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Intracrystalline diffusion is an invaluable tool for estimating timescales of geological events. Diffusion is typically

modeled using gradients in chemical potential caused by variations in composition. However, chemical potential is

Keywords: derived for uniform pressure and temperature conditions and therefore cannot be used to model diffusion when there
D1ffu51orll are gradients in stress. Internal stress variations in minerals will create gradients in strain energy which, in addition to
Timescales

Non-hydrostatic stress

Thermodynamics

gradients in composition, will drive diffusion. Consequently, it is necessary to have a method that incorporates stress
variations into diffusion models.

To address this issue, we have derived a flux expression that allows diffusion to be modeled in ionic, crystalline
solids under arbitrary stress states. Our approach is consistent with standard petrological methods but instead
utilizes gradients in a thermodynamic potential called “relative chemical potential.” Relative chemical potential
accounts for the lattice constraint in crystalline solids by quantifying changes in free energy due to the exchanges of
constituents on lattice sites under arbitrary stress conditions. Consequently, gradients in relative chemical potential
can be used to model diffusion when pressure is not uniform (i.e., under conditions of non-hydrostatic stress).

We apply our derivation to the common quaternary garnet solid solution almandine-pyrope-grossular—
spessartine. The rates and directions of divalent cation diffusion in response to stress are determined by endmember
molar volumes or lattice parameters, elastic moduli, and non-ideal activity interaction parameters. Our results predict
that internal stress variations of one hundred MPa or more are required to shift garnet compositions by at least a few
hundredths of a mole fraction. Mineral inclusions in garnet present a potential environment to test and apply our
stress-driven diffusion approach, as stress variations ranging from hundreds of MPa to GPa-level are observed or
predicted around such inclusions. The ability to model stress-induced diffusion may provide new information about
the magnitudes of both intracrystalline stresses and the timescales during which they occurred, imparting a better
understanding of large-scale tectono-metamorphic processes.

1. Introduction

Intracrystalline diffusion is invaluable for inferring temper-
ature-time histories of lithospheric processes. For example, diffusion
profiles between compositional zones within garnet or at garnet rims in
contact with matrix phases have been used to determine the timescales
of metamorphic events including rates of prograde heating, fault
movement, fluid infiltration, retrograde cooling, and exhumation (e.g.,
Erambert and Austrheim, 1993; Florence and Spear, 1995; Van Orman
et al., 2001; Perchuk, 2002; Cherniak and Watson, 2003; Faryad and
Chakraborty, 2005; Carlson, 2006; Ague and Baxter, 2007; Raimbourg
et al., 2007; Gaidies et al., 2008; Caddick et al., 2010; Ganguly, 2010;
Vorhies and Ague, 2011; Viete et al., 2011, 2018; Chu et al., 2017, 2018;
Tan et al., 2020; Zou et al., 2021).
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However, in many of these tectonic processes, significant variations
in stress (i.e., non-hydrostatic stress) can exist between and within
mineral grains (e.g., Wheeler, 1987, 2014, 2020; Moulas et al., 2013;
Tajémanova et al., 2014, 2015; Zhong et al., 2017, 2019; Jamtveit et al.,
2019; Moore et al., 2019; Wallis et al., 2019, 2022), which presents a
potential problem for modeling diffusion. Standard diffusion models are
based on gradients in the Gibbsian chemical potential of each end-
member (e.g., Loomis, 1978; Zhang, 2010; Borinski et al., 2012; Yoo,
2020). However, chemical potential is derived for conditions of uniform
pressure (i.e., hydrostatic stress; Gibbs, 1878). As such, chemical po-
tential gradients (and corresponding mole fraction gradients) alone
cannot be used to model diffusion in the presence of stress gradients
(Larché and Cahn, 1982; Cahn and Larché, 1983).

To overcome this challenge, materials scientists Larché and Cahn
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(1973, 1985) used the calculus of variations approach following Gibbs
(1878) to derive a new thermodynamic potential that can be used to
both model diffusion and determine equilibrium compositions in multi-
component solids under arbitrary stress conditions. We refer to this
potential as relative chemical potential after Gurtin et al. (2010, p. 399).
Relative chemical potential applies to any solid that can be described by
a defined network that exists independently of the constituents which
fill the network, as is the case for crystalline solids or glasses. Example
constituents within networks include metal atoms in alloys and ions in
silicates (Larché and Cahn, 1973, 1985). Relative chemical potential
defines the energy difference due to the exchange of two constituents (e.
g., atoms or ions) on a network site (e.g., a crystalline lattice site) while
holding all other constituents constant (Larché and Cahn, 1973, 1985).

Although the chemical potential cannot be defined within the inte-
rior of a solid for unequal (non-hydrostatic) stress conditions (Gibbs,
1878; Kamb, 1961; Larché and Cahn, 1985; Wheeler, 2018; Hess et al.,
2022), the change in energy due to the exchange of constituents within a
solid, as governed by the relative chemical potential, can be (Larché and
Cahn, 1973, 1985). Diffusion will occur until the overall energy cannot
be lowered in the solid by further exchanges of constituents on the sites
(Larché and Cahn, 1973, 1982, 1985; Voorhees and Johnson, 2004;
Powell et al., 2018, 2019; Wheeler, 2018; Hess et al., 2022). Diffusion
following the relative chemical potential gradient will lead to positive
entropy production as required for any real process (Hess et al., 2022).
Thus, the relative chemical potential can be used to treat diffusion in
solids with internal stress gradients. Larché-Cahn theory has been
experimentally verified in alloys near room temperature and pressure
(Shi et al., 2018). While it remains untested in crystals at high temper-
atures and pressures, we posit that the strong silicate structures present
in many minerals are consistent with the network model, and thus the
relationships between stress and solid chemistry derived by Larché and
Cahn (1973, 1985) are applicable.

