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Million-scale data integrated deep neural network for phonon

properties of heuslers spanning the periodic table
Alejandro Rodriguez1, Changpeng Lin 2, Hongao Yang3, Mohammed Al-Fahdi 1, Chen Shen 4, Kamal Choudhary 5,
Yong Zhao 6, Jianjun Hu6, Bingyang Cao3, Hongbin Zhang4 and Ming Hu 1✉

Existing machine learning potentials for predicting phonon properties of crystals are typically limited on a material-to-material
basis, primarily due to the exponential scaling of model complexity with the number of atomic species. We address this bottleneck
with the developed Elemental Spatial Density Neural Network Force Field, namely Elemental-SDNNFF. The effectiveness and
precision of our Elemental-SDNNFF approach are demonstrated on 11,866 full, half, and quaternary Heusler structures spanning 55
elements in the periodic table by prediction of complete phonon properties. Self-improvement schemes including active learning
and data augmentation techniques provide an abundant 9.4 million atomic data for training. Deep insight into predicted ultralow
lattice thermal conductivity (<1 Wm−1 K−1) of 774 Heusler structures is gained by p–d orbital hybridization analysis. Additionally, a
class of two-band charge-2 Weyl points, referred to as “double Weyl points”, are found in 68% and 87% of 1662 half and 1550
quaternary Heuslers, respectively.
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INTRODUCTION
In semiconductors and insulators, phonons dominate the lattice
thermal conductivity (LTC) as the quanta of atomic vibrations1.
Because of its ubiquity, knowledge of the phonon properties such
as phonon dispersions and LTC in ordered structures is
enormously important in the development of innovative energy-
related technologies, such as energy conversion, thermal manage-
ment, quantum computing, etc. Fast and accurate prediction
phonon properties are necessary for the discovery of novel
materials for those applications. Currently, the first-principles-
based anharmonic lattice dynamics (ALD) method coupled with
the phonon Boltzmann transport equation (BTE) is one of the most
featured and accurate methods to obtain the phonon properties
including LTC, which involves tedious calculations of harmonic
and anharmonic interatomic force constants (IFCs) of crystalline
structures relating the potential energy and atomic displace-
ments2. Despite the parameter-free and predictive calculations of
density functional theory (DFT), obtaining IFCs via the real-space
supercell-based finite displacement method is very time and
resource-consuming. This situation is even worse for high-
throughput computation of a large number of materials3. Many
efforts are put forth to circumvent this time-consuming nature of
computing LTC with DFT, dubbed “DFT-LTC” here, to achieve the
high-throughput discovery of materials for target LTCs. A primary
route that recently has been taken by storm is machine learning
(ML). Due to their demonstrated ability to fit complex non-linear,
multi-dimensional functions at orders of magnitude faster than
the traditional enumeration schemes, many ML methods have
been incorporated to accelerate LTC computation. For instance,
researchers have recently pursued data-driven approaches
through the extraction of vital information from already existing
DFT-LTC data to explore previously unseen structures4–8. Recently,

Zhu et al. predicted the LTC of 92,919 materials with a 154-
dimensional descriptor as the input to random forest prediction,
with the three most important features for LTC prediction being
the average volume per atom in the ground state, average bond
length, and volume per atom7. Additionally, Miyazaki et al.
incorporated combinations of atomic radii, atomic masses, and
elements from 143 half-Heusler structures into a sequence of
regression models to predict the lattice parameter and thermal
conductivity of unseen half-Heuslers within 1% and 4% of the DFT
results, respectively6.
While training ML models with material descriptors offer

physical insights towards feature importance for LTC prediction,
limitations are present when facing high throughput. Mainly,
these models are still required to generate reference LTC data to
serve as the target during training. ML models such as artificial
neural networks (ANNs) depend on data diversity due to their
interpolative nature, i.e., they cannot perform well when provided
data are outside of the training set9,10. As such, the data
generation for a sufficiently robust model is expensive and may
limit the predictions to a small subset of materials. Additionally,
because these models are usually trained on one temperature
designed to output a single value of LTC, they are unable to
provide the plethora of information that comes with DFT-LTC
calculations4–7. Outputs such as phonon dispersion, scattering
rates, temperature-dependent LTC, and off-diagonal thermal
conductivity values in the LTC tensor are inaccessible, all of which
are standard outputs from phonon calculators11–14.
To circumvent these issues, the LTC may be approached from a

lower level, more specifically through the atomic forces, which are
the fundamental input and starting point of the DFT-LTC
procedure. Approaching BTE solvers with already computed
atomic forces from ML maintains the rich output of information
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that comes standardly from phonon calculators. More importantly,
training for the atomic forces has the potential to reduce the
costly demand for training set generation. For traditional ML
models, many DFT calculations are required for one LTC value,
serving as a single data point for training. In contrast, training on
atomic descriptors is advantageous in terms of data abundance
per DFT run because each simulation provides (3N+ 1) data
corresponding to N atoms worth of force vectors and one total
energy. Namely, machine learning potentials (MLPs) implicitly
capture the electronic-level features from DFT by the representa-
tion of the potential energy surfaces as functions of the atomic
nuclei' positions9. Due to the purely mathematical nature of ML
models, the accuracy of MLPs strongly depends on the description
of the atomic environment surrounding central atoms to capture
the appropriate physics15. Many studies have shown an excellent
representation of DFT-level energetics and realistic property
prediction with MLPs such as the High Dimensional Neural
Network Potential (HDNNP)16, Deep Potential Molecular Dynamics
(DeePMD)17, and Gaussian Approximation Potential (GAP) with
SOAP descriptors18. In the context of phonon property prediction,
several studies have used MLPs as the force calculator19,20.
Typically, these MLPs own a root mean square error (RMSE) of the
force predictions within 10–100 meV/Å with approximately 103

faster evaluation time compared to DFT.
Undoubtedly, the robustness of the MLP has the potential to

mitigate the current speed-related bottlenecks in the LTC work-
flow. However, to date, the majority of studies using MLPs share a
common denominator in that the models are limited to a material-
to-material basis. This is primarily due to the exponential scaling of
model parameters with the number of atomic species or elements
(Nelem). For example, the HDNNP requires Nelem element-specific
networks each containing approximately Nelem radial and Nelem

