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Modeling diffusion in ionic, crystalline solids with internal stress gradients 
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A B S T R A C T   

Intracrystalline diffusion is an invaluable tool for estimating timescales of geological events. Diffusion is typically 
modeled using gradients in chemical potential caused by variations in composition. However, chemical potential is 
derived for uniform pressure and temperature conditions and therefore cannot be used to model diffusion when there 
are gradients in stress. Internal stress variations in minerals will create gradients in strain energy which, in addition to 
gradients in composition, will drive diffusion. Consequently, it is necessary to have a method that incorporates stress 
variations into diffusion models. 

To address this issue, we have derived a flux expression that allows diffusion to be modeled in ionic, crystalline 
solids under arbitrary stress states. Our approach is consistent with standard petrological methods but instead 
utilizes gradients in a thermodynamic potential called “relative chemical potential.” Relative chemical potential 
accounts for the lattice constraint in crystalline solids by quantifying changes in free energy due to the exchanges of 
constituents on lattice sites under arbitrary stress conditions. Consequently, gradients in relative chemical potential 
can be used to model diffusion when pressure is not uniform (i.e., under conditions of non-hydrostatic stress). 

We apply our derivation to the common quaternary garnet solid solution almandine–pyrope–grossular– 
spessartine. The rates and directions of divalent cation diffusion in response to stress are determined by endmember 
molar volumes or lattice parameters, elastic moduli, and non-ideal activity interaction parameters. Our results predict 
that internal stress variations of one hundred MPa or more are required to shift garnet compositions by at least a few 
hundredths of a mole fraction. Mineral inclusions in garnet present a potential environment to test and apply our 
stress-driven diffusion approach, as stress variations ranging from hundreds of MPa to GPa-level are observed or 
predicted around such inclusions. The ability to model stress-induced diffusion may provide new information about 
the magnitudes of both intracrystalline stresses and the timescales during which they occurred, imparting a better 
understanding of large-scale tectono-metamorphic processes.   

1. Introduction 

Intracrystalline diffusion is invaluable for inferring temper
ature–time histories of lithospheric processes. For example, diffusion 
profiles between compositional zones within garnet or at garnet rims in 
contact with matrix phases have been used to determine the timescales 
of metamorphic events including rates of prograde heating, fault 
movement, fluid infiltration, retrograde cooling, and exhumation (e.g., 
Erambert and Austrheim, 1993; Florence and Spear, 1995; Van Orman 
et al., 2001; Perchuk, 2002; Cherniak and Watson, 2003; Faryad and 
Chakraborty, 2005; Carlson, 2006; Ague and Baxter, 2007; Raimbourg 
et al., 2007; Gaidies et al., 2008; Caddick et al., 2010; Ganguly, 2010; 
Vorhies and Ague, 2011; Viete et al., 2011, 2018; Chu et al., 2017, 2018; 
Tan et al., 2020; Zou et al., 2021). 

However, in many of these tectonic processes, significant variations 
in stress (i.e., non-hydrostatic stress) can exist between and within 
mineral grains (e.g., Wheeler, 1987, 2014, 2020; Moulas et al., 2013; 
Tajčmanová et al., 2014, 2015; Zhong et al., 2017, 2019; Jamtveit et al., 
2019; Moore et al., 2019; Wallis et al., 2019, 2022), which presents a 
potential problem for modeling diffusion. Standard diffusion models are 
based on gradients in the Gibbsian chemical potential of each end
member (e.g., Loomis, 1978; Zhang, 2010; Borinski et al., 2012; Yoo, 
2020). However, chemical potential is derived for conditions of uniform 
pressure (i.e., hydrostatic stress; Gibbs, 1878). As such, chemical po
tential gradients (and corresponding mole fraction gradients) alone 
cannot be used to model diffusion in the presence of stress gradients 
(Larché and Cahn, 1982; Cahn and Larché, 1983). 

To overcome this challenge, materials scientists Larché and Cahn 
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(1973, 1985) used the calculus of variations approach following Gibbs 
(1878) to derive a new thermodynamic potential that can be used to 
both model diffusion and determine equilibrium compositions in multi- 
component solids under arbitrary stress conditions. We refer to this 
potential as relative chemical potential after Gurtin et al. (2010, p. 399). 
Relative chemical potential applies to any solid that can be described by 
a defined network that exists independently of the constituents which 
fill the network, as is the case for crystalline solids or glasses. Example 
constituents within networks include metal atoms in alloys and ions in 
silicates (Larché and Cahn, 1973, 1985). Relative chemical potential 
defines the energy difference due to the exchange of two constituents (e. 
g., atoms or ions) on a network site (e.g., a crystalline lattice site) while 
holding all other constituents constant (Larché and Cahn, 1973, 1985). 

Although the chemical potential cannot be defined within the inte
rior of a solid for unequal (non-hydrostatic) stress conditions (Gibbs, 
1878; Kamb, 1961; Larché and Cahn, 1985; Wheeler, 2018; Hess et al., 
2022), the change in energy due to the exchange of constituents within a 
solid, as governed by the relative chemical potential, can be (Larché and 
Cahn, 1973, 1985). Diffusion will occur until the overall energy cannot 
be lowered in the solid by further exchanges of constituents on the sites 
(Larché and Cahn, 1973, 1982, 1985; Voorhees and Johnson, 2004; 
Powell et al., 2018, 2019; Wheeler, 2018; Hess et al., 2022). Diffusion 
following the relative chemical potential gradient will lead to positive 
entropy production as required for any real process (Hess et al., 2022). 
Thus, the relative chemical potential can be used to treat diffusion in 
solids with internal stress gradients. Larché-Cahn theory has been 
experimentally verified in alloys near room temperature and pressure 
(Shi et al., 2018). While it remains untested in crystals at high temper
atures and pressures, we posit that the strong silicate structures present 
in many minerals are consistent with the network model, and thus the 
relationships between stress and solid chemistry derived by Larché and 
Cahn (1973, 1985) are applicable. 

It is highly desirable to quantitatively evaluate diffusion under stress 
gradients given the increasing awareness of appreciable grain-scale 
stress variation (e.g., Neusser et al., 2012; Tajčmanová et al., 2014, 
2015; Wheeler, 2014, 2018, 2020; Zhong et al., 2017, 2019; Thomas and 
Spear, 2018; Bonazzi et al., 2019; Jamtveit et al., 2019; Moore et al., 
2019; Wallis et al., 2019, 2022; Campomenosi et al., 2020; Hess and 
Ague, 2021; Hess et al., 2022). Important progress has been made in this 
regard by modeling coupled stress, deformation, and diffusion for binary 
systems without the lattice constraint (e.g., Zhong et al., 2017). How
ever, a general treatment for diffusion in ionic, crystalline solids with 
any number of endmembers that is consistent with the lattice constraint 
and Larché-Cahn theory remains to be formulated. 