It is highly desirable to quantitatively evaluate diffusion under stress
gradients given the increasing awareness of appreciable grain-scale
stress variation (e.g., Neusser et al., 2012; Tajcmanova et al., 2014,
2015; Wheeler, 2014, 2018, 2020; Zhong et al., 2017, 2019; Thomas and
Spear, 2018; Bonazzi et al., 2019; Jamtveit et al., 2019; Moore et al.,
2019; Wallis et al., 2019, 2022; Campomenosi et al., 2020; Hess and
Ague, 2021; Hess et al., 2022). Important progress has been made in this
regard by modeling coupled stress, deformation, and diffusion for binary
systems without the lattice constraint (e.g., Zhong et al., 2017). How-
ever, a general treatment for diffusion in ionic, crystalline solids with
any number of endmembers that is consistent with the lattice constraint
and Larché-Cahn theory remains to be formulated.

In this work we provide a method for modeling diffusion that (1) can
incorporate gradients in stress, (2) results in the equilibrium conditions
predicted by Larché-Cahn theory (Larché and Cahn, 1985), and (3) is
based on self-diffusion coefficients widely used in petrology for multi-
component ionic solid solutions with any number of endmembers. We
accomplish this using an approach which begins with the same as-
sumptions as the standard methods used for modeling diffusion in ionic
systems (Wendt, 1965; Lasaga, 1979) and incorporating the definition of
relative chemical potential (Larché and Cahn, 1973). The resulting flux
expression is consequently valid for modeling diffusion in ionic, multi-
component minerals under arbitrary stress conditions. Diffusion in
almandine-pyrope-grossular-spessartine (Alm-Py-Grs-Sps) garnet is
then explored as an example.

2. Methods
2.1. Review of standard uniform pressure diffusion equations

To provide background, we first review multi-component diffusion
in the absence of stress gradients. Under uniform temperature and

pressure, gradients in endmember electrochemical potentials provide
the driving force for diffusion of cations in ionic, crystalline solids (e.g.,
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Yoo, 2020, Eq. (7.9)). The electrochemical potential is the summation of
a constituent’s chemical potential and the electrostatic potential. The
standard petrological diffusion model used to treat ionic, crystalline
solids takes a mean field approach which assumes that the only driving
force acting on a constituent is its electrochemical potential gradient
(Lasaga, 1979). As such, the force can be written as:

@

where Fj is the force acting on constituent I (J mol ! m‘l), yr is the
chemical potential (J mol’l), 2y is the charge number (unitless), .7 is the
Faraday constant (Coulomb mol™1), and @ is the electrostatic potential

(J Coulomb™1). The constituent chemical potential gradient, %, can be
replaced with the gradient in the associated endmember chemical po-
tential. The chemical potential of an ion (e.g., Mg?") and its associated
endmember (e.g., pyrope) are not numerically equivalent. However,
their gradients are equivalent when: (1) the other constituents of the
endmember are uniform and comprise a stable network structure that
does not change appreciably during diffusion (i.e., the Al-Si-O frame-
work in garnet; Lasaga, 1979) and (2) electroneutrality is maintained
(Kroger, 1980; Schmalzried, 1995, p. 186-190, 205).

Assuming that the flux of some constituent I is linearly proportional
to its mobility and concentration together with the requirement of
electrical neutrality (see Wendt, 1965), the 1-D relationship between the
flux of cations and their associated endmember chemical potential
gradients for ionic, multi-component crystalline solids can be defined as
follows (Eq. (9) of Lasaga, 1979):
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where Jj is the flux of the concentration of constituent I (mol m3m?
s, uy is the mobility of constituent I (m? mol J7 s™Y), ¢; is the con-
centration of constituent I (mol m™), z; is the charge number (unitless),
and y; is the endmember chemical potential per unit volume (J mol ?
m’3).

Eq. (2) is appropriate for modeling diffusional fluxes in an ionic
crystalline solid under uniform temperature and pressure conditions.
The first term on the righthand side represents the flux due to the con-
stituent’s own chemical potential gradient, and the second term repre-
sents the flux due to the electrostatic potential gradient. The mobility of
a constituent, uj, defines its velocity relative to the applied thermody-
namic driving force (e.g., Eq. (1)). It can be calculated from the exper-
imentally measured self-diffusion coefficient of a constituent via the
Nernst-Einstein equation

D,
U = ﬁ 3)
where Dj is the self-diffusion coefficient (m? s‘l), R is the ideal gas
constant (J mol 1 K’l), and T is the absolute temperature (K).
However, Eq. (2) requires two additional constraints for practical
applications. Because a crystalline solid has a lattice with fixed sites, an
N component solid solution only has N — 1 independent chemical po-
tential gradients. The N dependent endmember is typically eliminated
by employing the Gibbs-Duhem equation at a uniform temperature and
pressure (e.g., Loomis, 1978, Eq. (12); Lasaga, 1979, p. 456; Ganguly,
2002, p. 278; Yoo, 2020, Eq. (4.35)) together with the additional
constraint of electroneutrality:

N

0)
E ZKCK—gK =0
K= X

Eq. (4) indicates that the net thermodynamic driving force is zero
everywhere which also satisfies the requirements of crystallinity (Cahn
and Larché, 1983; Gurtin et al., Eq. (72.5)). Combining equations (2)
and (4) yields:
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Finally, the cation fluxes can be cast in terms of their associated
endmember mole fractions (moles of I per total moles) instead of con-
centrations (moles per m®) by dividing Eq. (5) by the sum of all the

endmember concentrations, Zg,ch. This is valid if the molar volume
and, thus, the area over which the flux occurs does not change appre-
ciably with diffusion, giving:

)M

Soho 2k Xk (g — uy) % (6)

N2
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where J¥ is the flux of the mole fraction of constituent I (moles of I
per total moles m2s Y and X; is the mole fraction of constituent I
(moles of I per total moles).

Eq. (6) defines the mole fraction flux of constituent I counter-
balanced by the arbitrarily chosen N constituent via the Gibbs-Duhem
equation to maintain charge neutrality and conserve lattice sites. We
emphasize that it is strictly applicable only when there are no gradients
in temperature and stress. The endmember chemical potentials can be
calculated using any desired ideal or non-ideal activity model. Since
chemical potential is a function of mole fraction, Eq. (6) is commonly re-
written in terms of mole fraction gradients (e.g., Borinski et al., 2012,
Egs. (1)-(2)).

