(YUCs), resulting in auxin accumulation and activating auxin-
mediated immunity to B. cinerea [95]. Multiple injections of
MaSAMP, a heat-stable peptide isolated from Australian finger
lime, suppresses the citrus greening disease [96]. MaSAMP exhib-
ited strong bacteria-killing activity, promoted the expression of

plant defense genes including PR genes, and activated SAR [112].
As shown in Table 2, a list of plant diseases managed by applying
proteins and peptides are summarized.

Unsaturated fatty acids

Several unsaturated fatty acids, such as oleic acid (18:1), linoleic
acid (18:2), linolenic acid (C18:3), and arachidonic acid (C20:4),
serve as signaling molecules. They induce natural, systemic, and
durable resistance to diseases in plants [104,113]. Oleic acid and
linoleic acid could stimulate protein kinase C-mediated activation
of NADPH oxidase, resulting in ROS accumulation [113]. In soy-
bean, oleic acid induces defense responses and enhances resistance
to bacterial and oomycete pathogens [99]. Arachidonic acid acts as
an inducer to promote defense responses against pathogens [104].
Arachidonic acid was found to strongly trigger oxidative bursts and
induced resistance in L. digitata [106]. Future studies on the per-
ception and signaling pathway of these unsaturated fatty acids will
help us gain a better understanding on how they activate plant
defense. Table 3 shows a comprehensive list of plant diseases man-
aged by the application of unsaturated fatty acids in various plant
species.

Plant hormones and functional analogs

Salicylic acid (SA)

SA plays an important role in establishing plant immunity. It
could serve as an endogenous plant signal to trigger defense

Fig. 7. Salicylic acid (SA)-mediated systemic acquired resistance (SAR). The level of SA in plants is low without pathogen infections. A local infection by an avirulent
pathogen results in an increased level of SA, which will also increase NPR1 protein level. NPR1 targets substrates for ubiquitination and degradation through the formation of
SA-induced NPR1 condensates (SINCs). SINCs are enriched with proteins involved in cell death. Therefore, SA activates NPR1 to induce SAR and NPR1 promotes cell survival to
prevent the spread of cell death. In response to different levels of SA in the center of the infection zone and neighboring cells, NPR3 and NPR4 function as adaptors for Cullin 3
E3 ligase for the degradation of NPR1 to maintain optimal levels of NPR1 to achieve localized cell death during effector-triggered immunity (ETI). Glyceol-3-phosphate (G-3-
P), azelaic acid (AZA), diterpenoid dehydroabietinal (DA), N-hydroxypipecolic acid (NHP) or one or more NHP metabolites, and methyl-SA (MeSA) function as mobile signals
for SAR. Activation of SAR provides resistance in the entire plant to a secondary infection by a virulent pathogen in systemic leaves. It was proposed that the binding of SA to
NPR3/NPR4 removes its transcriptional repression of defense-related genes. In the meanwhile, it was also proposed that SA binds NPR1 to activate the expression of defense-
related genes. Accumulation of SA in the cytoplasm promotes the conversion of the oligomeric NPR1 into its monomers, which then migrate to the nucleus. NPR1 binds to
TGAs to promote the expression of defense-related genes and increase resistance against pathogen infections.
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responses and establish both local and systemic resistance against
various pathogens [114]. The levels of SA increase at local leaves
during a primary infection and infected plants generate a trans-
portable signal that is critical for SAR establishment (Fig. 7).
NPR1 and NPR3/NPR4 served as SA receptors that play important
roles in SA- mediated local and systemic resistance [115,116].
The details of the mechanism of SA-mediated local and SAR against
pathogens are shown in Fig. 7. Various defense-related stimuli
could induce SA production in both local and systemic tissues,
and the application of SA could trigger SAR. SA is synthesized from
chorismate through two independent pathways in plants, either
via PAL in the cytoplasm or via isochorismate synthase 1 (ICS1)
in the chloroplast [117]. Generally, ICS1 is believed to be responsi-
ble for most pathogen-induced SA biosynthesis in plants like Ara-
bidopsis [118], as SA induced by pathogen infections is
dramatically decreased when the ICS1 pathway is blocked. How-
ever, the PAL pathway also contributes to SA biosynthesis and
defense response. Knockdown of ZmPAL expression via VIGS led
to increased sensibility to sugarcane mosaic virus (SCMV) in maize,
symptom severity and virus replication, and reduced SA and PR
proteins accumulation. In addition, the increase in endogenous
SA production is positively correlated with the resistance to hemi-
biotrophic and biotrophic plant pathogens [119]. With the knowl-
edge that SA is essential for plant immunity induction, foliar
application of SA has been successfully utilized to trigger plant
resistance to a broad array of pathogens, such as viruses, bacteria,
nematodes, and fungi (Table 4). Exogenous SA treatment in maize
reduced SCMV accumulation and enhanced maize’s resistance to
viral infection [124]. Tomatoes pretreated with SA showed ele-
vated resistance against tomato yellow leaf curl virus (TYLCV)
infection by regulation of the expression patterns of ROS-related
genes and PR genes [86]. Our study shows that treatment with JA
followed by SA in N. benthamiana triggers the strongest systemic
resistance to TMV [125]. In addition, our studies suggest that glu-
tathione is required for both local and systemic resistance against
viral pathogens through differential regulation of SA signaling and
ROS [10]. The exogenous application of SA also enhances plant
resistance to fungal infection. Treatment with 200 lM SA increased
the endogenous levels of SA, antioxidant activities, and the expres-
sion of SA marker genes in soybean seedlings. However, SA treat-
ment did not affect the mycelial growth of Fusarium solani,
suggesting that SA induces resistance to F. solani in soybean seed-
lings [123]. Similarly, SA pretreatment could enhance the resis-
tance of tomato plants to the fungal pathogen Fusarium

oxysporum. Foliar treatment with 1.5 mM SA could significantly
enhance the activities of defense enzymes, NO production, and
the expression of defense genes in tomato plants. However, NO
synthase inhibitors or NO scavengers significantly decreased these
parameters. Foliar treatment with SA also increased physiological
parameters like shoot and root length, etc. [121] The results
showed that cross-talk between SA and endogenous NO plays a
significant role in improving the resistance against F. oxysporum

in tomato plants [121]. Treatment of rice seedlings with 2 mM
SA induces resistance to bacterial blight by regulating the activities
of antioxidant enzymes and photosystem II [129]. Exogenous SA
can activate SA signaling and participate in xa5-mediated resis-
tance to bacterial blight by upregulating OsNPR3.3 and TGAL11

[122]. Exogenous application of SA by soil drench, foliar spray, or
trunk injection induced citrus systemic resistance to HLB [128].
SA is also involved in protecting plants against nematode patho-
gens. SA-deficient Arabidopsis mutants showed increased suscep-
tibility to the beet cyst nematode. Application of SA in wild-type
Arabidopsis exhibited enhanced resistance to Heterodera schachtii

[126]. In conclusion, exogenous SA treatment induces local and
systemic resistance that is a safe and effective means to resist
the infection of various pathogens.