(Nelem+ 1) angular symmetry functions21. When faced with data
containing elements spanning the periodic table, the training
efficiency and evaluation time is reduced significantly due to the
� N2

elem scaling of the input descriptors. Additionally, training of
each element-specific network requires central atoms dedicated
only to said element, meaning that little to no knowledge of
atomic environments from other central atom species is shared. In
general, recent MLPs represent atomic positions numerically,
while the atomic elements depend on specific sub-models and/or
order of the input descriptors, in turn diminishing prediction
quality with ten or more elements. Overall, independent elemental
scaling and centralized ML training are two major factors
necessary for the evaluation of theoretical materials databases
containing a plethora of structures and atomic species that would
otherwise be too difficult to handle with modern MLPs.
Computing forces across many atomic environments is especially

challenging for high-throughput LTC considering the notoriously
strict force accuracy requirements for the IFCs and the resulting
LTC22,23.
In this work, we developed accurate force calculators called

Elemental Spatial Density Neural Network Force Field (Elemental-
SDNNFF) including the high scope of transferability between
atomic structures and elements. The Elemental-SDNNFF shows an
unprecedented <10meV/Å force error for the atomic forces
covering 11,866 structures including 55 elements spanning the
periodic table as observed in Fig. 1. To easily access millions of
data from costly DFT calculations, training on atomic forces allows
an N-fold increase granting the current model abundant high-
resolution force information, whereby N is the number of atoms
per supercell. This is distinct from existing MLPs especially those
with total energy as the output: although the addition of other
properties like atomic forces and virial terms is standard, they
involve a summation over all other properties providing a single
training point per DFT run16,24. Here, we further the existing data
size with data augmentation techniques, allowing for an average
three-fold increase in the data size as explained in the Section
“Data augmentation”. We also incorporate active learning
techniques to generate data with little to no human intervention
with the “query by committee” method, which is based on the
uncertainty of atomic forces between several models as detailed
in the Section “Active learning”. Demonstrating these methods, we
train and apply the elemental-SDNNFF to a database containing
quaternary (ABCD), half (ABC), and full (ABC2) Heusler structures,
all of which are trending in research due to their capacity for high
thermoelectric performance6,25,26. Because the atomic forces are
predicted directly, our results show promise for the prediction of
accurate high-throughput full phonon properties, such as phonon
dispersions for thermodynamic stability and LTC calculations, at
the fraction of the computational cost of traditional DFT-LTC. The
such workflow may be easily extended to broader types of crystals
such as noncubic structures with an arbitrary number of elements
spanning the periodic table. Moreover, the concept of topological
quantum states has recently been introduced to phonon
systems27. Among them, Weyl semimetals in three dimensions
are found in realistic materials28,29. Weyl points (WPs) are crossing
points of two phonon bands, which can be described by the chiral
Weyl equation. The band degeneracy is robust against small
perturbations, meaning the position of a WP can move under
small perturbations, but it will not disappear unless annihilated
with an opposite WP. Topologically protected Fermi arc surface
states connecting the projections of a pair of WPs can be found on
the surface Brillouin zone30. Before this work, the predictions of
WPs were based on DFT-derived phonon dispersions. Our
Elemental-SDNNFF spanning the periodic table offers vast

Fig. 1 Summary of the dataset in this work. a Pipeline performed here for full, half, and quaternary Heusler structures. Numbers on the right
of the pipeline represent the number of ABC2 (red), ABC (green), and ABCD (blue) structures after passing through the adjacent filter. The final
filter has a slightly reduced structure count from the removal of <0.1 and >200Wm−1 K−1 structures, which are assumed to be outliers.
b Structures studied here with the corresponding number of structures from OQMD. c Total number of elements corresponding to central
atoms included in training the Elemental-SDNNFF. Elements without color are not included in this study.
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opportunities for exploring a large number of candidate Weyl
semimetals in a more efficient way.

RESULTS AND DISCUSSION
Testing the effect of Elemental-SDNNFF implementation
From the overall dataset including those from active learning and
DFT-LTC, an 80–20% training-testing split of the structures after
shuffling is performed, where the remaining 20% serves as the
testing set to probe the ability of the network to predict previously
unseen structures. We perform the split based on structures and
not atomic configurations, whereby structures and corresponding
atoms in the testing set may never have been previously observed
by the model. Then, as shown in Fig. 2, four 7 Å, K= 12 networks
are trained on the 80% training set and a comparison between
DFT and predicted forces in the testing set is done. The first
network is the original SDNNFF model labeled as the “Original
SDNNFF”22. The jump in performance from the first to the second
network is major, dropping by 62.9 meV/Å in testing RMSE. This is
primarily attributed to the inability of the original SDNNFF to
consider atomic species, i.e., no knowledge is trained to
distinguish the 55 elements in the training set. From the second
to the third network, the rotational covariance adds a very slight
0.35 meV/Å improvement to the RMSE. Finally, the added data
augmentation paired with the rotational covariance bumps the
RMSE to the sub-10meV/Å mark. Overall, the 8.8 meV/Å testing
RMSE with 6.7 meV/Å training RMSE shows the robustness of the
network when facing new structures containing various atomic
positions and species. The small difference between the training

and testing RMSE also implies little overfitting in the current
model.

Phonon frequency and LTC prediction
To compare the frequencies in the phonon dispersions from
Elemental-SDNNFF with those from DFT, the RMSE across all
bands is computed. Since the range of the phonon dispersions
varies between structures, we divide the RMSE by the maximum
phonon frequency to scale all structures equally, and is expressed
as a percentage. To display the agreement of phonon dispersions,
two ABC2 structures are taken from the testing pool for bench-
mark comparison. As seen in Supplementary Fig. 10 (Supplemen-
tary Information), the overlap with DFT for RuAuMg2 and CrFeTa2
is virtually perfect in the acoustic branches with near-perfect
quality in the optical branches. The RMSE/range percentages for
RuAuMg2 and CrFeTa2 are 0.5459% and 0.4931%, respectively,
owing the performance to the quality of the 2nd-order IFCs and
corresponding atomic forces. The quality of the phonon
frequencies as a function of Elemental-SDNNFF cutoff is further
investigated. The overall histogram containing the RMSE over the
maximum phonon frequency ratio for all structures is shown in
Fig. 3a. The increase of the force cutoff improves the accuracy for
the predicted frequency from the observed push of the
distribution towards the left of the figure. This is expected as
the harmonic force constants are sensitive to long-ranged
interactions which are truncated by the finite cutoff1, especially
the existence of long-ranged dipole–dipole interactions in polar
solids31. Additionally, the error in Supplementary Table 2
(Supplementary Information) seems to increase with decreasing

Fig. 2 The force comparison curves with corresponding force RMSE and R2 on the testing set, where the y-axes are the predicted forces
by the Elemental-SDNNFF model, and the x-axes are the DFT forces in eV/Å. Improvement in force prediction is seen with added features to
the SDNNFF.