)
— u,X,ﬁ +uizX;

4 ox

2.2. Diffusion with stress variation

When there are gradients in stress, the chemical potential gradient
approach reviewed in Section 2.1 is insufficient for modeling intra-
crystalline diffusion because it is derived for uniform pressure condi-
tions (Gibbs, 1878; Larché and Cahn, 1982, 1985). Instead, we use the
relative chemical potential as it is defined under conditions of non-
hydrostatic stress (Larché and Cahn, 1973, 1978b, 1982, 1985). Diffu-
sion occurs while the exchange of constituents will continue to lower the
energy locally. Equilibrium is achieved within a solid when no further
exchanges can reduce its free energy, at which point all relative chem-
ical potentials (rather than chemical potentials) are uniform.

The relative chemical potential between two constituents I and K at a
given stress and temperature is given by the Larché-Cahn equation
(Larché and Cahn, 1985, Eq. (4.21)). We write the equation following
the terminology of Hess et al. (2022, Eq. (2)):

* * a _
Hi_x (03, T) = p, (P, T) — pg(P,T) + RTIn (i) — Voui X (o + PSy) —

where yij_g is the relative chemical potential (J mol 1) at the given stress,
o;j (Pa), and temperature, T (K), y; is the chemical potential of the pure
endmember I (J mol’l) at the reference pressure, P (Pa), and tempera-
ture, R is the ideal gas constant (J K ' mol™), ais the activity, Vy is the
molar volume of the solid at the reference temperature and pressure (m?>
mol’l), ﬂffK is the partial molar strain tensor between I and K (unitless),
Sijx1 is the compliance tensor (Pa™1), X.x is the mole fraction of I
assuming dependent constituent K, and §; is the Kronecker delta. See
Hess et al. (2022) for details on solving the Larché-Cahn equation.

Eq. (7) can be used to quantify the free energy change in a solid due
to cation fluxes. In a system of N endmembers, there are N — 1 unique,
independent relative chemical potentials. If a solid is structurally
isotropic, the formula for these relative chemical potentials simplifies
considerably (Larché and Cahn, 1985; Hess et al., 2022):

Vo 0Siu
2 0X;_g
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Hi—k (Om, T) = py (0, T) — g (0, T) (©))
where oy, is the mean stress (i.e., average of the three principal stresses)
and p is the endmember chemical potential in the solid solution. The
endmember chemical potential is, for example, defined as:
Uy (6m, T) = p; (6m, T) +RTIn(a;) for endmember .

Crystalline solids, however, are not mechanically isotropic. Even
minerals with cubic symmetry — the highest possible — are mechanically
anisotropic (Nye, 1957; Cahn, 1962; Larché and Cahn, 1978a). This
leads to anisotropic diffusion when a crystal is not at a uniform pressure
(Larché and Cahn, 1982, 1985), including for garnet which is our focus
herein. Nonetheless, the anisotropy of garnet elastic constants is very
small (Erba et al., 2014). Consequently, any diffusional anisotropy in
response to a stress gradient would be minimal. As such, we will treat
garnet as isotropic as done in previous studies (e.g., Wheeler, 2018; Hess
et al., 2022). Anisotropy is examined further in the discussion section.

Finally, we note that because vacancies mediate diffusion, they can
be treated explicitly as a diffusing constituent (e.g., Smigelskas and
Kirkendall, 1947; Darken, 1948; Mrowec, 1980; Chakraborty and
Ganguly, 1991; Schmalzried, 1995; Mehrer, 2007; Li et al., 2018).
However, vacancy mole fractions and chemical potentials are generally
difficult to quantify accurately. Furthermore, treating vacancies
explicitly in an ionic solid would require defining the stoichiometry and
chemical potential of an associated neutral endmember which facilitates
the diffusional exchange (e.g., Chakraborty and Ganguly, 1991). Given
these complexities, it is most straightforward and standard practice to
treat vacancies implicitly (Lasaga, 1979; Larché and Cahn, 1982, 1985).

2.3. Diffusional flux using relative chemical potential gradients

Larché and Cahn (1982, 1985) show that diffusion in crystalline
network solids follows gradients in relative chemical potential (i.e., the
spatial derivative of Egs. (7) or (8)). Using gradients in relative chemical
potential, we can derive a new expression for diffusional flux.

First, we make a mean field assumption analogous to that in Eq. (1).
That is, the forces acting on a constituent are its own relative endmember
chemical potential gradient with an arbitrarily chosen N™ endmember
(e.g., Larché and Cahn, 1982; Cahn and Larché, 1983) and the electro-
static potential in the ionic solid. We further stipulate that the electro-
static potential is not a direct function of stress. Thus, we have:

(0561 — P*8;64) (7)
0, O
J[ = —ucy ﬂI?N +Z[y£ (9)
ox ox

Next, the requirements of electroneutrality indicate that the sum of
the fluxes multiplied by the electrical charges of the diffusing constitu-
ents must be zero:

N
D> wlk=0
K=1

When Eq. (9) is substituted into Eq. (10), the result is:
N Optye op
721(:1 (chKzK 6KxN + chKzf(ya =0

which can be rearranged to solve for the electrostatic potential:

(10)
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When Eq. (11) is substituted back into Eq. (9), an expression for flux

due solely to gradients in endmember relative chemical potentials is
obtained:

(€8]

S (exaxser)
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Eq. (12) is directly analogous to Eq. (2), except that relative chemical
potentials are used instead of chemical potentials. As a result, Eq. (12)
treats diffusion under non-hydrostatic conditions, whereas Eq. (2) does
not.

Two simplifications can be made to Eq. (12). First, concentration can

)
Hin +ucrz;

o 12)

Jr= —uc

be converted to mole fraction by dividing Eq. (12) by S"K_;ck. Second,
as the definition of relative chemical potential indicates that a"g’—;” =0
(Larché and Cahn, 1973), the N® relative chemical potential gradient
can be eliminated from Eq. (12) to give the result:

ForI=1toN — 1:

N-1 gy
Dok (“KXKZK ”SXA>

o
I = —w X Xz (13a)
! 0x S (wXo2)
And forI = N:
Z[A(/;} (MKXKZKO“(';; N)
Ji = MNXNZN— (13b)

S (wXo23)

Eq. (13) defines the 1-D flux of the mole fraction of constituent I (J¥;
moles of I per total moles m—2 s’l) as a function of relative chemical
potential gradients under arbitrary stress conditions in an ionic, network
solid. Since N — 1 endmembers are independent, only the first N — 1
equations given by Eq. (13a) are necessary because the flux of the N
endmember is the difference of one minus the sum of the other N — 1
endmember mole fractions. Nonetheless, Eq. (13b) explicitly allows for
the calculation of the flux of the N endmember, providing a means to
test that the lattice constraint is indeed being satisfied by confirming
that the sum of the fluxes is zero.