In this work we provide a method for modeling diffusion that (1) can 
incorporate gradients in stress, (2) results in the equilibrium conditions 
predicted by Larché-Cahn theory (Larché and Cahn, 1985), and (3) is 
based on self-diffusion coefficients widely used in petrology for multi- 
component ionic solid solutions with any number of endmembers. We 
accomplish this using an approach which begins with the same as
sumptions as the standard methods used for modeling diffusion in ionic 
systems (Wendt, 1965; Lasaga, 1979) and incorporating the definition of 
relative chemical potential (Larché and Cahn, 1973). The resulting flux 
expression is consequently valid for modeling diffusion in ionic, multi- 
component minerals under arbitrary stress conditions. Diffusion in 
almandine–pyrope–grossular–spessartine (Alm–Py–Grs–Sps) garnet is 
then explored as an example. 

2. Methods 

2.1. Review of standard uniform pressure diffusion equations 

To provide background, we first review multi-component diffusion 
in the absence of stress gradients. Under uniform temperature and 
pressure, gradients in endmember electrochemical potentials provide 
the driving force for diffusion of cations in ionic, crystalline solids (e.g., 

Yoo, 2020, Eq. (7.9)). The electrochemical potential is the summation of 
a constituent’s chemical potential and the electrostatic potential. The 
standard petrological diffusion model used to treat ionic, crystalline 
solids takes a mean field approach which assumes that the only driving 
force acting on a constituent is its electrochemical potential gradient 
(Lasaga, 1979). As such, the force can be written as: 

FI =
∂μI

∂x
+ zIF

∂φ
∂x

(1)  

where FI is the force acting on constituent I (J mol−1 m−1), μI is the 
chemical potential (J mol−1), zI is the charge number (unitless), F is the 
Faraday constant (Coulomb mol−1), and φ is the electrostatic potential 
(J Coulomb−1). The constituent chemical potential gradient, ∂μI

∂x , can be 
replaced with the gradient in the associated endmember chemical po
tential. The chemical potential of an ion (e.g., Mg2+) and its associated 
endmember (e.g., pyrope) are not numerically equivalent. However, 
their gradients are equivalent when: (1) the other constituents of the 
endmember are uniform and comprise a stable network structure that 
does not change appreciably during diffusion (i.e., the Al–Si–O frame
work in garnet; Lasaga, 1979) and (2) electroneutrality is maintained 
(Kröger, 1980; Schmalzried, 1995, p. 186–190, 205). 

Assuming that the flux of some constituent I is linearly proportional 
to its mobility and concentration together with the requirement of 
electrical neutrality (see Wendt, 1965), the 1-D relationship between the 
flux of cations and their associated endmember chemical potential 
gradients for ionic, multi-component crystalline solids can be defined as 
follows (Eq. (9) of Lasaga, 1979): 

JI = − uIcI
∂μI

∂x
+ uIzIcI

∑N
K=1zKuKcK

∂μK
∂x

∑N
J=1z2

JcJuJ
(2)  

where JI is the flux of the concentration of constituent I (mol m−3 m−2 

s−1), uI is the mobility of constituent I (m2 mol J−1 s−1), cI is the con
centration of constituent I (mol m−3), zI is the charge number (unitless), 
and μI is the endmember chemical potential per unit volume (J mol−1 

m−3). 
Eq. (2) is appropriate for modeling diffusional fluxes in an ionic 

crystalline solid under uniform temperature and pressure conditions. 
The first term on the righthand side represents the flux due to the con
stituent’s own chemical potential gradient, and the second term repre
sents the flux due to the electrostatic potential gradient. The mobility of 
a constituent, uI, defines its velocity relative to the applied thermody
namic driving force (e.g., Eq. (1)). It can be calculated from the exper
imentally measured self-diffusion coefficient of a constituent via the 
Nernst-Einstein equation 

uI =
DI

RT
(3)  

where DI is the self-diffusion coefficient (m2 s−1), R is the ideal gas 
constant (J mol−1 K−1), and T is the absolute temperature (K). 

However, Eq. (2) requires two additional constraints for practical 
applications. Because a crystalline solid has a lattice with fixed sites, an 
N component solid solution only has N − 1 independent chemical po
tential gradients. The Nth dependent endmember is typically eliminated 
by employing the Gibbs-Duhem equation at a uniform temperature and 
pressure (e.g., Loomis, 1978, Eq. (12); Lasaga, 1979, p. 456; Ganguly, 
2002, p. 278; Yoo, 2020, Eq. (4.35)) together with the additional 
constraint of electroneutrality: 

∑N

K=1
zKcK

∂μK

∂x
= 0 (4) 

Eq. (4) indicates that the net thermodynamic driving force is zero 
everywhere which also satisfies the requirements of crystallinity (Cahn 
and Larché, 1983; Gurtin et al., Eq. (72.5)). Combining equations (2) 
and (4) yields: 
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JI = − uIcI
∂μI

∂x
+ uIzIcI

∑N−1
K=1zKcK(uK − uN)

∂μK
∂x

∑N
J=1z2

JcJuJ
(5) 

Finally, the cation fluxes can be cast in terms of their associated 
endmember mole fractions (moles of I per total moles) instead of con
centrations (moles per m3) by dividing Eq. (5) by the sum of all the 
endmember concentrations, 

∑N
K=1cK. This is valid if the molar volume 

and, thus, the area over which the flux occurs does not change appre
ciably with diffusion, giving: 

JX
I = − uIXI

∂μI

∂x
+ uIzIXI

∑N−1
K=1zKXK(uK − uN)

∂μK
∂x

∑N
J=1z2

JXJuJ
(6) 

where JX
I is the flux of the mole fraction of constituent I (moles of I 

per total moles m−2 s−1) and XI is the mole fraction of constituent I 
(moles of I per total moles). 

Eq. (6) defines the mole fraction flux of constituent I counter
balanced by the arbitrarily chosen Nth constituent via the Gibbs-Duhem 
equation to maintain charge neutrality and conserve lattice sites. We 
emphasize that it is strictly applicable only when there are no gradients 
in temperature and stress. The endmember chemical potentials can be 
calculated using any desired ideal or non-ideal activity model. Since 
chemical potential is a function of mole fraction, Eq. (6) is commonly re- 
written in terms of mole fraction gradients (e.g., Borinski et al., 2012, 
Eqs. (1)–(2)). 

