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High-throughput screening and material informatics have shown a great power in the discovery of novel

materials, including batteries, high entropy alloys, and photocatalysts. However, the lattice thermal

conductivity (k) oriented high-throughput screening of advanced thermal materials is still limited to the

intensive use of first principles calculations, which is inapplicable to fast, robust, and large-scale material

screening due to the unbearable computational cost demanding. In this study, 15 machine learning

algorithms are utilized for fast and accurate k prediction from basic physical and chemical properties of

materials. The well-trained models successfully capture the inherent correlation between these

fundamental material properties and k for different types of materials. Moreover, deep learning

combined with a semi-supervised technique shows the capability of accurately predicting diverse k

values spanning 4 orders of magnitude, especially the power of extrapolative prediction on 3716 new

materials. The developed models provide a powerful tool for large-scale advanced thermal functional

materials screening with targeted thermal transport properties.

1. Introduction

In many elds of modern science and engineering, knowledge
of the thermophysical properties, in particular, the lattice
thermal conductivity (k) of materials, is becoming more and
more important.1,2 The interest to precisely predict k of crys-
talline materials has been triggered by the collective realiza-
tion of the dramatic consequences of climate change.3 For
instance, a very typical application is the recovery of the waste
heat, which could be realized through a very simple and clean
method, i.e., the thermoelectric (TE) effect. The energy
conversion efficiency of a TE device is characterized by the
gure of merit, ZT,4 which is inversely proportional to the k. In
the past decades, searching for high-efficient TEs has been
guided by the concept of ‘phonon glass-electron crystal’,5 i.e.,
an ideal TE material should have high electrical carrier
mobility and low k simultaneously. Therefore, there is a strong

quest for designing complex crystalline structures with
unprecedentedly low k. Besides, the k of the semiconductor
materials is a key parameter for designing high-performance
electronic devices. Due to the signicant amount of excess
heat during operation, thermal management for high-
performance heat dissipation must be taken to prolong the
durability and to increase the operating reliability. Thus,
searching for materials with ultrahigh k is extremely impor-
tant for the disruptive development of micro-/nano-
electronics. For non-metallic solids, such as semiconductors,
the heat transfer is viewed as being transferred via lattice
vibrations, and the quanta of such lattice vibration in a solid
are called phonons.6 Historically, the classical kinetic theory
provides a rough estimation of k based on the phonon gas
model.7 Since k is one of the intrinsic physical properties of
materials, which relates to its ability to conduct heat energy,
demands for understanding and characterizing thermophys-
ical properties of materials are ever-increasing for a wide
range of modern science, advanced engineering, and
materials-based energy technologies.

Despite the signicance of understanding and controlling
the thermal transport ability of materials, accurately predict-
ing k of a crystalline material from its atomic structure is not
an easy task. Historically, k can only be calculated theoretically
by some empirical models, such as the Debye–Callaway
model,8–10 the Slack model, etc.11 The empirical models could
be very fast but with less accuracy because of the limitations of
capturing phonon transport details. Besides, classical
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equilibrium and nonequilibrium molecular dynamics (EMD/
NEMD) simulations based on empirical potentials and
Newton's second law have been widely used to characterize
thermal transport properties of various materials in the past
decades.12 The difficulty and limitation of classical MD
simulations lie in the description of interatomic interactions
by the empirical potentials.12 Beyond that, direct numerical
calculation of k of a single crystalline material from its atomic
structure by accurate rst-principles coupled with phonon
Boltzmann transport equation (BTE) without any other inputs
has just been made available for a few years.13 However, such
computations are usually very tedious and computationally
demanding even for primitive cells that are not too
complicated.14–20 Because of the huge computational loads,
current density functional theory (DFT) based on the rst-
principles method for k calculation is out of the question for
high-throughput screening thermal materials. Despite the
very few successes of high-throughput computational
screening low k materials,2,21 fast and robust k oriented
material design is still limited, not only because of the
complex relationship between the intrinsic k and the atomic
structures but also due to the unbearable computational
costs. Thus, it is necessary to develop efficient and accurate k

prediction models for high-throughput screening thermal
materials.