Benzothiadiazole S-methylester (BTH)

BTH, is also referred to 1,2,3-benzothiadiazole-7-thiocarboxylic
acid-S-methyl-ester (ASM), is a synthetic analog of SA and is one of
the most commonly used immunity inducers in crops. BTH does
not exhibit a direct suppression effect on plant pathogens tested
in vitro; however, it has been found to trigger strong defense
responses against a diverse range of pathogens, including TMV, E.
carotovora, Cercospora nicotianae, M. oryzae, Phytophthora parasit-

ica, and P. syringae pv. tabaci in various important crops
[133,138]. Exogenous application of BTH in common bean plants
increased the accumulation of receptor-like kinases and PR pro-
teins, and resistance to common bean rust caused by Uromyces

appendiculatus [182]. In addition, treatment with BTH markedly
enhanced the H2O2 content and total antioxidant capacity,
increased the activities of defense-related enzymes, reduced the
content of malondialdehyde and delayed fruit ripening, and
induced strong resistance against Colletotrichum musae in banana
plants [130].

BTH can trigger SAR, induce the expression of PR genes, and
enhance resistance against TMV and Peronospora tabacina in sali-
cylic acid-deficient NahG transgenic lines [133]. Also, in Arabidop-
sis, BTH stimulates the PR gene expression and triggers NPR1-
dependent SAR. However, in rice, the WRKY family transcription
factor OsWRKY45 but not rice ortholog of Arabidopsis NPR1 is
required for BTH-induced resistance to rice blast disease [138].
Knockdown of OsWRKY45 in rice significantly reduced the BTH-
induced resistance levels against M. oryzae and X. oryzae pv. Oryzae
[138]. However, when BTH was sprayed on Arabidopsis seedlings
multiple times, the biomass of these plants was reduced [183].
Therefore, precaution should be taken if BTH is repeatedly applied
on the same plant with short intervals to prevent detrimental
effects on plant growth. In addition to BTH, some other immunity
inducers, such as PBZ and Tiadinil, partly triggered strong resis-
tance to rice blast, via the OsWRKY45 signaling pathway [184]. A
comprehensive list of diverse plant diseases managed by treatment
with BTH in various plant species is summarized. BTH is suitable
for agricultural crop protection and has been commercialized as
an effective agrochemical (Table 4).

2, 6-dichloroisonicotinic acid and N-cyanomethyl-2-chloro

isonicotinic acid

2, 6-dichloroisonicotinic acid (INA) induces similar defense
responses as SA, but it does not increase the content of SA and
can still induce SAR in NahG transgenic plants [185,186]. Therefore,
it is regarded as a functional SA analog that works downstream of
SA. Like SA, INA has been shown to inhibit ascorbate peroxidase
(APX) and catalase activity and also induce ROS accumulation
[187]. Exogenous application of INA triggers strong resistance in
a large number of plants, such as tobacco, beans, pepper, pear,
cucumber, rice, and Arabidopsis against various pathogens
[141,144]. INA could enhance defense against bacterial spot dis-
ease in tomato plants through regulation of the defense-related
genes [145].

N-cyanomethyl-2-chloro isonicotinic acid (NCI) is another
potential immunity inducer, which was recognized as a potent
immunity inducer for the control of rice blast disease [147]. NCI
did not show antifungal activity on M. oryzae in vitro even when
a high dose (1100 lM) was employed. However, NCI-induced resis-
tance is long-lasting in rice. NCI also induced a strong resistance
against various pathogens in tobacco plants, and increased the
expression of PR genes [147]. In NahG transgenic tobacco plants,
NCI also induces the expression of PR genes [149]; therefore,
NCI-triggered immune responses do not require the accumulation
of SA; Moreover, NCI-triggered resistance is independent of the
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Table 4

Various plant hormones and functional analogs showing immune inducer activity in different plant species.

Chemical names Chemical structures Plant/Pathogen interaction Application Defense responses

Salicylic acid (SA) Pakchoi/Plasmodiophora brassicae [120] Application directly to the soil Induce the activities of antioxidant and resistance-
related enzymes, abilities of osmotic regulation, and ROS
scavenging-related genes, defense-related genes, lignin
accumulation, improve photosystem II activity.

Tomato/Fusarium oxysporum [121] Foliar spray
Rice/Xanthomonas oryzae pv. Oryzae [122] Foliar spray
Soybean/Fusarium solani [123] Foliar spray
Maize/Sugarcane mosaic virus [124] Foliar spray
Tomato/Tomato yellow leaf curl virus [86] Foliar spray
Nicotiana benthamiana/Tobacco mosaic virus

[125]
Foliar spray

Arabidopsis thaliana/Heterodera schachtii [126] Add to the medium
Tomato/Ralstonia solanacearum [127] Seed soak
Orange/Candidatus Liberibacter asiaticus [128] Foliar spray, soil drench, trunk

injection
Rice/Xanthomonas oryzae pv. oryzae [129] Soil drench

Benzothiadiazole S-methylester
(BTH)

Banana/Colletotrichum musae [130] Fruit treatment Enhance the activities of defense-related enzymes,
including chitinase, phenylalanine ammonia-lyase,
peroxidase, and polyphenol oxidase, increase the
content of hydrogen peroxide and total antioxidant
capacity, reduce malondialdehyde content, SA signaling
pathway, trigger NPR1-dependent SAR

Tomato/Fusarium oxysporum f.sp. radicis-
lycopersici (FORL), Clavibacter michiganensis

subsp. Michiganensis, Bemisia tabaci [131,132]

Foliar spray

Tobacco/Tobacco mosaic virus, Cucumber mosaic

virus, Cercospora nicotianae, Erwinia carotovora,

Phytophthora parasitica, Pseudomonas syringae

pv. Tabaci [119,133,134]