The form of Eq. (13) is similar to the flux equation based on chemical
potential gradients (Eq. (6)). The first term of Eq. (13a) represents the
flux due to the constituent’s own relative chemical potential gradient.
The second term represents the flux due to the electrostatic potential
gradient in the ionic solid. Unlike Eq. (6), however, Eq. (13) is valid
under conditions of non-hydrostatic stress as it is written as a function of
relative chemical potential gradients. Eq. (4) is only applicable when
pressure and temperature are uniform, and therefore, Eq. (6) is invalid
when stress gradients exist. It is worth emphasizing that Eq. (13) is
appropriate to model diffusion in network solids with heterogeneous
stresses because the Gibbs-Duhem equation is never applied in its
derivation.

The terms in Eq. (13) can be determined as follows: The mobilities,
up, are calculated from self-diffusion coefficients using Eq. (3) (e.g.,
Larché and Cahn, 1982; Larché and Voorhees, 1996). The charge num-
ber, zj, is the unitless charge value of the diffusing cation associated with
each endmember (e.g., +2 for Mg?* in pyrope garnet). Relative chemical
potential can be calculated using the Larché-Cahn equation (Eq. (7)).
This equation indicates that crystallographic and stress orientations
need to be considered when computing relative chemical potential
values. However, the much simpler Eq. (8) is applicable if a mineral can
reasonably be approximated as isotropic (e.g., garnet; see section 4.2.).
Eq. (13) is valid for any desired activity model (ideal or non-ideal),
depending on how one determines the relative chemical potentials.
The choice of the N endmember is arbitrary (Larché and Cahn, 1985).
If Eq. (13) is extended beyond one dimension, care must be taken to
account for the effects of orientation on both self-diffusion coefficients
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and relative chemical potentials (Larché and Cahn, 1973, 1985;
Wheeler, 2018; Hess et al., 2022).

Diffusion following relative chemical potential gradients may be
written as a linear combination of mobility-based interdiffusion co-
efficients and relative chemical potential gradients (e.g., Larché and
Cahn, 1985, Eq. (8.1)):

N-1
9
Jf _ ZB Hi-N

s 14
= ox
When Eq. (13a) is rewritten in the form of Eq. (14), then:
u; X,z
By = w X8y — u Xz — 15)

N
> ko1 k Xk 2k

where §y; is the Kronecker delta, Bjy is the relative chemical potential-
based interdiffusion coefficient between constituents I and J (m? mol
J71 s7D), and all other terms are as previously defined. We use By
following Larché and Cahn (1982) in place of the more familiar inter-
diffusion coefficient notation of Dj; to emphasize that Bj; represents
interdiffusion coefficients that are calculated for use with relative
chemical potential gradients.

Importantly, the mobility-based interdiffusion coefficient matrix, Byj,
is symmetric, upholding the fundamental Onsager reciprocal relations
(ORRs; Onsager, 1931). This is easily shown by comparing B;y and By; for
the case of I # J:

usX;zy Xz
N N
ZK:]”KXKZ%( ZkzluKXKZ%(

Clearly, By (left side) is equal to By (right side). Given the additional
complexities of crystalline solids compared to fluids (e.g., crystal sym-
metries and the ability to support non-hydrostatic elastic stresses at
mechanical equilibrium), verification of the ORRs remains difficult and
is not guaranteed in all reference frames for solids (e.g., molar vs. bar-
ycentric reference frame; Mullins and Sekerka, 1981; Cahn and Larché,
1983). Thus, the symmetry of Bjy (Eq. (15)) offers an important check for
the validity of our derivation based on relative chemical potential gra-
dients. We also note that while the standard flux expression (Eq. (6))
yields asymmetric interdiffusion coefficient matrices, this does not
invalidate the expression for use at uniform pressure and temperature
conditions. Eq. (6) uses chemical potential gradients which are not in-
dependent driving forces as shown in Eq. (4). The interdependency of
the gradients yields asymmetric interdiffusion coefficient matrices
without necessarily violating the ORRs (Cahn and Larché, 1983).

Application of Eq. (15) to, for example, a four-component system
such as almandine-pyrope-grossular-spessartine (Alm-Py-Grs-Sps)
garnet generates a 3 x 3 matrix of relative chemical potential-based
interdiffusion coefficients that can be used with the three arbitrarily
chosen independent relative chemical potentials. Because all substitu-
tional cations have the same +2 charge, the z terms cancel.

In summary, Egs. (13) and (15) provide a new 1-D formulation that
can be used for calculating diffusion in ionic, crystalline solids with any
symmetry and under arbitrary stress conditions. Herein, we apply these
expressions to Alm-Py-Grs-Sps garnet. We use the Holland and Powell
(2011) thermodynamic dataset and their equation of state to calculate
pure endmember chemical potentials. We calculate garnet endmember
activities following White et al. (2014) and self-diffusion coefficients
using Chakraborty and Ganguly (1992) and Faryad and Chakraborty
(2005). In models where pressure is not uniform, the self-diffusion co-
efficients vary as a function of mean stress (pressure). We obtain similar
results with other garnet activity models (e.g., Berman, 1990; Ganguly
et al., 1996) and diffusion coefficients (e.g., Carlson, 2006; Chu and
Ague, 2015).

We model diffusion using a 1-D spherical diffusive transport code
that employs the forward time centered space (FTCS) method (e.g.,
Roache, 1972). We use a zero-flux boundary condition at the garnet
rims. This means there is no exchange with the matrix which allows us to

—uXpzy = —u Xz
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isolate the effects of internal stress variation in the crystal. The inter-
diffusion coefficients are re-calculated at every time step as composition
changes. We use the initial condition (composition, stress, and strain) as
our reference frame. Thus, any changes in composition, stress, or strain
in the solid are mapped onto the location of that unit volume in the
reference frame (Larché and Cahn, 1985).