The recent success of AlphaGo in 2016–2017 fully let people
appreciate the tremendous development potential of articial
intelligence (AI) technology. At present, the machine learning
(ML) technique has been widely used in several elds, such as
computer vision, natural language processing, data mining,
and robotic applications.22 With its powerful capacity, ML has
been widely used by researchers to conduct research and design
functional materials. In particular, ML has been increasingly
used in predicting material properties and computational
screening.23–31 Most of these studies are dened as a regression
problem, which is usually composed of three parts: property
dataset acquisition, feature engineering, and selection of the
ML algorithms. Commonly used ML algorithms include linear
regression (LR), support vector regression (SVR), ridge regres-
sion (RR), neural networks, Random Forests, and gradient-
boosting decision trees (GBDT).24,28 So far, only general mate-
rial properties have been used as prediction targets, such as
different kinds of energies, band gap, bulk modulus, shear
modulus, Poisson's ratio, and hardness,24,26,30 while the appli-
cations of ML in predicting thermal transport properties are
still limited and need to be explored.

In this paper, by using typical ML algorithms for the fast
and accurate prediction of k from basic properties of materials,
it is found that the well-trained ML models successfully
capture the inherent correlation between basic material
properties and k for different types of materials. Compared
with the optimized Slack model, a few selected ML models
show the capability of accurately predicting k spanning 4
orders of magnitude. Moreover, the Pearson correlation coef-
cient map for 21 thermal-related properties of materials is
generated to obtain an insight into the performance of the ML
models. The development of ML models for fast and accurately

predicting k provides a powerful tool for large-scale thermal
functional materials screening with targeted thermal transport
properties.

2. Computational methodology
2.1 ML

All the ML models are built based on the ML library of
TensorFlow.32 A total of 15 different ML models have been
constructed and trained for thermal transport property predic-
tion. According to the different types of ML algorithms, these
models can be classied into the following four categories:24,28

(1) Generalized linear regression models:33 multiple linear
regression (MLR) model, optimization for multiple linear
regression models using Stochastic Gradient Descent (SGD),
and the ridge regression model (RR).

(2) Support vector regression (SVR) models with four
different kernel functions,34 including Linear kernel function,
Gaussian kernel function, Sigmoid kernel function, and Poly-
nomial kernel function.

(3) Tree-based models:35,36 The classication and Regression
Tree (CART), as well as some ensemble learning models37,38

which contain Random Forests, gradient boosting decision
trees (GBDT), and light gradient boosting machine (LGB).

(4) Neural network models:22,39 articial neural network
(ANN), convolutional neural network (CNN), recurrent neural
network (RNN), and long short-term memory network (LSTM).

To build and train the MLmodels, we rst need to obtain the
experimental data for the dataset. The large amount of k for the
training and testing procedures is collected from the previously
published papers and databases,21,40–45 which consists of
experimentally measured k for 350 different materials.

2.2 Pre-process data

To optimize the performance of the ML models, it is vital to
select appropriate basic material properties as descriptors.
The descriptors of materials are chosen based on three prin-
ciples: (1) the descriptors should be basic properties of
materials and should be representative, and (2) the descrip-
tors can be easily collected from literature or calculations with
limited effort. In this work, the descriptors are chosen as
a combination of V, M, n, np, B, G, B′, and G′ (a detailed
explanation of the descriptors can be found in Table 1).
Additionally, normalization processing is necessary, and the
experimental data will conform to the normal distribution,
which would help improve the prediction accuracy of the
models. Then, the data is transformed into a standard normal
distribution through standardized processing. When the
training process is completed, the inverse transformation is
performed on the results for the purpose of facilitating the
comparison with the original data.