2.2. Diffusion with stress variation 

When there are gradients in stress, the chemical potential gradient 
approach reviewed in Section 2.1 is insufficient for modeling intra
crystalline diffusion because it is derived for uniform pressure condi
tions (Gibbs, 1878; Larché and Cahn, 1982, 1985). Instead, we use the 
relative chemical potential as it is defined under conditions of non- 
hydrostatic stress (Larché and Cahn, 1973, 1978b, 1982, 1985). Diffu
sion occurs while the exchange of constituents will continue to lower the 
energy locally. Equilibrium is achieved within a solid when no further 
exchanges can reduce its free energy, at which point all relative chem
ical potentials (rather than chemical potentials) are uniform. 

The relative chemical potential between two constituents I and K at a 
given stress and temperature is given by the Larché-Cahn equation 
(Larché and Cahn, 1985, Eq. (4.21)). We write the equation following 
the terminology of Hess et al. (2022, Eq. (2)):  

where μI–K is the relative chemical potential (J mol−1) at the given stress, 
σij (Pa), and temperature, T (K), μ*

I is the chemical potential of the pure 
endmember I (J mol−1) at the reference pressure, P (Pa), and tempera
ture, R is the ideal gas constant (J K−1 mol−1), a is the activity, V0 is the 
molar volume of the solid at the reference temperature and pressure (m3 

mol−1), ηI−K
ij is the partial molar strain tensor between I and K (unitless), 

Sijkl is the compliance tensor (Pa−1), XI–K is the mole fraction of I 
assuming dependent constituent K, and δij is the Kronecker delta. See 
Hess et al. (2022) for details on solving the Larché-Cahn equation. 

Eq. (7) can be used to quantify the free energy change in a solid due 
to cation fluxes. In a system of N endmembers, there are N − 1 unique, 
independent relative chemical potentials. If a solid is structurally 
isotropic, the formula for these relative chemical potentials simplifies 
considerably (Larché and Cahn, 1985; Hess et al., 2022): 

μI−K(σm, T) = μI(σm, T) − μK(σm, T) (8)  

where σm is the mean stress (i.e., average of the three principal stresses) 
and μ is the endmember chemical potential in the solid solution. The 
endmember chemical potential is, for example, defined as: 
μI(σm, T) = μ*

I (σm, T) +RTln(aI) for endmember I. 
Crystalline solids, however, are not mechanically isotropic. Even 

minerals with cubic symmetry – the highest possible – are mechanically 
anisotropic (Nye, 1957; Cahn, 1962; Larché and Cahn, 1978a). This 
leads to anisotropic diffusion when a crystal is not at a uniform pressure 
(Larché and Cahn, 1982, 1985), including for garnet which is our focus 
herein. Nonetheless, the anisotropy of garnet elastic constants is very 
small (Erba et al., 2014). Consequently, any diffusional anisotropy in 
response to a stress gradient would be minimal. As such, we will treat 
garnet as isotropic as done in previous studies (e.g., Wheeler, 2018; Hess 
et al., 2022). Anisotropy is examined further in the discussion section. 

Finally, we note that because vacancies mediate diffusion, they can 
be treated explicitly as a diffusing constituent (e.g., Smigelskas and 
Kirkendall, 1947; Darken, 1948; Mrowec, 1980; Chakraborty and 
Ganguly, 1991; Schmalzried, 1995; Mehrer, 2007; Li et al., 2018). 
However, vacancy mole fractions and chemical potentials are generally 
difficult to quantify accurately. Furthermore, treating vacancies 
explicitly in an ionic solid would require defining the stoichiometry and 
chemical potential of an associated neutral endmember which facilitates 
the diffusional exchange (e.g., Chakraborty and Ganguly, 1991). Given 
these complexities, it is most straightforward and standard practice to 
treat vacancies implicitly (Lasaga, 1979; Larché and Cahn, 1982, 1985). 

2.3. Diffusional flux using relative chemical potential gradients 

Larché and Cahn (1982, 1985) show that diffusion in crystalline 
network solids follows gradients in relative chemical potential (i.e., the 
spatial derivative of Eqs. (7) or (8)). Using gradients in relative chemical 
potential, we can derive a new expression for diffusional flux. 

First, we make a mean field assumption analogous to that in Eq. (1). 
That is, the forces acting on a constituent are its own relative endmember 
chemical potential gradient with an arbitrarily chosen Nth endmember 
(e.g., Larché and Cahn, 1982; Cahn and Larché, 1983) and the electro
static potential in the ionic solid. We further stipulate that the electro
static potential is not a direct function of stress. Thus, we have: 

JI = − uIcI

(
∂μI−N

∂x
+ zIF

∂φ
∂x

)

(9) 

Next, the requirements of electroneutrality indicate that the sum of 
the fluxes multiplied by the electrical charges of the diffusing constitu
ents must be zero: 

∑N

K=1
zKJK = 0 (10) 

When Eq. (9) is substituted into Eq. (10), the result is: 

−
∑N

K=1

(

uKcKzK
∂μK−N

∂x
+ uKcKz2

KF
∂φ
∂x

)

= 0  

which can be rearranged to solve for the electrostatic potential: 

μI−K
(
σij, T

)
= μ*

I (P, T) − μ*
K(P, T) + RTln

(
aI

aK

)

− V0ηI−K
ij

(
σij + Pδij

)
−

V0

2
∂Sijkl

∂XI−K

(
σijσkl − P2δijδkl

)
(7)   
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F
∂φ
∂x

= −

∑N
K=1

(
uKcKzK

∂μK−N
∂x

)

∑N
J=1(uJcJz2

J)
(11) 

When Eq. (11) is substituted back into Eq. (9), an expression for flux 
due solely to gradients in endmember relative chemical potentials is 
obtained: 

JI = − uIcI
∂μI−N

∂x
+ uIcIzI

∑N
K=1

(
uKcKzK

∂μK−N
∂x

)

∑N
J=1(uJcJz2

J)
(12) 

Eq. (12) is directly analogous to Eq. (2), except that relative chemical 
potentials are used instead of chemical potentials. As a result, Eq. (12) 
treats diffusion under non-hydrostatic conditions, whereas Eq. (2) does 
not. 