We assume that garnet behaves perfectly elastically and that the
stress gradient does not change with time in the examples below. This
simplification allows us to highlight the effects of stress on multi-
component mineral composition and to compare our results to the
equilibrium conditions of Larché and Cahn (1973, 1985). In addition,
while we explore how an imposed stress gradient affects diffusion,
cation diffusion may itself generate stresses (“self-stress”) due to dif-
ferences in atomic sizes (e.g., Larché and Cahn, 1982; Schmalzried,
1995, p. 71; Van Orman et al., 2001; Cherniak and Watson, 2003;
Baumgartner et al., 2010; Zhong et al., 2017). Nonetheless, we
emphasize that Eq. (13) is general and is not limited to the elastic
stresses or constant imposed stress gradients considered herein.
Although both viscous relaxation (i.e., solid-state creep) and diffusion-
induced self-stresses are beyond the scope of our present work, they
represent important processes that can be investigated using our deri-
vation (Eq. (13)) in future studies.

3. Results

Eq. (13) allows diffusion to be treated in ionic, multi-component
minerals when pressure is not uniform. Here, we first show that diffu-
sion modeled using relative chemical potential gradients (Eq. (13)) at
uniform pressure and temperature conditions provides diffusion profiles
(and thus, diffusion rates) identical to standard methods based on
chemical potential or mole fraction gradients (Eq. (6); see also Borinski
et al., 2012, Egs. (1)-(2)). Second, we demonstrate that relative chem-
ical potential gradients are valid for modeling diffusion when there are
stress gradients, whereas mole fraction and chemical potential gradients
are not. Third, we present expected behaviors for stress-induced diffu-
sion in garnet and show that they match equilibrium conditions pre-
dicted by Larché-Cahn theory (Larché and Cahn, 1985).

Under uniform temperature and pressure conditions, the derivations
of Larché and Cahn (1973, 1985) reduce to the equilibrium conditions of
Gibbs (1878). Therefore, diffusion modeled using relative chemical
potential gradients with a uniform pressure provides equivalent results
to diffusion modeled using chemical potential gradients or mole fraction
gradients. Fig. 1 shows a comparison between the modeled profile using
relative chemical potential gradients (Eq. (13)) and chemical potential
or mole fraction gradients (Eq. (6)) for a pyrope-rich garnet composi-
tion. The initial composition is a step function (thin dashed lines) which
relaxes for two million years at 700 °C and 1 GPa. The results for the two
types of potential gradients are identical, as expected. Importantly, this
also indicates that the diffusion rates calculated using Egs. (13) and (15)
are the same as those computed using standard methods. Thus, the re-
sults obtained from our derivation can be directly compared to other
works when pressure is uniform.

In contrast, when there is a stress gradient, the equivalency between
diffusion models that use mole fraction, chemical potential, or relative
chemical potential gradients ceases (Fig. 2). For example, suppose that a
spherical garnet with an initially homogeneous composition is subjected
to a constant, hypothetical internal stress gradient as shown in Fig. 2a.
We use a large variation in mean stress to highlight the interactions
between stress and diffusion more clearly. The garnet will have higher
strain energy at its core than its rim, and consequently, the strain energy
gradient will drive diffusion.

However, if mole fraction gradients are used to model diffusion, no
diffusion is predicted because there is no initial gradient in mole fraction
(Fig. 2b). When Eq. (6) is re-written in terms of mole fraction (e.g.,
Borinski et al., 2012), it is assumed that the chemical potential is only a
function of mole fraction, and therefore any pressure or temperature
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Fig. 1. Diffusion in garnet following relative chemical potential gradients (RCP,
solid lines) and chemical potential (CP) or mole fraction gradients (dashed lines).
A spherical garnet composed of almandine (Alm), pyrope (Py), grossular (Grs),
and spessartine (Sps) has a radius of 2,000 pm and an internal step function in
composition (thin dashed lines). Diffusion is simulated for 2 million years at
700 °C and 1 GPa. The activities are calculated following White et al. (2014). The
self-diffusion coefficients are Dajm = 5.29 x 10723 m?s™ 1, Dpy =3.07 x 1072 m?
s7!, Dgrs = 2.64 x 1072 m? s, and Dgps = 6.07 x 10722 m2s71,

variations are ignored.

On the other hand, when chemical potential gradients are used, the
effects of stress on the endmember chemical potentials are included, but
in an incorrect way. As garnet is a crystalline solid, the net flux must be
zero everywhere to maintain the lattice (e.g., Yoo, 2020, p. 163). At
uniform pressure, the Gibbs-Duhem equation (Eq. (4)) accomplishes this
by ensuring the net driving force (and therefore flux) is zero. However,
when pressure is not uniform, Eq. (4) is unjustified which invalidates Eq.
(6). Consequently, the N constituent (in this case spessartine, arbi-
trarily chosen) is forced to balance the flux in an unrealistic manner. In
the presence of a gradient in internal mean stress as in Fig. 2a, every
constituent will have a higher endmember chemical potential at the core
of the garnet than the rim. As such, without the lattice constraint, every
cation would diffuse toward the rim. However, since the diffusing cation
of the N endmember (Mn2+) provides a counter-flux to maintain the
crystal lattice, the mole fraction of spessartine quickly becomes negative
in the rim (Fig. 2c¢). As such, the simulation ends at 0.2 Myr after which
point the model becomes unstable and fails. Thus, neither diffusion
using mole fraction nor chemical potential gradients provides realistic
results when there is a stress gradient.