The training process of these MLmodels is based on the well-
known n-fold procedure, with the typical n = 5,46 which means
that 280 (80%) types of materials are used to train these ML
models and 70 (20%) types of materials are used to test the
trained model. In the process of training and testing, the
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material types in the training and test set of each model should
be exactly the same, which is important for effectively comparing
the performance of these models by controlling variables.

2.3 Model performance evaluation metrics

By training ML models, the goal is to select the model with
optimal performance, which can be evaluated by a series of
statistical indicators.47 Some of the most important evaluation
metrics, as listed below, have been applied to evaluate the
performance of different models.

(1) Root mean square error (RMSE)

RMSE ¼
"
1

N

XN
i

�
kML

i � kExp:
i
�2#1

2

(1)

(2) Coefficient of determination (R2)

R2 ¼ 1� kExp:
i � kML

i

kExp: i � kavg i
(2)

(3) Mean absolute error (MAE)

MAE ¼ 1

N

��kML
i � kExp:

i
�� (3)

where i specify ith material sample and N is the total number of
samples in the dataset. In addition to the above metrics, we also
take into account the running time of models to measure the
prediction efficiency of different models.

We also introduced the K-fold cross-validation algorithm in
both the training and testing process, not only to better reect
the average performance of the model and obtain relatively
accurate evaluation metrics but also to serve as a comparison

for incompletely supervised learning models in the subsequent
testing process. More details can be found in Note S4.†

2.4 LSTM

The LSTM is introduced to overcome the exploding/vanishing
gradient problems when training very deep neural networks.48

The principle of LSTM is shown in Fig. 1. The concept of three
thresholds is introduced as the input gate it, output gate ot and
forgetting gate ft, which can be written as

it = s(ui[ht−1,xt] + bi) (4)

ot = s(uo[ht−1,xt] + bo) (5)

ft = s(uf[ht−1,xt] + bf) (6)

where ui, uo and uf are the parameter matrices to be trained,
while bi, bo and bf are offset terms. The input gate stores the
information in the cellular Ct, the forgetting gate discards it
according to the specied proportion, and the output gate
selectively exports the information. At this moment, the long-
term memory in the cellular state can be dened as

Ct ¼ ft � Ct�1 þ it � fCt (7)

where Ct−1 represents the long-term memory stored in the cell
state at the previous time and fCt means the candidate state
memory at the current time. Therefore, the long-term memory
at the current time is the sum of the long-term memory at the
previous time through the forgetting gate and the candidate
memory through the input gate. The model used in this work is
constructed with an input layer, two LSTM layers, two dropout
layers, a dense fully connected layer, and an output layer.

Before feeding into the LSTM network, the data needs to be
converted into a three-dimensional form. The 8 neurons in the
input layer correspond to the 8 fundamental properties of
materials. With the aim of updating network parameters itera-
tively, we use the Adam optimizer as the activation function.
The rst hidden layer is an LSTM layer with a total of 50 LSTM
neurons (Fig. 1), which is used to extract features from the input
layers. Aer the dropout layer (dropout rate is set as 20%), the
LSTM_1 layer with 20 LSTM neurons converts the three-
dimensional data into the two-dimensional form and trans-
fers the data to the dropout_1 layer (dropout rate is set as 20%).
Finally, the result is passed to the fully connected layer and the
predicted value of thermal conductivity can be obtained.

2.5 Incomplete supervision

Only 350 samples are labeled in the whole dataset, while the test
set contains a great number of unlabeled data samples.
Generally, it is quite costly to label the samples one by one.
Therefore, incomplete supervision has been developed to make
full and effective use of unlabeled samples, so as to further
improve the generalization ability of the model. Both active
learning and semi-supervised learning belong to incomplete
supervision, which are utilized to predict the thermal conduc-
tivity of materials. Their predictive performance will also be