Two simplifications can be made to Eq. (12). First, concentration can 
be converted to mole fraction by dividing Eq. (12) by 

∑N
K=1cK. Second, 

as the definition of relative chemical potential indicates that ∂μN−N
∂x = 0 

(Larché and Cahn, 1973), the Nth relative chemical potential gradient 
can be eliminated from Eq. (12) to give the result: 

For I = 1 to N − 1: 

JX
I = − uIXI

∂μI−N

∂x
+ uIXIzI

∑N−1
K=1

(
uKXKzK

∂μK−N
∂x

)

∑N
J=1(uJXJz2

J)
(13a) 

And for I = N: 

JX
N = uNXNzN

∑N−1
K=1

(
uKXKzK

∂μK−N
∂x

)

∑N
J=1(uJXJz2

J)
(13b) 

Eq. (13) defines the 1-D flux of the mole fraction of constituent I (JX
I ; 

moles of I per total moles m−2 s−1) as a function of relative chemical 
potential gradients under arbitrary stress conditions in an ionic, network 
solid. Since N − 1 endmembers are independent, only the first N − 1 
equations given by Eq. (13a) are necessary because the flux of the Nth 

endmember is the difference of one minus the sum of the other N − 1 
endmember mole fractions. Nonetheless, Eq. (13b) explicitly allows for 
the calculation of the flux of the Nth endmember, providing a means to 
test that the lattice constraint is indeed being satisfied by confirming 
that the sum of the fluxes is zero. 

The form of Eq. (13) is similar to the flux equation based on chemical 
potential gradients (Eq. (6)). The first term of Eq. (13a) represents the 
flux due to the constituent’s own relative chemical potential gradient. 
The second term represents the flux due to the electrostatic potential 
gradient in the ionic solid. Unlike Eq. (6), however, Eq. (13) is valid 
under conditions of non-hydrostatic stress as it is written as a function of 
relative chemical potential gradients. Eq. (4) is only applicable when 
pressure and temperature are uniform, and therefore, Eq. (6) is invalid 
when stress gradients exist. It is worth emphasizing that Eq. (13) is 
appropriate to model diffusion in network solids with heterogeneous 
stresses because the Gibbs-Duhem equation is never applied in its 
derivation. 

The terms in Eq. (13) can be determined as follows: The mobilities, 
uI, are calculated from self-diffusion coefficients using Eq. (3) (e.g., 
Larché and Cahn, 1982; Larché and Voorhees, 1996). The charge num
ber, zI, is the unitless charge value of the diffusing cation associated with 
each endmember (e.g., +2 for Mg2+ in pyrope garnet). Relative chemical 
potential can be calculated using the Larché-Cahn equation (Eq. (7)). 
This equation indicates that crystallographic and stress orientations 
need to be considered when computing relative chemical potential 
values. However, the much simpler Eq. (8) is applicable if a mineral can 
reasonably be approximated as isotropic (e.g., garnet; see section 4.2.). 
Eq. (13) is valid for any desired activity model (ideal or non-ideal), 
depending on how one determines the relative chemical potentials. 
The choice of the Nth endmember is arbitrary (Larché and Cahn, 1985). 
If Eq. (13) is extended beyond one dimension, care must be taken to 
account for the effects of orientation on both self-diffusion coefficients 

and relative chemical potentials (Larché and Cahn, 1973, 1985; 
Wheeler, 2018; Hess et al., 2022). 

Diffusion following relative chemical potential gradients may be 
written as a linear combination of mobility-based interdiffusion co
efficients and relative chemical potential gradients (e.g., Larché and 
Cahn, 1985, Eq. (8.1)): 

JX
I = −

∑N−1

J=1
BIJ

∂μJ−N

∂x
(14) 

When Eq. (13a) is rewritten in the form of Eq. (14), then: 

BIJ = uIXIδIJ − uIXIzI
uJXJzJ

∑N
K=1uKXKz2

K
(15)  

where δIJ is the Kronecker delta, BIJ is the relative chemical potential- 
based interdiffusion coefficient between constituents I and J (m2 mol 
J−1 s−1), and all other terms are as previously defined. We use BIJ 
following Larché and Cahn (1982) in place of the more familiar inter
diffusion coefficient notation of DIJ to emphasize that BIJ represents 
interdiffusion coefficients that are calculated for use with relative 
chemical potential gradients. 

Importantly, the mobility-based interdiffusion coefficient matrix, BIJ, 
is symmetric, upholding the fundamental Onsager reciprocal relations 
(ORRs; Onsager, 1931). This is easily shown by comparing BIJ and BJI for 
the case of I ∕= J: 

− uIXIzI
uJXJzJ

∑N
K=1uKXKz2

K
= − uJXJzJ

uIXIzI
∑N

K=1uKXKz2
K 

Clearly, BIJ (left side) is equal to BJI (right side). Given the additional 
complexities of crystalline solids compared to fluids (e.g., crystal sym
metries and the ability to support non-hydrostatic elastic stresses at 
mechanical equilibrium), verification of the ORRs remains difficult and 
is not guaranteed in all reference frames for solids (e.g., molar vs. bar
ycentric reference frame; Mullins and Sekerka, 1981; Cahn and Larché, 
1983). Thus, the symmetry of BIJ (Eq. (15)) offers an important check for 
the validity of our derivation based on relative chemical potential gra
dients. We also note that while the standard flux expression (Eq. (6)) 
yields asymmetric interdiffusion coefficient matrices, this does not 
invalidate the expression for use at uniform pressure and temperature 
conditions. Eq. (6) uses chemical potential gradients which are not in
dependent driving forces as shown in Eq. (4). The interdependency of 
the gradients yields asymmetric interdiffusion coefficient matrices 
without necessarily violating the ORRs (Cahn and Larché, 1983). 

Application of Eq. (15) to, for example, a four-component system 
such as almandine–pyrope–grossular–spessartine (Alm–Py–Grs–Sps) 
garnet generates a 3 × 3 matrix of relative chemical potential-based 
interdiffusion coefficients that can be used with the three arbitrarily 
chosen independent relative chemical potentials. Because all substitu
tional cations have the same +2 charge, the z terms cancel. 

In summary, Eqs. (13) and (15) provide a new 1-D formulation that 
can be used for calculating diffusion in ionic, crystalline solids with any 
symmetry and under arbitrary stress conditions. Herein, we apply these 
expressions to Alm–Py–Grs–Sps garnet. We use the Holland and Powell 
(2011) thermodynamic dataset and their equation of state to calculate 
pure endmember chemical potentials. We calculate garnet endmember 
activities following White et al. (2014) and self-diffusion coefficients 
using Chakraborty and Ganguly (1992) and Faryad and Chakraborty 
(2005). In models where pressure is not uniform, the self-diffusion co
efficients vary as a function of mean stress (pressure). We obtain similar 
results with other garnet activity models (e.g., Berman, 1990; Ganguly 
et al., 1996) and diffusion coefficients (e.g., Carlson, 2006; Chu and 
Ague, 2015). 