Instead, relative chemical potential gradients must be used (Larché
and Cahn, 1982, 1985; Cahn and Larché, 1983; Balluffi et al., 2005, p.
42-43; Gurtin et al., 2010, p. 398-400). The relative chemical potential
quantifies energy change due to the exchange of constituents on lattice
sites. Since the lattice constraint is satisfied without the Gibbs-Duhem
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Fig. 2. Comparing simulated diffusion profiles at 700 °C in a stressed, pyrope-rich garnet. (a) The stress profile of the garnet. Diffusion profiles are simulated using the
following driving forces: (b) chemical potential-based mole fraction gradients for 5 Myr, (c) chemical potential gradients for 0.2 Myr, and (d) relative chemical potential
gradients for 5 Myr. Thin dotted lines represent the initial composition. The self-diffusion coefficients are a function of mean stress. The ranges are D), = 2.65 x 10" 2 to

5.29 x 102 m?s™!, Dpy = 1.59 x 10 **t03.07 x 10 2 m? s %, Dgrs = 1.32 x 10 > t0 2.64 x 10 2*

equation (Cahn and Larché, 1983), plausible diffusion is predicted
(Fig. 2d). Consequently, Eq. (13) can be used to model flux when stress
gradients exist. The mole fraction of pyrope is predicted to increase
toward the high stress region while the mole fractions of grossular and
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Fig. 3. Comparing diffusion profiles predicted for an internal stress gradient in
garnet with non-ideal (White et al., 2014) and ideal activity models using
relative chemical potential gradients. The temperature is 800 °C and the time is
10 Myr. The stress profile and other model parameters are the same as in
Fig. 2a. The self-diffusion coefficients are a function of mean stress. The ranges
are Dajm = 7.18 x 10 2210 1.34 x 10 > m?®s™ !, Dpy, = 4.76 x 10 > t0 8.63 x
1022 m? s}, Dgrs = 3.59 x 10 %2 t0 6.72 x 10?2 m*s™', and Dgps = 6.15 x
10721 t0 1.20 x 107 m? s %,
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m?s ', and Dgys = 2.89 x 10 *2t06.07 x 10 2* m?s ™.

spessartine increase toward the low stress region. The mole fraction of
almandine changes by only a very minor amount for this composition
(Fig. 2d).

Fig. 3 represents a relative chemical potential-based diffusion profile
with the same internal stress profile and initial condition as in Fig. 2 but
at a temperature of 800 °C and a time of ten million years such that the
internal garnet composition is near equilibrium. In addition, both ideal
(dashed lines) and non-ideal (solid lines) mixing behaviors are
compared. One GPa of mean stress variation leads to a 0.06-0.08 vari-
ation in Xpy and Xg,s from core to rim with a much smaller variation in
Xaim and Xsps. This suggests that a large mean stress variation (>100
MPa) is required for there to be a discernable change in garnet
composition.

Fig. 3 also highlights the importance of incorporating non-ideal
mixing behavior (Hess et al, 2022). Non-ideality increases the
modeled composition change of all endmembers by up to a factor of two
under the conditions of Fig. 3. Thus, when modeling stress-induced
diffusion, non-ideal mixing behavior should be considered.

Fig. 4 shows the temporal evolution of the composition of a more
almandine-rich garnet (Fig. 4a) as well as the evolution of the relative
chemical potentials (Fig. 4b). The stress conditions are identical to the
profile shown in Fig. 2a, and the composition is initially homogeneous.
As time progresses, the mole fractions of each endmember change from
initially uniform, flat lines to curved lines that vary by up to several
hundredths of a mole fraction from core to rim (Fig. 4a). On the other
hand, the relative chemical potential profiles have the opposite behavior
(Fig. 4b). They begin as initially curved lines, but after equilibrium is
achieved, they are uniform and flat. This demonstrates the important
result that the underlying relative chemical potential is the indicator of
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Fig. 4. Temporal evolution of an almandine-rich garnet with an internal stress gradient as shown in Fig. 2a. The self-diffusion coefficients are identical to those in
Fig. 3 and the temperature is 800 °C. (a) Composition profiles as a function of time. (b) Relative chemical potential profiles as a function of time. Note that four

endmembers give rise to three unique relative chemical potentials.

whether equilibrium has been attained. Thus, unlike in standard diffu-
sion models, equilibrium is not necessarily achieved when the compo-
sition is homogeneous (Larché and Cahn, 1982, 1985; Zhong et al.,
2017).

When the relative chemical potentials are uniform throughout the
garnet, the free energy of the garnet cannot be lowered by further
diffusion and equilibrium is achieved (Larché and Cahn, 1982, 1985). At
this point, the composition is identical to the equilibrium composition
predicted by Larché-Cahn theory (Larché and Cahn, 1973, 1985; Powell
et al., 2018; Wheeler, 2018; Hess et al., 2022). This serves as a test of
both our numerical algorithm and solution procedure for the transient
problem.

In summary, we show that our diffusional flux expression (Eq. (13)):
(1) provides diffusion rates that are identical to those obtained using
standard methods when pressure is uniform (Fig. 1), (2) can incorporate
stress gradients (Fig. 2), and (3) leads to composition profiles with
uniform underlying relative chemical potentials when stress gradients
are present as predicted by Larché-Cahn theory (Fig. 4).

4. Discussion
4.1. Interactions between stress and composition

When there are gradients in stress, new diffusion behaviors arise that
are not predicted by the standard, uniform pressure models such as Eq.
(6). When temperature and pressure are uniform, chemical potentials
and relative chemical potentials are only a function of composition.
However, stress variation creates a gradient in strain energy which also
affects relative chemical potential. Strain energy is partially a function
of endmember molar volumes or lattice parameters. Consequently,
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cations associated with the largest endmembers will diffuse toward low-
stress regions and the cations associated with the smallest endmembers
will diffuse toward high-stress regions to diminish the strain energy
gradient (Tajcmanova et al., 2015, 2021; Hess et al., 2022). This phe-
nomenon is known as the Gorsky effect (Gorsky, 1935) and is commonly
observed, for example, in interstitial hydrogen diffusion in stressed al-
loys (e.g., Fukai and Sugimoto, 1985; Palsson et al., 2012; Shi et al.,
2018).

Equilibrium is achieved when the change in compositional energy
and the change in strain energy from any movement of constituents are
equal. At this point, all endmember relative chemical potentials are
uniform, and there is no thermodynamic driving force for further
diffusion. The endmember mole fractions, and their associated relative
chemical potentials, are then equal to the equilibrium values calculated
via Eq. (7) (Larché and Cahn, 1985; Powell et al., 2018, 2019; Wheeler,
2018; Hess et al., 2022). As emphasized above, although the relative
chemical potentials are uniform, the equilibrium mineral composition
need not be (Fig. 4).