Fig. 3 Summary of predicted phonon properties on 1298 untrained structures. a Histogram containing the percentage of structures
against the RMSE for the phonon frequencies normalized by their frequency ranges and b the lattice thermal conductivity comparison plot
between Elemental-SDNNFF predicted and DFT values. The solid black line is to guide the eyes for perfect agreement, whereas the red lines
indicate a factor of two.
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average number density in the order ABCD, ABC2, and ABC
corresponding with the possible truncation of atomic neighbors
beyond the cutoff.
The LTC involves both the second and third-order IFCs, the

latter being significantly more sensitive to the force error23. As
seen in Fig. 3b, the agreement with DFT is very good following
linear trends with observable outliers. The mean absolute error
(MAE) of the LTC in the 8 Å-12 K model for ABCD, ABC2, and ABC
are 0.0934, 0.123, and 0.2526Wm−1 K−1, respectively, with an
overall MAE of 0.162 and R2 of 0.9353. The former two structure
types are in agreement, especially when compared with the 0.12
MAE and 0.87 R2 predicted by Zhu et al.7. The ABC structures have
relatively lower accuracy, which could be improved with further
active learning iterations. Further insight into the effects of the
cutoff on the LTC accuracy is provided by histograms in
Supplementary Figs. 11–13 (Supplementary Information). Due to
the wide range of computed LTC (~10−1 to 102Wm−1 K−1), the
absolute percent difference of the LTC instead of the RMSE is used
herein to quantify the performance. As seen by the histograms
and Supplementary Table 3 (Supplementary Information), there is
a weak correlation of absolute percent difference with respect to
the cutoff. However, there is evidence of a slight leftward shift of
ABC with increasing cutoff which is most likely due to the low
density of ABC in which the 8 Å force cutoff is more likely to
capture the interactions up to the third nearest neighbor as
mentioned in Supplementary Methods (Supplementary Informa-
tion). Overall, despite the accuracy of the second-order IFCs as
shown by the phonon dispersions, the third-order IFCs are more
challenging to capture across the many structures studied here.
Nonetheless, a significant proportion of structures stay within a
factor of 2 of the predicted LTC as seen by both the 2× margin in
Fig. 3b and the high population of structures within an absolute
percent error of 100% in the histograms of Supplementary Figs.
11–13 (Supplementary Information). It is worth pointing out that,
for ultralow LTC prediction, this could be treated as a rule-of-
thumb to filter structures by, for example, <1Wm−1 K−1. Given
that the prediction is within 2× DFT-LTC values, structures with
predicted LTC < 0.5 Wm−1 K−1 are highly expected to lie within
the target 1 Wm−1 K−1 range. Therefore, our Elemental-SDNNFF is
promising for the filtration of ultralow LTC structures.
A comparison of the LTC from the literature containing the first

principles and experiments is provided in Supplementary Table 4
(Supplementary Information) along with our corresponding DFT
and predicted values. As seen from the table, comparison of the
DFT-LTC with those from other works holds an average percent
difference of 4.955% which is expected considering differences in
DFT parameters such as energy convergence criterion and
pseudopotential or by the method of computing the force
constants and associated parameters such as displacement
distance and q-point mesh. Correspondingly, the agreement of
our predictions with the DFT-LTC values from the literature
inherits a similar 6.294% average percent difference and may be
attributed to the difference in DFT parameters and corresponding
forces from the training data. More importantly, the experimental
values are emphasized here as the high-throughput predictive
capabilities demonstrated above are designed for near-future
synthesis and deployment of crucial thermal materials. Due to the
little abundance of experimental data and large coverage of the
structures studied here, only one structure with experimental LTC
found in the literature was not once trained into our model. The
structure is ZrNiSn whereby the average experimental LTC is
11.5 Wm−1 K−132 with a literature DFT value of 10 Wm−1 K−133

whereas this work’s DFT and prediction values are 15.1 and
14.5 Wm−1 K−1, respectively. The existing difference in the
experimental LTC with respect to DFT and prediction values is
attributed to effects not considered in solving phonon BTE, such
as defects, boundary scattering, phase separation, and
electron–phonon interactions34–36. Because these effects are

collective in defining the phonon scattering rates and therefore
detract from the overall LTC, almost all the predictions via DFT or
Elemental-SDNNFF are expectedly slightly higher than an experi-
ment. Nonetheless, the filtration of high-performance thermal
materials given this knowledge remains highly feasible provided
the error is akin to that between DFT and the predictions for the
entire pool of Heusler structures studied here. Indeed, the model
presented here captures the forces and corresponding LTC for the
previously unseen material ZrNiSn displaying successful prediction
for unseen structures with unique composition and lattice size.

t-SNE analysis
Currently, the atomic weight of the central atom, the neighboring
atomic positions, and neighboring species serve as the input to
the Elemental-SDNNFF yielding the atomic forces on the central
atom. These atomic forces are not directly related to the phonon
properties but are necessary to construct the IFCs and subse-
quently solve phonon BTE. As such, the relationship between
atomic-level information and global properties such as the LTC is
not straightforward. Here, we instead pursue a higher-level
understanding of phonon properties via the t-distributed stochas-
tic neighbor embedding (t-sne) method37. The t-sne is a
dimensionality reduction method allowing visualization of highly
complex vectors into 2D/3D points, whereby the proximity of
these points defines their correlation. To understand the
Elemental-SDNNFF input vector, reduction to 20 dimensions by
principal component analysis (PCA)38 followed by a further
reduction to 2D by t-sne is performed on the entire pool of
structures with predicted positive dispersions (7373). Additionally,
because each structure contains several atoms, the SDNNFF mesh
is instead centered about the entire primitive cell as opposed to
each atom. This guarantees only one vector input per structure is
plotted for t-sne analysis. Then, the points are colored based on
global properties, including structure type, cell volume, number
density, average atomic mass, mass density, and the predicted LTC
to observe any structure–property relationships in Fig. 4.
As seen in Fig. 4a colored based on structure type, the green