Table 1 The symbols and the corresponding properties of materials

Symbols Properties

V The volume of the conventional cell (Å3)
M The total mass of conventional cell
N The number of atoms in a conventional cell
np The number of atoms in a primitive cell
r Mass density (g cm−3)
B Bulk modulus (GPa)
G Shear modulus (GPa)
E Young's modulus (GPa)
n Poisson's ratio
H Hardness (GPa)
B′ The derivative of B with respect to volume
G′ The derivative of G with respect to volume
nL Sound velocity of longitude waves (103 m s−1)
nS Sound velocity of shear waves (103 m s−1)
na The averaged sound velocity (103 m s−1)
QD The Debye temperature
gL The Grüneisen parameter of longitude waves
gS The Grüneisen parameter of shear waves
g The overall Grüneisen parameter
A The parameter in the Slack model
k The lattice thermal conductivity

This journal is © The Royal Society of Chemistry 2023 J. Mater. Chem. A, 2023, 11, 5801–5810 | 5803
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compared in the following content. More details about the
principles of active learning and semi-supervised learning can
be found in ESI Notes S2 and S3.†

2.6 Slack model

To compare with the ML models, an optimized Slack model49 is
further used to predict k based on the basic properties that are
used as descriptors inMLmodels, and the prediction results are
shown in ESI Note S1.† The k is expressed as49

k ¼ A
Mdnp

1=3QD
3

g2T
; (8)

where d= V/n is the cubic root of the average volume per atom, T
is the absolute temperature, and the explanations of other
symbols are available in Table 1. The coefficient A is calculated

as49 A ¼ 1
1þ 1=gþ 8:3� 105=g2:4. All the properties in the Slack

equation, such as Debye temperature and Grüneisen parameter,
can be calculated from the elastic properties of bulk modulus
(B) and shear modulus (G), and their derivations (B′ and G′) can
be obtained with respect to the change of volume.50 According
to the Voigt–Reuss–Hill (VRH) theory,51–53 the elastic properties
can be evaluated from the elastic constants, which can be ob-
tained based on accurate rst-principles calculations. The
above formula has been applied for the evaluation of k for 353
materials,49 which have been veried to have better perfor-
mance than the widely used Slack model.

2.7 First-principles

All the above-mentioned basic properties can be obtained from
rst-principles calculations on the basis of the density functional
theory (DFT), and the calculation uses the projector augmented
wave (PAW) technique,54 which is implemented in the Vienna ab
initio simulation package (VASP).55 The generalized gradient
approximation (GGA) Perdew–Burke–Ernzerhof (PBE)56 is taken as
the exchange-correlation functional, while the kinetic energy cutoff

of wave functions for each material is set as the default maximum
energy cutoff. For sampling the Brillouin Zone (BZ), A Monkhorst-
Pack57 k-mesh with a grid density of 0.42p Å−1 is used to sample
the Brillouin Zone (BZ). The self-consistent eld (SCF) calculations
are converged with an energy difference smaller than 10−5 eV.
Before any further calculations, all the geometries are fully opti-
mized with the maximal Hellmann–Feynman force smaller than
0.01 eV Å−1. The elastic constants are calculated using the density
functional perturbation theory (DFPT). The derivative of elastic
properties (bulk and shear modulus) is evaluated by changing the
volume from −1.5% to 1.5% (5 points in total).

3. Results and discussion

By performing elaborate testing, it is found that the neural
network models, especially the LSTM, have better performance

Fig. 1 The LSTM network architecture. (a) The cyclic kernel structure with a threshold. (b) The detailed structure within a single LSTM neuron and
its relationship with the two neurons before and after in the forward direction.