We model diffusion using a 1-D spherical diffusive transport code 
that employs the forward time centered space (FTCS) method (e.g., 
Roache, 1972). We use a zero-flux boundary condition at the garnet 
rims. This means there is no exchange with the matrix which allows us to 
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isolate the effects of internal stress variation in the crystal. The inter
diffusion coefficients are re-calculated at every time step as composition 
changes. We use the initial condition (composition, stress, and strain) as 
our reference frame. Thus, any changes in composition, stress, or strain 
in the solid are mapped onto the location of that unit volume in the 
reference frame (Larché and Cahn, 1985). 

We assume that garnet behaves perfectly elastically and that the 
stress gradient does not change with time in the examples below. This 
simplification allows us to highlight the effects of stress on multi- 
component mineral composition and to compare our results to the 
equilibrium conditions of Larché and Cahn (1973, 1985). In addition, 
while we explore how an imposed stress gradient affects diffusion, 
cation diffusion may itself generate stresses (“self-stress”) due to dif
ferences in atomic sizes (e.g., Larché and Cahn, 1982; Schmalzried, 
1995, p. 71; Van Orman et al., 2001; Cherniak and Watson, 2003; 
Baumgartner et al., 2010; Zhong et al., 2017). Nonetheless, we 
emphasize that Eq. (13) is general and is not limited to the elastic 
stresses or constant imposed stress gradients considered herein. 
Although both viscous relaxation (i.e., solid-state creep) and diffusion- 
induced self-stresses are beyond the scope of our present work, they 
represent important processes that can be investigated using our deri
vation (Eq. (13)) in future studies. 

3. Results 

Eq. (13) allows diffusion to be treated in ionic, multi-component 
minerals when pressure is not uniform. Here, we first show that diffu
sion modeled using relative chemical potential gradients (Eq. (13)) at 
uniform pressure and temperature conditions provides diffusion profiles 
(and thus, diffusion rates) identical to standard methods based on 
chemical potential or mole fraction gradients (Eq. (6); see also Borinski 
et al., 2012, Eqs. (1)–(2)). Second, we demonstrate that relative chem
ical potential gradients are valid for modeling diffusion when there are 
stress gradients, whereas mole fraction and chemical potential gradients 
are not. Third, we present expected behaviors for stress-induced diffu
sion in garnet and show that they match equilibrium conditions pre
dicted by Larché-Cahn theory (Larché and Cahn, 1985). 

Under uniform temperature and pressure conditions, the derivations 
of Larché and Cahn (1973, 1985) reduce to the equilibrium conditions of 
Gibbs (1878). Therefore, diffusion modeled using relative chemical 
potential gradients with a uniform pressure provides equivalent results 
to diffusion modeled using chemical potential gradients or mole fraction 
gradients. Fig. 1 shows a comparison between the modeled profile using 
relative chemical potential gradients (Eq. (13)) and chemical potential 
or mole fraction gradients (Eq. (6)) for a pyrope-rich garnet composi
tion. The initial composition is a step function (thin dashed lines) which 
relaxes for two million years at 700 ◦C and 1 GPa. The results for the two 
types of potential gradients are identical, as expected. Importantly, this 
also indicates that the diffusion rates calculated using Eqs. (13) and (15) 
are the same as those computed using standard methods. Thus, the re
sults obtained from our derivation can be directly compared to other 
works when pressure is uniform. 

In contrast, when there is a stress gradient, the equivalency between 
diffusion models that use mole fraction, chemical potential, or relative 
chemical potential gradients ceases (Fig. 2). For example, suppose that a 
spherical garnet with an initially homogeneous composition is subjected 
to a constant, hypothetical internal stress gradient as shown in Fig. 2a. 
We use a large variation in mean stress to highlight the interactions 
between stress and diffusion more clearly. The garnet will have higher 
strain energy at its core than its rim, and consequently, the strain energy 
gradient will drive diffusion. 

However, if mole fraction gradients are used to model diffusion, no 
diffusion is predicted because there is no initial gradient in mole fraction 
(Fig. 2b). When Eq. (6) is re-written in terms of mole fraction (e.g., 
Borinski et al., 2012), it is assumed that the chemical potential is only a 
function of mole fraction, and therefore any pressure or temperature 

variations are ignored. 
On the other hand, when chemical potential gradients are used, the 

effects of stress on the endmember chemical potentials are included, but 
in an incorrect way. As garnet is a crystalline solid, the net flux must be 
zero everywhere to maintain the lattice (e.g., Yoo, 2020, p. 163). At 
uniform pressure, the Gibbs-Duhem equation (Eq. (4)) accomplishes this 
by ensuring the net driving force (and therefore flux) is zero. However, 
when pressure is not uniform, Eq. (4) is unjustified which invalidates Eq. 
(6). Consequently, the Nth constituent (in this case spessartine, arbi
trarily chosen) is forced to balance the flux in an unrealistic manner. In 
the presence of a gradient in internal mean stress as in Fig. 2a, every 
constituent will have a higher endmember chemical potential at the core 
of the garnet than the rim. As such, without the lattice constraint, every 
cation would diffuse toward the rim. However, since the diffusing cation 
of the Nth endmember (Mn2+) provides a counter-flux to maintain the 
crystal lattice, the mole fraction of spessartine quickly becomes negative 
in the rim (Fig. 2c). As such, the simulation ends at 0.2 Myr after which 
point the model becomes unstable and fails. Thus, neither diffusion 
using mole fraction nor chemical potential gradients provides realistic 
results when there is a stress gradient. 

Instead, relative chemical potential gradients must be used (Larché 
and Cahn, 1982, 1985; Cahn and Larché, 1983; Balluffi et al., 2005, p. 
42–43; Gurtin et al., 2010, p. 398–400). The relative chemical potential 
quantifies energy change due to the exchange of constituents on lattice 
sites. Since the lattice constraint is satisfied without the Gibbs-Duhem 

Fig. 1. Diffusion in garnet following relative chemical potential gradients (RCP, 
solid lines) and chemical potential (CP) or mole fraction gradients (dashed lines). 
A spherical garnet composed of almandine (Alm), pyrope (Py), grossular (Grs), 
and spessartine (Sps) has a radius of 2,000 μm and an internal step function in 
composition (thin dashed lines). Diffusion is simulated for 2 million years at 
700 ◦C and 1 GPa. The activities are calculated following White et al. (2014). The 
self-diffusion coefficients are DAlm = 5.29 × 10−23 m2 s−1, DPy = 3.07 × 10−23 m2 

s−1, DGrs = 2.64 × 10−23 m2 s−1, and DSps = 6.07 × 10−22 m2 s−1. 
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equation (Cahn and Larché, 1983), plausible diffusion is predicted 
(Fig. 2d). Consequently, Eq. (13) can be used to model flux when stress 
gradients exist. The mole fraction of pyrope is predicted to increase 
toward the high stress region while the mole fractions of grossular and 

spessartine increase toward the low stress region. The mole fraction of 
almandine changes by only a very minor amount for this composition 
(Fig. 2d). 