The composition changes predicted in Figs. 3 and 4 are consistent
with the Gorsky effect. The mole fraction of Mg, associated with the
smallest endmember (pyrope), increases toward the core of the garnet
where the stress is highest. In contrast, the mole fraction of Ca2+,
associated with the largest endmember (grossular), increases toward the
rim. Since these two cations and their associated endmembers have the
largest molar volume difference, they represent most of the observed
composition change. In contrast, Fe?™ and Mn?", associated with
almandine and spessartine, respectively, have endmember molar vol-
umes between pyrope and grossular. Thus, Fe2* and Mn?" mole frac-
tions do not change as much as Mg?* and Ca®".

Despite these general trends, the details of how cation flux and stress
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interact can vary considerably depending on the composition. For
example, for the pyrope-rich composition, the mole fraction of Fe?*
slightly decreases with increasing stress (Fig. 3). In contrast, the mole
fraction of Fe?" increases with increasing stress in the example garnet
with a more almandine-rich composition (Fig. 4). Thus, while the cat-
ions associated with the largest and smallest endmembers (grossular and
pyrope, respectively) will have behaviors predicted simply by the Gor-
sky effect, the behaviors of the cations associated with intermediate
endmembers can vary depending on composition.

Additionally, non-ideal mixing is important to consider (Hess et al.,
2022). The interaction parameters of garnet endmembers have positive
deviations from ideality (e.g., Berman, 1990; Ganguly et al., 1996;
White et al., 2014). Consequently, mixing of cations becomes less
energetically favorable relative to ideal mixing behaviors. Therefore, it
takes a greater amount of composition change to balance the strain
energy gradient imposed by a stress gradient (Fig. 3). Pyrope and
grossular have a highly non-ideal mixing behavior, meaning that stress
has a larger effect on the flux of Mg?* and Ca®". Almandine and spes-
sartine endmembers, however, have smaller deviations from ideality
with respect to all endmembers (e.g., White et al., 2014), and hence Fe**
and Mn®" have more modest changes in response to gradients in stress.

Finally, we note that while stress drives diffusion, the diffusion of
cations with different endmember molar volumes may also generate
stresses which locally affect composition (Larché and Cahn, 1982, 1985;
Van Orman et al., 2001; Cherniak and Watson, 2003; Baumgartner et al.,
2010; Zhong et al., 2017). Diffusion-induced “self-stress” in a sphere can
be quantified, for example, by using Larché and Cahn (1982)’s Eq. (26),
and then its effects on relative chemical potential may be subsequently
incorporated into our flux expression through Eq. (7). However, we
deem this beyond our scope here. We make a limiting assumption that
the stress profile remains constant (Fig. 2a) to highlight the expected
direction and magnitudes of stress-induced diffusion in garnet (Figs. 2d,
3, 4). It is worth emphasizing, however, that this assumption is not
required when applying Eq. (13) as it is perfectly general and can
incorporate stresses from any source using Eq. (7).

4.2. Crystallographic anisotropy

We have applied our derived flux expression (Eq. (13)) to garnet
which has cubic symmetry. Although cubic minerals are often thought of
as isotropic, their mechanical properties (i.e., Young’s moduli) are
described by fourth-order tensors and are thus anisotropic (Nye, 1957).
Consequently, the effect of stress on relative chemical potential will vary
directionally, leading to anisotropic diffusion rates even in cubic min-
erals (Cahn, 1962; Larché and Cahn, 1982). Nonetheless, we treat garnet
as isotropic because its mechanical anisotropy is very small (Erba et al.,
2014). The spatial variation in diffusion rates due to this anisotropy
would be only a few percent which is negligible compared to the un-
certainties of analytical techniques and the diffusion coefficients
themselves.

The effects of anisotropy in lower symmetry structures, however,
will have a more appreciable effect on stress-induced diffusion. Non-
cubic minerals have anisotropy in their lattice dimensions as well as
mechanical properties. Both Wheeler (2018) and Hess et al. (2022) show
that the mole fraction of albite in the mineral plagioclase, for example,
can increase in response to stress in one crystallographic orientation and
decrease in response to stress in another. Consequently, stress-induced
diffusion in plagioclase would not only have anisotropic diffusion
rates but would also have the direction of cation diffusion change as a
function of crystallographic orientation. Cations associated with the
albite endmember, for example, would diffuse toward high stress re-
gions along one crystallographic axis and toward low stress regions
along a different axis (Hess et al., 2022).

Thus, caution must be exercised when predicting the behaviors of
anisotropic minerals without a full consideration of their lattice pa-
rameters and elastic moduli. For non-cubic minerals or cubic minerals
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with considerable mechanical anisotropy, the isotropic relative chemi-
cal potential approximation (i.e., Eq. (8)) should not be used. The full
effects of crystallographic and stress tensor orientations on relative
chemical potential should instead be incorporated using Eq. (7), even in
the case of a simple 1-D planar diffusion model.

4.3. Potential applications

A promising environment to test and apply simple cases of stress-
driven diffusion models may be around garnet-hosted coesite in-
clusions (e.g., Chopin, 1984; Massonne, 2001; Lii and Zhang, 2012). The
presence of preserved coesite or former coesite suggests GPa-level stress
variations existed during exhumation to prevent the transition from
coesite to quartz (e.g., Parkinson and Katayama, 1999; Parkinson, 2000).
In addition, other mineral inclusions such as quartz and zircon in garnet
are predicted to develop stresses due to differences in lattice parameters
and elastic constants during exhumation (e.g., Guiraud and Powell, 2006;
Kohn, 2014; Murri et al., 2018; Thomas and Spear, 2018; Mazzucchelli
et al., 2019; Moulas et al., 2020; Gilio et al., 2021). Depending on the
entrapment conditions, stress variations in the host of 0.5-1 GPa or
greater are indicated (e.g., Thomas and Spear, 2018; Bonazzi et al., 2019;
Zhong et al., 2019; Campomenosi et al., 2020). Preserved diffusion pro-
files around inclusions could then be used to estimate internal stresses
and time scales of metamorphic events even if there is no initial chemical
heterogeneity. However, as we have previously noted, large differences
in mean stress (>100 MPa) are required to shift mole fractions by a few
hundredths. Such small composition changes would only be revealed by
very careful chemical microanalysis procedures.