ABC points are distinguishable from the mixed red ABC2 and blue
ABCD points. Indeed, ABC structures, when compared with ABC2
and ABCD, own a missing lattice site, causing the isolation of ABC
structures as they are clearly identified by the Elemental-SDNNFF
input. On the other hand, the ABC2 and ABCD structures here
share similar lattice sites with only difference lying in different
elements on the lattice sites (ABCD structures have additional
elements than corresponding ABC2 structures and thus have lower
symmetry), and thus some overlap is expected. Interestingly,
Fig. 4b, c clearly shows a plateau for the primitive cell volume and
a valley for the number density at the center of the t-sne
bordering the ABC and ABC2/ABCD clusters. Despite differences in
the structure, all structure types are involved with the same
gradients, i.e., a decrease in volume and an increase in number
density approaching the outer edges of the plot. Indeed, the
relative positions of atoms are expected to expand or contract
depending on their occupied elements and corresponding
bonding behavior. Thus, because the Elemental-SDNNFF captures
the atomic positions with a constant cutoff, the volume and
number density are characterized per structure. Fig. 4d, e are
colored based on the average atomic weight and mass densities
sharing similar distributions at a quick glance. Because these values
involve summing over all atoms in the primitive cell, it is not
expected that the t-sne plots own obvious trends like the volume or
number density since the Elemental-SDNNFF considers the con-
tribution of each atom individually. Nonetheless, these two plots
offer some insight into the distribution of the dataset studied here.
For instance, many of the ABC2/ABCD structures own either
extremely low or high average atomic masses and mass densities,
whereas ABC is somewhere in-between. Also, many of the structures
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with low volumes at the center also correspond with low mass
density which is sensible.
The most interesting result is seen in Fig. 4f whereby the color is

based on the LTC predicted by our Elemental-SDNNFF model. As
seen from the plot, the ultralow LTC structures (<1Wm−1 K−1,
corresponding to zero in logarithm scale) are toward the center of
the plot and the high LTC structures exist toward the outer edge.
This marks an interesting direct relationship with the number
density and inverse relationship with the total volume, which is
consistent with Zhu et al. in which volume-related features like
average atomic ground state volume, average bond length, and
volume per atom own high feature importance in the LTC7. In
general, ultralow LTC structures are significantly more distinguish-
able when compared to the high LTC structures which are more
scattered. Nonetheless, general conclusions could be made to
categorize the thermal transport performance of these structures
based simply on the number density. For instance, when
comparing the number density and LTC plot, structures with
1Wm−1 K−1 or less are expected to own a number density up to
~0.0525 atoms/Å3, whereas structures with more than
30Wm−1 K−1 are expected to own a number density of at least
0.067 atoms/Å3. Note, these estimates should only apply to the
ABCD, ABC2, and ABC Heusler structures studied herein. Addition-
ally, a Pearson correlation plot is shown in Fig. 5 showcasing the
strong positive correlation (+0.71) and negative (−0.64) correla-
tion of the LTC with respect to the number density and volume of
the primitive cell, respectively, whereas the other two properties
show weak correlation as summarized by the t-sne plots. As
validation, Supplementary Fig. 14 (Supplementary Information)
provides a colored comparison between the predicted LTC and
DFT-LTC for the 1298 structures serving as the test set. This is the
same t-sne plot as before but with all other structures than those
in the test set excluded. It is quickly realized that the predicted
and DFT-LTC trends agree with previous observations. Overall,
simple descriptors such as number density are extremely valuable

for the quick filtration of structures in databases as they require
little to no cost to compute. Discovering these trends are made
possible by the rapid prediction capabilities of the Elemental-
SDNNFF presented here, which we expect to expand to other
structure types in the near future.

Fig. 5 The Pearson correlation plot containing a volume of the
primitive cell (Å3), number density (number of atoms per Å3),
average atomic weight (amu), mass density (g/cm3), and
predicted LTC (log(Wm−1 K−1)). Red indicates a positive correlation
while blue indicates a negative correlation. Pearson correlation close
to zero indicates no correlation.

Fig. 4 t-sne plots of Elemental-SDNNFF input, with each point representing a single structure. Colors are added for every six plots based
on a structure type (red is ABC2, green is ABC, and blue is ABCD), b volume (Å3), c number density (atoms per Å3), d average atomic weight
(amu), e mass density (g/cm3), and f predicted LTC (log(Wm−1 K−1)).
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Insights into phonon anharmonicity from p-d orbital
hybridization
With the LTC of 7373 out of 11,866 thermodynamically stable
Heusler structures with additional 1298 structures from the testing
set accurately predicted, we are now in a position to provide deep
insight into the phonon anharmonicity of crystalline materials. The
mean atomic mass has long been regarded as a good predictor for
LTC of several materials as Slack and Keyes’s formula state39,40. The
higher the mean atomic mass with the same number of atoms
between two materials, the lower LTC is and vice versa39,40.
However, there are some exceptions that materials having the
same atomic mass might have quite different LTC due to various
anharmonicity mechanisms other than mean atomic mass. For
example, CuBr, ZnSe, and GaAs have the same number of atoms (2
atoms per primitive cell, denoted as M–X with M for cations and X
for anions) and a mean atomic mass of ~72 amu. However, CuBr,
ZnSe, and GaAs possess different LTC of 1.25, 19, and
45Wm−1 K−1 at 300 K, respectively41. Such phonon anharmoni-
city mechanism was discovered by Jaffe et al.42 and Wei et al.43,
which states that the hybridization in M-d orbitals and X-p orbitals
can cause repulsion. The strength of the hybridization is reflected
by the overlap and energy difference between the orbitals in M-d
and X-p41–43. Moreover, the overlap and hybridization between
M-d and X-p cause antibonding states below the Fermi level
which causes more anharmonicity in the material41. We examine
the phonon anharmonicity caused by p-d hybridization for the
trained full-Heusler structures. Two materials, namely Li2PdAs and
Li2CdGa, were selected from the Elemental-SDNNFF model as
candidates for in-depth analysis with explicit DFT. One particular
reason why these two materials are selected is that they have the
same number of atoms in the primitive cell and almost the same
mean atomic mass of ~49 amu. However, they have different
values of LTC (1.92 Wm−1 K−1 for Li2PdAs and 3Wm−1 K−1 for
Li2CdGa) which ensures that the difference in LTC is caused by an
anharmonicity mechanism other than the mean atomic mass. In
fact, the p-d hybridization phenomenon is observed in Li2PdAs
with reasonable p–d hybridization, while Li2CdGa has weak or
non-existent p-d hybridization in Fig. 6. Since Li in both materials
has neither p-orbitals nor d-orbitals, the analysis on orbitals is then
only done on d-orbitals in Pd/Cd and p-orbitals in As/Ga in the
orbital-projected band structures. The Crystal Orbital Hamilton
Population (COHP) was also calculated in both materials to further