Table 2 Comparison of evaluation metrics for predicting thermal
conductivity among the 15 machine learning models

ML model
RMSE of test
set

R2 of
test set

MAE of test
set Time cost

Linear 26.4930 0.8096 13.5803 6.49 s
Ridge 26.3697 0.8103 13.5384 3.46 s
SGD 17.4929 0.8241 9.5713 3.58 s
Linear SVR 11.9823 0.8479 6.8762 3.68 s
SigmoidSVR 20.6119 0.3432 9.7734 1.94 s
rbfSVR 14.6274 0.7547 6.9582 1.80 s
PloySVR 12.0221 0.7496 7.2365 3.61 s
Decision tree 19.3780 0.5348 8.6358 4.56 s
DGBT 10.3623 0.8158 6.9570 5.69 s
Random forests 9.6385 0.8767 6.0574 3.76 s
LightGBM 12.9994 0.7398 7.7365 4.56 s
ANN 8.7211 0.8593 5.7933 18.19 s
CNN 8.4061 0.8799 5.1674 19.57 s
RNN 8.3726 0.8748 5.3209 61.03 s
LSTM 8.3593 0.8866 5.4011 125.46 s
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Fig. 2 Comparative analysis of thermal conductivity (k) predicted by 15 different machine learning models with comparison to experimental
measurements.21,40–45 Both the training (80%, 280 materials) and testing (20%, 80 materials) data are plotted.
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in predicting the thermal conductivity of materials compared to
other ML models. The best performance of LSTM is conrmed
by both the lowest RMSE of 8.3593 and the lowest R2 of 0.8866
when testing on the test dataset of 70materials, while the lowest
MAE value of 0.8799 is achieved by the CNN model.

The corresponding numerical data of material descriptors
were obtained on the basis of the state-of-the-art rst-principles
calculations (Table 1), which were used as input for the ML
models. Fieen different ML models were constructed, and
each model was trained separately using 280 experimental data
sets. To test the performance of the trained model, the trained
model is used to predict the thermal conductivity of 70 separate
materials in the test set. Different root mean square error

(RMSE) values between the predictive values and the true values
in the test set are shown in Table 2.

The performance of the 15 ML models is comparably visual-
ized in Fig. 2, and the following observations can be concluded
from Fig. 2 combinedwith Tables 2 and S2:† (1) The performance
of testing even exceeds that of the training process, indicating
the excellent tting of the MLmodels. (2) The trainedMLmodels
show the capability of accurately predicting k over 4 orders of
magnitude. In particular, the high k ∼ 1000 W mK−1 is
successfully predicted by the trained ML models, showing the
ability of extrapolation prediction. (3) Nonlinear models,
including tree-based models, ensemble learning models, and
neural network models, have better prediction performance.
Compared with generalized linear models, they have great

Fig. 3 Comparison between the kprediction calculated by the optimized Slack model [eqn (8)] and the kML. predicted by the four deep semi-
supervised learningmodels for a large set of materials: (a) the 1521 dataset, (b) FCC structures, (c) half heusler, and (d) average prediction values of
the four deep learning models. The blue shade marks the boundary of the discrepancies by one order of magnitude higher and lower.
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advantages in predicting thermal conductivity, which also
reects the highly complex nonlinear relationship between
thermal conductivity and the basic properties of materials.

With the trained ML models, we further explored the thermal
transport properties of morematerials in three types: half Heusler
(328),21 materials with fcc structure (2249),58 and the 1521 dataset
(1139).41 The numbers in the parenthesis denote the number of
materials in the specic structure type, where the non-stable
structures are excluded. In combination with the performance
of the above-mentioned 15 ML models in the thermal conduc-
tivity predictions (Fig. 2), four deep learningmodels with relatively
better performance have been selected to predict the thermal
conductivities of 3716 materials. The selected models are ANN,
CNN, RNN, and LSTM. The thermal conductivities predicted by
the ML models are collected from those predicted by the opti-
mized Slack model49 to evaluate the performance. More details on
the optimized Slack model49 can be found in ESI Note S1.†