It is also important to point out that stress variation doesn’t neces-
sarily equate to a mean stress gradient. For example, it is well known
that an overpressured spherical inclusion inside of an elastic isotropic
host will not create a mean stress gradient in the host (e.g., Timoshenko
and Goodier, 1970). Nonetheless, non-spherical inclusion geometries (e.
g., King et al., 1991; Moulas et al., 2014; Campomenosi et al., 2018,
2020; Moore et al., 2019; Zhong et al., 2021), interactions between
multiple inclusions (Voorhees and Johnson, 2004), mechanical or
crystallographic anisotropy in the inclusion(s) or host (King et al.,
1991), and alternative stress models such as the multi-anvil model
(Tajcmanova et al., 2014) all have the potential to create mean stress
gradients that would drive diffusion in perfectly elastic crystals.

Furthermore, the assumption of elastic behavior is not necessary.
Our examples in Figs. 2-4 assume a constant gradient in elastic stress to
allow for direct comparison with the equilibrium conditions of Larché
and Cahn (1973, 1985) which require elasticity. However, since diffu-
sion is inherently a non-equilibrium process, transient viscous behavior
(i.e., solid-state creep) can be incorporated because the network model
allows for dislocations to modify the structure (Larché and Cahn, 1985).
As such, standard mechanical models are fully compatible with Larché-
Cahn theory. While viscous relaxation would ultimately reduce stress
gradients in garnet (e.g., Moulas et al., 2020; Zhong et al., 2020), viscous
behavior can lead to transient GPa-level stresses which may drive sig-
nificant diffusion (e.g., Zhang 1998; Moulas et al., 2014; Tajcmanova
et al. 2014; Dabrowski et al. 2015; Zhong et al., 2017). Stephenson
(1986, 1988) and Erdélyi and Schmitz (2012), for example, demon-
strated how viscous behavior can be incorporated into diffusion models
based on Larché-Cahn theory. Eq. (13) can similarly be used as a foun-
dation to investigate the effects of viscous behavior on diffusion in ionic,
crystalline solids.

4.4. Geochemical implications

Chemical zonation in minerals records unique information about
evolving pressures, temperatures, and system chemistry in Earth’s crust
and mantle, thus providing fundamental insights into geochemical
cycling, orogenesis, and a myriad of other Earth system phenomena.
Diffusional relaxation of chemical heterogeneities gives crucial
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perspectives on the timescales of metamorphism, igneous activity, and
hydrothermal circulation, as it modifies pre-existing zonation acquired
via mineral growth, dissolution—precipitation, or other processes (e.g.,
Erambert and Austrheim, 1993; Penniston-Dorland, 2001; Cherniak and
Watson, 2003; Watson and Baxter, 2007; Faryad and Chakraborty, 2005;
Caddick et al., 2010; Ague and Carlson, 2013; Chu et al., 2017, 2018;
Kohn and Penniston-Dorland, 2017; Tan et al., 2020; Zou et al., 2021). It
has long been recognized that the chemical potential gradients that arise
due to chemical zonation will drive diffusion. But internal stress varia-
tions within mineral grains associated with, for example, over- or
underpressured mineral inclusions or larger scale deformational forces
may also act to drive diffusion (e.g., Parkinson, 2000; Jamtveit et al.,
2019; Moore et al., 2019; Campomenosi et al., 2020; Kaatz et al., 2021).
Consequently, rigorous implementation of geothermometry, geo-
barometry, diffusion chronometry, and element partitioning studies
should consider the potential impacts of stress on diffusional relaxation.
We posit that these impacts can now be treated using the diffusion flux
Eq. (13) derived herein, making it possible to quantitively assess how
stress influences the evolving chemical zonation of minerals.

5. Summary

We have derived an expression for modeling 1-D diffusional fluxes in
ionic, crystalline solids under arbitrary stress states that is consistent
with Larché-Cahn theory (Larché and Cahn, 1973, 1982, 1985). Using
this expression, we modeled examples of stress-induced diffusion in the
common quaternary garnet solid solution assuming elastic behavior and
a constant internal stress gradient. Cation fluxes due to stress gradients
are determined by the relative differences in endmember molar volumes
or lattice parameters, by elastic moduli, and by the non-ideal activity
interaction parameters.

We treat garnet as mechanically isotropic as it is cubic and only
weakly mechanically anisotropic (Erba et al., 2014). However, in gen-
eral, anisotropy in both lattice parameters and elastic moduli may have
appreciable effects on both rates and directions of stress-induced diffu-
sion. Anisotropy is especially important to incorporate when modeling
stress-induced diffusion in minerals with lower symmetries even in
simple 1-D planar diffusion models (Larché and Cahn, 1985; Wheeler,
2018; Hess et al., 2022).

In general, we have shown that stress-induced diffusion will not lead
to a uniform composition, consistent with earlier studies (e.g., Larché
and Cahn, 1982, 1985; Zhong et al., 2017). Instead, internal stress
variations of a few hundred MPa or greater will result in endmember
mole fraction variations on the order of several hundredths. Such large
stress variations may develop, for example, around stressed inclusions
with interacting stress fields (e.g., Voorhees and Johnson, 2004) or
around individual geometrically anisotropic stressed inclusions (King
et al., 1991). Stress-induced diffusion profiles may potentially provide
time estimates for the duration of these intracrystalline stresses and
related metamorphic events such as exhumation. Although stress-
induced compositional effects will likely be subtle, they nonetheless
could reveal substantial deviations from hydrostatic conditions.

Finally, we note that our derivation is sufficiently general as to be
applied to more complex phenomena such as diffusion-induced stresses
(e.g., Larché and Cahn, 1982) and viscous relaxation (e.g., Stephenson,
1986, 1988; Erdélyi and Schmitz, 2012). The ability to model diffusion
under arbitrary stress conditions in a way that is consistent with Larché-
Cahn theory presents new possibilities for extracting both stress and
time information from mineral compositions which, in turn, can provide
a deeper understanding of large-scale tectonic processes.
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