Fig. 3 represents a relative chemical potential-based diffusion profile 
with the same internal stress profile and initial condition as in Fig. 2 but 
at a temperature of 800 ◦C and a time of ten million years such that the 
internal garnet composition is near equilibrium. In addition, both ideal 
(dashed lines) and non-ideal (solid lines) mixing behaviors are 
compared. One GPa of mean stress variation leads to a 0.06–0.08 vari
ation in XPy and XGrs from core to rim with a much smaller variation in 
XAlm and XSps. This suggests that a large mean stress variation (>100 
MPa) is required for there to be a discernable change in garnet 
composition. 

Fig. 3 also highlights the importance of incorporating non-ideal 
mixing behavior (Hess et al., 2022). Non-ideality increases the 
modeled composition change of all endmembers by up to a factor of two 
under the conditions of Fig. 3. Thus, when modeling stress-induced 
diffusion, non-ideal mixing behavior should be considered. 

Fig. 4 shows the temporal evolution of the composition of a more 
almandine-rich garnet (Fig. 4a) as well as the evolution of the relative 
chemical potentials (Fig. 4b). The stress conditions are identical to the 
profile shown in Fig. 2a, and the composition is initially homogeneous. 
As time progresses, the mole fractions of each endmember change from 
initially uniform, flat lines to curved lines that vary by up to several 
hundredths of a mole fraction from core to rim (Fig. 4a). On the other 
hand, the relative chemical potential profiles have the opposite behavior 
(Fig. 4b). They begin as initially curved lines, but after equilibrium is 
achieved, they are uniform and flat. This demonstrates the important 
result that the underlying relative chemical potential is the indicator of 

Fig. 2. Comparing simulated diffusion profiles at 700 ◦C in a stressed, pyrope-rich garnet. (a) The stress profile of the garnet. Diffusion profiles are simulated using the 
following driving forces: (b) chemical potential-based mole fraction gradients for 5 Myr, (c) chemical potential gradients for 0.2 Myr, and (d) relative chemical potential 
gradients for 5 Myr. Thin dotted lines represent the initial composition. The self-diffusion coefficients are a function of mean stress. The ranges are DAlm = 2.65 × 10−23 to 
5.29 × 10−23 m2 s−1, DPy = 1.59 × 10−23 to 3.07 × 10−23 m2 s−1, DGrs = 1.32 × 10−23 to 2.64 × 10−23 m2 s−1, and DSps = 2.89 × 10−22 to 6.07 × 10−22 m2 s−1. 

Fig. 3. Comparing diffusion profiles predicted for an internal stress gradient in 
garnet with non-ideal (White et al., 2014) and ideal activity models using 
relative chemical potential gradients. The temperature is 800 ◦C and the time is 
10 Myr. The stress profile and other model parameters are the same as in 
Fig. 2a. The self-diffusion coefficients are a function of mean stress. The ranges 
are DAlm = 7.18 × 10−22 to 1.34 × 10−21 m2 s−1, DPy = 4.76 × 10−22 to 8.63 ×
10−22 m2 s−1, DGrs = 3.59 × 10−22 to 6.72 × 10−22 m2 s−1, and DSps = 6.15 ×
10−21 to 1.20 × 10−20 m2 s−1. 
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whether equilibrium has been attained. Thus, unlike in standard diffu
sion models, equilibrium is not necessarily achieved when the compo
sition is homogeneous (Larché and Cahn, 1982, 1985; Zhong et al., 
2017). 

When the relative chemical potentials are uniform throughout the 
garnet, the free energy of the garnet cannot be lowered by further 
diffusion and equilibrium is achieved (Larché and Cahn, 1982, 1985). At 
this point, the composition is identical to the equilibrium composition 
predicted by Larché-Cahn theory (Larché and Cahn, 1973, 1985; Powell 
et al., 2018; Wheeler, 2018; Hess et al., 2022). This serves as a test of 
both our numerical algorithm and solution procedure for the transient 
problem. 

In summary, we show that our diffusional flux expression (Eq. (13)): 
(1) provides diffusion rates that are identical to those obtained using 
standard methods when pressure is uniform (Fig. 1), (2) can incorporate 
stress gradients (Fig. 2), and (3) leads to composition profiles with 
uniform underlying relative chemical potentials when stress gradients 
are present as predicted by Larché-Cahn theory (Fig. 4). 

4. Discussion 

4.1. Interactions between stress and composition 

When there are gradients in stress, new diffusion behaviors arise that 
are not predicted by the standard, uniform pressure models such as Eq. 
(6). When temperature and pressure are uniform, chemical potentials 
and relative chemical potentials are only a function of composition. 
However, stress variation creates a gradient in strain energy which also 
affects relative chemical potential. Strain energy is partially a function 
of endmember molar volumes or lattice parameters. Consequently, 

cations associated with the largest endmembers will diffuse toward low- 
stress regions and the cations associated with the smallest endmembers 
will diffuse toward high-stress regions to diminish the strain energy 
gradient (Tajčmanová et al., 2015, 2021; Hess et al., 2022). This phe
nomenon is known as the Gorsky effect (Gorsky, 1935) and is commonly 
observed, for example, in interstitial hydrogen diffusion in stressed al
loys (e.g., Fukai and Sugimoto, 1985; Pálsson et al., 2012; Shi et al., 
2018). 

Equilibrium is achieved when the change in compositional energy 
and the change in strain energy from any movement of constituents are 
equal. At this point, all endmember relative chemical potentials are 
uniform, and there is no thermodynamic driving force for further 
diffusion. The endmember mole fractions, and their associated relative 
chemical potentials, are then equal to the equilibrium values calculated 
via Eq. (7) (Larché and Cahn, 1985; Powell et al., 2018, 2019; Wheeler, 
2018; Hess et al., 2022). As emphasized above, although the relative 
chemical potentials are uniform, the equilibrium mineral composition 
need not be (Fig. 4). 