To improve the predicting performance of these models, the
training set (80%, 280 materials) and test set (20%, 70 mate-
rials) were synthesized into a big dataset involving 350 mate-
rials. The combined dataset was used as a labeled training set.
In addition, two incomplete supervised algorithms of active
learning and semi-supervised learning algorithms, as well as K-
fold cross-validation were used to predict the 1521, FCC, and
Half Heusler datasets separately. The semi-supervised learning
algorithm has shown relatively superior performance in this
process, as shown in Fig. 3, which may be due to the fact that
the semi-supervised learning algorithm can efficiently utilize
a large amount of unlabeled data to improve the generalization
ability of the model. If the detailed prediction results of K-fold
cross-validation and active learning are needed, please refer to
ESI Notes S4 and S5.† Moreover, the efficiency of the developed
models is successfully demonstrated by the fact that eachmodel

Fig. 4 The Pearson correlation coefficient map for the 21 properties of materials, as listed in Table 1, which is calculated based on the 350
materials with k available from experiments. The onsite values indicate the correlation strength, with 1 and −1 representing totally positive and
negative linear correlations, respectively.

This journal is © The Royal Society of Chemistry 2023 J. Mater. Chem. A, 2023, 11, 5801–5810 | 5807
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only takes less than 30 seconds to predict the thermal
conductivity of all materials in a single test set.

Moreover, the averaged predicted values of the four models
are taken to reect the average performance of these ML
models. At the same time, this method is also taken to avoid the
impact of the prediction error from a single model on the
overall prediction results. The comparison of the four devel-
oped deep semi-supervised learning models and the Slack
model is shown in Fig. 3.

Overall, the kprediction agrees well with the kML., particularly in
terms of high thermal conductivity predictions. Such an excel-
lent agreement veries the outstanding performance of the
well-trained ML models in predicting thermal conductivity. The
discrepancy mainly lies in about one order of magnitude, which
might stem from the uncertainty in the k prediction of the
optimized Slack model, as revealed in previous studies.11,49,50

It is interesting to note that some of the kprediction predicted
by the optimized Slack model for the 3716 materials deviate
largely from those kML. predicted by the ML models by more
than one order of magnitude, as shown in Fig. 3. Similar
performance of the optimized Slack model is also observed
when compared with the experimentally measured kExp. for the
350 materials as marked in ESI Fig. S1.† Besides, the k predicted
by the Slack model agrees very well with those from the ML
models for the high-k materials with k > ∼300 W mK−1.

To have a deep insight into the performance of the ML
models, the Pearson correlation coefficient map for the 21
properties (Table 1) of the materials was generated. Among the 21
properties, all the other properties can be derived from the 8 basic
properties of V,M, n, np, B, G, B

′, andG′ (Table 1). The relationship
between these properties can be found in ESI Note S6.† The
Pearson correlation coefficient is calculated based on the 350
materials with k available from experiments using the formula:

r ¼
Pn
i¼1

ðxi � xÞðyi � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðxi � xÞ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

ðyi � yÞ2
s (9)

where �x and y�denote the average value of x and y, respectively, n
is 350, and r is the Pearson correlation coefficient between the
properties of x and y, which indicates the correlation strength.
The values of 1 and −1 represent totally positive and negative
linear correlations, respectively. As shown in Fig. 4, the k posi-
tively correlates with B, G, E, H, nL, nS, na, and QD, where E, H, nL,
nS, na andQD can be derived from the basic properties of V,M, n,
np, B, and G.50 Among these properties, B and G can be used to
represent the harmonicity of materials. On the contrary, k

negatively correlates with n, gL, gS, g, B
′, and G′, where the gL, gS,

g can be derived from the basic properties of B′ and G′.50 These
properties can be used to represent the anharmonicity of
materials. Thus, the combination of the basic properties
including V, M, n, np, B, G, B

′, and G′ as descriptors is effective
for the prediction of k using the ML models.