explain the bonding and antibonding states especially the state
below the Fermi level between Pd/Cd and As/Ga.
The difference between LTC can be explained by the Pd/Cd-d

orbitals and As/Ga-p orbitals hybridization42,43. The orbital-projected
band structure of Li2PdAs shown in Fig. 6a confirms the presence of
hybridization between d-orbitals in Pd and p-orbitals in As. The
colors red (d-orbitals in Pd) and blue (p-orbitals in As) below the
Fermi level overlap with each other in Fig. 6a which indicates the
hybridization between red (d-orbitals in Pd) and blue (p-orbitals in
As). Moreover, the electronic density of states in Fig. 6a shows the
overlap between the red d-orbitals in Pd with the blue p-orbitals in
As. In Fig. 6b, the presence of antibonding negative COHP between
Pd-As bond in Li2PdAs below Fermi level also confirms the presence
of p-d hybridization in Li2PdAs between Pd-d orbitals and As-p
orbitals. In Fig. 6c the orbital-projected band structure of Li2CdGa,
the red (Cd-d orbitals), and blue (Ga-p orbitals) colors do not overlap
in the orbital-projected band structure. Also, the density of states
shows no overlap between red Cd-d orbitals and blue Ga-p orbitals
partial density of states which confirms the weak or non-existent
hybridization between Cd-d orbitals and Ga-p orbitals. In Fig. 6d, the
non-existent antibonding (negative COHP) states below the Fermi
level in Cd-As bond confirm the lower anharmonicity in Li2CdGa
than in Li2PdAs. The difference in LTC may not be significant, which
is due to the fact the p–d hybridization is weaker in Li2PdAs
compared to the p–d orbitals hybridization in CuBr that occur
between Cu-d orbitals and Br-p orbitals41. Despite the small
hybridization between Pd-d orbitals and As-p orbitals in Li2PdAs, it
is still worth taking it into consideration since it unravels a new
understanding of phonons anharmonicity in materials caused by
orbitals, which is expected to help design materials with ultralow LTC
for vast applications such as thermoelectrics and thermal insulation.
To further analyze the chemistry effect on the LTC, Fig. 7

displays the bonding vs. antibonding for all 11,866 Heusler
structures studied herein. Specifically, Fig. 7a contains the testing
set structures colored by their corresponding DFT-LTC, whereby
Fig. 7b includes all other structures colored by their LTC predicted
by our Elemental-SDNNFF model. The bonding and antibonding
value for each crystal structure are obtained via the integration of
the COHP curve. When both figures are compared, the general
trends are matching between DFT and predicted LTC and
supports their agreement. One notable trend is seen in the group
of structures at low bonding (<200) and high antibonding (>1).
Here, only low LTC structures <100.5Wm−1 K−1 are observed and

Fig. 6 Electronic band structure and COHP analysis of Li2PdAs and Li2CdGa. a Projected band structure for d orbitals in Pd and p orbitals in
As in Li2PdAs, b the Crystal Orbital Hamilton Population (COHP) for Pd–As bond in Li2PdAs (negative COHP represents antibonding and
positive COHP represents bonding), c projected band structure for d orbitals in Cd and p orbitals in Ga, d COHP for Cd-Ga bond in Li2CdGa.
The Fermi energy is scaled to 0 eV in all the subplots.
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agree with the earlier discussion of highly anharmonic materials
containing antibonding behavior. As seen by the insets, the
logarithm of the bonding value is inversely related to the volume,
and as the bonding decreases or volume increases, both DFT and
predicted LTCs also generally decrease. This corresponds with the
earlier finding in Fig. 4 whereby the volume is inversely
proportional to the LTC. In essence, the high antibonding and
low bonding behavior may be proposed as a method for quick
filtration of insulating crystals necessitating only the unit cell in
the DFT calculation. On the other hand, another trend is seen at
the high bonding region (>200). Observably, the entirety of the
LTC range is found here despite the antibonding, indicating the
competing bonding-antibonding behavior for the LTC. However,
only beyond this bonding region will high LTC > 100.5Wm−1 K−1

ever be observed, which may prove useful for the filtration of
high-performance thermally conductive crystals.

Weyl points prediction
Until now, we have focused on phonon properties related to their
eigenvalues, while topological effects of phonons originate from the
correlation of their eigenvectors. Nevertheless, the topological
classifications of phonons are obtained from harmonic force
constants. Here, harmonic force constants from the Elemental-
SDNNFF are used to perform the search due to their relatively high
accuracy to DFT. An extensive search for WPs is performed on space
group number 216 Heusler structures, revealing that 68.7% of ABC
structures and 87.6% of ABCD structures have WPs as seen in Fig. 8a.
Such a high success rate is much higher than the recent high-
throughput study of electronic materials which found only 30% are
topological44. Since all frequency ranges of phonons can be
stimulated, this further demonstrates the advantage of phonons
as a platform for studying topological states. All WPs are categorized
according to their symmetry, including those on high symmetry
lines, on high symmetry surfaces, and in bulk, as seen in Fig. 8b.
Although the concept of metal and insulator breaks down when
describing phonons, a clean semimetal in which the density of
states vanish at gap closing point still benefits experimental
verification. We found 85 and 92 clean WPs in ABC and ABCD
Heusler structures, respectively, while the previous study has
demonstrated clean WPs in half-Heusler materials45. Clean WPs are
found between acoustic and optical branches, and between clusters