Foliar spray

Arabidopsis thaliana/Turnip crinkle virus,

Pseudomonas syringae pv. tomato DC3000,
Hyaloperonospora arabidopsidis, Peronospora
parasitica [135,136]

Foliar spray

Grapefruit/Xanthomonas citri subsp. citr [137] Spray
Rice/Magnaporthe oryzae, Xanthomonas oryzae

pv. oryzae [138,139]
Foliar spray

2,6-dichloroisonicotinic acid
(INA)

Tobacco/Tobacco mosaic virus, Cercospora
nicotianae, Peronspora tabacina, Phytophthora
parasitica var. nicotianae, Pseudomonas syringae

pv. tabaci [140,141]

Injection into leaves Induce SAR, inhibit catalase and ascorbate peroxidase
(APX) activity, induce ROS accumulation, mediate
defense-related effects upon interaction with NPR1-
related proteins, control several TGA transcription
factors, promote NPR1-NPR3 interactions, reduce the
binding affinity of SA to NPR3 and NPR4 by competing
with SA

Cucumber/Colletotrichum lagenariunm,
Cercospora nicotianae, Peronospora tabacina,
Phytophthora parasitica var. nicotianae,
Pseudomans syringae pv. tabaci [140,142]

Foliar spray

Arabidopsis thaliana (Ler)/Hyaloperonospora
arabidopsidis [143,144]

Soil drench

Arabidopsis thaliana (Col-0)/Pseudomonas

syringae pv. tomato DC3000 [143,144]
Foliar spray

Tomato/Xanthomonas perforans [145] Seed soak
Soybean/Phytophthora sojae [146] Root drench
Hamlin sweet orange/Candidatus Liberibacter
asiaticus [128]

Foliar spray

N-cyanomethyl-2-chloro
isonicotinic acid (NCI)

Oryza sativa/Pyricularia oryzae, Xanthomonas

oryzae pv. oryzae [147]
Root drench Induce SAR, enhance the expression of PR genes, induces

expression of PR1, PR2 and PR5
Tobacco/Tobacco mosaic virus, Oidium lycopersici,
Pseudomans.syringae pv. tabaci [140,148]

Soil drench
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Table 4 (continued)

Chemical names Chemical structures Plant/Pathogen interaction Application Defense responses

Probenazole (PBZ) Tobacco/Tobacco mosaic virus, Pseudomonas

syringae pv. tabaci, Oidium sp. [149]
Foliar spray SA accumulation, expression of several pathogenesis

related (PR) genes, accumulation of PR proteins,
hypersensitive reaction, accumulation of fungicidal
substances, amplification of superoxide production

Rice/Magnaporthe grisea, Xanthomonas oryzae

pv. oryzae [150,151]
Spray

Arabidopsis/Pseudomonas syringae pv. tomato

DC 3000, Peronospora parasitica Emco5 [152]
Spray, Leaf injection

Saccharin Wheat/Blumeria graminis f.sp. tritici,
Zymoseptoria tritici [153,154]

Foliar spray Expression of pathogenesis-related genes, SA signaling
pathway, JA signaling pathway, deposition of callose,
induce an increase in defense-related enzyme activityArabidopsis thaliana/Pseudomonas syringae pv.

tomato DC3000 [153]
Foliar spray, Root drench

Soybean/Phakopsora pachyrhizi [155] Foliar spray, Root drench
Rice/Magnaporthe grisea, Xanthomonas oryzae

[155]
Foliar spray

Tobacco/Tobacco mosaic virus [156] Soil drench
Cucumber/Colletotrichum lagenarium [156] Soil drench
Green bean/Uromyces appendiculatus [156] Soil drench
Broad bean (Vicia faba)/Uromyces viciae-fabae

[157]
Soil drench, Foliar paint

Barley/Blumeria graminis f.sp. hordei [158] Foliar spray, Soil drench
Jasmonic acid (JA) Nicotiana benthamiana/Manduca sexta [159] Foliar spray Induce oxidative bursts, phytoalexin accumulation,

pathogenesis-related proteins accumulation,
lignification, cell wall stiffening, decrease
malondialdehyde, enhance lipoxygenase and
phenylalanine ammonia-lyase, induce resistance-related
enzymes, defense-related genes, induce alkaloids and
phenolic acids, induce the production of secondary
metabolites and volatile compounds, induce the
formation of defensive structure, modulate stomatal
opening, tendril coiling, root growth inhibition, anther
development, fruit ripening, tuber formation, seed
germination, senescence, plant responses against
wounding.

Oryza sativa/Magnaporthe oryzae [160] Root drench
Arabidopsis thaliana/Botrytis cinerea [161] Foliar spray
Vitis vinifera/Botrytis cinerea [162] Fruit infiltration
Solanum tuberosum/Phytophthora infestans [163] Root drench
Triticum aestivum/Powdery mildew [164] Foliar spray
Actinidia chinensis/Botryosphaeria dothidea [165] Fruit infiltration
Amygdalus persica/Rhizopus stolonifera [166] Fruit injection
Vigna mungo/Mungbean yellow mosaic India virus

[167]
Foliar spray

Arabidopsis thaliana/Plasmodiophora brassicae

[168]
Root drench

Arabidopsis thaliana, Nicotiana benthamiana,

Nicotiana glutinosa, Nicotiana tabacum, Capsicum

annum, Solanum lycopersicum/Cucumber mosaic

virus, Tobacco mosaic virus, Turnip crinkle virus

[169]

Seed spray

Saccharum officinarum/Pratylenchus zeae,

Helicotylenchus spp [170]
Root drench

Solanum lycopersicum/Root-knot nematodes
[171]

Seed spray

Phaseolus vulgaris/Sclerotinia sclerotiorum [172] Foliar spray
Pennisetum glaucum/Sclerospora graminicola

[173]
Seed treatment,
Foliar spray

Brassinosteroids Tobacco/Tobacco mosaic virus, Pseudomonas

syringae pv. tabaci, Pseudomonas syringae pv.
tomato DC3000, Oidium sp. [174–176]

Spray Induce systemic resistance, BDR-signaling pathway,
H2O2 production, ROS burst, upregulate nitric oxide (NO)
production, promote abscisic acid (ABA) biosynthesis,
activate pathogenesis-related genesRice/Magnaporthe grisea, Xanthomonas oryzae

pv. oryzae [174]
Soil drench

Barley/Fusarium culmorum [177] Spray
Tomato/Botrytis cinerea, Meloidogyne incognita

[178,179]
Leaflet soak

Arabidopsis thaliana/Cucumber mosaic virus

[180,181]
Spray
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accumulation of SA but depends on AtNPR1 in Arabidopsis [148].
Treatments with INA and NCI were used to manage plant diseases
in various plant species (Table 4).