Note that the overall Grüneisen parameter (g) quantifying
the phonon anharmonicity can be also derived from the basic
properties of B′ and G′,50 which shows almost no correlation

with k. The weak correlation is abnormal from a rst look
because they are supposed to be strongly negatively correlated.
The reason might be that, (1) the g is not correctly calculated in
the Slack model, which also explains the generally more than
one order of magnitude discrepancy of the kSlack model from the
kExp.; (2) a single value of g is not sufficient to fully describe the
complex phonon anharmonicity of crystalline materials, which,
rigorously speaking, should be phonon mode-dependent g(u,
q). The results suggest that further improvement to the Slack
model and more accurate formula for g is needed to better
describe the phonon thermal transport.

4. Conclusion

In summary, een MLmodels were constructed and trained for
accurate k prediction. During the training process, 8 basic
properties of the materials were used as descriptors (inputs) and
the experimentally measured k values were used as targets
(output). The trained ML models, especially the deep learning
models showed the capability of accurately predicting thermal
conductivity spanning 4 orders of magnitude, which have a great
advantage over the widely used empirical Slack model. With the
trained 4 deep learning models, combined with semi-supervised
learning strategy, the thermal transport properties of 3716
materials were further predicted, and the results were also veri-
ed by the optimized Slack model. Furthermore, the Pearson
correlation coefficient map for the 21 thermal-related properties
of materials was generated to gain a deep insight into the
performance of the ML models. It was conrmed that the
combination of the basic properties of B (+), G (+), B′ (−), and G′

(−) as descriptors is effective for the prediction of k using the ML
models, where (+) and (−) denote the positive and negative
correlation with k, respectively. The developed MLmodels in our
work for fast and accurately predicting thermal conductivity
provide a powerful tool for large-scale thermalmaterial screening
with targeted thermal transport properties.
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C. Wolverton, Phys. Rev. B: Condens. Matter Mater. Phys.,
2012, 85, 054306.

9 J. Callaway, Phys. Rev., 1959, 113, 1046–1051.
10 D. T. Morelli, J. P. Heremans and G. A. Slack, Phys. Rev. B:

Condens. Matter Mater. Phys., 2002, 66, 195304.
11 G. A. Slack, J. Phys. Chem. Solids, 1973, 34, 321–335.
12 X. Zhang, H. Xie, M. Hu, H. Bao, S. Yue, G. Qin and G. Su,

Phys. Rev. B: Condens. Matter Mater. Phys., 2014, 89, 054310.
13 W. Li, J. Carrete, N. A. Katcho and N. Mingo, Comput. Phys.

Commun., 2014, 185, 1747–1758.
14 S. Li, L. Yu, C. Qi, K. Du, G. Qin and Z. Xiong, Front. Mater.,

2021, 8, 725219.
15 H. Wang, G. Qin, G. Li, Q. Wang and M. Hu, Phys. Chem.

Chem. Phys., 2017, 19, 12882–12889.
16 Z. Qin, G. Qin, X. Zuo, Z. Xiong and M. Hu, Nanoscale, 2017,

9, 4295–4309.
17 E. Zhou, J. Wu, C. Shen, H. Zhang and G. Qin, J. Appl. Phys.,

2022, 131, 185702.
18 C. Shen, N. Hadaeghi, H. K. Singh, T. Long, L. Fan, G. Qin

and H. Zhang, J. Mater. Chem. C, 2022, 10, 1436–1444.
19 Y. Han, Y. Zhou, G. Qin, J. Dong, D. S. Galvao and M. Hu,

Carbon, 2017, 122, 374–380.
20 H. Wang, G. Qin, G. Li, Q. Wang and M. Hu, 2D Mater., 2017,

5, 015022.
21 J. Carrete, W. Li, N. Mingo, S. Wang and S. Curtarolo, Phys.

Rev. X, 2014, 4, 011019.
22 J. Schmidhuber, Neural Netw., 2015, 61, 85–117.
23 G. Pilania, C. Wang, X. Jiang, S. Rajasekaran and

R. Ramprasad, Sci. Rep., 2013, 3, 1–6.
24 R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-

Kanakkithodi and C. Kim, npj Comput. Mater., 2017, 3, 1–13.
25 J. L. McDonagh, A. F. Silva, M. A. Vincent and

P. L. A. Popelier, J. Chem. Theory Comput., 2018, 14, 216–224.
26 G. Pilania, J. E. Gubernatis and T. Lookman, Comput. Mater.