of optical branches. We have found clean WPs between band 3/4
and band 6/7 in ABC structures and between band 3/4, band 6/7,
and band 9/10 in ABCD structures. Interestingly, another class of
two-band charge-2 WPs referred to as ‘double WPs’ is encountered,
which has not been discovered in phonon systems previously. The
double WPs are accompanied by a pair of chiral Fermi arcs,
expecting novel transport properties. They also serve as parents of
other topological phases, giving birth to two charge-1 WPs upon
symmetry breaking. The double WPs predicted in this work may
offer guidance on topological phase transition experiments. Note
that there are also three-band charge-2 WPs and four-band charge-2
WPs28, but they are not included in this work because of the
symmetry constraints of the Heusler structures. Unlike linear WPs
with Chern number ±1, the double WPs have Chern number ±2 and
exhibit quadratic dispersion near the band-crossing point46. The
double WPs are listed in Supplementary Tables 5–6 (Supplementary
Information) and a full list of all WPs is provided in the Excel file. The
positions of all WPs are shown in Fig. 8d–g. Since our dataset
includes 55 elements spanning the periodic table, our result can be
viewed as a full evaluation of all possible WPs in Heusler structures.
Most of WPs appear on high symmetry line XW and mirror plane
ΓXWK, and the distribution is extensive. The frequencies of WPs in
quaternary ABCD Heusler structures are found to be higher than
those in ternary ABC Heusler structures, due to more atoms and
denser packing in the unit cells of quaternary structures.

Final remarks
In summary, we developed and trained a single deep neural
network model dubbed Elemental-SDNNFF for predicting com-
plete phonon properties of crystals with demonstrated high force
accuracy and speed facing both observed and new compositions
of the half, quaternary, and full Heusler structures. Benefited from
the modified algorithm that enables million-scale atomic environ-
ments as training data, the accuracy of the predicted full phonon
properties (phonon dispersions and lattice thermal conductivity as
case studies) reflects the force accuracy with respect to DFT
mimicking realistic electronic-level surfaces generated by atomic
vibrations. The primary interest of the Elemental-SDNNFF is the
capability of predicting full phonon properties of crystals in a
single deep neural network model and the sustained DFT-level
forces facing large-scale structures with substantial combinations

Fig. 7 Bonding vs. antibonding colored by lattice thermal conductivity (LTC). Coloring is done for a 1298 structures from DFT calculations
in the training set and b 7373 predicted stable structures in the current study. Insets: the unit cell volume vs. bonding colored to their
corresponding LTC.
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of elemental compositions, effectively capturing bonding beha-
viors spanning the periodic table. Specifically, this is attributed to
training directly on forces procuring an N × D dataset, where D is
the number of DFT simulations and N is the number of atomic
force vectors. Data augmentation further elevates the available
data by three times for the Heuslers studied herein, providing the
neural network with extremely abundant data for generalizing ab
initio force fields. Additionally, we incorporated active learning
allowing the models to prioritize those previously unseen
structures with the highest error for subsequent training which
is shown to drive improvement in understanding atomic
environments undergoing lattice vibration. Made possible by the
rapid evaluation of complete phonon properties of 11,866
materials, we realized the behaviors of lattice thermal conductivity
trends based on physical and chemical properties. Mainly, we find
a direct correlation of the number density with the lattice thermal
conductivity, whereas a more complex relationship between
bonding and antibonding is pinpointed. For instance, high
antibonding and low bonding houses ultralow lattice thermal
conductivity structures with p–d orbital hybridization, whereby
antibonding is observed below the fermi level generating high
anharmonicity and low lattice thermal conductivity. Moreover,
given the expansive set of force constants evaluated by the
model, novel physics are also discussed in light of Weyl points
yielding new structures containing double Weyl points which
provide unique topological phonon properties. Ultimately, our
work is a medium for high-throughput evaluation and quantifica-
tion of full phonon properties of large-scale materials to discover
phononic crystals with exceptional or tailored phonon properties
unraveling insightful physics for broad materials research.

METHODS
Structural database and data preparation
To develop a pool of stable structures for this study, several
filtration steps were done on a large pool of ABCD, ABC, and ABC2
Heusler structures with space group numbers 216, 216, and 225,
respectively. The initial configuration of these structures was
borrowed from the Open Quantum Materials Database (OQMD)
lacking LTC data47 and was then reoptimized by the Vienna Ab
initio Simulation Package (VASP)48–50 https://www.vasp.at/ using
our own parameters. As seen in Fig. 1, the first step is to filter out
structures containing lanthanide and actinide elements to limit
the number of structures in this study for computational reasons,
although future studies including these elements are certainly of
consideration. Then, the structures are filtered by the formation
energy after structure optimization with DFT, where lower
formation energies have a higher tendency to be stable. The
formation energy is quick to compute using DFT requiring only
the primitive cells comprising 3–4 atoms. Finally, the energy above
the hull (Ehull) provides the ground state stability of partial
compounds with respect to all possible linear combinations of
phases present in the compound phase diagram, which is also not
time-consuming. The low Ehull value has a higher probability to
yield thermodynamically stable structures, i.e., all positive
frequencies in the phonon dispersion. The final pool in this study
holds 2377 quaternary Heusler (ABCD), 2660 half-Heusler (ABC),
and 6829 full-Heusler (ABC2) structures (totaling 11,866) from
which the Elemental-SDNNFF model training and prediction of
atomic forces, phonon dispersions, and LTC values are performed.
After 21 iterations of retraining, 15 involving active learning

Fig. 8 Results of searching Weyl points (WPs) in 3212 Heusler structures with phonon dispersions predicted by our Elemental-SDNNFF.
a Ratios of topological Weyl semimetals in ABC and ABCD structures. b Number of structures containing different types of WPs, including WPs
with high symmetry (on XW, on ΓXWK, and on XWU), WPs without high symmetry (in bulk), clean WPs, and double WPs. The insets illustrate
clean WPs and double WPs. c Plot of first Brillouin zone and irreducible Brillouin zone of space group 216. d–g Positions of WPs in bulk (d), on
XWU (e), on ΓXWK (f), and on XW (g).
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iterations, the final dataset grew to 3.12 × 106 unique atomic
configurations and is increased by a factor of 3 to 9.36 × 106 after
data augmentation (see details below). When compared with the
available 32,137 supercells for Elemental-SDNNFF training, this is a
major leap in the dataset size and is inherently due to the N × D
scaling from training on atomic forces. From Supplementary Fig. 7
(Supplementary Information), only 18.8% of the data is from active
learning, whereas the remaining 32.9% and 48.3% are from the
initial dataset and DFT-LTC data, respectively. Overall, 55 elements
in Supplementary Fig. 3 (Supplementary Information) are included
in this dataset and trained into the model, which is relatively large
for modern MLPs.