The composition changes predicted in Figs. 3 and 4 are consistent 
with the Gorsky effect. The mole fraction of Mg2+, associated with the 
smallest endmember (pyrope), increases toward the core of the garnet 
where the stress is highest. In contrast, the mole fraction of Ca2+, 
associated with the largest endmember (grossular), increases toward the 
rim. Since these two cations and their associated endmembers have the 
largest molar volume difference, they represent most of the observed 
composition change. In contrast, Fe2+ and Mn2+, associated with 
almandine and spessartine, respectively, have endmember molar vol
umes between pyrope and grossular. Thus, Fe2+ and Mn2+ mole frac
tions do not change as much as Mg2+ and Ca2+. 

Despite these general trends, the details of how cation flux and stress 

Fig. 4. Temporal evolution of an almandine-rich garnet with an internal stress gradient as shown in Fig. 2a. The self-diffusion coefficients are identical to those in 
Fig. 3 and the temperature is 800 ◦C. (a) Composition profiles as a function of time. (b) Relative chemical potential profiles as a function of time. Note that four 
endmembers give rise to three unique relative chemical potentials. 
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interact can vary considerably depending on the composition. For 
example, for the pyrope-rich composition, the mole fraction of Fe2+

slightly decreases with increasing stress (Fig. 3). In contrast, the mole 
fraction of Fe2+ increases with increasing stress in the example garnet 
with a more almandine-rich composition (Fig. 4). Thus, while the cat
ions associated with the largest and smallest endmembers (grossular and 
pyrope, respectively) will have behaviors predicted simply by the Gor
sky effect, the behaviors of the cations associated with intermediate 
endmembers can vary depending on composition. 

Additionally, non-ideal mixing is important to consider (Hess et al., 
2022). The interaction parameters of garnet endmembers have positive 
deviations from ideality (e.g., Berman, 1990; Ganguly et al., 1996; 
White et al., 2014). Consequently, mixing of cations becomes less 
energetically favorable relative to ideal mixing behaviors. Therefore, it 
takes a greater amount of composition change to balance the strain 
energy gradient imposed by a stress gradient (Fig. 3). Pyrope and 
grossular have a highly non-ideal mixing behavior, meaning that stress 
has a larger effect on the flux of Mg2+ and Ca2+. Almandine and spes
sartine endmembers, however, have smaller deviations from ideality 
with respect to all endmembers (e.g., White et al., 2014), and hence Fe2+

and Mn2+ have more modest changes in response to gradients in stress. 
Finally, we note that while stress drives diffusion, the diffusion of 

cations with different endmember molar volumes may also generate 
stresses which locally affect composition (Larché and Cahn, 1982, 1985; 
Van Orman et al., 2001; Cherniak and Watson, 2003; Baumgartner et al., 
2010; Zhong et al., 2017). Diffusion-induced “self-stress” in a sphere can 
be quantified, for example, by using Larché and Cahn (1982)’s Eq. (26), 
and then its effects on relative chemical potential may be subsequently 
incorporated into our flux expression through Eq. (7). However, we 
deem this beyond our scope here. We make a limiting assumption that 
the stress profile remains constant (Fig. 2a) to highlight the expected 
direction and magnitudes of stress-induced diffusion in garnet (Figs. 2d, 
3, 4). It is worth emphasizing, however, that this assumption is not 
required when applying Eq. (13) as it is perfectly general and can 
incorporate stresses from any source using Eq. (7). 

4.2. Crystallographic anisotropy 

We have applied our derived flux expression (Eq. (13)) to garnet 
which has cubic symmetry. Although cubic minerals are often thought of 
as isotropic, their mechanical properties (i.e., Young’s moduli) are 
described by fourth-order tensors and are thus anisotropic (Nye, 1957). 
Consequently, the effect of stress on relative chemical potential will vary 
directionally, leading to anisotropic diffusion rates even in cubic min
erals (Cahn, 1962; Larché and Cahn, 1982). Nonetheless, we treat garnet 
as isotropic because its mechanical anisotropy is very small (Erba et al., 
2014). The spatial variation in diffusion rates due to this anisotropy 
would be only a few percent which is negligible compared to the un
certainties of analytical techniques and the diffusion coefficients 
themselves. 

The effects of anisotropy in lower symmetry structures, however, 
will have a more appreciable effect on stress-induced diffusion. Non- 
cubic minerals have anisotropy in their lattice dimensions as well as 
mechanical properties. Both Wheeler (2018) and Hess et al. (2022) show 
that the mole fraction of albite in the mineral plagioclase, for example, 
can increase in response to stress in one crystallographic orientation and 
decrease in response to stress in another. Consequently, stress-induced 
diffusion in plagioclase would not only have anisotropic diffusion 
rates but would also have the direction of cation diffusion change as a 
function of crystallographic orientation. Cations associated with the 
albite endmember, for example, would diffuse toward high stress re
gions along one crystallographic axis and toward low stress regions 
along a different axis (Hess et al., 2022). 

Thus, caution must be exercised when predicting the behaviors of 
anisotropic minerals without a full consideration of their lattice pa
rameters and elastic moduli. For non-cubic minerals or cubic minerals 

with considerable mechanical anisotropy, the isotropic relative chemi
cal potential approximation (i.e., Eq. (8)) should not be used. The full 
effects of crystallographic and stress tensor orientations on relative 
chemical potential should instead be incorporated using Eq. (7), even in 
the case of a simple 1-D planar diffusion model. 

4.3. Potential applications 

A promising environment to test and apply simple cases of stress- 
driven diffusion models may be around garnet-hosted coesite in
clusions (e.g., Chopin, 1984; Massonne, 2001; Lü and Zhang, 2012). The 
presence of preserved coesite or former coesite suggests GPa-level stress 
variations existed during exhumation to prevent the transition from 
coesite to quartz (e.g., Parkinson and Katayama, 1999; Parkinson, 2000). 
In addition, other mineral inclusions such as quartz and zircon in garnet 
are predicted to develop stresses due to differences in lattice parameters 
and elastic constants during exhumation (e.g., Guiraud and Powell, 2006; 
Kohn, 2014; Murri et al., 2018; Thomas and Spear, 2018; Mazzucchelli 
et al., 2019; Moulas et al., 2020; Gilio et al., 2021). Depending on the 
entrapment conditions, stress variations in the host of 0.5–1 GPa or 
greater are indicated (e.g., Thomas and Spear, 2018; Bonazzi et al., 2019; 
Zhong et al., 2019; Campomenosi et al., 2020). Preserved diffusion pro
files around inclusions could then be used to estimate internal stresses 
and time scales of metamorphic events even if there is no initial chemical 
heterogeneity. However, as we have previously noted, large differences 
in mean stress (>100 MPa) are required to shift mole fractions by a few 
hundredths. Such small composition changes would only be revealed by 
very careful chemical microanalysis procedures. 