Sci., 2017, 129, 156–163.
27 G. Pilania and X.-Y. Liu, J. Mater. Sci., 2018, 53, 6652–6664.

28 A. Seko, H. Hayashi, K. Nakayama, A. Takahashi and
I. Tanaka, Phys. Rev. B, 2017, 95, 144110.

29 L. Ward, R. Liu, A. Krishna, V. I. Hegde, A. Agrawal,
A. Choudhary and C.Wolverton, Phys. Rev. B, 2017, 96, 024104.

30 Y. Zhuo, A. Mansouri Tehrani and J. Brgoch, J. Phys. Chem.
Lett., 2018, 9, 1668–1673.

31 L. Ward, A. Agrawal, A. Choudhary and C. Wolverton, npj
Comput. Mater., 2016, 2, 1–7.

32 M. Abadi, in Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming, Association for
Computing Machinery, New York, NY, USA, 2016, p. 1.

33 J. A. Nelder and R. W. M. Wedderburn, J R Stat Soc Ser A Stat
Soc., 1972, 135, 370.

34 J. Kivinen, A. J. Smola and R. C. Williamson, IEEE Trans.
Signal Process, 2004, 52, 2165–2176.

35 E. Gatnar, Classication, Clustering, and Data Analysis, 2002,
pp. 399–407.

36 W. N. Venables and B. D. Ripley, Modern Applied Statistics
with S-PLUS, 1999, pp. 303–327.

37 L. Breiman, Mach Learn, 1996, 24, 123–140.
38 Y. Freund and R. E. Schapire, in In: Thirteenth International

Conference on ML, 1996, pp. 148–156.
39 X. Wan, W. Feng, Y. Wang, H. Wang, X. Zhang, C. Deng and

N. Yang, Nano Lett., 2019, 19, 3387–3395.
40 S. A. Miller, P. Gorai, B. R. Ortiz, A. Goyal, D. Gao,

S. A. Barnett, T. O. Mason, G. J. Snyder, Q. Lv, V. Stevanovíc
and E. S. Toberer, Chem. Mater., 2017, 29, 2494–2501.

41 G. Petretto, S. Dwaraknath, H. P. C. Miranda, D. Winston,
M. Giantomassi, M. J. van Setten, X. Gonze, K. A. Persson,
G. Hautier and G.-M. Rignanese, Sci. Data, 2018, 5, 1–12.

42 J. J. Plata, P. Nath, D. Usanmaz, J. Carrete, C. Toher, M. de
Jong, M. Asta, M. Fornari, M. B. Nardelli and S. Curtarolo,
npj Comput. Mater., 2017, 3, 1–10.

43 A. Seko, A. Togo, H. Hayashi, K. Tsuda, L. Chaput and
I. Tanaka, Phys. Rev. Lett., 2015, 115, 205901.

44 C. Toher, J. J. Plata, O. Levy, M. de Jong, M. Asta,
M. B. Nardelli and S. Curtarolo, Phys. Rev. B: Condens.
Matter Mater. Phys., 2014, 90, 174107.

45 A. van Roekeghem, J. Carrete, C. Oses, S. Curtarolo and
N. Mingo, Phys. Rev. X, 2016, 6, 041061.

46 J. Schmidt, M. R. G. Marques, S. Botti and M. A. L. Marques,
npj Comput. Mater., 2019, 5, 1–36.

47 F. S. Guthery, K. P. Burnham and D. R. Anderson, J. Wildl.
Manage., 2003, 67, 655.

48 G. Van Houdt, C. Mosquera and G. Nápoles, Artif Intell Rev,
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