Probenazole (PBZ)

PBZ, a benzisothiazole derivative, was first identified as a plant
immunity inducer through screening for chemicals that could trig-
ger resistance against M. oryzae in rice. PBZ did not show strong
inhibition of conidial germination and mycelial growth against
M. grisea; however, PBZ-induced antifungal resistance in rice is
long-lasting. PBZ induced a strong resistance to protect a large
number of plants from various pathogens, such as bacteria, viruses,
and fungi [149,188].

Treatment with PBZ or its active metabolite, BIT (1, 2-
benzisothiazol-3 (2H)-one 1,1-dioxide), did not induce the expres-
sion of PR-1 gene in NahG transgenic or npr1 mutant plants. PBZ-
and BIT-mediated defense responses seem to require SA and
NPR1. Moreover, further evidence also suggests that PBZ and BIT
act as immunity inducers by activating a site upstream of the point
of SA accumulation [150]. Other modes of action have been
observed for PBZ; for example, probenazole treatment can alter
metabolic pathways leading to resistance to M. grisea in rice
[151]. Application of PBZ in rice affected metabolic profiles by
changing 54 metabolites. SA, shikimate, c-aminobutyrate, and
other resistance-related primary and secondary metabolites were
significantly up-regulated [151]. PBZ has been commercially used
against rice blast and bacterial leaf blight under the name Oryze-
mate� (developed by Meiji Holdings, CO., Ltd. Japan) [143]. Despite
PBZ’s extensive use over many years, the development of probena-
zole resistance in target pathogens has not been promising as of
yet [149]. Table 4 shows that the application of PBZ was used to
manage plant diseases in various plant species.

Saccharin

Saccharin (1,1-dioxo-1,2-benzothiazol-3-one) is an active
metabolite of PBZ. Saccharin has been identified as an inducer of
SAR in both dicots and monocots against various pathogens,
(Table 4) [155,158]. Saccharin works through the upregulation of
SA signaling and activation of the expression of PR genes in tobacco
and Arabidopsis [149,152]. Pretreatment with saccharin enhanced
the expression of multiple defense-related genes in wheat seed-
lings and resulted in increased resistance to powdery mildew
[153]. Saccharin had no direct inhibitory effect on the hemibio-
trophic pathogen Zymoseptoria tritici. However, foliar application
of saccharin conferred protection against Z. tritici in wheat plants,
through elicitation and induction of LOX and PR genes [154]. Sac-
charin triggered defense responses in barley, by increasing the
activity of cinnamyl alcohol dehydrogenase (CAD), against B. gra-
minis f.sp. hordei [158]. In addition, the effectiveness of saccharin
as an inducer of SAR against soybean rust (SBR), caused by the fun-
gus Phakopsora pachyrhizi, in soybean plants was also reported
[155].

Jasmonic acid (JA)

While SA triggers defense responses against biotrophic patho-
gens, JAs have long been thought to mainly promote defense
responses against necrotrophic pathogens and herbivores.
Methyl-jasmonate (MeJA) and isoleucine conjugate (JA-Ile) are
derivatives of fatty acids and are collectively called jasmonates
(JAs). More recently, evidence indicates that JA-Ile plays a signifi-
cant role in JA signal transduction in response to environmental
stress [189]. JA-Ile can bind to the JA-receptor, coronatine insensi-
tive 1 (COI1), which encodes an F-box protein. The interaction

between JA-Ile and COI mediates the ubiquitin-dependent degra-
dation of Jasmonate Zinc finger Inflorescence Meristem (ZIM)-
domain (JAZ) repressors, which leads to the activation of JA-
responsive gene expression controlled by several transcription fac-
tors (TFs) such as MYCs, NAC, WRKY, and ethylene response factor
(ERF) [190,191]. A volatile methyl ester of JA, methyl jasmonate,
also participates in plant immunity. Exogenous application of MeJA
induces oxidative bursts, phytoalexin accumulation, the accumula-
tion of PR proteins, lignification, and cell wall stiffening, which
result in a strong resistance against pathogens in various plant spe-
cies [172,192]. Treatment with MeJA in Arabidopsis increased the
transcript levels of defense genes, and contributed to the host
resistance against several necrotrophic pathogens [193]. Exoge-
nous application of MeJA in Phaseolus vulgaris increased
pathogenesis-related protein activities and induced resistance to
the necrotrophic fungus [172]. Recently, several studies suggested
that JA also plays an important role in plant defense against bio-
trophic or hemibiotrophic pathogens [160,194]. In rice, JA-
mediated defense pathways enhance resistance to the hemibio-
trophic rice blast fungus M. oryzae [160]. Application of MeJA in
Vigna mungo reduced the levels of malondialdehyde, enhanced
the expression of lipoxygenase, phenylalanine ammonia-lyase
and defense-related genes, and decreased expression of the coat
protein of the Mungbean Yellow Mosaic India Virus (MYMIV),
implying that MeJA is also effective against viruses [167].

Interestingly, a bacterial phytotoxin from P. syringae, named
coronatine, has also been shown to induce typical jasmonate-
induced defense responses. The 6-substituted 1-oxoindanoyl iso-
leucine conjugates which are the structural mimics of coronatine
have been designed and synthesized [195]. Among these conju-
gates, 1-oxo-indanoyl-L-isoleucine methyl ester has been reported
to increase the activity of defense-related enzymes and trigger a
strong resistance to downy mildew [143,173]. Another molecule,
a 6-ethyl indanoyl isoleucine, named coronalon, is established as
an efficient inducer of various jasmonate-induced defense
responses in various plant species [195]. Additional synthetic JA
mimics also triggered jasmonate pathways and defense responses
against pathogen infection in various plants [143]. Thus, JA mimics
are also employed to elicit plant resistance against various patho-
gens in agriculture. Table 4 shows a list of plant diseases managed
via the application of JA and JA mimics in various plant species.