It is also important to point out that stress variation doesn’t neces
sarily equate to a mean stress gradient. For example, it is well known 
that an overpressured spherical inclusion inside of an elastic isotropic 
host will not create a mean stress gradient in the host (e.g., Timoshenko 
and Goodier, 1970). Nonetheless, non-spherical inclusion geometries (e. 
g., King et al., 1991; Moulas et al., 2014; Campomenosi et al., 2018, 
2020; Moore et al., 2019; Zhong et al., 2021), interactions between 
multiple inclusions (Voorhees and Johnson, 2004), mechanical or 
crystallographic anisotropy in the inclusion(s) or host (King et al., 
1991), and alternative stress models such as the multi-anvil model 
(Tajčmanová et al., 2014) all have the potential to create mean stress 
gradients that would drive diffusion in perfectly elastic crystals. 

Furthermore, the assumption of elastic behavior is not necessary. 
Our examples in Figs. 2–4 assume a constant gradient in elastic stress to 
allow for direct comparison with the equilibrium conditions of Larché 
and Cahn (1973, 1985) which require elasticity. However, since diffu
sion is inherently a non-equilibrium process, transient viscous behavior 
(i.e., solid-state creep) can be incorporated because the network model 
allows for dislocations to modify the structure (Larché and Cahn, 1985). 
As such, standard mechanical models are fully compatible with Larché- 
Cahn theory. While viscous relaxation would ultimately reduce stress 
gradients in garnet (e.g., Moulas et al., 2020; Zhong et al., 2020), viscous 
behavior can lead to transient GPa-level stresses which may drive sig
nificant diffusion (e.g., Zhang 1998; Moulas et al., 2014; Tajčmanová 
et al. 2014; Dabrowski et al. 2015; Zhong et al., 2017). Stephenson 
(1986, 1988) and Erdélyi and Schmitz (2012), for example, demon
strated how viscous behavior can be incorporated into diffusion models 
based on Larché-Cahn theory. Eq. (13) can similarly be used as a foun
dation to investigate the effects of viscous behavior on diffusion in ionic, 
crystalline solids. 

4.4. Geochemical implications 

Chemical zonation in minerals records unique information about 
evolving pressures, temperatures, and system chemistry in Earth’s crust 
and mantle, thus providing fundamental insights into geochemical 
cycling, orogenesis, and a myriad of other Earth system phenomena. 
Diffusional relaxation of chemical heterogeneities gives crucial 
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perspectives on the timescales of metamorphism, igneous activity, and 
hydrothermal circulation, as it modifies pre-existing zonation acquired 
via mineral growth, dissolution–precipitation, or other processes (e.g., 
Erambert and Austrheim, 1993; Penniston-Dorland, 2001; Cherniak and 
Watson, 2003; Watson and Baxter, 2007; Faryad and Chakraborty, 2005; 
Caddick et al., 2010; Ague and Carlson, 2013; Chu et al., 2017, 2018; 
Kohn and Penniston-Dorland, 2017; Tan et al., 2020; Zou et al., 2021). It 
has long been recognized that the chemical potential gradients that arise 
due to chemical zonation will drive diffusion. But internal stress varia
tions within mineral grains associated with, for example, over- or 
underpressured mineral inclusions or larger scale deformational forces 
may also act to drive diffusion (e.g., Parkinson, 2000; Jamtveit et al., 
2019; Moore et al., 2019; Campomenosi et al., 2020; Kaatz et al., 2021). 
Consequently, rigorous implementation of geothermometry, geo
barometry, diffusion chronometry, and element partitioning studies 
should consider the potential impacts of stress on diffusional relaxation. 
We posit that these impacts can now be treated using the diffusion flux 
Eq. (13) derived herein, making it possible to quantitively assess how 
stress influences the evolving chemical zonation of minerals. 

5. Summary 

We have derived an expression for modeling 1-D diffusional fluxes in 
ionic, crystalline solids under arbitrary stress states that is consistent 
with Larché-Cahn theory (Larché and Cahn, 1973, 1982, 1985). Using 
this expression, we modeled examples of stress-induced diffusion in the 
common quaternary garnet solid solution assuming elastic behavior and 
a constant internal stress gradient. Cation fluxes due to stress gradients 
are determined by the relative differences in endmember molar volumes 
or lattice parameters, by elastic moduli, and by the non-ideal activity 
interaction parameters. 

We treat garnet as mechanically isotropic as it is cubic and only 
weakly mechanically anisotropic (Erba et al., 2014). However, in gen
eral, anisotropy in both lattice parameters and elastic moduli may have 
appreciable effects on both rates and directions of stress-induced diffu
sion. Anisotropy is especially important to incorporate when modeling 
stress-induced diffusion in minerals with lower symmetries even in 
simple 1-D planar diffusion models (Larché and Cahn, 1985; Wheeler, 
2018; Hess et al., 2022). 

In general, we have shown that stress-induced diffusion will not lead 
to a uniform composition, consistent with earlier studies (e.g., Larché 
and Cahn, 1982, 1985; Zhong et al., 2017). Instead, internal stress 
variations of a few hundred MPa or greater will result in endmember 
mole fraction variations on the order of several hundredths. Such large 
stress variations may develop, for example, around stressed inclusions 
with interacting stress fields (e.g., Voorhees and Johnson, 2004) or 
around individual geometrically anisotropic stressed inclusions (King 
et al., 1991). Stress-induced diffusion profiles may potentially provide 
time estimates for the duration of these intracrystalline stresses and 
related metamorphic events such as exhumation. Although stress- 
induced compositional effects will likely be subtle, they nonetheless 
could reveal substantial deviations from hydrostatic conditions. 

Finally, we note that our derivation is sufficiently general as to be 
applied to more complex phenomena such as diffusion-induced stresses 
(e.g., Larché and Cahn, 1982) and viscous relaxation (e.g., Stephenson, 
1986, 1988; Erdélyi and Schmitz, 2012). The ability to model diffusion 
under arbitrary stress conditions in a way that is consistent with Larché- 
Cahn theory presents new possibilities for extracting both stress and 
time information from mineral compositions which, in turn, can provide 
a deeper understanding of large-scale tectonic processes. 
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