Model development
The SDNNFF was originally inspired by the HDNNP wherein each
atomic descriptor is a summation of atomic contributions in
radially-dependent functions51. However, unlike in MLPs, the
SDNNFF is designed to only model the atomic forces without the
total energy, a so-called neural network force field (NNFF). In
situations where the total energy is not required, an NNFF
provides two major advantages: (a) the resolution of training on
individual atomic force vectors in NNFFs, rather than a function of
the total energy plus the summation of force components in MLPs,
significantly augments (generally by two orders of magnitude) the
available training data from D to N × D, where D is the number of
supercells evaluated by DFT and N is the number of atoms in the
supercell. Each DFT run, therefore, yields N data for training, and
(b) prediction of the force vector directly eliminates the need to
calculate the derivative of the total energy with respect to
network inputs, or Fi ¼ �∇iE providing computational cost and
time savings in training and evaluation. The former N data per
supercell is the greatest motivator for SDNNFF development due
to the improved yield in training data per costly DFT run. Although
traditional MLPs also can take advantage of the force information,
they are involved as a summation between DFT and prediction
forces in the loss function for compatibility with the single energy
value, effectively reducing the resolution of atomic forces and the
overall number of training data16,24. This can be evidently seen
from the RMSE for forces: <10 meV/Å for our Elemental-SDNNFF as
compared to the several tens and even hundreds meV/Å for
previous MLPs. Furthermore, since the IFCs for LTC calculation
requires only the displaced positions and forces of atoms, the
absence of the total energy in this application is not an issue.
In our previous development of SDNNFF, the atomic environ-

ment is represented by a functional mapping of the 3D space
rather than the polar space22. Following the previous model, the
current solution for descriptor development including both
atomic positions and elements requires only a single network
scaling independently with respect to the available species in the
training set. Let Rc as the cutoff radius, R*n as the distance
between the central atom and atom n, and Rα

*

n as the distance
between grid point α

*

and atom n as detailed in the Supplemen-
tary Methods (Supplementary Information). Then, the modified
SDNNFF model, dubbed the Elemental-SDNNFF, uses the follow-
ing descriptors as input
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where φ
0
α
* is similar to the previous SDNNFF descriptor represent-

ing purely the spatial distribution of atoms, φ1
α
* is the spatial-

elemental descriptor, D is the width of the cosine functions
centered at each grid point and is set to

ffiffiffi

3
p

as in the previous
publication22, Wn is the atomic number of neighboring atom n,
and Wcentral is the atomic number of the central atom.
Additionally, the cutoff function fcðjR*n jÞ as explained in the
Supplementary Methods (Supplementary Information) was added
to represent the decaying influence of atom n from the central
atom, observably improving the force accuracy. Also, the only
difference between φ

0
α
* and φ

1
α
* is the factor Wn where the density

function is multiplied by the corresponding atomic number of
neighboring atom n. As a result, the additional cost from φ

1
α
* is

minimal since the already computed values from φ
0
α
* are simply

multiplied with the corresponding atomic weights. Furthermore, φ
*

is the finalized descriptor vector in which the central atom atomic
number, the spatial descriptor vector, and the spatial-elemental
descriptor vector are all concatenated in 1D. The basic idea of the
added descriptor is to simultaneously capture the previously
accurate spatial mapping of neighbors in addition to the influence
of atomic elements on the signals measured at the same grid
points. Two advantages arise from the elemental-SDNNFF
descriptor: (1) The summation of weighted density functions in
φ
1
α
* eliminates the need for designated slots in the descriptor

vector for each element and removes the scaling of input size with
respect to number of elements, and (2) By providing Wcentral in
* φ, the network can distinguish central atoms whereby
individual element-specific SDNNFFs are not required. The result
is a singular NNFF capable of modeling atomic systems spanning
the periodic table without sacrificing network efficiency, demand-
ing only one network for training with a fixed two times plus one
inputs as the previous SDNNFF model.

Rotational covariance
As mentioned previously, the SDNNFF is constructed by a 3D
mapping of space corresponding to the 3D forces as the output of
the network. In the original version of the SDNNFF, the reference
coordinate system was constructed by the input coordinates to
the DFT system from the structure file containing atomic positions
and Bravais lattice vectors. The grid point positions and
consequentially the descriptor was dependent on the coordinate
system of the reference DFT data the grid is always built along the
reference x/y/z-directions. As a result, a rotation of the atoms in
the system can yield dramatic changes to the input descriptor,
and given the purely mathematical nature of neural networks, the
resulting forces are likely to mismatch with those prior to the same
rotation. Thus, it is beneficial to design an NNFF with rotational
covariance. The advantage of rotational covariance is the capacity
to model infinitely many possible rotations with fewer equivalent
representations, reducing the redundancy in training similar but
rotated atomic systems. Rotational covariance also helps reduce
the number of DFT configurations needed for force accuracy
convergence since redundant atomic neighborhoods of existing
but rotated systems are already considered. Details about the
implementation of rotational covariance are presented in the
Supplementary Methods (Supplementary Information). Addition-
ally, provided rotation of the local atomic environment by matrix
M, the input descriptor is changed in comparison to that of the
unrotated case. As a result, the problem arises that the rotated
descriptor no longer lies in the original coordinate system of the
DFT forces, and the training on these forces requires additional
treatment. Thus, the approach here is to modify the architecture
of the neural network model to train on rotationally covariant
inputs and yield forces in the same crystalline coordinate system.
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Supplementary Fig. 2 (Supplementary Information) provides a
schematic example of the neural network model for the current
SDNNFF training. First, the rotationally covariant elemental
SDNNFF input is generated from existing DFT data. Simulta-
neously, the inverse of the rotation matrix M�1 is saved and
serves as an input to the network model. The generation of M is
necessary for the descriptor vector and taking its inverse is
relatively insignificant in terms of cost. Secondly, the input
descriptor passes through several hidden layers. Thirdly, after
the hidden layers, the number of nodes is deliberately set to three
to represent a ‘pseudo-force’ vector described by the rotationally
covariant nature of the input. During application, this force vector
alone cannot represent the DFT force, so an additional dot layer is
added. The dot layer multiplies the vector and the matrix M�1,
effectively converting the vector back into the cartesian space of
the atomic system. Finally, this result yields the DFT-level forces
from which the training program computes the loss function with
respect to the reference DFT forces and performs back-
propagation. Because the trainable parameters of the network
lie between the rotationally covariant input descriptor and the dot
layer, the model is trained on rotationally covariant information
and is applicable to systems regardless of the rotation M.