Brassinosteroids (BRs)

Increasing evidence implies BRs play important roles in plant
defense responses. Perception and signal transduction of BRs are
dependent on the plasma membrane receptor kinase BRI1 (BR
receptor) and BRI1-ASSOCIATED KINASE 1(BAK1), which is the BR
coreceptor. BRI1-EMS-SUPPRESSOR 1 (BES1) and BRASSINAZOLE
RESISTANT 1 (BZR1) function as major transcription factors, which
trigger BR defense responses and crosstalk with other hormones
signals in response to pathogen infections in plants [176,180].
BR-induced resistance to various pathogens was observed in mul-
tiple plant species (Table 4) [196]. Wild-type tobacco treated with
the most active BR brassinolide (BL) exhibited enhanced resistance
to Pseudomonas syringae pv. tabaci and powdery mildew [174].
Further studies indicate that the crosstalk between BR and ethy-
lene (ET) plays a significant role in plant defense responses. Foliar
applications of BR and ET in N. benthamiana enhanced resistance to
Pst DC3000. At the same time, the applications of BRZ (brassina-
zole, a specific BR biosynthesis inhibitor) abolished the ET signal
and triggered resistance to Pst DC3000, suggesting that BR is con-
nected with ET-induced resistance to Pst DC3000 [176]. In addition,
exogenous BL enhanced resistance against rice blast and rice bac-
terial blight diseases [174].
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BR also could induce resistance to viral pathogens in various
plant species. Treatment with BL increased N-gene-mediated resis-
tance to tobacco mosaic virus (TMV) [174]. Recent studies also con-
firmed that exogenous application of BRs increased tobacco
resistance to TMV while treatment with BRZ reduced plant resis-
tance [197]. Applications of BR enhance systemic resistance against
viral pathogens through regulation of ROS production in N. ben-

thamiana [175]. BR-induced anti-viral defense responses, include
increased NO biosynthesis and H2O2 accumulation, which are
required to regulate the expression of defense-related genes. BR
treatment increased NO accumulation and enhanced Arabidopsis
resistance against cucumber mosaic virus (CMV) [181,198]. How-
ever, pretreatment with NO scavenger (PTIO) or nitrate reductase
(NR) inhibitor (tungstate) abolished the production of NO and
appeared to compromise plant resistance [180]. Moreover, BR-
induced resistance to virus infection involved antioxidant system
by increasing the activities of antioxidative enzymes [196,198].

Other types of inducers

Vitamin B1

Increasing evidence indicates that vitamins could act as induc-
ers of resistance and also enhance crop yield [199], which may be
the keys to improving agricultural productivity and enhancing food
security [200]. Thiamine, also known as vitamin B1, is the first
identified B type vitamin. This article will focus on the significance
of vitamin B1 in plant disease resistance. Increasing evidence has
verified that thiamine could function as an immune inducer of sys-
temic, broad-spectrum, long-lasting resistance to various patho-
gens in multiple plant species (Table 5). Exogenous application of
thiamine increased rice resistance against leaf blight [201,243]
and root-knot nematodes by increasing lignification and H2O2 gen-
eration [203], treatment with thiamine also triggered rice resis-
tance to sheath blight disease in rice by boosting the total
accumulation of phenolics accumulation, H2O2 content, and the
activities of PAL and superoxide dismutase (SOD) [202]. In tobacco
plants, thiamine can also induce systemic resistance to viral patho-
gens, such as pepper mild mottle virus (PMMoV), by increasing the
expression of PR genes [201]. In cucumber plants, it also provided
resistance to powdery mildew (Sphaerotheca fuliginea) and
anthracnose (Colletotrichum lagenarium) [201]. Moreover, thiamine
treatment triggered resistance against Pst DC3000 in Arabidopsis
[201]. In Capsicum annuum plants, vitamin B1-induced defense
responses and systemic resistance against TMV infection were
associated with the antioxidant system and pathogenesis-related
proteins by increasing the activities of Polyphenol Oxidase (PPO),
PAL, and Peroxidase (POD) [207]. In soybean plants, the exogenous
thiamine application enhanced resistance to root rot caused by
Macrophomina phaseolina [244]. In grapevine, thiamine treatment
triggered multiple defense responses including callose deposition,
H2O2 production, upregulation of defense-related genes, phenolic
compound accumulation, and HR, which resulted in increased
grapevine resistance to downy mildew [206].

Inorganic salts

Spraying of inorganic salts significantly reduced pathogen infec-
tion in multiple plant species [245]. Several inorganic salts, such as
silicates, bicarbonates, phosphites, chlorides, and phosphates, have
been shown to be able to alleviate the severity and symptoms of
various fungal diseases in multiple plant species [245]. This paper
will focus on the significance of phosphates in plant disease resis-
tance (Table 5). Increasing evidence suggests that phosphates
could act as immune inducers of systemic resistance to various

pathogens. The phosphate salts K2HPO4, K3PO4, NH4H2PO4, and
KH2PO4 showed antifungal properties [245]. Since dibasic and trib-
asic phosphate salts play important roles in systemic resistance to
anthracnose in greenhouse cucumber [199], the efficacy of phos-
phates in disease resistance of crops has received attention. More-
over, phosphate salts provided long-lasting protection to cucumber
plants because the induced-systemic resistance in newly devel-
oped leaves was still effective for five weeks after the exogenous
treatment. Further studies also confirmed the exogenous applica-
tion of K3PO4 or K2HPO4 in the lower leaf surface induced systemic
resistance against the four fungal diseases of cucumber: powdery
mildew, anthracnose, gummy stem blight, and scab, in larger
greenhouse assays [209]. In addition, foliar sprays of K2HPO4 or
KH2PO4 induced local and systemic resistance to powdery mildew
in field-grown nectarine, mango trees, and grapevines [211]. In
cucumber plants, foliar application of phosphate can also trigger
systemic protection against powdery mildew [246,247]. In bean
plants, exogenous application K2HPO4 or KH2PO4 stimulated the
activities of defense-related enzymes and enhanced resistance to
Uromyces appendiculatus [248]. Spray application of K2HPO4 in
cucumber plants resulted in cell death along with a rapid genera-
tion of H2O2 and superoxide with increased levels of free and con-
jugated SA, indicating that foliar application of K2HPO4 on
cucumber plants leads to activation of defense mechanisms similar
to those initiated by necrotizing microbes and viruses that trigger
SAR [210].

Non-protein amino acids

b-aminobutyric acid (BABA), a non-protein amino acid was rec-
ognized as a plant immunity inducer in 1963. Application of BABA
was reported to protect about 40 different plant species against
various pathogens and pests (Table 5) [249]. However, this
broad-spectrum disease resistance is dependent on different
defense mechanisms. BABA primes defense reactions modulated
by SA and the master regulator of SA signaling NPR1 against the
bacterial leaf pathogen P. syringae. In addition, BABA primes
defense mechanisms that operate independently of SA and NPR1
based on cell-wall-related defense primed by abscisic acid (ABA)
against some fungi and oomycetes [219]. Recently a new defense
mechanism determined that the iron deficiency induced by BABA
could increase plant resistance was reported [250]. More recently,
the study provided evidence that the BABA receptor IBI1 which
encodes an aspartyl-tRNA synthetase senses BABA in Arabidopsis
[251]. The binding of BABA to the L-Asp-binding domain of IBI1
results in priming its alternative defense activity. Although BABA
is generally considered as a synthetic plant immune inducer,
recent studies have unequivocally recognized BABA as an endoge-
nous plant metabolite synthesized by many different plant species
[252].

Pipecolic Acid (Pip), another non-protein amino acid, is a lysine
decomposition product, which has been shown to be a critical
metabolite in the SAR pathway. After inoculation with pathogenic
bacteria, Pip accumulated significantly in the exudates of infected
leaves and petioles. Exogenous application of Pip to roots can
induce the synthesis of the phytoalexin camalexin, Pip, and SA, ini-
tiating the expression of early defense-related genes. Besides, the
ald1 mutants lacking Pip have been shown to be defective in SAR
and resistance induced by BABA. These results indicate that Pip
ensures effective local resistance and SAR through defense
responses amplification, positive regulation, and initiation of SA
biosynthesis (Table 5) [239]. The flavin monooxygenase FMO1 con-
verts Pip to N-hydroxypipecolic acid (NHP), which plays an essen-
tial role in SAR [253]. A recent study provide evidence that one or
more NHP metabolites acts as a mobile signal for SAR [254].
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Table 5

Other types of inducers showing immune inducer activity in different plant species.

Chemical names Chemical structures Plant/Pathogen interaction Application Defense responses

Vitamin B1 (Thiamine) Rice/Magnaporthe grisea, Xanthomonas oryzae, Rhizoctonia

solani, Meloidogyne graminicola [201–203]
Spray, Root drench SAR, expression of pathogenesis-related (PR) genes, ROS, HR,

callose, phytoalexins, SA signaling pathway, JA signaling
pathway, up-regulation of protein kinase C activity, Ca2+-
dependent signaling pathway, higher hydrogen peroxide
content, total phenolics accumulation, phenylalanine
ammonia lyase (PAL) activity and superoxide dismutase (SOD)
activity

Cucumber/Colletotrichum lagenarium, Sphaerotheca

fuliginea [201]
Spray

Arabidopsis thaliana/Pseudomonas syringae pv. tomato

DC3000 [201]
Spray

Tobacco/Pepper mild mottle virus [201] Spray
Soybean/Macrophomina phaseolina [204] Stem base syringe
Barley/Aphids [205] Add to nutrient

solution, Seed soak,
Spray, Volatile
treatments

Pea/Aphids [205] Add to nutrient
solution, Seed soak,
Spray, Volatile
treatments

Grapevine/Plasmopara viticola [206] Spray
Capsicum annuum/Tobacco mosaic virus [207] Spray

Phosphate salts Cucumber/Colletotrichum lagenarium, Cladosporium

cucumerinum, Dydimella bryoniae, Sphaerotheca fuliginea,

Pseudomonas lachrymans, Erwinia tracheiphila, Tobacco

necrosis virus, Cucumber mosaic virus [208–210]

Spray Activate phenylalanine ammonia lyase (PAL), peroxidase and
lipoxygenase, cell death, generation of superoxide and
hydrogen, a local and systemic increase in free and conjugated
salicylic acid (SA) levels peroxide, trigger the activity of
defense-related enzymesGrape/Uncinula necator (Schw.) Burr. [211] Spray

Mango/Oidium mangiferae [211] Foliar spray
Nectarine/Sphaerotheca pannosa [211] Foliar spray
Rice/Magnaporthe grisea [212] Foliar spray
Tomato/Fusarium oxysporum f. sp. lycopersici (Sacc) [213] Spray
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Table 5 (continued)

Chemical names Chemical structures Plant/Pathogen interaction Application Defense responses

b-Aminobutyric acid Apple/Alternaria alternate, Penicillium expansum [214,215] Fruit injection Improve CHT, POD, GLU and PAL activity, accumulation total
phenols, flavonoids content, production of phenolics,
peroxides, accumulation PR-proteins callose and lignin, induce
HR response, improve PPO and POX activity, increase H2O2

content, regulate ROS metabolism, accumulation SA content

Arabidopsis thaliana/Alternaria brassicicola, Botrytis cinerea,

Peronospora parasitica, Pseudomonas syringae pv. tomato

[216–219]

Foliar spray

Artichoke/Sclerotinia sclerotiorum [220] Foliar spray
Barley/Blumeria graminis f.sp. hordei [221] Foliar spray
Basil/Peronospora belbahrii [222] Foliar spray
Citrus/Citrus Huanglongbing [223] Foliar spray
Chinese cabbage/Alternaria brassicicola [224] Foliar spray
Cucumber/Colletotrichum lagenarium [225] Foliar spray
Grape/Botrytis cinereal, Penicillium Digitatum, Plasmopara

viticola [226–228]
Foliar spray, Fruit
injection

Jujube/Alternaria alternata [229] Foliar spray
Lettuce/Bremia lactucae [230] Foliar spray
Mango/Colletotrichum gloeosporioides [231] Foliar spray
Peaches/RhizopusRot [232] Fruit injection
Potato/Fusarium sulphureum, Phytophthora infestans

[233,234]
Foliar spray

Brassica napus/Verticillium longisporum [235] Root drench
Soybean/Aphis glycines [236] Soil drench
Tobacco/Tobacco mosaic virus [237] Foliar spray, Root

drench
Wheat/Brevicoryne brassicae [238] Soil drench

Pipecolic Acid (Pip) Arabidopsis thaliana/Pseudomonas syringae [239] Root treatment Synthesize the phytoalexin camalexin, Pip, and salicylic acid
and primes plants for early defense gene expression

Azelaic acid Arabidopsis thaliana/Pseudomonas syringae (PmaDG3) [240] Spray SAR, SA signaling pathway