Data augmentation
One of the objectives of this work is to minimize the number of DFT
calculations for dataset generation. Following the existing N ×D
scaling of the dataset, gathering as much information as possible
from each DFT run is imperative to improve the speed/cost ratio of
NNFF training and evaluation. If the number of DFT calculations for
network generation is close to or exceeds that required for LTC
calculations for all materials in the data pool, then the NNFF quickly
loses its novelty; the time for dataset generation and training could
have been spent directly on LTC instead. As such, furthering the N ×
D scaling is therefore a critical aspect for the Elemental-SDNNFF.
Here, the selection rule for rotational covariance is discussed in which
two neighboring atoms relative to the central atom are selected: the
first atom is the closest atom, and the second atom is (a) coordinated
with the central atom and (b) forms the smallest angle with the first
atom and the central atom. In this case, when provided a crystal with
displaced atoms, the choice in the first and second atoms may vary
greatly despite the similarity of atomic environments. This may
artificially create gaps in knowledge due to the seemingly sporadic
nature of the displaced atoms and the resulting rotation matrix. A
simple way to fill these gaps in the data is to take several candidates
for the second atom, i.e., those that are coordinated with the central
atom but own similar angles as that with the smallest formed angle.
These candidates are then used for rotation matrix generation for the
same atomic environment and are included in the training set.
Figure 9 shows an example of data augmentation performed on a
single atom in ABCD structure provided a finite cutoff up to the first
neighbor for clarity. The bottom right of Fig. 9 shows the closest
atom as overlayed with a blue circle and similarly the second atom
with green. In addition to the original scheme, similar atomic
environments provided by the central and selected blue atoms may
yield two more possibilities for the second atom. As a result, a 3×
increase in data for training is expected in atomic environments for
ABCD structure, as also observed in ABC and ABC2 structures in
general and the dataset is augmented equally throughout. Markedly,
the data augmentation performed here shows a significant increase
in performance as mentioned in the Section “Structural database and
data preparation” and detailed in the Supplementary Methods
(Supplementary Information).

Active learning
An important aspect of any ML process is to consider the quality of
the dataset used for training. Ideally, the training data should
contain sufficiently diverse data to cover all possible features within

the domain of the application. However, judging the so-called
quality and diversity of atomic force fields based on the
simultaneous positions of atomic natures is not so trivial. Inspired
by the work of Zhang et al., active learning is incorporated for
Elemental-SDNNFF dataset generation and self-improvement52.
Specifically, the ‘query by committee’ method is a form of active
learning wherein several identical models are trained in parallel on
the same dataset but own different initialized weights. After
training, these models collectively evaluate a pool of structures, and
a comparison of the predicted forces is performed. If the variance in
the resulting forces is low for a particular structure, then the
associated atomic configurations contain features that are well-
considered in the training set. On the other hand, due to the
interpolative nature of neural networks, a high variance implies that
the atomic configuration owns features outside of the dataset, and
the structure is pooled as a candidate for retraining. With this pool,
DFT is performed, the new data is retrained for all the models in the
committee, and the loop is repeated. Here, several Elemental-
SDNNFF networks are trained on the initial dataset and serve as the
committee. After training, we evaluate the atomic forces on a pre-
generated set of displaced supercells. Like the work by Zhang et al.,
an indicator is computed for each atomic configuration serving as
the uncertainty observed by the committee52. Further detail about
the implementation of active learning in this work is provided in the
Supplementary Methods (Supplementary Information).

Phonon property prediction and model verification
For verification, 553 ABCD, 649 ABC, and 583 ABC2 totaling
1785 structures are set aside for DFT-LTC calculation for
comparison with those results from the SDNNFF. Details concern-
ing the development of the initial model prior to and during active
learning iterations, phonon property calculation details involving
phonon dispersions and LTC from both predicted and DFT forces,
and the active learning details and results, including methodology,
efficiency, and cost, are provided in the Supplementary Methods
(Supplementary Information).

Weyl points searching
The existence of WPs requires broken of either time-reversal
symmetry or inversion symmetry27. Due to the lack of a time-
reversal-breaking mechanism, only non-centrosymmetric materials
can have WPs. Here the candidates are 1662 ABC and 1550 ABCD
Heusler structures with non-centrosymmetric space group number
216 and phonon dispersions predicted by our Elemental-SDNNFF

Fig. 9 Data augmentation of a single central atom performed on
a displaced Quaternary Heusler (ABCD) structure. The periodic
structure is broken down by atomic environments at fixed cutoff,
where the nearest neighbors are extracted. Then, based on selection
rules, several atomic pairs are selected for generating rotations used
for data augmentation.
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model. For each material, we first search for twofold degenerate
points, then determine the Chern numbers of each degenerate
node. For the search for gap-closing points, we use a 10 × 10 × 10 Γ

center mesh as starting points. Then, a Limited-memory Broyden
Fletcher Goldfarb Shanno Bound (L-BFGS-B) optimization procedure
is applied to find the local minimum of the gap between two
adjacent bands. To make sure the nodal point is isolated, i.e., it is
not a point on a nodal line or surface, the gap on a surrounding
surface is checked. After collecting the nodal points, they are
transformed into the irreducible Brillouin zone (IBZ) by applying
symmetry operations. Notice that the Chern numbers of two
equivalent k-points are associated by the determinant of their
rotation matrix. We only consider nodal points in the IBZ. Finally, we
compute the Chern numbers of each nodal point using the Wannier
charge center evolution approach53,54. Those with nonzero Chern
numbers are identified as WPs.
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