Dehydroabietinal (DA) Arabidopsis thaliana, tobacco, tomato/Pseudomonas

syringae pv. maculicola ES4326 (Pma), Pseudomonas

syringae pv. tomato DC3000 [241]

Leaves infiltration SAR, SA signaling pathway, expression of pathogenesis-related
genes

Glycerol-3-phosphate
(G3P)

Arabidopsis thaliana, soybean/Pseudomonas syringae pv.
tomato DC3000 [242]

Spray SAR
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Azelaic acid, glycerol-3-phosphate, and dehydroabietinal

Besides MeSA and NHP, Azelaic acid (AzA), glycerol-3-
phosphate (G-3-P), and dehydroabietinal (DA) have been shown
to serve as a mobile signals in SAR [110]. Bacterial infection can
induce the accumulation of AzA in Arabidopsis and enhance local
and systemic resistance to P. syringae. Further, exogenous spraying
of AzA primes the accumulation of SA and induces local and sys-
temic resistance (Table 5) [240]. In addition, some researchers sug-
gest that SAR induced by AzA requires G3P. AzA acts upstream of
G3P in this pathway and can promote G3P accumulation [255].
G3P is a phosphorylated sugar derivative, which is ubiquitously
found. As a conserved metabolite, it is an essential precursor for
the biosynthesis of glycerides. Increasing intracellular G3P level
or exogenous spraying of G3P can stimulate SAR in Arabidopsis
and soybean and increase the resistance to Pst DC3000 (Table 5)
[242]. DA is a C20 diterpene, is a SAR activator via the SA signaling
pathway. Infiltration of purified DA into leaves can systematically
induce SA accumulation in Arabidopsis. NPR1, FMO1, and DIR1,
are key genes of biologically induced SAR, were also upregulated
after being induced by DA. DA-induced SAR can be further
enhanced by AzA (Table 5) [241].

Characteristics of induced plant immunity

Armed with the knowledge of induced plant immunity,
immunity-related compounds and inducers can be employed for
local and systemic resistance against various pathogens. As illus-
trated in Fig. 8, induced immunity in plants has several superior
characteristics compared to other modes of resistance [240,256].
The following are some of the characteristics defining these
induced plant defenses.

Broad-spectrum property

While ETI triggers pathogen race-specific resistance, immunity
inducers that are frequently based on SAR usually trigger broad-
spectrum resistance against a wide range of pathogens. Different
inducers can trigger resistance to the same disease; on the other
hand, the same inducing factor can also induce resistance to differ-
ent diseases. For example, BTH triggers disease resistance in mul-
tiple plant species against various pathogens [257]. Therefore,
induced plant immunity is generally non-specific and broad-
spectrum, making it easier to use one inducer to prevent multiple
diseases in agricultural applications [256].

Hysteresis

A lag period is required from inducer treatments to the optimal
deployment of immune function. This period of hysteresis is the
time required for the plant to mount an ‘‘immune response” or
gene sensitization to the stimulus. The length of this lag period is
related to the type of inducers, the method of induction, and the
plant species. It can be as short as a few hours or as long as a
few days. For example, brassinosteroids induce the production of
ROS and nitric oxide in N. benthamiana to enhance their resistance
to TMV, and it takes 12 h from the start of the induction treatment
to the activation of immune responses [175].

Durability

Once the induced immunity is established, it can be maintained
for a sufficient amount of time. The persistence period is depen-
dent on inducing factors and plant species. For instance, pretreat-
ment of potato tubers with arachidonic acid (AA) induced
resistance against the potato late blight, and this resistance is
retained for 2–3 months [104]. Exogenous application of NCI
induced resistance against rice blast disease that lasted for 30 days
[147]. Foliar application of the inorganic salt, monopotassium
phosphate (KH2PO4) induced resistance to Sphaerotheca fuliginea

for up to 21 days [258]. Application of probenazole (PBZ) resulted
in induced rice resistance to leaf blast disease, which completely
controlled and blocked this disease for 40–70 days [188].

Stability

Plant immunity inducers provide resistance against pathogen
infection by priming plant immunity. Since pathogens are not
directly affected by the inducer, there is no risk of pathogens
directly developing resistance to the inducers in contrast to patho-
gens evolving resistance to fungicides and pesticides. Therefore,
plant-inducing immunity is a stable means of disease prevention
[256,259].

Safety

Most chemical and biological plant immune inducers have no
major adverse effects on humans, animals, and the environment.
Their mechanisms determine that most inducers will not be
metabolized and produce toxic substances in plants. Arysta Life
Science (ALS) and the Institute of Plant Protection (IPP) in China
launched the Green Tea Project in 2015 and conducted multiple
trials of controlling tea plant diseases using plant immune inducers
worldwide. The results showed that induced defense proteins of
plant immunity could effectively control plant diseases and they
do not persist in the environment [259]. In conclusion, controlling
plant diseases using plant immunity inducers is an environmen-
tally friendly green disease prevention technology.

Commercialization of plant immunity inducers

Because of the obvious advantages of using plant immunity
inducers for pathogen control in crop protection, numerous biolog-
ical and abiotic agents capable of triggering host defense against
various pathogens in different plant species have been commer-
cialized. Many of them can also regulate the physiological pro-
cesses of plants to stimulate growth and development and
strengthen productivity. Inducers such as BTH, PBZ, INA, NCI, MeJA,
tiadinil (TDL), and ZhiNengCong (ZNC), as commercialized prod-
ucts, have been successfully used as agrochemicals for controlling
plant diseases [260,261]. ZNC is the crude extract of an endophyticFig. 8. Characteristics of induced plant immunity.
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fungus, Paecilomyces variotii, and it has been widely used as an
immune inducer on various crops in China. ZNC functions as a
new, efficient, environmentally friendly immune inducer, enhanc-
ing plant resistance against Pst DC3000 [262]. Further studies have
shown that ZNC could trigger strong plant defense responses, such
as RNA silencing, H2O2 and SA accumulation, which enhanced
tobacco resistance to Potato X virus (PVX) infection at low concen-
tration by positively regulating RNA silencing via the SA signaling
pathway [261]. TDL serves as a rice blast control agent triggering
innate defense responses of rice against rice blast [263]. It can also
activate the expression of resistance genes in tobacco plants and
can be metabolized to produce 4-methyl-1,2,3-thiadiazol-5-
formic acid, which induces disease resistance [264]. To date, sev-
eral inducers have obtained a pesticide registration certificate
and have also served as agrochemicals for controlling plant dis-
eases in crop protection worldwide (Table 6).

Conclusions and perspectives

This paper provides a comprehensive review on sustainable
prevention and control of crop diseases, the principles of plant
immunity, inducers of plant immunity for pathogen control and
their potential crop protection. Although immune inducers have
the advantages mentioned above, they still have some drawbacks.
For example, some inducers have high costs, making it difficult to
put them into large-scale production. Most of the data on inducers
in plant immunity were obtained in small-scale indoor experi-
ments, without considering other factors in the field. In addition,
some inducers take a long time to execute their immune function
after application. Some outstanding questions need to be

addressed despite these exciting advances in the research of
immune inducers.

Firstly, novel and better plant immunity inducers still need to
be explored. Integration of prior knowledge of inducers will deeply
promote the discovery and research of novel and better inducers of
plant immunity for pathogens control. Some novel and emerging
biotechniques, such as, computer-aided design, molecular model-
ing and more recently artificial intelligence can create novel and
better inducers. The research and development of inducers is
becoming important in the development direction of new biologi-
cal crop protective agents and will rapidly turn into a new and
promising industry with remarkable prospects for development.

Secondly, the activation mechanism of several plant immu-
nity inducers in crop disease resistance and their modes of action
are unknown. Therefore, further studies must be carried out to
clarify the target, receptor recognition, key activation sites, signal-
ing transduction, and the activation mechanism of inducers,
because elucidating the activation mechanism of inducers for
improving crop disease resistance is the core scientific issue in for-
mulating crop disease control strategies and the molecular basis
for the design of plant immunity inducers as pesticides.

Thirdly, because different inducers activate plant defense
through different pathways and mechanisms, the feasibilities of
combining multiple inducers or elicitors remains to be explored
for potential additive synergetic benefits in inducing a broader
spectrum of durable resistance. Next, the industry must focus on
developing plant immunity inducers that are safe, eco-friendly,
and inexpensive for commercial utilization. In particular, the
potential residual effects of the elicitors, especially less visible
impacts, must be broadly defined and tested to ensure that they
are indeed ecologically friendly. For example, it is becoming
increasingly clear that soil microbiome is critical to their resilience,

Table 6

Plant immunity inducers that have obtained a pesticide registration certificate worldwide.

Species Source Function

Messenger [265] EDEN Co., Ltd. of USA Fungicide
Benzothiadiazole (BTH) [130] Novartis (now Syngenta) Co., Ltd. of Swiss Fungicide
KeyPlex humic acid [256] KeyPlex Co., Ltd. of USA Plant growth regulator
Probenazole (Oryzemate) [149] Meiji Seika Kaisha Co., Ltd. of Japan Fungicide
Serenade

Bacillus subtilis [256]
AgraQuest Ltd. of USA Fungicide

Laminarin [256] Goemar Ltd. of France Fungicide
Oxycom [256] Redox Chemicals Co., Ltd. of USA Fungicide
Chitosan [266] Ukseung Chemical Co., Ltd. of the Republic of Korea Plant growth regulator, antistaling agent fungicide
Actigard [256] Syngenta Co., Ltd. of Swish Fungicide
NCI [147] Nippon Kayaku Co., Ltd. of Japan Fungicide
Pyraclostrobin [256] BASF Chemical Co., Ltd. of Germany Plant growth regulator, fungicide
Plant activate protein [256] Beijing Fenghui Huanong Biological Science and Technology

Co., Ltd. of (Institute of Plant Protection, CAAS)
Plant growth regulator

Trans-Abscisic Acid (S-ABA) [256] Chengdu Institute of Biology, Chinese Academy of Sciences Plant growth regulator
ATaiLing (PeaT1) [267] Institute of Plant Protection, CAAS Antiviral agent
Amino oligosaccharide [256] Hainan Zhengye Zhongnong High-tech Co., Ltd. and

Dalian Kaifei Chemical Co., Ltd.
Immunity-inducer, fungicide

Methiadinil (thiazide induced amine) [256] Nankai University Activator, antiviral agent
Lentinan [256] Beijing Yoloo Pesticides Co., Ltd. and Shandong

Shengpeng Pesticides Co., Ltd.
Plant growth regulator,
antiviral agent

Validamycin [256] Zhejiang Tonglu Huifeng Bioscience Co., Ltd. Fungicide
Matrine [256] Beijing Multigrass Formulation Co., Ltd. and Inner

Mongolia shuaiqi
Insecticide

ZhiNengCong (ZNC) [261] Shandong Pengbo Bio-technology Co., Ltd and
Shandong Agricultural University

Immunity-inducer

Tiadinil (TDL) [264,268] Nihon Nohyaku Co., Ltd. Immunity-inducer, fungicide
Amistar 250 SC [269] Syngenta Co., Ltd. of Swish Fungicide
Biosept 33SL (grapefruit

extract) [269]
Cintamani Poland Fungicide

Timorex Gold 24 EC [270] S.T.K. Stockton Group Ltd. of Israel Fungicide
Goëmar BM 86� [271] Goëmar of France Plant growth regulator, fungicide
Kelpak SL [272] Kelp Products (Pty) Ltd. of South Africa Plant growth regulator, fungicide
Serifel (Bacillus amyloliquefaciens MBI600) [273] BASF SE of Germany Fungicide
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and it is a good idea to test whether the inducers impact the micro-
biome. Inducer-based technologies are especially important for
modern agriculture due to recent concerns about food security
and the overall wellness of the environment. It is also important
to note that governments worldwide are enacting policies that
limit the use of agrochemicals, causing a massive gap in the agri-
cultural industry and plant disease management. Both factors have
caused the demand of inducers to increase in the comprehensive
prevention and control of crop, fruit, and vegetable diseases. There
is no doubt that this will expedite the development of safe and effi-
cient plant immunity inducers.

Recently, the research and application of inducers have made
major breakthroughs in the green disease prevention and control
technologies. Improving crop resistance by immune-inducing tech-
nology based on plant immunity inducers is an ideal method for
disease green prevention and control and opens new avenues for
plant protection. Among the plant immunity inducers, different
types of plant hormones and functional analogs provide excellent
prospects in the prevention and control of agricultural diseases.
Overall, the application of plant immunity inducers for pathogen
control plays an important role in the movement to provide eco-
logical and environmental protection, sustainable development of
agriculture, as well as food security.
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